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ABSTRACT 

We derive a common linear representation for the densities of four generalizations of 

the two-parameter Weibull distribution in terms of Weibull densities. The four 

generalized Weibull distributions briefly studied are: the Marshall-Olkin-Weibull, beta-

Weibull, gamma-Weibull and Kumaraswamy-Weibull distributions. We demonstrate 

that several mathematical properties of these generalizations can be obtained 

simultaneously from those of the Weibull properties. We present two applications to 

real data sets by comparing these generalized distributions. It is hoped that this paper 

encourage developments of further generalizations of the Weibull based on the same 

linear representation. 
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 1 INTRODUCTION 

The two-parameter Weibull distribution is named after Waloddi Weibull 

pioneered this distribution to model data sets of widely differing characteristics. Over 

the last three decades many Weibullrelated distributions have been constructed with 

a view for applications in various areas such as medicine, reliability, engineering, 

survival analysis, demography, actuarial study and several others. The Weibull 

distribution has been so far the most important distribution for modeling lifetime 

data and phenomenon with monotone hazard rates. When modeling these types of 

hazard rates, it may be an initial choice because of its negatively and positively 

skewed density shapes. Its major weakness is its inability to accommodate non-

monotone hazard rates (in particular, bathtub shaped hazard rates) which has lead to 

seek for some of its generalizations. 

The first generalization allowing for non-monotone hazard rates, including the 

bathtub shaped hazard rate, is the exponentiated Weibull (EW) distribution pioneered 

by Mudholkar and Srivastava (1993) which provides significantly better fits than 

traditional models based on the exponential, gamma, Weibull, log-logistic and log-

normal distributions. 

The cumulative distribution function (cdf) and probability density function (pdf) 

of the twoparameter Weibull distribution (for x > 0) are 

Gλ,c(x) = 1 − exp[−(λx)c] (1) 

and 

gλ,c(x) = cλc xc−1 exp[−(λx)c], (2) 

respectively, where c > 0 is a shape parameter and λ > 0 is a scale parameter. 

Henceforth, we write T ∼ W(λ,c) for a random variable T having density (2). The 

quantile function (qf) of T is Qλ,c(u) = G−λ,c1(u) = λ−1 [−log(1 − u)]1/c. 

The paper is unfolded as follows. In Section 2, we review four generalized 

Weibull distributions which have been investigated in the last twenty years based of 
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 the families introduced by Marshall and Olkin (1997), Eugene et al. (2002), Zografos 

and Balakrishnan (2009) and Cordeiro and de Castro (2011). We also give simple 

forms to generate data from these generalized models. In Section 3, we provide a 

common linear representation for the densities of the four generalized distributions 

in terms of Weibull densities. Some mathematical properties for all of them can be 

determined from this useful linear representation and those Weibull properties as 

shown in Section 4. Other extended Weibull distributions are addressed 

telegraphically in Section 5. Maximum likelihood estimation is summarized in Section 

6. In Section 7, we compare the four generalized Weibull models by means of two real 

life data sets. Finally, Section 8 offers some concluding remarks. 

 

 

2 FOUR GENERALIZED WEIBULL DISTRIBUTIONS 

Henceforth, we consider the Weibull distribution as defined by (1) and (2) to 

present four generalized Weibull distributions. 

The first generalization follows the Marshall and Olkin’s (1997) method to 

expand a distribution by adding an extra shape parameter. There are more than 30 

published papers on distributions generated using this method. The cdf of the 

Marshall-Olkin-Weibull (MOW) distribution (for θ > 0) can be expressed as 

 

(3) 

The quantile function (qf) of the MOW distribution is easily determined as 

QMOW(u) = Qλ,c (θu/[1 − (1 − θ)u]). The density function corresponding to (3) takes the 

form 

 

(4) 

For θ = 1, fMOW(x) is equal to gλ,c(x) and, for different values of θ, fMOW(x) can be 

more flexible than gλ,c(x). 
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 The hazard rate function (hrf) of the MOW distribution reduces to 

 

where τλ,c(x) is the Weibull hrf corresponding to (2). 

The last equation implies that τMOW(x)/τλ,c(x) is increasing in x for θ > 1 and 

decreasing in x for 0 < θ < 1. So, the extra parameter θ is called “tilt parameter”, since 

the hrf of the MOW distribution is shifted below (θ > 1) or above (0 < θ < 1) of the 

Weibull hrf. In fact, for all x > 0, τMOW(x) ≤ τλ,c(x) when θ ≥ 1, and τMOW(x) ≥ τλ,c(x) when 0 < 

θ ≤ 1. Further details were addressed by Marshall and Olkin (1997). 

The second generalization is the beta-Weibull (BW) distribution (with four 

positive parameters) which follows from the family pioneered by Eugene et al. (2002) 

by taking the Weibull as the baseline model. The BW cdf with two additional shape 

parameters a > 0 and b > 0 is 

, 

(5) 

where B(a,b) = Γ(a + b)/[Γ(a)Γ(b)] is the beta function, Γ( wdw is the 

gamma function and  is the incomplete beta 

function ratio. The pdf corresponding to (5) has the form 

. 
(6) 

The BW distribution includes as special cases the EW (b = 1), exponentiated 

exponential (EE) (b = c = 1), Weibull (a = b = 1), exponential (a = b = c = 1), Burr Type X 

and Type 2 extreme value distributions as well as the distribution of the order statistic 

from a Weibull population. Its applications have been widespread in oncology, 

finance, system failures, reliability prediction, extreme value data using floods, models 

for carbon fibrous composites, modeling tree diameters, among several others. 

The pdf and the hrf of the BW distribution are obtained from (1), (2), (5) and (6) 

using Ix(a,b) = I1−x(b,a) as 
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 , 

and 

, 

respectively. 

The shape of τBW(x) is constant when a = c = 1, decreasing when ac ≤ 1 and c ≤ 1, 

increasing when ac ≥ 1 and c ≥ 1, bathtub when ac < 1 and c > 1, and unimodal when 

ac > 1 and c < 1. 

The qf of the BW distribution follows easily from the beta qf. By inverting (5), we 

can write 

, 

where Iu−
1(a,b) denotes the inverse of the incomplete beta function ratio. Some 

expansions for 

Iu−
1(a,b) can be found in Wolfram website1. So, we can generate BW random 

variables by 

X = λ−
1 {−log(1 − V )}1/c , 

where V is a beta variate with shape parameters a and b. 

The third generalization follows from Zografos and Balakrishnan’s (2009) gamma family with 

an extra shape parameter a > 0. The cdf of the gamma-Weibull (GW) distribution is 

 
(7) 

where tdt is the lower incomplete gamma function. The GW 

density takes the 

form 

                                                 
1 http://functions.wolfram.com/06.23.06.0004.01 
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. 
(8) 

A physical motivation for the GW distribution can follow from Zografos and 

Balakrishnan (2009): if XL(1),...,XL(n) are lower record values from a sequence of 

independent random variables with common Weibull pdf gλ,c(x), then the pdf of the 

nth lower record value has the form (8). If Z is a gamma random variable with unit 

scale parameter and shape parameter a > 0, then X = Qλ,c(eZ) has density (8). So, the 

GW distribution is easily generated from the gamma distribution and the Weibull qf. 

Further, the GW density function (for x > 0) can be expressed as 

 

(9) 

Equation (9) extends some distributions previously discussed in the literature. 

In fact, it is identical to the generalized gamma distribution (Stacy, 1962). The Weibull 

distribution is a basic exemplar when a = 1, whereas the gamma distribution follows 

when c = 1. The half-normal distribution is obtained for a = 3 and c = 2. In addition, the 

log-normal distribution is a limiting special case when a tends to infinity. 

By inverting (7), the qf of the GW distribution follows as 

 (10) 

for 0 < u < 1, where Q−
1(a,u) is the inverse function of Q(a,x) = 1 γ(a,x)/Γ(a), see 

http:// functions.wolfram.com/ GammaBetaErf/ InverseGammaRegularized/ for 

details. Further, the simulation of the GW random variable is quite easy: if V is a 

gamma random variable with shape parameter a and unit scale parameter, then X = 

λ−
1 V 1/c will have the density (9). 

Finally, the fourth generalization is the Kumaraswamy-Weibull (KwW) distribution 

(with four positive parameters) defined from Cordeiro and de Castro’s (2011) family by 

the cdf and pdf 
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 (11) 

and 

 (12) 

respectively. Then, the KwW density (for x > 0) follows from (1), (2) and (12) as 

. 

It contains as special cases the EW (b = 1), Kumaraswamy exponential (c = 1), 

exponentiated Rayleigh, exponentiated exponential, Weibull, Rayleigh and 

exponential distributions. It allows for bathtub shaped, monotonically decreasing, 

monotonically increasing, and upside down bathtub shaped hazard rates. 

The role of the two extra parameters a and b is to govern skewness and obtain 

the KwW distributions with heavier or ligther tails than the Weibull distribution. In fact, 

the tails of fKwW(x) will be lighter than those of gλ,c(x) if a > 1 or b > 1. On the other hand, 

the tails of fKwW(x) will be heavier than those of gλ,c(x) if a < 1 or b < 1. 

The qf of the KwW distribution is readily obtained from the Weibull qf. In fact, 

the qf corresponding to (11) is 

 

 

 

Further, we can generate KwW variates by 

 

  

where U is a uniform variate on the unit interval (0,1). 
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 3 LINEAR REPRESENTATIONS 

The four generalized Weibull densities defined previously can be written as a 

common linear combination of Weibull densities whose coefficients depend only on 

the parameters of the generator family. 

The cdf and pdf of the EW distribution with power parameter α > 0 have the 

forms 

Πα,λ,c(x) = Gλ,c(x)α and πα,λ,c(x) = αGλ,c(x)α−1 gλ,c(x), 

respectively. 

We can expand Πα,λ,c(x) from (1) using the power series for real non-integer α > 

0 

 

for | z |< 1. Then, we can write 

 

(13) 

where , and gλj,c(x) is the Weibull pdf (1) with scale parameter λj 

= (j+1)1/cλ and shape parameter c. 

The following four linear representations for the generalized Weibull 

distributions described in Section 2 are derived by using the linear combinations of 

the family densities provided by some authors in conjunction with Equation (13). 

These linear representations for the four densities in terms of Weibull densities are 

important to determine their mathematical properties from those of the Weibull 

distribution. 

First, based upon the general expansion by Cordeiro et al. (2014), the MOW 

density (4) can be expressed as 
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where the coefficients are (for i= 0, 1, …) 

 

and θ¯ = 1 − θ. By inserting (13) in the last expression for fMOW(x) and changing 

the sums , where δj = 0 for j = 0,1 and δj = j − 1 for j ≥ 2, we 

obtain 

 

(14) 

where tMOWj  

Second, for the BW density (6), we obtain from Nadarajah et al. (2012) 

 

(15) 

where 

 

By combining (15) and (13), we can easily write 

 

(16) 

where  

Third, the linear combination for the GW density (9) follows from Castellares 

and Lemonte (2015) as 
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(17) 

where 

, 

and ψi−1(·) are the Stirling polynomials given by 

 

and Hn
m are positive integers given recursevily by 

, with  

By combining (17) and (13), we obtain (for a > 0 real non-integer) 

 

(18) 

where  

For the last generalization, the KwW density (12) can be expressed (Nadarajah 

et al., 2012) as 

 

(19) 

where 

 

By combining (19) and (13), we obtain 
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(20) 

where  

Equations (14), (16), (18) and (20) have identical linear combinations of Weibull 

densities with just different coefficients. They can be reduced to a simple equation 

 

(21) 

where ⋆ stands for any of the four generalized Weibull distributions. So, 

whenever possible, several mathematical properties for these generalized 

distributions can be determined in a similar manner from those Weibull properties. 

 

 

4 MATHEMATICAL PROPERTIES 

In this section, we present the main properties of the Weibull distribution which 

can be used in the linear representation (21) to obtain those properties for the MOW, 

BW, GW and KwW distributions. 

Some of the most important features of a distribution can be studied through 

moments. The nth ordinary moment of T ∼ W(λ,c) is E(Tn) = λ−
n Γ(n/c + 1). Then, the 

moments of the four generalized Weibull distributions take the common form 

 

(22) 

So, their cumulants (κn) can be found recursively from , 

where 

. The skewness  and kurtosis  can be calculated from 

the third and fourth standardized cumulants. 

The nth incomplete moment of , is 

easily found changing variables from the lower incomplete gamma function as mn(y) = 
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 λ−
n γ(n/c + 1,(λz)c). Then, the incmomplete moments of the four generalized Weibull 

distributions reduce to 

 

(23) 

The first incomplete moment m⋆,1(z) is used to construct the Bonferroni and 

Lorenz curves (popular measures in economics, reliability, demography, insurance 

and medicine) and to determine the totality of deviations from the mean and median 

of a distribution. 

For a given probability π, the Bonferroni and Lorenz curves of any of these four 

generalized 

Weibull distributions are given by ) and L⋆(π) = π B⋆(π), 

respectively, where q = Q⋆(π) is the qf of the chosen distribution (Section 2) 

The total deviations from the mean and median for any of these four 

generalizations can be expressed as ) 

and ), where ) can be determined for the cdf chosen (Section 

2). 

We provide two expressions for the moment generating function (mgf) of T, say 

Mλ,c(t) = E(etT). We can write 

 

A first representation for Mλ,c(t) is obtained from the Wright generalized 

hypergeometric function, namely 

. 

The Wright function exists if 1 + 0. For c > 1, we have 
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and then 

 . 

A second representation for M(t) is based on the Meijer G-function defined by 

 

where i = √−1 is the complex unit and L denotes an integration path (see Section 

9.3 in Gradshteyn and Ryzhik (2000) for a description of this path). The Meijer G-

function contains many integrals with elementary and special functions (Prudnikov et 

al., 1986). For an arbitrary function g(·), based on the result 

 , 

we can write Mλ,c(t) as 

 

We now assume that c = p/q, where p ≥ 1 and q ≥ 1 are co-prime integers. Note 

that this condition for calculating the integral Mλ,c(t) is not restrictive since every real 

number can be approximated by a rational number. Using equation (2.24.1.1) in 

Prudnikov et al. (1986, volume 3), we obtain 

 . 
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 Then, the generating functions of the four generalized distributions can be 

written as 

, 

where Mλj,c(t) follows from the two expressions for Mλ,c(t) given before with λ = λj. 

 

 

5 OTHER EXTENDED WEIBULL DISTRIBUTIONS 

A first distribution closely related to the EW distribution is the generalized 

Weibull distribution pioneered by Mudholkar et al. (1996) with cdf (for x > 0) 

 

where λ > 0, c > 0 and α > 0. This distribution allows for bathtub shaped, 

monotonically increasing, monotonically decreasing and constant hazard rates. 

Gera (1997) presented a modification of the EW cdf given by F∗(x) = 

exp(−sxr)Gλ,c(x)α for r > 0 and s > 0. Lai et al. (2003) introduced the modified Weibull (MW) 

density (for x > 0) f(x) = α(c + δx)xc
−

1 exp(δx)exp[−αxc exp(δx)], where α > 0, c > 0 and δ > 

0, which allows for increasing and bathtub shaped hazard rates. 

Nadarajah and Kotz (2005) proposed a four-parameter generalized Weibull-

Gompertz distribution with cdf (for x > 0) 

 

Again, this cdf can lead to increasing, decreasing or bathtub-shaped hazard 

rates. 

Bebbington et al. (2007) defined the flexible Weibull density (for x > 0) as 
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 Carrasco et al. (2008) defined the generalized modified Weibull (GMW) density (for 

x > 0) as 

, 

where α > 0, γ ≥ 0, λ ≥ 0 and β > 0. 

Nikulin and Haghighi (2009) proposed the cdf of the power generalized Weibull 

distribution (for x > 0) as F(x) = 1 − exp{1 − [1 + (λx)ν]1/γ}, where ν > 0, γ ≥ 0 and λ > 0, 

which allows for increasing, decreasing, constant, bathtub shaped, and unimodal 

hazard rates. 

Further, Barreto-Souza et al. (2010) defined the four-parameter beta generalized 

exponential (BGE) density (for x > 0) as 

 , 

where a > 0, b > 0, α > 0 and λ > 0. The BGE model allows for bathtub shaped, 

monotonically increasing, monotonically decreasing and upside-down bathtub hazard 

rates. 

Silva et al. (2010) introduced the five-parameter beta modified Weibull (BMW) 

density (for x > 0) 

 

where a > 0, b > 0, α > 0, γ > 0 and λ ≥ 0. The BMW distribution includes as sub-

models seventeen known distributions such as the EW, BW, MW and GMW 

distributions, among others. It allows for bathtub shaped, monotonically decreasing, 

monotonically increasing, and upside down bathtub shaped hazard rates. 

Pascoa et al. (2011) defined the five-parameter Kumaraswamy-generalized 

gamma density (for x > 0) 
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, 

where γ1(p,x) = γ(p,x)/Γ(p), α > 0, λ > 0, k > 0, ψ > 0 and τ > 0. This distribution 

contains as special cases the exponentiated generalized gamma (Cordeiro et al., 

2011b) and KwW distributions, among several others. It allows for constant, bathtub 

shaped, monotonically decreasing, monotonically increasing, and upside down 

bathtub shaped hazard rates. 

Cordeiro et al. (2011c) proposed the beta extended Weibull family density (for x > 

0) by 

, 

where a > 0, b > 0 and α > 0, H(x) ≥ 0 is a monotonic increasing function of x and 

h(x) = dH(x)/dx. This family contains as sub-models the EW and BMW distributions and 

also give rise to many new classes of distributions. 

Finally, Alexander et al. (2012) proposed a class of generalized beta-generated 

densities given by f∗(x) = cg(x)G(x)ac
−

1 [1 − G(x)c]b
−

1/B(a,b) for shape parameters a > 0, b > 

0 and c > 0, where G(·) is a valid cdf and g(·) is its pdf. Two important special cases are 

the beta and Kumaraswamy generated families discussed in Section 2. 

 

 

6 MAXIMUM LIKELIHOOD ESTIMATION 

The parameters of the MOW, BW, GW and KwW distributions are estimated by 

maximum likelihood from complete samples only. Let x1,··· ,xn be a random sample of 

size n from the distributions given by (4), (6), (8) and (12) and parameter vector η. Let q 

denote the dimension of η. Parametric inference for such data is usually based on 

likelihood methods and asymptotic theory. The log-likelihoods (l(η)) for the model 

parameters are 
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 For the MOW distribution, η = (λ,c,θ)T 

. 

For the BW distribution, η = (λ,c,a,b)T 

 

For the GW distribution, η = (λ,c,a)T 

. 

For the KwW distribution, η = (λ,c,a,b)T 

 

where Gλ,c(xi) and gλ,c(xi) are defined in Section 1. 

The function l(η) can be maximized either directly by using well-known 

platforms such as the R (optim function), SAS (PROC NLMIXED), Ox program (MaxBFGS 

sub-routine) or by solving the nonlinear likelihood equations ∂l(η)/∂η = 0. These 

equations cannot be solved analytically numerically. We can use iterative techniques 

such as the Newton-Raphson type algorithms withb and statistical software can be 

used to obtain the maximum likelihood estimate (MLE) η of η 

initial values for the parameters taken from the fitted Weibull distribution. 

For interval estimation and hypothesis tests on the model parameters, we 

require the observed information matrix since its expectation requires numerical 

integration. Under standard regularity conditions that are fulfilled for parameters in 
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 the interior of the parameter space but not on the boundary, the asymptotic 

distribution of 

 

where I(η) is the expected information matrix. This asymptotic behavior is valid 

if I(η) is reNq(0,J(η)−
1)b distribution can be used to construct approximate confidence 

intervals and confib placed by J(η), i.e., the observed information matrix evaluated at η. 

The multivariate normal dence regions for the individual parameters and for the 

hazard rate and survival functions. 

 

 

7 APPLICATIONS 

All generalized distributions mentioned previously can be fitted to real data sets 

using the AdequacyModel package by the BFGS method in the R software. 

In this section, we provide two applications comparing the four generalized 

distributions (MOW, BW,GW, KwW) by means of two real data sets. We calculate the 

MLEs of the parameters for the fitted distributions, their standard errors (SEs) (in 

parentheses) and the following goodness-of-ft measures: the Akaike Information 

Criterion (AIC), Bayesian Information Criterion (BIC), Cram´ervon Misses (W*) statistic 

and Anderson Darling (A*) statistic using the AdequacyModel package. The better fits 

to the data correspond to small values of these measures. 

 

7.1 Application 1: Repair time data 

The following maintenance data refer to active repair times (in hours) for an 

airborne communication transceiver. The 45 repair times analyzed by Chhikara and 

Folks (1977) are: 0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.1, 

1.3, 1.5, 1.5, 1.5, 1.5, 2, 2, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 

7.0, 7.5, 8.8, 9.0, 10.3, 22.0, 24.5. 
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 The results from some fitted distributions to these data are listed in Table 1. We 

can note that the KwW model is the most adequate distribution to these data. The 

four statistics are favorable when compared to the nested Weibull distribution. For 

non-nested models, the statistics W∗ and A∗ are favorable to the KwW model with the 

smallest values. 

 

Table 1 - MLEs of the model parameters for the repair time data, their SEs (given in 

parentheses) and statistical measures 

Model c λ a b AIC BIC W∗ A∗ 

BW 0.591 8.849 7.964 0.227 207.39 214.70 0.041 0.282 

 (0.179) (0.051) (2.311) (0.209)     

KwW 0.597 9.999 11.830 0.200 206.86 214.17 0.037 0.256 

 (0.177) (0.358) (4.667) (0.188)     

GW 0.457 8.022 4.041 - 209.39 214.87 0.081 0.551 

 (0.060) (7.543) (1.083) (-)     

EW 0.545 1.198 3.260 - 208.78 214.26 0.075 0.509 

 (0.121) (0.928) (1.760) (-)     

Weibull 0.898 0.294 1 1 212.93 216.59 0.129 0.900 

 (0.095) (0.051) (-) (-)     

Model c λ θ  AIC BIC W∗ A∗ 

MOW 1.484 0.053 0.033  207.71 213.19 0.069 0.438 

 (0.204) (0.043) (0.051)      

 

The histogram and the plots of the fitted KwW and Weibull densities are 

displayed in Figure 1a. The plots of the empirical survival and estimated survivals are 

displayed in Figure 1b. The plots of the empirical hazard and estimated hazards are 

displayed in Figure 1c. We conclude from these plots that the KwW distribution is very 

suitable to these data. 
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 7.2 Application 2: Chlorobenzene data 

In this application, the data refer to a sample with chlorobenzene 

concentrations in the air of a factory (in TWAs/15min). The 31 observations represent 

the average concentrations calculated every fifteen minutes in an eight-hour shift 

(Kumagai and Matsunaga, 1995). The averages are: 13.7, 10.2, 9.9, 4.3, 5.6, 45.6, 42.0, 

14.1, 3.8, 9.3, 10.6, 91.3, 2.2, 3.8, 6.0, 17.8, 131.8, 31.0, 4.2, 2.6, 27.6, 1.7, 7.0, 2.1, 1.5, 

7.5, 2.5, 2.4, 51.9, 12.9, 12.3. 

 

Figure 1 - Plots for repair time data. (a) Estimated KwW and Weibull densities. (b) 

Estimated survivals of the KwW and Weibull distributions. (c) Estimated hazards of the 

KwW and Weibull distributions 

 

 

The results from some fitted distributions to these data are listed in Table 2. We 

conclude that the KwW model is the most suitable to these data. The four statistics 

are favorable when compared to the nested Weibull distribution. For non-nested 

models, the measures W∗ and A∗ are favorable for the KwW model with the smallest 

values. 
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 Table 2 - MLEs of the model parameters for the chlorobenzene data, their SEs (given 

in parentheses) and statistical measures 

Model c λ a b AIC BIC W∗ A∗ 

BW 0.558 3.217 11.843 0.181 241.23 246.96 0.039 0.291 

 (0.072) (0.096) (5.373) (0.085)     

KwW 0.532 5.037 27.757 0.161 240.19 245.92 0.033 0.248 

 (0.026) (0.028) ( 0.001) (0.040)     

GW 0.316 38.670 6.854 - 242.76 247.06 0.078 0.539 

 (0.019) (0.002) (0.793) (-)     

EW 0.284 8.949 21.677 - 240.02 244.33 0.042 0.319 

 (0.080) (0.493) (3.100) (-)     

Weibull 0.820 0.059 1 1 245.95 248.82 0.149 0.943 

 (0.106) (0.013) (-) (-)     

Model c λ θ  AIC BIC W∗ A∗ 

MOW 1.416 0.008 0.025  241.6 245.90 0.052 0.394 

 (0.224) (0.006) (0.035)      

 

The histogram and the plots of the fitted KwW and Weibull densities are 

displayed in Figure 2a. The plots of the empirical cdf and estimated cdfs are given in 

Figure 2b. The plots of the empirical hazard and estimated hazards are displayed in 

Figure 2c. We conclude from these plots that the KwW distribution is very suitable to 

these data. 
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 Figure 2 - Plots for chlorobenzene data. (a) Estimated KwW and Weibull densities. (b) 

Estimated cdfs of the KwW and Weibull distributions. (c) Estimated hazards of the 

KwW and Weibull distributions 

 
 

 

 

8 CONCLUSIONS 

In this paper, we present a simple linear representation which holds for the 

densities of various extensions of the Weibull distribution. It involves coefficients that 

depend only on the parameters of the families and the Weibull densities in convenient 

forms. We demonstrate the usefulness of this representation for the he Marshall-

Olkin-Weibull, beta-Weibull, gamma-Weibull and Kumaraswamy-Weibull distributions. 

However, it can be valid for some other generalized Weibull distribution. The main 

advantage of the linear representation is to derive easily some mathematical 

properties for these four distributions from those Weibull properties. We present two 

applications of these generalized distributions to real data sets. 
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