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ABSTRACT

Layered structures have appeared in many engineering systems such as bi-

ological tissues, micro-electronic devices, thin films, thermal coating, metal oxide

semiconductors, and DNA origami. In particular, the multi-layered metal thin films,

gold-coated metal mirrors for example, are often used in high-powered infrared-laser

systems to avoid thermal damage at the front surface of a single layer film caused by

the high-power laser energy. With the development of new materials, functionally

graded materials are becoming of more paramount importance than materials having

uniform structures. For instance, in semiconductor engineering, structures can be

synthesized from different polymers, which result in various values of conductivity.

Analyzing heat transfer in layered structure is crucial for the optimization of thermal

processing of such multi-layered materials.

There are many numerical methods dealing with heat conduction in layered

structures such as the Immersed Interface Method, the Matched Interface Method,

and the Boundary Method. However, development of higher-order accurate stable

finite difference schemes using three grid points across the interface between layers for

variable coefficient case is mathematically challenging. Having three grid points ensures

that the finite difference scheme leads to a tridiagonal matrix that can be solved easily

using the Thomas Algorithm. But extension of such methods to higher dimensions

is very tedious. Recently there have been some solution to such complex systems
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with the use of neural networks, that can be easily extended to higher dimensions.

For the above purposes, in this dissertation, we first develop a gradient preserved

method for solving heat conduction equations with variable coefficients in double

layers. To this end, higher-order compact finite difference schemes based on three

grid points are developed. The first-order spatial derivative is preserved across the

interface. Unconditional stability and convergence with O(τ 2 + h4) are analyzed using

the discrete energy method, where τ and h are the time step and grid size, respectively.

Numerical error and convergence rates are tested in an example. We then present

an artificial neural network (ANN) method for solving the parabolic two-step heat

conduction equations in double-layered thin films exposed to ultrashort-pulsed lasers.

Convergence of the ANN solution to the analytical solution is theoretically analyzed

using the energy method. Finally, both developed methods are applied for predicting

electron and lattice temperature of a solid thin film padding on a chromium film

exposed to the ultrashort-pulsed lasers. Compared with the existing results, both

methods provide accurate solutions that are promising.
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CHAPTER 1

INTRODUCTION

1.1 General Overview

Structures having layers are used very commonly in engineering systems and

applications. Some examples where researchers use layered structures are thermometric

power conversion, thermal coating, metal oxide semiconductors, biological tissues,

micro-electronic devices, thin films, reactor walls, and thermal processing of DNA

origami nano structures, etc [1-8]. When dealing with multilayered structure and

thermal processing, lasers, especially ultrashort-pulsed lasers, are important tools.

They have wide applications in biology, chemistry, medicine, physics, and optical

technology due to their high efficiency, high power density, minimal collateral material

damage, lower ablation thresholds, high precision production ability, and high-precision

control of heating times and locations in thermal processing of materials [9]. This

technology in particular has been extensively used in thermal processing of materials,

such as structural monitoring of thin metal films and laser processing in thin-film

deposition [9]. During ultrashort pulsed laser heating, especially when involving

metals, the thermal conductivity varies with time because of its dependence in electron

and lattice temperature. Also, with the development of new materials nowadays,

functionally graded materials are becoming more important than materials having

1
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uniform structures [10, 11, 12]. For example, in semiconductor engineering, structures

can be synthesized from different polymers. This results in variable conductivity.

Therefore, thermal analysis in layered structures is crucial for the design and operation

of devices and the optimization of thermal processing of materials.

There are many numerical methods dealing with the thermal analysis of

layered structures; the Peskin Immersed Boundary Method [13-18], the Immersed

Interface Method [19-31], the Ghost Fluid Method [32-34], the Matched Interface

and Boundary Method [35-42], the Immersed Finite Element method [43-49], the

Petrov-Galerkin Finite Element Method [50-53], and body-fitting approaches [54, 55],

as well as the summation-by-parts operator with simultaneous approximation terms

for time-dependent problems [56-60]. However, these methods across the interface

usually provide only a second-order truncation error when using three-grid points.

This reduces the accuracy of the overall numerical solution even if the higher-order

Compact Finite Difference method is used at other points. If not using three grid

points the resulting matrix from finite difference scheme becomes very complex and

time consuming to solve, whereas having three grid points makes the matrix tridiagonal

which can be easily solved using the Thomas Algorithm. Coming up with three point

grid scheme, is mathematically very challenging specially for the interface. Dai and

his collaborators recently [61] have developed the Gradient Preserved Method (GPM).

This is a higher-order accurate finite difference method that uses three grid points

across the interface between layers by preserving the first-order derivative, ux, in the

interfacial condition and/or the boundary condition. By coupling it with the three

grid points in space and fourth-order accurate Padé scheme [62] at interior points, an
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accurate, stable, and convergent scheme has been obtained for solving heat conduction

equations with constant coefficients in double layers. But in many cases such as

functionally gradient materials, and also when dealing with ultrashort pulsed lasers,

the thermal conductivity is not constant. To incorporate variable thermal conductivity

into the finite difference scheme, while maintaining three grid points is mathematically

very challenging, even in one spatial dimension. With the advancement of computation

power, new directions for solving problems such as data driven scientific computing,

artificial intelligence, machine, and deep learning techniques have emerged [64-72].

Dr. Karniadakis and his colleagues [73] recently have introduced the idea of Physics

Informed Neural Nets (PINN) for solving physics-based problems. The PINN method

consists of a fully connected deep neural network whose output is considered as the

solution of the equation based on the equation that we want to solve. The loss function

consists of the equation along with the initial and boundary conditions, which are

used to optimize the weights and biases in the neural network solution. The iteration

continues until the loss function attains a small enough value to obtain an accurate

neural network solution. This method although is not tedious as the finite difference

method, is much slower in computation. However the computation speed can be

greatly increased with the implementation of GPU and parallel computation. Also,

this method can be easily extended to higher dimension with just some minor changes

which is not the case for finite difference methods. But one of the issues in general

for neural networks is its failure to capture high shock values or sharp discontinuities.

Such high shock values are common during thermal processing of materials. For

example, heating with an ultrashort-pulsed laser involves high-rate heat flow from
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electrons to lattices within picoseconds. When heated by photons (lasers), the free

electrons that are confined within skin depth primarily absorb the laser energy and

get excited. Within a few picoseconds, electrons shoot up to several hundreds or

thousands of degrees without the metal lattices getting disturbed. A major portion

of the thermal electron energy afterwards is transferred to the lattices; meanwhile

another part of the energy diffuses to the electrons that are in the deeper region of the

material. Since the pulse duration is so short, the laser is turned off before thermal

equilibrium between electrons and lattices is reached. In this time interval, this stage

is often called non-equilibrium heating due to the large difference of temperatures

in electrons and lattices [74]. This kind of problem requires an accurate numerical

method, and using a neural network method is challenging.

1.2 Research Objective and Organization

The objective of this dissertation is to propose two computational techniques

for solving heat conduction with variable coefficients in double layers. For this purpose,

the first method in this dissertation extends the GPM to the variable coefficient case

(even temperature-dependent coefficients). Developing a higher-order accurate and

stable finite difference scheme using three grid points across the interface between layers

for the variable coefficient case is much more mathematically challenging than that for

the constant coefficient case. We aim at obtaining a stable and convergent Compact

Finite Difference scheme for solving the heat conduction equation having variable

coefficients in double layers. We then apply it to the parabolic two-temperature heat

equations for predicting the electron and lattice temperature in double-layered thin
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film exposed to ultrashort-pulsed lasers. For the second method, we aim to create a

neural network method based on Physics Informed Neural Network (PINN), that is

able to capture high shock values efficiently. We then apply it to solving the parabolic

two-temperature heat conduction equations in double-layered thin film exposed to

ultrashort-pulsed lasers. Finally, we compare our computational results with existing

references.

The organization of the rest of dissertation is as follows. Chapter 2 provides

a background review related to this research. Chapter 3 proposes the Gradient

Preserve Method for heat conduction equations with variable coefficients in double

layers. Chapter 4 proposes the Neural Network Method for solving the parabolic

two-temperature heat conduction equations in double-layered thin film exposed to

ultrashort-pulsed lasers. Chapter 5 tests both the GPM and the Neural Network

method for thermal analysis in a gold layer padding on a chromium layer exposed to

ultrashort-pulsed lasers, and compares with existing references. Chapter 6 concludes

the dissertation and discusses some directions for future research.



CHAPTER 2

BACKGROUND REVIEW

This chapter provides the related research background for the research in this

dissertation. Also, it discusses the previous work done related to this dissertation.

2.1 Heat Conduction Equations

A heat conduction equation in mathematics and physics represents a particular

partial differential equation that deals with the flow of heat. Joseph Fourier in 1822

gave the first theory of heat equation[75]. It is also known as Fourier’s law, and it

states that: “ the heat flux q, resulting from thermal conduction, is proportional to

the magnitude of the temperature gradient and opposite to it in sign” [76]. If k is the

proportionality constant then mathematically,

q( ~X, t) = −k∇T ( ~X, t). (2.1)

The SI unit of q is Wm−2 (Watt per meter square). The constant k is known as

the thermal conductivity with SI unit Wm−1K−1 (Watt per metre Kelvin). ~X is

the spatial vector, t is time, and ∇T is the temperature gradient with SI unit Km−1

(Kelvin per metre). This law of Fourier has other equivalent forms. The discrete

analogue form is Newton’s law of cooling; the electrical analogue is Ohm’s law, and

the chemical analogue is Fick’s laws of diffusion.

6
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2.1.1 Heat conduction equation with constant coefficients

The thermal conductivity k is usually considered as a constant (which is always

the case). The Fourier law from Eq. (2.1) in one dimension can be written as:

Rate of heat transfer

area
= −k∂T

∂x
. (2.2)

To obtain the heat equation for a material with constant thermal conductivity k, in

the form of a rod with uniform cross section [77, 78], we let the density of the material

be ρ, specific heat be c, and cross section area be A. Consider a very small arbitrary

element of the rod of length ∆x and assume that the temperature throughout the

element is T (x, t). Then, the heat energy needed in this small segment in order to

raise the temperature T (x, t) degree can be calculated as:

heat energy of segment = cρA∆xT (x, t). (2.3)

By the conservation of energy, we have:

change of heat energy of segment in time ∆t

= heat flow in from left boundary − heat flow out from right boundary.

Therefore, from Eq. (2.2) and (2.3) we have:

cρA∆xT (x, t+ ∆t) = ∆tA

(
k
∂T (x, t)

∂x
− k∂T (x+ ∆x, t)

∂x

)
, (2.4a)

T (x, t+ ∆t)− T (x, t)

∆t
=

k

cρ

(
∂T
∂x
|x+∆x − ∂T

∂x
|x

∆x

)
. (2.4b)

Taking the limit ∆t, ∆x −→ 0, gives the following equation:

∂T (x, t)

∂t
= K

∂2T (x, t)

∂x2
, (2.5)
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where K = k/(cρ) is called the thermal diffusivity. This equation is known as the

heat conduction equation with constant coefficient thermal conductivity. To obtain

the temperature T (x, t), we need more information. This information includes:

1. initial condition (the initial temperature information T (x, 0) of the material),

2. boundary condition (the temperature condition on the boundaries of the mate-

rial).

There are three types of boundary conditions: (a) Dirichlet boundary condition,

(b) Neumann boundary condition, and (c) Robin boundary condition. The Dirichlet

boundary condition specifies the temperature at the boundary for t ≥ 0. The Neumann

boundary condition gives the heat flux information on the boundary in the form of

spatial derivative (∂T/∂x). The Robin boundary condition gives us information in

the form of an equation combining both the temperature T and its spatial derivative

(∂T/∂x). Thus, the one dimensional heat conduction problem can be written as:

∂T

∂t
= K

∂2T

∂x2
, 0 ≤ x ≤ L, t > 0, (2.6)

with initial condition

T (x, 0) = α, 0 ≤ x ≤ L, (2.7)

and one of the boundary conditions (Dirichlet, Neumann, or Robin)

Dirichlet : T (0, t) = β1, T (L, t) = β2, t > 0 (2.8a)

Neumann :
∂T (0, t)

∂x
= γ1,

∂T (L, t)

∂x
= γ2, t > 0 (2.8b)

Robin : aT (0, t) + b
∂T (0, t)

∂x
= η1, aT (L, t) + b

∂T (L, t)

∂x
= η2, t > 0 (2.8c)

where a and b are constants.
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The heat conduction equation with constant thermal conductivity can be

extended to n-dimensions (x1, x2, ..., xn) as :

∂T

∂t
= K

n∑
n=1

∂2T

∂x2
i

. (2.9)

If there is a source term involved in the heat conduction equation, such as an external

source of heat that is being used to heat the material, Eq. (2.9) becomes

∂T

∂t
= K

n∑
i=1

∂2T

∂x2
i

+ F (X, t), (2.10)

where X = x1, x2, ..., xn. Here, F (X, t) is the source term.

2.1.2 Heat conduction equation with variable coefficients

The case discussed above has a fixed thermal conductivity k. In most cases the

thermal conductivity may not be constant because it may depend on a lot of factors such

as the density of material, non uniformity of material, ambient temperature, moisture of

material, etc. Nowadays with the advancement of technology in manufacturing industry,

Functionally Graded Materials (FGMs) have become of paramount importance. FGMs

are characterized by spatially variable microstructures, are heterogeneous materials

that have spatially variable macroscopic properties to enhance the material or its

structural performance [79]. The concept of modern man-made FGMs was proposed

first by material scientists in 1984 in Japan as a means of developing thermal protection

materials.

To obtain the temperature in such variable thermal conductivity structures,

the heat equation with variable thermal conductivity in one dimension can be changed
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to:

∂T

∂t
=

∂

∂x

(
k(x)

∂T

∂x

)
+ F (x, t), (2.11)

where k(x) is the spatially varying thermal conductivity. The initial conditions and

the boundary conditions are developed similarly as discussed for the constant thermal

conductivity case.

For n-dimension form, Eq. (2.11) can be extended as:

∂T

∂t
=

n∑
i=1

∂

∂xi

(
k(X)

∂T

∂xi

)
+ F (X, t), (2.12)

where X = x1, x2, ..., xn.

2.1.3 Heat conduction equation in double layers

Figure 2.1: Double-layered structure.

A Heat conduction problem in a single layer can be solved by having the heat

conduction equation with the initial and boundary conditions. But when it comes

to double layers apart from the initial and boundary conditions, we need additional

information on the interface between layers to solve the problem. The interfacial



11

conditions are mainly based on heat and mass conservation principles. For perfectly

thermal contact cases, it requires that:

1. the same temperature at the area of contact be maintained between the two

layers,

2. the heat flux at the surface of the first material must be the same as the heat

flux at the surface of the second material, because the heat flux flows only from

one surface to the other.

Mathematically, these two conditions give the following interficial conditions:

T (xl+, t) = T (xl−, t), t ≥ 0, (2.13a)

k2
∂T (xl+, t)

∂x
= k1

∂T (xl−, t)

∂x
, t ≥ 0, (2.13b)

where k1 and k2 are the thermal conductivity for layer 1 and layer 2, respectively, as

shown in Figure ??. Here xl− and xl+ represent the locations in the interface in layer

1 and layer 2, respectively. For the variable coefficient case, k1 and k2 in Eq, (2.13b)

are replaced with variable functions k1(x) and k2(x).

2.1.4 Parabolic two-temperature heat conduction equations in double lay-
ers

Laser heating of materials is most commonly given by the heat conduction

model [79]:

C
∂T

∂t
= ∇(k∇T ) + S, (2.14)

where C is the volumetric heat capacity, k is the thermal conductivity, and S is the

laser heat source. This model has two underlying assumptions:

1. radiation energy is instantaneously converted into lattice energy
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2. energy transfer in solids is a diffusion process.

The above equation is called the Parabolic One Step (POS) model. For ultrashort-

pulsed laser heating, the above basic assumptions may not be accurate. The wave type

of propagation in heat has been suggested in [80-98], which gives us the Hyperbolic

One-Step radiating heating model (HOS):

C
∂T

∂t
= −∇Q+ S (2.15a)

τ
∂Q

∂t
+ k∇T +Q = 0, (2.15b)

where Q is the heat flux and τ is the relaxation time of free electrons in metal. In 1974,

S. I. Anisimov, B. L. Kapeliovich and T. L. Perelman suggested that the conversion

of radiation energy into internal energy is not instantaneous [91]. It involves two

energy-deposition steps:

1. radiation heating of free electrons

2. the subsequent energy redistribution between electrons and the metal lattice.

They proposed a Parabolic Two-Temperature radiation heating model (PTTM) given

by:

Ce(Te)
∂Te
∂t

= ∇(k∇Te)−G(Te − Tl) + S, (2.16a)

Cl(Tl)
∂Tl
∂t

= G(Te − Tl), (2.16b)

where Te and Tl are the electron and lattice temperature, Ce and Cl are electron and

lattice heat capacity respectively, G is the electron lattice coupling factor, and S is the

laser source term. Qui and Tien in 1994 [100] proposed the hyperbolic two-temperature
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model (HTTM):

Ce(Te)
∂Te
∂t

= −∇Q−G(Te − Tl) + S, (2.17a)

Cl(Tl)
∂Tl
∂t

= G(Te − Tl), (2.17b)

τ
∂Q

∂t
+
Te
Tl
k∇Te +Q = 0. (2.17c)

This model removes the assumption of instantaneous radiation deposition as well as

diffusive energy transport in the POS model.

Energy transfer mechanisms during laser heating are determined by the electron-

lattice thermalization time and the electron relaxation time. It can be seen from Figures

3. and 4. in [80] that the thermalization time very weakly depends on temperature,

and especially at low temperatures and the electron relaxation time is extremely

sensitive to the lattice temperature. At high temperatures, the thermalization time is

longer than the relaxation time, which indicates that the effect of two-temperature

non-equilibrium heating is stronger than that of hyperbolic transport. The situation

is reversed at lower temperatures. For slow heating processes, the POS model is

applicable, whereas for the fast heating processes the PTTM model is applicable at

relatively high temperatures, and for low-temperature and fast heating processes the

HOS model is applicable. In certain low-temperature and fast heating regimes, the

HTTM model must be used. For more details, we refer to [79]. Keeping this idea

in mind, Qui and Tien in 1994 [79], gave the parabolic two temperature model as

simplified from the HTTM model:

Ce
∂Te
∂t

=
∂

∂x

(
k
Te
Tl

∂Te
∂x

)
−G(Te − Tl) + S, (2.18a)
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∂Tl
∂t

= G(Te − Tl), (2.18b)

where the electron heat capacity is proportional to the electron temperature, and the

thermal conductivity is modified by the ratio of the electron temperature and the

lattice temperature.

2.2 Numerical Methods

The main idea behind numerical methods or simulations is discretization. For

this purpose, a continuous problem has to be changed into a discrete problem, based

on which the computational domain will change into a mesh or grid that has multiple

cells or elements. This discrete problem will be in the form of algebraic equations.

Discretization of the domain and the equations are co-related.

2.2.1 Compact finite difference method

Let us consider an example where the derivative of a function at a point x is

given:

f ′(x) = lim
h−→0

f(x+ h)− f(x)

h
. (2.19)

Therefore, the difference quotient (f(x + h) − f(x))/h is an approximation of the

derivative f ′(x). This approximation gets better as h gets smaller. To know how far

this estimation is from the actual value, we use the Taylor theorem:

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(η). η ∈ [x, x+ h] (2.20)

Rearranging the above equation gives us:

f(x+ h)− f(x)

h
− f ′(x) =

h

2
f ′′(η). (2.21)
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Eq. (2.21) tells us that error is proportional to h1. Therefore, (f(x + h)− f(x))/h

gives us first order approximation of f ′(x). If h = ∆x is a finite positive number then

(f(x+ ∆x)− f(x))/∆x is known as the first-order or O(∆x) forward approximation

of f ′(x). Similarly, if h = −∆x, which gives (f(x)− f(x−∆x))/∆x is the first-order

backward approximation of f ′(x). In addition, f ′(x) can be approximated by the

symmetric difference quotient (f(x+ ∆x/2)− f(x−∆x/2))/(∆x), expanding which

we get:

f(x+ ∆x/2)− f(x−∆x/2)

∆x
=

1

∆x
(f(x) +

∆x

2
f ′(x) +

∆x2

8
f ′′(η) +

∆x3

48
f ′′′(η)

− f(x) +
∆x

2
f ′(x)− ∆x2

8
f ′′(η)

+
∆x3

48
f ′′′(η)), (2.22a)

= f ′(x) +
∆x2

24
f ′′′(η), (2.22b)

where η is a number in the interval [x−∆x/2, x+ ∆x/2]. Here, one may see that the

approximation is of second order or O(∆x2) as the error is directly proportional to

∆x2. This error is called the truncation error. Therefore, different ways or schemes

can be used to approximate the same derivative, leading to different orders of accuracy.

This kind of descretization technique to solve the partial differential equation is known

as the finite difference method. Here are some of the commonly used second and fourth

order finite difference formulas for approximating first and second-order derivatives,

O (∆x2) centered difference approximations:

f ′(x) :
f(x+ ∆x)− f(x−∆x)

2∆x
, (2.23a)
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f ′′(x) :
f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
; (2.23b)

O (∆x2) forward difference approximations:

f ′(x) :
−3f(x) + 4f(x+ ∆x)− f(x+ 2∆x)

2∆x
, (2.24a)

f ′′(x) :
2f(x)− 5f(x+ ∆x) + 4f(x+ 2∆x)− f(x+ 3∆x)

∆x3
; (2.24b)

O (∆x2) backward difference approximations:

f ′(x) :
3f(x)− 4f(x−∆x) + f(x− 2∆x)

2∆x
, (2.25a)

f ′′(x) :
2f(x)− 5f(x−∆x) + 4f(x− 2∆x)− f(x− 3∆x)

∆x3
; (2.25b)

O (∆x4) centered difference approximations:

f ′(x) :
−f(x+ 2∆x) + 8f(x+ ∆x)− 8f(x−∆x) + f(x− 2∆x)

12∆x
, (2.26a)

f ′′(x) :
−f(x+ 2∆x) + 16f(x+ ∆x)− 30f(x) + 16f(x−∆x)− f(x− 2∆x)

12∆x2
.

(2.26b)

In general, we may obtain O(∆xn) accuracy using the formula as

f ′(x)i ∼=
n∑

i=−n

αif(x)i−n +O(∆xn), (2.27)

where xi±1 = x ± ∆x. However, we may need to know at least 2n + 1 values of

f(x). This creates a lot of difficulties when solving the partial differential equation

near boundaries because the function values outside the boundary are unknowns. In

1992, Lele proposed a new method called the Compact Finite Difference Method to

overcome this problem[62]. This method uses as few grid-points as possible to obtain
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the higher order possible. For example, let us consider the 1-D heat equation:

∂u

∂t
= k

∂2u

∂x2
+ F (x, t), 0 ≤ x ≤ b, 0 ≤ t ≤ T (2.28)

with initial and boundary conditions

u(x, 0) = u0(x), ux(0, t) = ux(b, t) = 0, (2.29)

where u(x, t) is the temperature at location x and time t. Now let us discretize the

domain in the x-direction into N points with equal grid size ∆x and in the t-direction

with time increment ∆t into M points such that:

∆x =
b− 0

N
, ∆t =

T − 0

M
, (2.30)

Figure 2.2 shows the general structure of discretized mesh used in the finite difference

method.

Figure 2.2: General structure of a mesh for finite difference method
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We use the Compact Finite Difference formula as given in [63],

1

6
(5δtu

n+ 1
2

0 + δtu
n+ 1

2
1 ) = k

2

(∆x)2
(u

n+ 1
2

1 − un+ 1
2

0 ) +
1

6
(5F

n+ 1
2

0 + F
n+ 1

2
1 )

+
∆x

6
(Fx)

n+ 1
2

0 +O(∆x3 + ∆t2), (2.31a)

1

12
(δtu

n+ 1
2

i−1 + 10δtu
n+ 1

2
i + δtu

n+ 1
2

i+1 ) = δ2
xui +

1

12
(F

n+ 1
2

i−1 + 10F
n+ 1

2
i + F

n+ 1
2

i+1 )

+O(∆x4 + ∆t2), 1 ≤ i ≤ N − 1 (2.31b)

1

6
(δtu

n+ 1
2

N−1 + 5δtu
n+ 1

2
N ) = −k 2

(∆x)2
(u

n+ 1
2

N − un+ 1
2

N−1) +
1

6
(5F

n+ 1
2

N−1 + F
n+ 1

2
N )

+
∆x

6
(Fx)

n+ 1
2

N−1 +O(∆x3 + ∆t2), (2.31c)

where

δtu
n+ 1

2
i =

1

∆t
(un+1

i − uni ), u
n+ 1

2
i = 1/2(un+1

i + uni ), 0 ≤ i ≤ N, (2.32)

δ2
xu

n
i =

1

∆x2
(uni+1 − 2uni + uni+1), 0 ≤ i ≤ N. (2.33)

Now this system forms a tridiagonal system for solving un+1
i (i = 0, 1, . . . , N) as



b0 −c0 0 0 0 0

−a1 b1 −c1 0 0 0

0 −a2 b2 −c2 0 0

0 0
. . . . . . . . . 0

0 0 0 −aN−1 bN−1 −cN−1

0 0 0 0 −aN bN





un+1
0

un+1
1

un+1
2

...

un+1
N−1

un+1
N



=



d0

d1

d2

...

dN−1

dN



,
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where

b0 =
5

6
+ k

∆t

∆x2
, c0 = −1

6
+ k

∆t

∆x2
, (2.34a)

d0 = [
5

6
− k ∆t

∆x2
]un0 + [

1

6
+ k

∆t

∆x2
]un1 +

∆t

12
[5(F n+1

0 + F n
0 )

+ (F n+1
1 + F n

1 )] +
∆x∆t

12
((Fx)

n+1
0 + (Fx)

n
0 ), (2.34b)

ai = − 1

12
+

∆t

∆x2
, bi =

5

6
+ k

∆t

∆x2
, ci = − 1

12
+ k

∆t

∆x2
, (2.35a)

di = [
1

12
+

∆t

∆x2
]uni−1 + [

5

6
− k ∆t

∆x2
]uni + [

1

12
+

∆t

∆x2
]uni+1

+
∆t

24
[(F n+1

i−1 + F n
i−1) + 10(F n+1

i + F n
i ) + (F n+1

i+1 + F n
i+1)], (2.35b)

aN = −1

6
+ k

∆t

∆x2
, bN =

5

6
+ k

∆t

∆x2
, (2.36a)

dN = [
1

6
+ k

∆t

∆x2
]unN−1 + [

5

6
− k ∆t

∆x2
]unN +

∆t

12
[5(F n+1

N + F n
N)

+ (F n+1
N + F n

N)] +
∆x∆t

12
((Fx)

n+1
N + (Fx)

n
N). (2.36b)

This tridiagonal matrix along with the information in Eq. (2.39) can be easily solved

using the Thomas Algorithm. The above described method is a Compact Finite

Difference Method and has a trunction error of O(∆x4 + ∆t2) . It is compact because

it uses just information from three grid points at a single time level for the interior

points and two grid points at a single time level at the boundary.

2.2.2 Numerical methods for interface

Obtaining an accurate solution for interfacial problems is challenging. There

has been a lot of research done in addressing the interfacial problems. In 1977, the
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Immersed Boundary Method (IBM) was proposed by Peskin to simulate the blood flow

in the heart [10-12]. The interfacial problem here was introduced from the singular

source at the time-varying boundary. The main idea in IBM is the use of a discrete

delta function to distribute a singular source to nearby grid points [14]. This method

is first order accurate in the interface. Due to the simplicity, efficiency and robustness

of the IBM, it has been used for many applications [104-106]. Later, Peskin and

his co-worker proposed higher order versions of IBM [9-10]. A globally fourth-order

scheme for problems with singular sources was developed by Tornberg and Engquist

at the interface [105]. They obtained the scheme by using some sophisticated discrete

delta functions with a narrow support.

For solving elliptic equations with interface problems, LeVeque and Li proposed

the Immersed Interface Method (IIM) in 1994 [23]. IIM uses the Taylor Series

Expansion Technique near the grid points in the interface. It then utilizes the interface

condition to determine the weights for these points. The local truncation error at

the interface is of first order, but the overall accuracy of IIM is second-order. In the

following years many methods have been improved the original IIM. Some of them

are the multi-grid method [20], the discrete maximum principle [24], a fast iterative

algorithim for problems with piecewise constant coefficient [26]. Moving interfaces

have also been solved using IIM with the level set approach [20, 21]. The IIM has a

lot of applications [106-108]. IIM was explained in detail by Li and Ito [?].

The Ghost Fluid Method (GFM) was proposed by Merriman and his colleagues

in 1994 [32]. Due to its simplicity, GFM has been widely used even though it is a first
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order method. In this method, the interface jump conditions are captured implicitly

by assuming the interface extends to the other layer.

The Matched Interface and Boundary (MIB) method was developed by Wei

and his colleagues in 2006 [35, 39]. It was mainly developed for the purpose of

simulating electromagnetic wave scattering and propagation. It was formulated based

on the Tensor Product Derivative Matching Method [110]. The MIB can be viewed

as the generalization of the IBM, IIM and GFM techniques for solving elliptical

interface problems. In this method, fictitious values are extended to both sides of

the interface. These values are extrapolated numerically by enforcing the boundary

condition, and the number of these values are determined by the order of the Central

Finite Difference Method. The MIB Method can also be used without fictitious values

based on interpolation formulation as described in [39].

By generalizing MIB, GFM and IIM techniques, Pan and his colleagues

developed an interpolation matched Interface and Boundary (IMIB) Method [109].

This method is of second-order accuracy. All methods discussed above have been

extended to deal with time dependent interface problems. Methods to solve time de-

pendent interface problems by using summation-by-parts operators with simultaneous

approximation were described in [110, 111]. These methods can be utilized to derive

higher order spatial discretization that are stable, as described in [114-116].

Sun and Dai provided a Compact Finite Difference scheme for solving heat

conduction in a double-layered film with the Neumann boundary condition [115]. This

method has fourth order accuracy in space and is conditionally stable. A fourth-order

compact finite difference method for solving the 1-D Pennes bioheat transfer was given
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by Dai and his collaborators in 2004 [116]. This method solves the heat equation in a

triple-layered skin structure. Dai and his collaborators have proposed several finite

difference schemes for solving the heat conduction equations in nano-scale [119-123].

All of these method are second order accurate in space. Lately, Dai et. al presented a

finite difference scheme for solving the fractional parabolic two step heat equation for

nano-scale heat conduction [122]. This method is fourth-order accurate in space.

Recently, Dai and his collaborators [61] have developed the Gradient Preserved

Method (GPM). By preserving the first-order derivative, ux, in the interfacial condition

and/or the boundary condition, they obtained a higher-order accurate finite difference

method. This method uses only three grid points across the interface between layers.

They coupled the three point grid in space with the fourth-order accurate Padé scheme

[62] at interior points to obtain an accurate, stable and convergent scheme for heat

equation with constant coefficients in double layers. We use this idea of preserving the

derivative at the interface and the boundary to derive our compact finite difference

scheme for the variable coefficient case.

2.3 Energy Method

2.3.1 Energy estimate method for the heat conduction equations

Consider the simple heat equation,

ut = uxx, 0 ≤ x ≤ 1, t ≥ 0, (2.37a)

u(0, t) =u(1, t) = 0, t ≥ 0, (2.37b)

u(x, 0) = g(x), 0 ≤ x ≤ 1. (2.37c)
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Then the term

E(t) =

∫ 1

0

(u(x, t))2dx, (2.38)

defines the energy of the solution. To see how the energy evolves with time, we take

the derivative of E(t) w.r.t. t,

E ′(t) =
d

dt

∫ 1

0

|u(x, t)|2dx. (2.39)

We interchange the order of integration and derivative assuming u(x, t) is smooth,

E ′(t) =

∫ 1

0

∂

∂t
(u(x, t))2dx, (2.40a)

= 2

∫ 1

0

u(x, t)ut(x, t)dx (2.40b)

= 2

∫ 1

0

u(x, t)uxx(x, t)dx (2.40c)

= 2[u(x, t)ux(x, t)]
1
0 − 2

∫ 1

0

(ux(x, t))
2dx (2.40d)

= −2

∫ 1

0

(ux(x, t))
2dx ≤ 0. (2.40e)

This shows that E(t) is a non-increasing function, i.e.

E(t) ≤ E(0) =

∫ 1

0

g2(x)dx. (2.41)

This energy estimate could help us to prove uniqueness and stability.

Uniqueness of the solution

Assume that Eq. (2.37) has two solutions u1(x, t) and u2(x, t). Let r(x, t) =

u1(x, t)− u2(x, t). Then, r(x, t) satisfies

rt(x, t) = rxx(x, t), 0 ≤ x ≤ 1, t ≥ 0, (2.42a)



24

r(0, t) = r(1, t) = 0, t ≥ 0, (2.42b)

r(x, 0) = 0, 0 ≤ x ≤ 1. (2.42c)

Since both u1(x, t) and u2(x, t) satisfy Eq. (2.37), we obtain from Eq. (2.41) that∫ 1

0

(r(x, t))2dx ≤
∫ 1

0

(r(x, 0))2dx = 0, (2.43)

implying that r(x, t) = 0, and hence u1(x, t) = u2(x, t). This indicates that Eq. (2.37)

has a unique solution.

Stability of the solution

Assume the Eq. (2.37) has two solutions u1(x, t) and u2(x, t) with initial

conditions g1(x) and g2(x), where g1(x) = g2(x) + ε and the same boundary condition.

Let r(x, t) = u1(x, t)− u2(x, t). Using a similar argument as above, we obtain∫ 1

0

(r(x, t))2dx ≤
∫ 1

0

(r(x, 0))2dx =

∫ 1

0

ε2dx, (2.44a)

implying that ∫ 1

0

(u1(x, t)− u2(x, t))2dx ≤
∫ 1

0

ε2dx. (2.44b)

Thus, if ε is small, the difference between u1(x, t) and u2(x, t) will be also small. This

indicates that a small perturbation in the initial conditions leads to small perturbation

in the solution. The inequality in Eq. (2.44b) can be referred to as the stability

estimate.

2.3.2 Discrete energy method

We list some fundamental lemmas, which are usually used in the discrete energy

method for proving the stability and convergence of finite difference schemes.
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Lemma 2.3.2.1 [123] (Cauchy-Schwarz inequality). If a, b ∈ R, then it holds

that

2ab ≤ εa2 +
1

ε
b2, (2.45)

where ε is a small positive number.

Lemma 2.3.2.2 [124] (Gronwall’s Lemma). If φ(t) ≥ 0, ψ(t) ≥ 0, φ(t) ≤ K

+ L
∫ t
t0
ψ(s)φ(s)ds on t0 ≤ t ≤ t1, then we have

φ(t) ≤ KeL
∫ t1
t0
ψ(s)ds. (2.46)

The discrete version of this inequality is given by

En ≤ K + L∆t
n−1∑
k=1

Ek =⇒ En ≤ KeLn∆t. (2.47)

Lemma 2.3.2.3 [125] If Ui and Vi are mesh functions, then

−h
m−1∑
i=1

(∂2
xUi)Vi = h

m∑
i=1

(∂xUi− 1
2
)(∂xVi− 1

2
) + (D+U0)V0 + (D−Um)Vm, (2.48)

where (D±Ui) = ∂xUi± 1
2
.

Proof. The proof can be seen in [125]. However, for convenience, we give a

proof here. It can be seen that

−h
m−1∑
i=1

(∂2
xUi)Vi = −

m−1∑
i=1

(∂xUi+ 1
2
− ∂xUi− 1

2
)Vi

=
m−1∑
i=1

(∂xUi− 1
2
)Vi −

m∑
i=2

(∂xUi− 1
2
)Vi−1

=
m−1∑
i=1

(∂xUi− 1
2
)(Vi − Vi−1) + (∂xU 1

2
)V0 − (∂xUm− 1

2
)Vm

= h

m∑
i=1

(∂xUi− 1
2
)(∂xVi− 1

2
) + (D+U0)V0 + (D−Um)Vm. (2.49)
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If V0 = Vm = 0, Ui = Vi, then

−h
m−1∑
i=1

(∂2
xUi)Ui = |U |21. (2.50)

Lemma 2.3.2.4[125] If Ui is a mesh function, then

4

h2
sin

(
πh

2(b− a)

)
||U ||2 ≤ |U |21 ≤

4

h2
||U ||2, a ≤ x ≤ b. (2.51)

Proof. It can be seen that

|U |21 = h

m∑
i=1

(∂xUi− 1
2
)2 ≤ 1

h2
h

m∑
i=1

(Ui − Ui−1)2,

≤ 2

h2
h

m∑
i=1

(U2
i + U2

i−1)

=
4

h2
h(

1

2
U2

0 +
m−1∑
i=1

U2
i +

1

2
U2
m) ≤ 4

h2
||U ||2. (2.52)

Lemma 2.3.2.4[125] If Vi is a mesh function with V0 = Vm = 0, we have,

h
m−1∑
i=1

(−∂2
xVi)Vi = |V |21, ||V ||∞ ≤

√
b− a
2
|V |1, ||V || ≤ |V |1. (2.62)

Proof. We have,

Vi =
i∑

j=1

(Vj − Vj−1) = h
i∑

j=1

∂xVj− 1
2
, (2.63a)

Vi =
m∑

j=i+1

(Vj − Vj−1) = h

m∑
j=i+1

∂xVj− 1
2
. (2.63b)

Now using Lemma 2.3.2.1, we have

V 2
i ≤ (h

i∑
j=1

12)[h
i∑

j=1

(∂xVi− 1
2
)2] = (xi − a)h

i∑
j=1

(∂xVi− 1
2
)2, (2.64a)

V 2
i ≤ (h

m∑
j=i+1

12)[h
m∑

j=i+1

(∂xVi− 1
2
)2] = (b− xi)h

m∑
j=i+1

(∂xVi− 1
2
)2. (2.64b)
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Multiplying (b− xi) with Eq. (2.64a) and (xi − a) with Eq. (2.64b) respectively and

adding them together, we obtain

(b− a)V 2
i ≤ (xi − a)(b− xi)|V |21 ≤

(b− a)2

4
|V |21, (2.65a)

implying that

|Vi| ≤
√
b− a
2
|V |1, i = 1, 2, ...,m− 1. (2.65b)

Hence,

||V ||∞ ≤
√
b− a
2
|V |1. (2.65c)

Furthermore,

(b− a)||V ||2 ≤ h
m−1∑
i=1

(xi − a)(b− xi)|V |21 = h3

m−1∑
i=1

i(m− i)|V |21, (2.66a)

= h3(m
m−1∑
i=1

i−
m−1∑
i=1

i2)|V |21 =
1

6
m(m3 − 1)h3|V |21, (2.66b)

≤ 1

6
(mh)3|V |21. (2.66c)

Thus, we obtain

||V || ≤ b− a√
6
|V |1. (2.66d)

Lemma 2.3.2.5[125] For mesh function Vi we have:

||V ||2∞ ≤ ε|V |21 +
1

4ε
||V ||2, V0 = Vm = 0. (2.67a)

||V ||2∞ ≤ ε|V |21 + (
1

ε
+

1

b− a
)||V ||2, a ≤ x ≤ b. (2.67b)

Proof. It can be seen that

V 2
i =

i−1∑
j=1

(V 2
j+1 − V 2

j ) = 2h
i−1∑
j=0

Vj+ 1
2
∂xVj+ 1

2
, (2.68a)
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V 2
i =

m−1∑
j=i

(V 2
j+1 − V 2

j ) = −2h
m−1∑
j=i

Vj+ 1
2
∂xVj+ 1

2
. (2.68b)

Now using the Cauchy Schwarz inequality, we obtain

V 2
i ≤ h

m−1∑
j=0

|Vj+ 1
2
||∂xVj+ 1

2
| ≤ εh

m−1∑
j=0

(∂xVj+ 1
2
)2 +

1

4ε
h
m−1∑
j=0

(Vj+ 1
2
)2,

≤ ε|V |21 +
1

4ε
||V ||2. (2.69)

Similarly we can prove Eq. (2.67b).

As the stability estimate of the analytical solution was found in Eq. (2.44b),

one may derive the stability estimate of the numerical solution. Since the numerical

solution is in discrete form, so the energy of the solution often is called the discrete

energy, such as

Ep = h
N−1∑
i=1

(Up
i )2, (2.70)

where Up
i is the numerical solution at time tp and location xi, and h is the grid size.

To show the discrete energy estimate of the numerical solution, we consider the simple

discretization of Eq. (2.37a) at (xi, tp) as an example:

Up+1
i − Up

i

τ
=
Up
i−1 − 2Up

i + Up
i+1

h2
, (2.71a)

Up+1
i = Up

i +
τ

h2
(Up

i−1 − 2Up
i + Up

i+1), (2.71b)

with the boundary condition

U(0, t) =U(1, t) = 0, t ≥ 0, (2.71c)

where τ is the time increment and h is the space increment. It can be seen that



29

Ep+1 − Ep = h

N−1∑
i=1

[
(Up+1

i )2 − (Up
i )2
]

= h

N−1∑
i=1

(Up+1
i + Up

i )(Up+1
i − Up

i ). (2.72)

Substituting Eq. (2.71b) in Eq. (2.72), we have

Ep+1 − Ep =
τ

h

N−1∑
i=1

(Up+1
i + Up

i )(Up
i−1 − 2Up

i + Up
i+1)

=
τ

h
[
N−1∑
i=1

Up
i (Up

i−1 − 2Up
i + Up

i+1)− 2
N−1∑
i=1

Up+1
i Up

i

+
N−1∑
i=1

Up+1
i (Up

i−1 + Up
i+1)]. (2.73)

Using the summation by parts we obtain

N−1∑
i=1

Up
i (Up

i−1 − 2Up
i + Up

i+1) = −
N−1∑
i=1

(Up
i+1 − U

p
i )2. (2.74)

Now, using the time stepping scheme in Eq. (2.71b), we can obtain

−2
N−1∑
i=1

Up+1
i Up

i = −2
N−1∑
i=1

(Up
i )2 + 2

τ

h2

N−1∑
i=1

(Up
i+1 − U

p
i )2, (2.75)

and using the Cauchy Schwarz inequality, we have:

N−1∑
i=1

Up+1
i (Up

i−1 + Up
i+1)) ≤

N−1∑
i=1

((Up+1
i )2 + (Up

i )2), (2.77a)

=
1

h
(Ep+1 − Ep). (2.77b)

Therefore by using the Eq. (2.74a-2.77b):

Ep+1 − Ep ≤ τ

h
(−1 + 2

τ

h2
)(
N−1∑
i=1

(Up
i+1 − U

p
i )2) +

τ

h2
(Ep+1 − Ep). (2.78)
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Now, if

−1 + 2
τ

h2
≤ 0,

τ

h2
≤ 1

2
, (2.79)

then from Eq.(2.78)

(1− τ

h2
)(Ep+1 − E0) ≤ 0 (2.80a)

=⇒ (Ep+1 − E0) ≤ 0, (2.80b)

provided the condition in Eq. (2.79) holds. Hence, Eq. (2.80b) gives us the stability

estimate of the scheme in Eq. (2.24c) for the Eq. (2.23a). Also, this stability estimate

tells us that in order for the numerical scheme described in Eq. (2.24c) to be stable,

the step size in time and space direction should satisfy Eq. (2.24). Thus the scheme

shown in Eq. (2.72b) is conditionally stable. The above example has been taken from

[102].

This analysis of the numerical method is known as the energy method or the

Discrete Energy Method.

2.4 Thomas Algorithm

The Thomas Algorithm, also known as the tridiagonal matrix algorithm, is a

simplified form of Gaussian elimination, which is used to solve the tridiagonal linear

system of equations. Note that in a tridiagonal linear system, the equation number

j involves unknowns with numbers j − 1, j and j + 1, which means that the matrix

of the system has non-zero elements only on the diagonal and in the positions to

immediate off diagonal lines. Consider a tridiagonal linear system to be solved as

shown below [101] :
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b0 −c0 0 0 0 0

−a1 b1 −c1 0 0 0

0 −a2 b2 −c2 0 0

0 0
. . . . . . . . . 0

0 0 0 −aN−1 bN−1 −cN−1

0 0 0 0 −aN bN





u0

u1

u2

...

uN−1

uN



=



d0

d1

d2

...

dN−1

dN



.

This system can be written in the equation form:

−aiuj−1 + biui − ciui+1 = di, i = 1, 2, · · ·, N − 1, (2.81a)

u0 = 0, uN = 0. (2.81b)

The coefficients ai, bi, ci and di are known and assumed to satisfy the condition:

|bi| > |ai|+ |ci|, i = 1, 2, · · ·, N − 1, (2.82a)

|b0| > |c0|, |bN | > |aN |. (2.82b)

These conditions ensure that the matrix is diagonally dominant, which guarantees

that the system has a unique solution. The Thomas Algorithm reduces the system to

upper triangular form. It does so by eliminating the term uj−1 in each of the equations.

Assume that the first n equations of Eq. (2.81) have been reduced to

ui − αiui+1 = gi, i = 1, 2, · · ·, n, (2.83)

and the next equation that needs to be reduced is

−an+1un + bn+1un+1 − cn+1un+2 = dn+1. (2.84)
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Eliminating un from Eqs. (2.83-2.84), we obtain

un+1 −
cn+1

bn+1 − an+1αn
un+2 =

dn+1 + an+1gn
bn+1 − an+1αn

. (2.85)

Comparing Eq. (2.83) with Eq. (2.85), we have the recurrence relation:

αi =
ci

bi − aiαi−1

, gi =
di + aigi−1

bi − aiαi−1

, i = 1, 2, · · ·, N − 1, (2.86a)

α0 =
c0

b0

, g0 =
d0

b0

. (2.86b)

On the other hand, the linear system reduces to



1 α0 0 0 0 0

0 1 α1 0 0 0

0 0
. . . . . . . . . 0

0 0 0 0 1 αN−1

0 0 0 0 0 1





u0

u1

...

uN−1

uN


=



g0

g1

...

gN−1

gN


.

Using back substitution, the above system can be solved easily by the following

recurrence:

uN = gN , ui = gi − αiui+1. i = N − 1, N − 2, · · ·, 1. (2.87)

2.5 Neural Network Method

A neural network consists of layers of interconnected nodes as shown in Figure

2.3. Each node is called a perceptron. Each perceptron feeds the data produced by

a multiple linear combination into an activation function. An activation function is

the output produced by the node, when a set of input is given to it. The activation
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function can be linear or nonlinear. The most commonly used activation functions

are sigmoid or logistic function, hyperbolic tangent function (tanh), Rectified Linear

Unit (ReLU). One of the major properties of neural networks is that it can adapt to

changing input, so it generates the best possible result without needing to redesign

the criteria for output. In general, a perceptron consists of three main parts: (i) input

layer, (ii) hidden layers and (iii) output layer as shown in Figure 2.4. The input layer

is the beginning of the neural network. This feeds in the input data to the hidden

layers of the neural network for further processing. In the hidden layers, weights and

biases are applied to the inputs, and they are passed through the activation function

as the output. The number of hidden layers can vary from one to many depending

on the data to be processed. The output layer produces the final result. Whenever

there are multiple hidden layers associated with a neural network, it is called the Deep

Neural Network (DNN). Figure 2.3 shows a picture of a fully connected DNN with

3-hidden layers. It is called fully connected because each node is connected to every

other node in the previous layer.

It can be seen from Figure 2.4 that the perceptron performs two functions.

One is to multiply each input by weights, sum them up and then add a constant

(bias) to it. The other is to pass the previously calculated value through an activation

function G. This is now the output for the perceptron becomes an input for the next

perceptron, and the process continues in the same way till the output layer is reached.

As such, for the neural net in Figure 2.3, we have

y
(1)
i = G[

3∑
i=1

(W
(1)
i xi + b

(1)
i )], (2.88a)
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Figure 2.3: General structure of a fully connected neural network.

y
(2)
i = G[

4∑
i=1

(W
(2)
i y

(1)
i + b

(2)
i )], (2.88b)

y
(3)
i = G[

4∑
i=1

(W
(3)
i y

(2)
i + b

(3)
i )], (2.88c)

and

z1 =
4∑
i=1

Wiy
(3)
i + b1, (2.88d)

z2 =
4∑
i=1

W̃iy
(3)
i + b2, (2.88e)

where W
(j)
i , b

(j)
i , Wi, W̃i, b1 and b2 are the weights and biases involved in the neural

network for i, j = 1, 2, 3.

The first idea of how a neuron works was given by Warren McCulloch, a

neurophysiologist, and Walter Pitts, a mathematician, on their publication in 1943

[126, 127]. They modeled a simple neural network using electrical circuits. In 1949,



35

Figure 2.4: General operation in a perceptron.

D. O. Hebb pointed out the fact that neural pathways are strengthened each time

they are used in his book [128]. In the 1950’s, the first step towards simulating a

hypothetical neural network was made by Nathanial Rochester from the IBM research

laboratories.

Models called ADALINE and MADELINE were developed in 1959 by Bernard

Widrow and Marcian Hoff in Stanford University. ADALINE recognized binary

patterns. It could predict the next bit by reading streaming bits from a phone line.

The first neural network applied to a real world problem was MADELINE. It uses an

adaptive filter that eliminates echoes on phone lines. The air traffic control systems

still use it commercially. A learning procedure was developed by Widrow and Hoff in

1962 [127]. They gave a rule for weight change as: Weight Change = (Pre-Weight line

value) * (Error / (Number of Inputs)). The procedure examines the value and adjusts

the weights (i.e. 0 or 1) according to this rule.

The first multilayered network was developed in 1975 by Fukushima [129].

In 1982, John Hopfield from Caltech, California presented a paper to the National
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Academy of Sciences that proposed to create more useful machines by using bidi-

rectional lines [130, 131]. In the same year, a hybrid network that used multiple

layers was given by Reilly and his colleagues [132]. In 1986, David Rumelhart and his

collaborators came up with ideas similar to what it is now called back propagation

networks [133]. Throughout the network, it distributed pattern recognition errors.

Hybrid networks have only two layers, whereas back-propagation networks may have

many layers.

Up to day, neural networks have been used in many applications. Methods like

data driven scientific computing have become more and more popular. Machine and

deep learning techniques have been playing a major role in it [64, 65, 66, 67, 68, 69, 70,

71, 73, 72]. Karniadakis et al. recently have introduced the Physics Informed Neural

Nets (PINN) [73] for solving partial difference equations. The main idea in PINN is

to use the output of a deep neural network and treat it as the solution of the partial

differential equation. Also, it exploits the use of auto derivative for differentiating the

neural network output and uses it in the loss function. As such, the loss function is

composed of the differential equation itself, the initial condition, and the boundary

condition. The neural network is trained till it achieves a certain tolerance/ minimum

number of iterations. The neural network method in the dissertation takes the idea

from this method.

Karniadakis et al. also presented the DeepONet, which is based on the universal

approximation theorem. This technique can learn non-linear operators for identifying

differential equations [164]. DeepONet is a deep neural network that encodes the

discrete input function space (branch net) and another deep neural net that encodes
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the domain of the output functions (trunk net). Karniadakis et al. showed that their

technique could learn various explicit/implicit operators such as integrals, fractional

laplacians, and operators for deterministic and stochastic differential equations.

Various PINN methods have been applied/developed for solving partial dif-

ferential equations as well as inverse problems since 2019 [134-163]. Recently, more

methods have been developed for solving similar kinds of problems. Li et al. came

up with the Graph Kernel Network for solving partial differential equations in their

paper [165, 166]. This method generalizes neural networks in order to learn mappings

between infinite-dimensional spaces (operators). The same group also developed the

multipole graph neural operator method for solving partial differential equations.

Their method was developed based on the classical multipole methods proposing

a novel multi-level graph neural network framework for solving partial differential

equations with linear complexity. They also created the Fourier Neural Operator

for the parametric partial differential equation, where the network could map from

functions to functions [167].

2.6 Summary

In this chapter, we have reviewed the required background for understanding

the research of this dissertation. We have reviewed the heat conduction equations that

we plan to solve in this dissertation. Also, we have summarized the previous work

that has been done, both in the field of numerical methods and data driven scientific

computing methods that lay the foundation of our research.



CHAPTER 3

GRADIENT PRESERVED METHOD FOR VARIABLE
COEFFICIENT CASE

3.1 Mathematical Equation for Double-Layered Structure

Figure 3.1: Double-layered structure (above) and mesh for numerical schemes
(below).

In this dissertation, we consider a heat conduction problem with variable

coefficients in double layers, as shown in 3.1. The mathematical equations are given as

∂u(x, t)

∂t
=

∂

∂x
(k1(x)

∂u(x, t)

∂x
) + F1(x, t), 0 ≤ x ≤ l, t > 0 (3.1a)

∂u(x, t)

∂t
=

∂

∂x
(k2(x)

∂u(x, t)

∂x
) + F2(x, t), l ≤ x ≤ L, t > 0 (3.1b)

38
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where initial and boundary conditions are given as

u(x, 0) = φ1(x), 0 ≤ x ≤ l; u(x, 0) = φ2(x), l ≤ x ≤ L, (3.2)

ux(0, t) = α(t), ux(L, t) = β(t), t ≥ 0, (3.3)

and the interfacial condition is assumed to be

u(xl+, t) = u(xl−, t), k2(xl+)ux(xl+, t) = k1(xl−)ux(xl−, t), t ≥ 0. (3.4)

Here, k1(x) and k2(x) represent the spatially varying functions for the first and second

layers, respectively.

3.2 Higher-Order Compact Finite Difference Scheme

To develop an accurate finite difference scheme, we initially design an equidistant

mesh as shown in Figure 3.1, where xj = jh, tn = nτ , 0 ≤ j ≤ N , n ≥ 0, and xm = mh

is the interfacial grid point. Here, h and τ are the grid size and time step, respectively.

We use the same grid size h for double layers to simplify our derivations. However, it

can be easily generalized to the case of using different grid sizes for different layers. We

denote unj as the analytical solution u(xj, tn) and Un
j as the numerical approximation

of unj . We further define the following finite difference operators as

∇xu
n
j =

unj+1 − unj
h

, ū
n+ 1

2
j =

un+1
j + unj

2
, δtu

n+ 1
2

j =
un+1
j − unj
τ

.

We now establish some important lemmas related to our finite difference scheme.

Lemma 3.2.1. Assume that the analytical solution u(x, t) in Eqs. (3.1)-(3.4)

is smooth in [0, L]× [0,∞). Then it holds at x0
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c1δtu
n+ 1

2
0 + c2δtu

n+ 1
2

1 =
1

h
[(k1)1/2

u
n+ 1

2
1 − un+ 1

2
0

h
− c3(k1)0(ux)

n+ 1
2

0 ]

+ [− h

12
+
h2

24

(k1x)0

(k1)0

]α′(tn+ 1
2
) + f

n+ 1
2

0 +O(τ 2 + h3), (3.5)

where

c1 =
5

12
− h

12

(k1x)0

(k1)0

+
h2

48

[4(k1x)0]2 − 3(k1)0(k1xx)0

[(k1)0]2
, (3.6a)

c2 =
1

12
, (3.6b)

c3 = 1 +
h2

24(k1)0

[
2[(k1x)0]2

(k1)0

− (k1xxx)0]

+
h3

48(k1)0

[
5(k1)0(k1x)0(k1xx)0 − 4[(k1x)0]3

[(k1)0]2
− (k1xxx)0], (3.6c)

f
n+ 1

2
0 = [

1

2
− h

12

(k1x)0

(k1)0

− h2

48

4[(k1x)0]2 − 3(k1)0(k1xx)0

[(k1)0]2
](F1)

n+ 1
2

0

+ [
h

6
− h2

24

(k1x)0

(k1)0

](F1x)
n+ 1

2
0 +

h2

24
(F1xx)

n+ 1
2

0 . (3.6d)

Here, k1x denotes ∂k1/∂x, and (k1)0 denotes k1(x0), and so on for others. It can be

seen that if k1(x) is a constant. Thus, Eq. (3.5) reduces to

1

12
δtu

n+ 1
2

0 +
5

12
δtu

n+ 1
2

1 =
k1

h
[
u
n+ 1

2
1 − un+ 1

2
0

h
− (ux)

n+ 1
2

0 ] +
1

2
(F1)

n+ 1
2

0

+
h

6
(F1x)

n+ 1
2

0 +
h2

24
(F1xx)

n+ 1
2

0 +O(τ 2 + h3). (3.7)

Proof. We apply the Taylor series expansions at x1/2 and then at x0. This

gives
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1

h
(k1)1/2

u
n+ 1

2
1 − un+ 1

2
0

h
=

1

h
(k1ux)|

n+ 1
2

0 +
1

2

∂

∂x
(k1ux)|

n+ 1
2

0 +
h

8

∂2

∂x2
(k1ux)|

n+ 1
2

0

+
h2

48

∂3

∂x3
(k1ux)|

n+ 1
2

0 +
h

24
(k1uxxx)|

n+ 1
2

0 +
h2

48

∂

∂x
(k1uxxx)|

n+ 1
2

0

+O(h3). (3.8)

From Eq. (1a), one may see

ut = k1xux + k1uxx + F1, (3.9a)

utx = k1xxux + 2k1xuxx + k1uxxx + F1x

= k1xxux + 2
k1x

k1

(ut − k1xux − F1) + k1uxxx + F1x. (3.9b)

Solving for k1uxxx from Eq. (3.9) gives

k1uxxx = utx − 2
k1x

k1

ut + [2
(k1x)

2

k1

− k1xx]ux + 2
k1x

k1

F1 − F1x, (3.10a)

∂

∂x
(k1uxxx) = utxx − 2

k1x

k1

utx +
4(k1x)

2 − 3k1k1xx

(k1)2
ut

+ [
5k1k1xk1xx − 4(k1x)

3

(k1)2
− k1xxx]ux +

3k1k1xx − 4(k1x)
2

(k1)2
F1

+ 2
k1x

k1

F1x − F1xx. (3.10b)

Thus, substituting Eq. (3.10) at (x0, tn+1/2) into Eq. (3.8) and then Eq. (3.8) into

the right-hand-side (RHS) of Eq. (3.5), we obtain

RHS = A2(ux)
n+ 1

2
0 + A1(ut)

n+ 1
2

0 + [
h

6
− h2

24

(k1x)0

(k1)0

](utx)
n+ 1

2
0 +

h2

24
(utxx)

n+ 1
2

0

+B1 + [− h

12
+
h2

24

(k1x)0

(k1)0

]α′(tn+ 1
2
) + f

n+ 1
2

0 +O(τ 2 + h3), (3.11)
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where

A1 =
1

2
− h

12

(k1x)0

(k1)0

+
h2

48

4[(k1x)0]2 − 3(k1)0(k1xx)0

[(k1)0]2
, (3.12a)

A2 =
1

h
(1− c3)(k1)0 +

h2

48
[
5(k1)0(k1x)0(k1xx)0 − 4[(k1)0]3

[(k1)0]2
− (k1xxx)0]

+
h

24
[2

[(k1x)0]2

(k1)0

− (k1xx)0]. (3.12b)

B2 = −1

2
(F1)

n+ 1
2

0 +
h

24
[2

(k1x)0

(k1)0

(F1)
n+ 1

2
0 − 4(F1x)

n+ 1
2

0 ]

+
h2

48
[
3(k1)0(k1xx)0 − 4[(k1x)0]2

[(k1)0]2
(F1)

n+ 1
2

0 + 2
(k1x)0

(k1)0

(F1x)
n+ 1

2
0 ]

− h2

24
(F1xx)

n+ 1
2

0 (3.12c)

Based on Eq. (3), we obtain (utx)
n+1/2
0 = α′(tn+1/2) and then substitute it and Eq.

(6d) into Eq. (11). This gives

RHS = A2(ux)
n+ 1

2
0 + A1(ut)

n+ 1
2

0 +
h

12
(utx)

n+ 1
2

0 +
h2

24
(utxx)

n+ 1
2

0 +O(τ 2 + h3). (3.13)

On the other hand, we apply the Taylor series expansion at (x0, tn+1/2) to the

left-hand-side (LHS) of Eq. (3.5). This gives

LHS = (c1 + c2)(ut)
n+ 1

2
0 + c2h(utx)

n+ 1
2

0 + c2
h2

2
(utxx)

n+ 1
2

0 +O(τ 2 + h3). (3.14)

Matching Eqs. (3.13) and (3.14), we obtain

A2 = 0, c1 + c2 = A1, c2 =
1

12
, (3.15)

which gives c1, c2, c3 as listed in Eqs. (3.6a)-(3.6c), and hence complete the proof.

Using a similar argument, one may obtain the following lemma for a scheme at

xN .
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Lemma 3.2.2. Assume that the analytical solution u(x, t) in Eqs. (3.1)-(3.4)

is smooth in [0, L]× [0,∞). Then it holds at xN

c̃1δtu
n+ 1

2
N + c̃2δtu

n+ 1
2

N−1 =
1

h
[c̃3(k2)N(ux)

n+ 1
2

N − (k2)N− 1
2

u
n+ 1

2
N − un+ 1

2
N−1

h
]

+ [
h

12
+
h2

24

(k2x)N
(k2)N

]β′(tn+ 1
2
) + f

n+ 1
2

N +O(τ 2 + h3), (3.16)

where

c̃1 =
5

12
+

h

12

(k2x)N
(k2)N

+
h2

48

4[(k2x)N ]2 − 3(k2)N(k2xx)N
[(k2)N ]2

, (3.17a)

c̃2 =
1

12
, (3.17b)

c̃3 = 1 +
h2

24(k2)N
[
2[(k2x)N ]2

(k2)N
− (k2xxx)N ]

− h3

48(k2)N
[
5(k2)N(k2x)N(k2xx)N − 4[(k2x)N ]3

[(k2)N ]2
− (k2xxx)N ], (3.17c)

f
n+ 1

2
N = [

1

2
+

h

12

(k2x)N
(k2)N

+
h2

48

4[(k2x)N ]2 − 3(k2)N(k2xx)N
[(k2)N ]2

](F2)
n+ 1

2
N

− [
h

6
+
h2

24

(k2x)N
(k2)N

](F2x)
n+ 1

2
N +

h2

24
(F2xx)

n+ 1
2

N . (3.17d)

Here, k2x denotes ∂k2/∂x, and so on for others. It can be seen that if k2(x) is a

constant, Eq. (3.16) reduces to

5

12
δtu

n+ 1
2

N +
1

12
δtu

n+ 1
2

N−1 =
k2

h
[(ux)

n+ 1
2

N −
u
n+ 1

2
N − un+ 1

2
N−1

h
] +

1

2
(F2)

n+ 1
2

N − h

6
(F2x)

n+ 1
2

N

+
h2

24
(F2xx)

n+ 1
2

N +O(τ 2 + h3). (3.18)

Lemma 3.2.3. Assume that the analytical solution u(x, t) in Eqs. (3.1)-(3.4)

is smooth in [0, L]× [0,∞). Then it holds at the interior points xj , j = 1, 2, . . . ,m−1,



44

(c4)jδtu
n+ 1

2
j−1 + (c5)jδtu

n+ 1
2

j + (c6)jδtu
n+ 1

2
j+1 =

1

h2
[(k1)j+ 1

2
− h2

24
(D1)

j+1
2

](u
n+ 1

2
j+1 − u

n+ 1
2

j )

− 1

h2
[(k1)j− 1

2
− h2

24
(D1)

j− 1
2

](u
n+ 1

2
j − un+ 1

2
j−1 )

+ f
n+ 1

2
j +O(τ 2 + h4), (3.19)

where

(c4)j =
1

12
+

h

24

(k1x)j−1

(k1)j−1

, (c5)j =
5

6
, (c6)j =

1

12
− h

24

(k1x)j+1

(k1)j+1

, (3.20a)

(D1)
j+1

2

= 2
[(k1x)j+ 1

2
]2

(k1)j+ 1
2

− (k1xx)j+ 1
2
, (3.20b)

f
n+ 1

2
j = [1− h2

12

(k1)j(k1xx)j − (k1)2
j

(k1)2
j

](F1)
n+ 1

2
j − h2

12

(k1x)j
(k1)j

(F1x)
n+ 1

2
j

+
h2

12
(F1xx)

n+ 1
2

j . (3.20c)

It can be seen that if k1(x) is constant, then Eq. (3.19) reduces to

1

12
δtu

n+ 1
2

j−1 +
10

12
δtu

n+ 1
2

j +
1

12
δtu

n+ 1
2

j+1 =
k1

h2
[u
n+ 1

2
j−1 − 2u

n+ 1
2

j + u
n+ 1

2
j+1 ] + (F1)

n+ 1
2

j

+
h2

12
(F1xx)

n+ 1
2

j +O(τ 2 + h4). (3.21)

Proof. Using the Taylor expansions at xj+1/2and xj−1/2, respectively, and then

at xj, we obtain

1

h2
[(k1)j+ 1

2
(u

n+ 1
2

j+1 − u
n+ 1

2
j )− (k1)j− 1

2
(u

n+ 1
2

j − un+ 1
2

j−1 )]

=
(k1)j+ 1

2

h2
[h(ux)

n+ 1
2

j+ 1
2

+
h3

24
(uxxx)

n+ 1
2

j+ 1
2

+
h5

1920
(ux5)

n+ 1
2

j+ 1
2

]

−
(k1)j− 1

2

h2
[h(ux)

n+ 1
2

j− 1
2

+
h3

24
(uxxx)

n+ 1
2

j− 1
2

+
h5

1920
(ux5)

n+ 1
2

j− 1
2

] +O(h4)
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=
∂

∂x
(k1ux)|

n+ 1
2

j +
h2

24

∂3

∂x3
(k1ux)|

n+ 1
2

j +
h2

24

∂

∂x
(k1uxxx)|

n+ 1
2

j +O(h4). (3.22)

Substituting Eq. (3.1a) and Eq. (3.10b) at (xj, tn+1/2) into Eq. (3.22), and then using

the second-order central difference approximation, we obtain

1

h2
[(k1)j+ 1

2
(u

n+ 1
2

j+1 − u
n+ 1

2
j )− (k1)j− 1

2
(u

n+ 1
2

j − un+ 1
2

j−1 )]

= (ut)
n+ 1

2
j +

h2

12
(utxx)

n+ 1
2

j − h2

12

∂

∂x
(
k1x

k1

ut)|
n+ 1

2
j +

h2

24

∂

∂x
[(2

(k1x)
2

k1

− k1xx)ux]|
n+ 1

2
j

+ [−1 +
h2

12

(k1)j(k1xx)j − (k1)2
j

(k1)2
j

](F1)
n+ 1

2
j +

h2

12

(k1x)j
(k1)j

(F1x)
n+ 1

2
j − h2

12
(F1xx)

n+ 1
2

j

+O(h4)

= (ut)
n+ 1

2
j +

h2

12
(utxx)

n+ 1
2

j − h

24
[
(k1x)j+1

(k1)j+1

(ut)
n+ 1

2
j+1 −

(k1x)j−1

(k1)j−1

(ut)
n+ 1

2
j−1 ]

+
h2

24
{[2

[(k1x)j+ 1
2
]2

(k1)j+ 1
2

− (k1xx)j+ 1
2
]
u
n+ 1

2
j+1 − u

n+ 1
2

j

h2
}

+
h2

24
{−[2

[(k1x)j− 1
2
]2

(k1)j− 1
2

− (k1xx)j− 1
2
]
u
n+ 1

2
j − un+ 1

2
j−1

h2
}

+ [−1 +
h2

12

(k1)j(k1xx)j − (k1)2
j

(k1)2
j

](F1)
n+ 1

2
j +

h2

12

(k1x)j
(k1)j

(F1x)
n+ 1

2
j

− h2

12
(F1xx)

n+ 1
2

j +O(h4). (3.23)

Thus, substituting Eq. (3.23) into the RHS of Eq. (3.19) gives

RHS = (ut)
n+ 1

2
j +

h2

12
(utxx)

n+ 1
2

j − h

24
[
(k1x)j+1

(k1)j+1

(ut)
n+ 1

2
j+1 −

(k1x)j−1

(k1)j−1

(ut)
n+ 1

2
j−1 ]

+O(τ 2 + h4). (3.24)
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Now we take the term−h/24[(k1x)j+1/(k1)j+1](ut)
n+1/2
j+1 +h/24[(k1x)j−1/(k1)j−1](ut)

n+1/2
j−1 ]

in Eq. (3.24) to the LHS of Eq. (3.19), apply the Taylor expansions at tn+1/2 and

then at xj for the LHS. This gives

LHS = [(c4)j −
h

24

(k1x)j−1

(k1)j−1

](ut)
n+ 1

2
j−1 + (c5)j(ut)

n+ 1
2

j

+ [(c6)j +
h

24

(k1x)j+1

(k1)j+1

](ut)
n+ 1

2
j+1 +O(τ 2)

= [(c4)j −
h

24

(k1x)j−1

(k1)j−1

+ (c5)j + (c6)j +
h

24

(k1x)j+1

(k1)j+1

](ut)
n+ 1

2
j

+ h[(c6)j +
h

24

(k1x)j+1

(k1)j+1

− (c4)j +
h

24

(k1x)j−1

(k1)j−1

](utx)
n+ 1

2
j

+
h2

2
[(c6)j +

h

24

(k1x)j+1

(k1)j+1

+ (c4)j −
h

24

(k1x)j−1

(k1)j−1

](utxx)
n+ 1

2
j

+
h3

6
[(c6)j +

h

24

(k1x)j+1

(k1)j+1

− (c4)j +
h

24

(k1x)j−1

(k1)j−1

](utxxx)
n+ 1

2
j

+O(τ 2 + h4). (3.25)

On the other hand, Eq. (3.24) reduces to

RHS = (ut)
n+ 1

2
j +

h2

12
(utxx)

n+ 1
2

j +O(τ 2 + h4). (3.26)

Matching Eqs. (3.25) and (3.26), we obtain

(c4)j −
h

24

(k1x)j−1

(k1)j−1

+ (c5)j + (c6)j +
h

24

(k1x)j+1

(k1)j+1

= 1, (3.27a)

(c6)j +
h

24

(k1x)j+1

(k1)j+1

− (c4)j +
h

24

(k1x)j−1

(k1)j−1

= 0, (3.27b)

(c6)j +
h

24

(k1x)j+1

(k1)j+1

+ (c4)j −
h

24

(k1x)j−1

(k1)j−1

=
1

6
, (3.27c)

which gives (c4)j, (c5)j, (c6)j as listed in Eq. (3.20a), and hence complete the proof.
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Using a similar argument, one may obtain the following lemma for a scheme at

the interior points xj, j = m+ 1, . . . , N − 1.

Lemma 3.2.4. Assume that the analytical solution u(x, t) in Eqs. (3.1)-

(3.4) is smooth in [0, L] × [0,∞). Then it holds at the interior points xj, j =

m+ 1,m+ 2, . . . , N − 1,

(c̃4)jδtu
n+ 1

2
j−1 + (c̃5)jδtu

n+ 1
2

j + (c̃6)jδtu
n+ 1

2
j+1 =

1

h2
[(k2)j+ 1

2
− h2

24
(D2)j+ 1

2
](u

n+ 1
2

j+1 − u
n+ 1

2
j )

− 1

h2
[(k2)j− 1

2
− h2

24
(D2)j− 1

2
](u

n+ 1
2

j − un+ 1
2

j−1 )

+ f̃
n+ 1

2
j +O(τ 2 + h4), (3.28)

where

(c̃4)j =
1

12
+

h

24

(k2x)j−1

(k2)j−1

, (c̃5)j =
5

6
, (c̃6)j =

1

12
− h

24

(k2x)j+1

(k2)j+1

, (3.29a)

(D2)j+ 1
2

= 2
[(k2x)j+ 1

2
]2

(k2)j+ 1
2

− (k2xx)j+ 1
2
, (3.29b)

f̃
n+ 1

2
j = [1− h2

12

(k2)j(k2xx)j − (k2)2
j

(k2)2
j

](F2)
n+ 1

2
j − h2

12

(k2x)j
(k2)j

(F2x)
n+ 1

2
j

+
h2

12
(F2xx)

n+ 1
2

j . (3.29c)

It can be seen that if k2(x) is constant, then Eq. (3.28) reduces to

1

12
δtu

n+ 1
2

j−1 +
10

12
δtu

n+ 1
2

j +
1

12
δtu

n+ 1
2

j+1 =
k2

h2
[u
n+ 1

2
j−1 − 2u

n+ 1
2

j + u
n+ 1

2
j+1 ] + (F2)

n+ 1
2

j

+
h2

12
(F2xx)

n+ 1
2

j +O(τ 2 + h4). (3.30)

We now derive a scheme at the interfacial grid point (xm−, tn+1/2).
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Lemma 3.2.5. Assume that the analytical solution u(x, t) in Eqs. (3.1)-(3.4)

is smooth in [0, L]× [0,∞). Then it holds at xm−

c7δtu
n+ 1

2
m−1 + c8δtu

n+ 1
2

m =
1

h
[c9(k1)m(ux)

n+ 1
2

m− −
1

h
(k1)

m−1
2
(u

n+ 1
2

m − un+ 1
2

m−1)]

− T n+ 1
2

m− +O(τ 2 + h3), (3.31)

where

c7 =
1

6
+

h

24

(k1x)m
(k1)m

, (3.32a)

c8 =
1

3
+

h

24

(k1x)m
(k1)m

+
h2

48

4[(k1x)m]2 − 3(k1)m(k1xx)m
[(k1)m]2

, (3.32b)

c9 = 1 +
h2

24(k1)m
[
2[(k1x)m]2

(k1)m
− (k1xx)m]

− h3

48(k1)m
[
5(k1)m(k1x)m(k1xx)m − 4[(k1x)m]3

[(k1)m]2
− (k1xxx)m], (3.32c)

T
n+ 1

2
m− = z1(utxx)

n+ 1
2

m− − f
n+ 1

2
m− , (3.32d)

with

f
n+ 1

2
m− = [

1

2
+

h

12

(k1x)m
(k1)m

− h2

48

3(k1)m(k1xx)m − 4[(k1x)m]2

[(k1)m]2
](F1)

n+ 1
2

m

− [
h

6
+
h2

24

(k1x)m
(k1)m

](F1x)
n+ 1

2
m +

h2

24
(F1xx)

n+ 1
2

m , (3.32e)

z1 = −h
2

24
− h3

48

(k1x)m
(k1)m

. (3.32f)

If k1(x) is a constant, then Eq. (3.31) reduces to

1

6
δtu

n+ 1
2

m−1 +
1

3
δtu

n+ 1
2

m =
k1

h
[(ux)

n+ 1
2

m− −
1

h
(u

n+ 1
2

m − un+ 1
2

m−1)] +
h

24
(utxx)

n+ 1
2

m− +
1

2
(F1)

n+ 1
2

m

− h

6
(F1x)

n+ 1
2

m +
h2

24
(F1xx)

n+ 1
2

m +O(τ 2 + h3). (3.33)
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Proof. Using the Taylor series expansion at xm− similar to that for the RHS

of Eq. (3.11) in Lemma 3.2.1, we have the RHS of Eq. (3.31) as

RHS = P2(ux)
n+ 1

2
m− + P1(ut)

n+ 1
2

m− + [−h
6
− h2

24

(k1x)m
(k1)m

](utx)
n+ 1

2
m− +

h2

24
(utxx)

n+ 1
2

m−

− 1

2
(F1)

n+ 1
2

m − h

24
[2

(k1x)m
(k1)m

(F1)
n+ 1

2
m − 4(F1x)

n+ 1
2

m ]

+
h2

48
{3(k1)m(k1xx)m − 4[(k1x)m]2

[(k1)m]2
(F1)

n+ 1
2

m + 2
(k1x)m
(k1)m

(F1x)
n+ 1

2
m − 2(F1xx)

n+ 1
2

m }

+ [
h2

24
+
h3

48

(k1x)m
(k1)m

](utxx)
n+ 1

2
m− + f

n+ 1
2

m− +O(τ 2 + h3)

= P2(ux)
n+ 1

2
m− + P1(ut)

n+ 1
2

m− + [−h
6
− h2

24

(k1x)m
(k1)m

](utx)
n+ 1

2
m−

+ [
h2

12
+
h3

48

(k1x)m
(k1)m

](utxx)
n+ 1

2
m− +O(τ 2 + h3), (3.34)

where

P1 =
1

2
+

h

12

(k1x)m
(k1)m

+
h2

48

4[(k1x)m]2 − 3(k1)m(k1xx)m
[(k1)m]2

, (3.35a)

P2 =
1

h
(c9 − 1)(k1)m +

h2

48
[
5(k1)m(k1x)m(k1xx)m − 4[(k1)m]3

[(k1)m]2
− (k1xxx)m]

− h

24
[2

[(k1x)m]2

(k1)m
− (k1xx)m]. (3.35b)

Expanding the LHS of Eq. (3.31) at (xm, tn+1/2) gives

LHS = (c7 + c8)(ut)
n+ 1

2
m− − c7h(utx)

n+ 1
2

m− + c7
h2

2
(utxx)

n+ 1
2

m− +O(τ 2 + h3). (3.36)

Matching Eqs. (3.34) and (3.36) gives P2 = 0, c7+c8 = P1, c7 = 1/6+h/24[(k1x)m/(k1)m],

from which we obtain c7, c8, c9 as listed in Eqs. (3.31a)-(3.31c), and hence the proof is

completed.
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Using a similar argument, one may obtain the following lemma for a scheme at

xm from the RHS of interface.

Lemma 3.2.6. Assume that the analytical solution u(x, t) in Eqs. (3.1)-(3.4)

is smooth in [0, L]× [0,∞). Then it holds at xm+

c̃8δtu
n+ 1

2
m + c̃7δtu

n+ 1
2

m+1 =
1

h
[(k2)m+ 1

2

u
n+ 1

2
m+1 − u

n+ 1
2

m

h
− c̃9(k2)m(ux)

n+ 1
2

m+ ]

− T n+ 1
2

m+ +O(τ 2 + h3), (3.37)

where

c̃7 =
1

6
− h

24

(k2x)m
(k2)m

, (3.38a)

c̃8 =
1

3
− h

24

(k2x)m
(k2)m

+
h2

48

4[(k2x)m]2 − 3(k2)m(k2xx)m
[(k2)m]2

, (3.38b)

c̃9 = 1 +
h2

24(k2)m
[
2[(k2x)m]2

(k2)m
− (k2xx)m]

+
h3

48(k2)m
[
5(k2)m(k2x)m(k2xx)m − 4[(k2x)m]3

[(k2)m]2
− (k2xxx)m], (3.38c)

T
n+ 1

2
m+ = z2(utxx)

n+ 1
2

m+ − f
n+ 1

2
m+ , (3.38d)

with

f
n+ 1

2
m+ = [

1

2
− h

12

(k2x)m
(k2)m

− h2

48

3(k2)m(k2xx)m − 4[(k2x)m]2

[(k2)m]2
](F2)

n+ 1
2

m

+ [
h

6
− h2

24

(k2x)m
(k2)m

](F2x)
n+ 1

2
m +

h2

24
(F2xx)

n+ 1
2

m , (3.38e)

z2 = −h
2

24
+
h3

48

(k2x)m
(k2)m

. (3.38f)
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If k2(x) is a constant, then Eq. (3.37) reduces to

1

3
δtu

n+ 1
2

m +
1

6
δtu

n+ 1
2

m+1 =
k2

h
[
u
n+ 1

2
m+1 − u

n+ 1
2

m

h
− (ux)

n+ 1
2

m+ ] +
h

24
(utxx)

n+ 1
2

m+

+
1

2
(F2)

n+ 1
2

m +
h

6
(F2x)

n+ 1
2

m +
h2

24
(F2xx)

n+ 1
2

m

+O(τ 2 + h3). (3.39)

Based on the above lemmas 3.2.5-3.2.6, we now are able to derive a finite

difference scheme at the interfacial grid point (xm, tn+1/2) using only three grid points.

Lemma 3.2.7. Assume that the analytical solution u(x, t) in Eqs. (3.1)-(3.4)

is smooth in [0, L]× [0,∞). Then it holds at (xm, tn+1/2)

c10δtu
n+ 1

2
m−1 + c11δtu

n+ 1
2

m + c12δtu
n+ 1

2
m+1

= c0(k2)m+ 1
2

u
n+ 1

2
m+1 − u

n+ 1
2

m

h2
− (k1)m− 1

2

u
n+ 1

2
m − un+ 1

2
m−1

h2
− T n+ 1

2
m +O(τ 2 + h3), (3.40)

where

c0 = c9/c̃9, c10 = c7 + z1a+ c0z2c̃, (3.41a)

c11 = c8 + c0c̃8 + z1b+ c0z2b̃, c12 = c0c̃7 + z1c+ c0z2ã, (3.41b)

T
n+ 1

2
m = −fn+ 1

2
m− − c0f

n+ 1
2

m+ + z1S
n+ 1

2
m− + c0z2S

n+ 1
2

m+ . (3.41c)

Here, c7, c̃7, c8, c̃8, c9, c̃9, z1, z2, f
n+1/2
m− , f

n+1/2
m+ are given in lemmas 3.2.5-3.2.6, and

a =
2

h2
− c(k1)m

(k2)m
, b = −(a+ c), (3.42a)

c =

[
h2(k1)m
(k2)m

+
h3

4(k2)m
[(k1x)m −

(k2x)m(k1)m
(k2)m

]

]−1

, (3.42b)

ã =
2

h2
− c̃(k2)m

(k1)m
, b̃ = −(ã+ c̃), (3.42c)
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c̃ =

[
h2(k2)m
(k1)m

+
h3

4(k1)m
[(k2x)m −

(k1x)m(k2)m
(k1)m

]

]−1

, (3.42d)

S
n+ 1

2
m− =

c

2(k2)m
[(F2t)

n+ 1
2

m − (F1t)
n+ 1

2
m ], (3.42e)

S
n+ 1

2
m+ =

c̃

2(k1)m
[(F1t)

n+ 1
2

m − (F2t)
n+ 1

2
m ]. (3.42f)

Proof. We multiply Eq. (3.37) by c0 and then add with Eq. (3.31). This gives

c7δtu
n+ 1

2
m−1 + (c8 + c0c̃8)δtu

n+ 1
2

m + c0c̃7δtu
n+ 1

2
m+1

=
1

h2
[c0(k2)

m+
1
2
(u

n+ 1
2

m+1 − u
n+ 1

2
m )− (k1)

m−1
2
(u

n+ 1
2

m − un+ 1
2

m−1)]

− (T
n+ 1

2
m− + c0T

n+ 1
2

m+ ) +O(τ 2 + h3), (3.43)

where

T
n+ 1

2
m− = z1(utxx)

n+ 1
2

m− − f
n+ 1

2
m− , T

n+ 1
2

m+ = z2(utxx)
n+ 1

2
m+ − f

n+ 1
2

m+ . (3.44)

We now discretize (utxx)
n+1/2
m− as

(utxx)
n+ 1

2
m− = aδtu

n+ 1
2

m−1 + bδtu
n+ 1

2
m + cδtu

n+ 1
2

m+1 − g
n+ 1

2
m− , (3.45)

where δtu
n+1/2
m = (un+1

m −unm)/τ , and a, b, c and g
n+1/2
m− are constants to be determined.

Using the Taylor series expansion at tn+1/2, we obtain the RHS of Eq. (3.45) as

RHS = a(ut)
n+ 1

2
m−1 + b(ut)

n+ 1
2

m− + c(ut)
n+ 1

2
m+1 − g

n+ 1
2

m− +O(τ 2). (3.46)

Using the Taylor series expansion at xm, we obtain

(ut)
n+ 1

2
m+1 = (ut)

n+ 1
2

m+ + h(utx)
n+ 1

2
m+ +

h2

2
(utxx)

n+ 1
2

m+ +O(h3), (3.47a)

(ut)
n+ 1

2
m−1 = (ut)

n+ 1
2

m− − h(utx)
n+ 1

2
m− +

h2

2
(utxx)

n+ 1
2

m− +O(h3). (3.47b)
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From the interfacial condition in Eq. (3.4), we have (ux)
n+1/2
m+ = (k1)m/(k2)m(ux)

n+1/2
m−

and (utt)
n+1/2
m+ = (utt)

n+1/2
m− . Furthermore, from Eq. (3.1b) we obtain

(ut)
n+ 1

2
m+ = (k2x)m(ux)

n+ 1
2

m+ + (k2)m(uxx)
n+ 1

2
m+ + (F2)

n+ 1
2

m , (3.48)

and hence

(uxx)
n+ 1

2
m+ =

1

(k2)m
[(ut)

n+ 1
2

m+ − (k2x)m(ux)
n+ 1

2
m+ − (F2)

n+ 1
2

m ]

=
1

(k2)m
[(ut)

n+ 1
2

m− − (k2x)m
(k1)m
(k2)m

(ux)
n+ 1

2
m− − (F2)

n+ 1
2

m ], (3.49a)

(utxx)
n+ 1

2
m+ =

1

(k2)m
[(utt)

n+ 1
2

m− − (k2x)m
(k1)m
(k2)m

(utx)
n+ 1

2
m− − (F2t)

n+ 1
2

m ]

=
1

(k2)m
[(k1x)m(utx)

n+ 1
2

m− + (k1)m(utxx)
n+ 1

2
m− + (F1t)

n+ 1
2

m ]

− (k2x)m
(k1)m

[(k2)m]2
(utx)

n+ 1
2

m− −
1

(k2)m
(F2t)

n+ 1
2

m . (3.49b)

Substituting them into Eq. (3.47a) and then Eq. (3.47) into Eq. (3.46), we have from

Eq. (3.45)

(utxx)
n+ 1

2
m− = (a+ b+ c)(ut)

n+ 1
2

m−

+

(
−ah+

ch(k1)m
(k2)m

+
ch2

2(k2)m
[(k1x)m − (k2x)m

(k1)m
(k2)m

]

)
(utx)

n+ 1
2

m−

+ [
ah2

2
+
ch2(k1)m
2(k2)m

](utxx)
n+ 1

2
m− − S

n+ 1
2

m− − g
n+ 1

2
m− +O(τ 2 + h3), (3.50)

where S
n+1/2
m− is given in Eq. (3.42e). Matching both sides of Eq. (3.50) indicates

a+ b+ c = 0, (3.51a)

−ah+
ch(k1)m
(k2)m

+
ch2

2(k2)m
[(k1x)m − (k2x)m

(k1)m
(k2)m

] = 0, (3.51b)
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ah2

2
+
ch2(k1)m
2(k2)m

= 1, (3.51c)

−Sn+ 1
2

m− − g
n+ 1

2
m− +O(τ 2 + h3) = 0, (3.51d)

which gives a, b and c as listed in Eqs. (3.42a)-(3.42b), and g
n+1/2
m− = −Sn+1/2

m− +O(τ 2+h)

(note that a, c are hidden in O(h3)). Similarly, we can express (utxx)
n+1/2
m+ as

(utxx)
n+ 1

2
m+ = c̃δtu

n+ 1
2

m−1 + b̃δtu
n+ 1

2
m + ãδtu

n+ 1
2

m+1 − g
n+ 1

2
m+ , (3.52)

where coefficients ã, b̃, c̃ are listed in Eqs. (3.42c)-(3.42d), and g
n+1/2
m+ = −Sn+1/2

m+ +

O(τ 2 + h). Substituting Eqs. (3.45) and (3.52) into Eq. (3.44) and then substituting

Eq. (3.44) into Eq. (3.43), we obtain

(c7 + z1a+ c0z2c̃)δtu
n+ 1

2
m−1 + (c8 + c0c̃8 + z1b+ c0z2b̃)δtu

n+ 1
2

m + (c0c̃7 + z1c+ c0z2ã)δtu
n+ 1

2
m+1

=
1

h2
[c0(k2)

m+
1
2
(u

n+ 1
2

m+1 − u
n+ 1

2
m )− (k1)

m−1
2
(u

n+ 1
2

m − un+ 1
2

m−1)]

+ f
n+ 1

2
m− + c0f

n+ 1
2

m+ − z1S
n+ 1

2
m− − c0z2S

n+ 1
2

m+ +O(τ 2 + h3), (3.53)

which gives Eq. (3.40) and coefficients as listed in Eq. (3.41), and hence complete the

proof.

It should be pointed out that one may easily extend the above lemma for the

discontinuous interface case, such as u(xl+, t) − u(xl−, t) = ϕ1(t), k2(xl)ux(xl+, t) −

k1(xl)ux(xl−, t) = ϕ2(t). Based on the above lemmas 3.2.1-3.2.7, we first replace u
n+1/2
j

with

u
n+ 1

2
j =

1

2
(un+1

j + unj ) +O(τ 2), (3.54)
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and then drop out the truncation errors, as well as use the notation Un
j , an approxi-

mation of unj , and the notations

Ū
n+ 1

2
j =

Un+1
j + Un

j

2
, δtU

n+ 1
2

j =
Un+1
j − Un

j

τ
. (3.55)

Thus, an accurate compact finite difference scheme for solving Eqs. (3.1)-(3.4) is

obtained as

C1δtU
n+ 1

2
0 + C2δtU

n+ 1
2

1 =
1

h
[(k1)1/2

Ū
n+ 1

2
1 − Ūn+ 1

2
0

h
− C3(k1)0α(tn+ 1

2
)]

+ [− h

12
+
h2

24

(k1x)0

(k1)0

]α′(tn+ 1
2
) + f

n+ 1
2

0 ; (3.56a)

(C4)jδtU
n+ 1

2
j−1 + (C5)jδtU

n+ 1
2

j + (C6)jδtU
n+ 1

2
j+1 =

1

h2
[(k1)j+ 1

2
− h2

24
(D1)j+ 1

2
](Ū

n+ 1
2

j+1 − Ū
n+ 1

2
j )

− 1

h2
[(k1)j− 1

2
− h2

24
(D1)j− 1

2
](Ū

n+ 1
2

j − Ūn+ 1
2

j−1 )

+ f
n+ 1

2
j , 1 ≤ j ≤ m− 1; (3.56b)

C7δtU
n+ 1

2
m−1 + C8δtU

n+ 1
2

m + C9δtU
n+ 1

2
m+1 =

1

h2
[C0(k2)m+ 1

2
(Ū

n+ 1
2

m+1 − Ū
n+ 1

2
m )

− (k1)m− 1
2
(Ū

n+ 1
2

m − Ūn+ 1
2

m−1)]− T n+ 1
2

m ; (3.56c)

(C̃4)jδtU
n+ 1

2
j−1 + (C̃5)jδtU

n+ 1
2

j + (C̃6)jδtU
n+ 1

2
j+1 =

1

h2
[(k2)j+ 1

2
− h2

24
(D2)j+ 1

2
](Ū

n+ 1
2

j+1 − Ū
n+ 1

2
j )

− 1

h2
[(k2)j− 1

2
− h2

24
(D2)j− 1

2
](Ū

n+ 1
2

j − Ūn+ 1
2

j−1 )

+ f̃
n+ 1

2
j ,m+ 1 ≤ j ≤ N − 1; (3.56d)

C̃1δtU
n+ 1

2
N + C̃2δtU

n+ 1
2

N−1 =
1

h
[C̃3(k2)Nβ(tn+ 1

2
)− (k2)N− 1

2

Ū
n+ 1

2
N − Ūn+ 1

2
N−1

h
]

+ [
h

12
+
h2

24

(k2x)N
(k2)N

]β′(tn+ 1
2
) + f

n+ 1
2

N ; (3.56e)
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U0
j = φ1(xj), j = 0, 1, · · · ,m− 1,m; U0

j = φ2(xj), j = m+ 1, · · · , N, (3.56e)

where coefficients C1 = c1, C2 = c2, C3 = c3, (C4)j = (c4)j , (C5)j = (c5)j , (C6)j = (c6)j ,

C7 = c10, C8 = c11, C9 = c12, C0 = c0, C̃1 = c̃1, C̃2 = c̃2, C̃3 = c̃3, (C̃4)j = (c̃4)j,

(C̃5)j = (c̃5)j and (C̃6) = (c̃6)j which are based on Lemmas 3.2.1-3.2.7, and also

f
n+1/2
0 ,f

n+1/2
j , f̃

n+1/2
j , f

n+1/2
N , T

n+1/2
m , D1 and D2 are given in Lemmas 3.2.1-3.2.7.

It can be seen that the truncation error for the above scheme is O(τ 2 + h3) at

x0, xm and xN , and O(τ 2 + h4) at interior point xj . Furthermore, Eqs. (3.56a)-(3.56e)

consist of a tridiagonal linear system for solving Un+1
j , j = 0, · · · , N , which can be

obtained using the Thomas algorithm. It should be pointed out that we have never

discretized ux in the interfacial and boundary conditions in our derivations.

3.3 Stability and Convergence

A Priori Estimate:

To analyze the stability and convergence of the present scheme, we first obtain a priori

estimate. A priori estimate is an estimate for the size of a solution or its derivatives

of a partial differential equation. We obtain a priori estimate for the following finite

difference scheme as

C1δtU
n+ 1

2
0 + C2δtU

n+ 1
2

1 =
1

h
(k1)1/2

Ū
n+ 1

2
1 − Ūn+ 1

2
0

h
+ g

n+ 1
2

0 ; (3.57a)

(C4)jδtU
n+ 1

2
j−1 + (C5)jδtU

n+ 1
2

j + (C6)jδtU
n+ 1

2
j+1 =

1

h2
[(k1)j+ 1

2
− h2

24
(D1)j+ 1

2
](Ū

n+ 1
2

j+1 − Ū
n+ 1

2
j )

− 1

h2
[(k1)j− 1

2
− h2

24
(D1)j− 1

2
](Ū

n+ 1
2

j − Ūn+ 1
2

j−1 )

+ g
n+ 1

2
j , 1 ≤ j ≤ m− 1; (3.57b)
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C7δtU
n+ 1

2
m−1 + C8δtU

n+ 1
2

m + C9δtU
n+ 1

2
m+1 =

1

h2
[C0(k2)m+ 1

2
(Ū

n+ 1
2

m+1 − Ū
n+ 1

2
m )

− (k1)m− 1
2
(Ū

n+ 1
2

m − Ūn+ 1
2

m−1)] + g
n+ 1

2
m ; (3.57c)

(C̃4)jδtU
n+ 1

2
j−1 + (C̃5)jδtU

n+ 1
2

j + (C̃6)jδtU
n+ 1

2
j+1 =

1

h2
[(k2)j+ 1

2
− h2

24
(D2)j+ 1

2
](Ū

n+ 1
2

j+1 − Ū
n+ 1

2
j )

− 1

h2
[(k2)j− 1

2
− h2

24
(D2)j− 1

2
](Ū

n+ 1
2

j − Ūn+ 1
2

j−1 )

+ g
n+ 1

2
j ,m+ 1 ≤ j ≤ N − 1; (3.57d)

C̃1δtU
n+ 1

2
N + C̃2δtU

n+ 1
2

N−1 = −1

h
(k2)N− 1

2

Ū
n+ 1

2
N − Ūn+ 1

2
N−1

h
+ g

n+ 1
2

N , (3.57e)

where g
n+1/2
j , 0 ≤ j ≤ N , is a mesh function and the coefficients are given in Eq.

(3.56).

Lemma 3.3.1 (Gronwall’s inequality). If {yn}, {fn} and {gn} are non-negative

sequences and satisfy

yn ≤ fn +
n−1∑
k=0

gkyk, n ≥ 0, (3.58)

then it holds

yn ≤ fn +
n−1∑
k=0

fkgk exp(
n−1∑
j=k

gj), n ≥ 0. (3.59)

Theorem 3.3.1. The finite difference scheme in Eq. (3.57) satisfies

En ≤ exp(CT )[E0 + T max
0≤k≤n−1

Gk+ 1
2 ], (3.60)

where 0 < nτ ≤ T and
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En = h

m−1∑
j=0

1

2
c̃9[(k1)j+ 1

2
− h2

24
(D1)j+ 1

2
](∇xU

n
j )2

+ h
N−1∑
j=m

1

2
c9[(k2)j+ 1

2
− h2

24
(D2)j+ 1

2
](∇xU

n
j )2, (3.61a)

Gk+ 1
2 =

c̃9

4ε
h

m∑
j=0

(g
k+ 1

2
j )2 +

c9

4ε
h

N∑
j=m+1

(g
k+ 1

2
j )2. (3.61b)

Here, C and ε are positive constants, c9 and c̃9 are given in Lemmas 3.2.5 and 3.2.6.

Proof. We now multiply Eqs. (3.57a)-(3.57e) by hc̃9δtU
n+1/2
0 , hc̃9δtU

n+1/2
j ,

hc̃9δtU
n+1/2
m , hc9δtU

n+1/2
j , and hc9δtU

n+1/2
N , respectively, and then add them together.

This gives an equation where the LHS is

LHS = hc̃9[C1(δtU
n+ 1

2
0 )2 + C2(δtU

n+ 1
2

1 )(δtU
n+ 1

2
0 )]

+ h
m−1∑
j=1

c̃9

[
(C4)j(δtU

n+ 1
2

j−1 )(δtU
n+ 1

2
j ) + (C5)j(δtU

n+ 1
2

j )2 + (C6)j(δtU
n+ 1

2
j+1 )(δtU

n+ 1
2

j )
]

+ hc̃9

[
C7δt(U

n+ 1
2

m−1)(δtU
n+ 1

2
m ) + C8(δtU

n+ 1
2

m )2 + C9(δtU
n+ 1

2
m+1)(δtU

n+ 1
2

m )
]

+ h

N−1∑
j=m+1

c9

[
(C̃4)j(δtU

n+ 1
2

j−1 )(δtU
n+ 1

2
j ) + (C̃5)j(δtU

n+ 1
2

j )2 + (C̃6)j(δtU
n+ 1

2
j+1 )(δtU

n+ 1
2

j )
]

+ hc9[C̃1(δtU
n+ 1

2
N )2 + C̃2(δtU

n+ 1
2

N−1)(δtU
n+ 1

2
N )], (3.62)

and the RHS is
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RHS =
1

h
c̃9(k1)1

2
(Ū

n+ 1
2

1 − Ūn+ 1
2

0 )(δtU
n+ 1

2
0 )

+
1

h

m−1∑
j=1

c̃9

[
(k1)j+ 1

2
(Ū

n+ 1
2

j+1 − Ū
n+ 1

2
j )− (k1)j− 1

2
(Ū

n+ 1
2

j − Ūn+ 1
2

j−1 )
]

(δtU
n+ 1

2
j )

− h

24

m−1∑
j=1

c̃9

[
(D1)j+ 1

2
(Ū

n+ 1
2

j+1 − Ū
n+ 1

2
j )− (D1)j− 1

2
(Ū

n+ 1
2

j − Ūn+ 1
2

j−1 )
]

(δtU
n+ 1

2
j )

+
1

h
[c9(k2)

m+
1
2
(Ū

n+ 1
2

m+1 − Ū
n+ 1

2
m )− c̃9(k1)m− 1

2
(Ū

n+ 1
2

m − Ūn+ 1
2

m−1)](δtU
n+ 1

2
m )

+
1

h

N−1∑
j=m+1

c9

[
(k2)j+ 1

2
(Ū

n+ 1
2

j+1 − Ū
n+ 1

2
j )− (k2)j− 1

2
(Ū

n+ 1
2

j − Ūn+ 1
2

j−1 )
]

(δtU
n+ 1

2
j )

− h

24

N−1∑
j=m+1

c9

[
(D2)j+ 1

2
(Ū

n+ 1
2

j+1 − Ū
n+ 1

2
j )− (D2)j− 1

2
(Ū

n+ 1
2

j − Ūn+ 1
2

j−1 )
]

(δtU
n+ 1

2
j )

− 1

h
c9(k2)N− 1

2
(Ū

n+ 1
2

N − Ūn+ 1
2

N−1)(δtU
n+ 1

2
N ) + hc̃9

m∑
j=0

g
n+ 1

2
j (δtU

n+ 1
2

j )

+ hc9

N∑
j=m+1

g
n+ 1

2
j (δtU

n+ 1
2

j ). (3.63)

Using the Young inequality, we have

(δtU
n+ 1

2
j )(δtU

n+ 1
2

j+1 ) ≥ −1

2
[(δtU

n+ 1
2

j )2 + (δtU
n+ 1

2
j+1 )2], (3.64)

and so on for other similar terms. Thus, Eq. (3.62) becomes

LHS ≥A0 + h
m−1∑
j=1

c̃9

[
−(C4)j

2
(δtU

n+ 1
2

j−1 )2 + αj(δtU
n+ 1

2
j )2 − (C6)j

2
(δtU

n+ 1
2

j+1 )2

]

+ Am + h

N−1∑
j=m+1

c9

[
−(C̃4)j

2
(δtU

n+ 1
2

j−1 )2 + α̃j(δtU
n+ 1

2
j )2 − (C̃6)j

2
(δtU

n+ 1
2

j+1 )2

]

+ AN , (3.65a)
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where,

αj = (C5)j −
(C4)j

2
− (C6)j

2
(3.65b)

α̃j = [(C̃5)j −
(C̃4)j

2
− (C̃6)j

2
] (3.65c)

A0 = hc̃9(C1 −
C2

2
)(δtU

n+ 1
2

0 )2 − hc̃9C2

2
(δtU

n+ 1
2

1 )2 (3.65d)

Am = − c̃9C7

2
(δtU

n+ 1
2

m−1)2 + hc̃9(C8 −
C7

2
− C9

2
)(δtU

n+ 1
2

m )2 − hc̃9C9

2
(δtU

n+ 1
2

m+1)2 (3.65e)

AN = −hc9C̃2

2
(δtU

n+ 1
2

N−1)2 + hc9(C̃1 −
C̃2

2
)(δtU

n+ 1
2

N )2 (3.65f)

which can be further simplified to

LHS ≥ hc̃9η0(δtU
n+ 1

2
0 )2 + hc̃9η1(δtU

n+ 1
2

1 )2 + h
m−1∑
j=1

c̃9ηj(δtU
n+ 1

2
j )2

+ hc̃9γ1(δtU
n+ 1

2
m−1)2 + hc̃9γ2(δtU

n+ 1
2

m )2 + hγ3(δtU
n+ 1

2
m+1)2

+ h
N−1∑
j=m+1

c9η̃j(δtU
n+ 1

2
j )2 + hc9η̃N−1(δtU

n+ 1
2

N−1)2 + hc9η̃N(δtU
n+ 1

2
N )2. (3.66a)

where,

η0 = C1 −
1

2
C2 −

1

2
(C4)1 (3.66b)

η1 = (C5)1 −
(C4)1

2
− (C4)2

2
− (C6)1

2
− C2

2
(3.66c)

ηj = αj −
(C4)j+1

2
− (C6)j−1

2
(3.66d)

γ1 = (C5)m−1 −
1

2
(C4)m−1 −

1

2
(C6)m−2 −

1

2
(C6)m−1 −

1

2
C7 (3.66e)

γ2 = C8 −
1

2
C7 −

1

2
C9 −

1

2
(C6)m−1 −

1

2

c9

c̃9

(C̃4)m+1 (3.66f)
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γ3 = c9[(C̃5)m+1 −
1

2
(C̃4)m+1 −

1

2
(C̃4)m+2 −

1

2
(C̃6)m+1]− 1

2
c̃9C9 (3.66g)

η̃j =

[
α̃j −

1

2
(C̃4)j+1 −

1

2
(C̃6)j−1

]
(3.66h)

η̃N−1 =

[
(C̃5)N−1 −

1

2
(C̃4)N−1 −

1

2
(C̃6)N−2 −

1

2
(C̃6)N−1 −

1

2
C̃2

]
(3.66i)

η̃N = C̃1 −
1

2
C̃2 −

1

2
(C̃6)N−1 (3.66j)

After some detailed algebraic computations, these coefficients in Eq. (3.66a) satisfy

η0 =
1

3
− 5h

48

(k1x)0

(k1)0

+
h2

48
[
4(k1x)0 − 3(k1)0(k1xx)0

[(k1x)0]2
], (3.67a)

η2 =
2

3
− h

48
[
(k1x)0

(k1)0

+
(k1x)1

(k1)1

− (k1x)2

(k1)2

], (3.67b)

ηj =
2

3
+

h

48
[
(k1x)j+1

(k1)j+1

− (k1x)j−1

(k1)j−1

], (3.67c)

γ1 =
31

48
+

1

48

(k1)m
(k2)m

− h

96
[
(k1x)m
(k1)m

+
(k1)m(k2x)m

[(k2)m]2
]

+
h

48
[
(k1x)m
(k1)m

+
(k1x)m−1

(k1)m−1

− (k1x)m−2

(k1)m−2

] +O(h2), (3.67d)

γ2 =
13

24
+

1

16
[
(k1)m
(k2)m

+
(k2)m
(k1)m

] +
7h

96
[
(k1x)m
(k1)m

− (k2x)m
(k2)m

]

+
h

32

(k1x)m(k2)m
[(k1)m]2

− h

32

(k2x)m(k1)m
[(k2)m]2

+O(h2), (3.67e)

γ3 =
31

48
+

1

48

(k2)m
(k1)m

+
h

96
[
(k2)m(k1x)m

[(k1)m]2
+

(k2x)m
(k2)m

]

− h

48
[
(k2x)m
(k2)m

+
(k2x)m+1

(k2)m+1

− (k2x)m+2

(k2)m+2

] +O(h2), (3.67f)

η̃j =
2

3
+

h

48
[
(k2x)j+1

(k2)j+1

− (k2x)j−1

(k2)j−1

], (3.67g)
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η̃N−1 =
2

3
+

h

48
[
(k2x)N
(k2)N

+
(k2x)N−1

(k2)N−1

− (k2x)N−2

(k2)N−2

], (3.67h)

η̃N =
1

3
+

5h

48

(k2x)N
(k2)N

+
h2

48
[
4(k2x)N − 3(k2)N(k2xx)N

[(k2x)N ]2
], (3.67i)

implying that they are all positive if h is small. Hence, when h is small enough, we

may obtain

LHS ≥ K

[
h(δtU

n+ 1
2

0 )2 + h
N−1∑
j=1

(δtU
n+ 1

2
j )2 + h(δtU

n+ 1
2

N )2

]
, (3.68)

where K is a positive constant.

On the other hand, we rewrite Eq. (3.63) by shifting the indices for couple of

the summations and then re-grouping the summations. This gives

RHS = c̃9
h2

24
(D1) 1

2

Ū
n+ 1

2
1 − Ūn+ 1

2
0

h
(δtU

n+ 1
2

0 )

− h
m−1∑
j=0

c̃9[(k1)j+ 1
2
− h2

24
(D1)j+ 1

2
]
Ū
n+ 1

2
j+1 − Ū

n+ 1
2

j

h

1

h
δt(U

n+ 1
2

j+1 − U
n+ 1

2
j )

− c̃9
h2

24
(D1)m− 1

2

Ū
n+ 1

2
m − Ūn+ 1

2
m−1

h
(δtU

n+ 1
2

m )

+ c9
h2

24
(D2)m+ 1

2

Ū
n+ 1

2
m+1 − Ū

n+ 1
2

m

h
(δtU

n+ 1
2

m )

− h
N−1∑
j=m

c9[(k2)j+ 1
2
− h2

24
(D2)j+ 1

2
]
Ū
n+ 1

2
j+1 − Ū

n+ 1
2

j

h

1

h
δt(U

n+ 1
2

j+1 − U
n+ 1

2
j )

− c9
h2

24
(D2)N− 1

2

Ū
n+ 1

2
N − Ūn+ 1

2
N−1

h
(δtU

n+ 1
2

N )

+ hc̃9

m∑
j=0

g
n+ 1

2
j (δtU

n+ 1
2

j ) + hc9

N∑
j=m+1

g
n+ 1

2
j (δtU

n+ 1
2

j ). (3.69)
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Using the notation ∇xŪ
n+1/2
j = 1/h(Ū

n+1/2
j+1 − Ūn+1/2

j ), Eq. (3.69) can be simplified to

RHS = −h
m−1∑
j=0

c̃9[(k1)j+ 1
2
− h2

24
(D1)j+ 1

2
](∇xŪ

n+ 1
2

j )(δt∇xU
n+ 1

2
j )

− h
N−1∑
j=m

c9[(k2)
j+

1
2
− h2

24
(D2)

j+
1
2
](∇xŪ

n+ 1
2

j )(δt∇xU
n+ 1

2
j )

+
h2

24
c̃9(D1) 1

2
(∇xŪ

n+ 1
2

0 )(δtU
n+ 1

2
0 )− h2

24
c̃9(D1)m− 1

2
(∇xŪ

n+ 1
2

m−1)(δtU
n+ 1

2
m )

+
h2

24
c9(D2)m+ 1

2
(∇xŪ

n+ 1
2

m )(δtU
n+ 1

2
m )− h2

24
c9(D2)N− 1

2
(∇xŪ

n+ 1
2

N−1)(δtU
n+ 1

2
N )

+ hc̃9

m∑
j=0

g
n+ 1

2
j δtU

n+ 1
2

j + hc9

N∑
j=m+1

g
n+ 1

2
j δtU

n+ 1
2

j . (3.70)

Note that

(∇xŪ
n+ 1

2
j )(δt∇xU

n+ 1
2

j ) =
1

2τ
[(∇xU

n+1
j )2 − (∇xU

n
j )2], (3.71)

Eq. (3.70) becomes

RHS = − 1

2τ
h
m−1∑
j=0

c̃9[(k1)j+ 1
2
− h2

24
(D1)j+ 1

2
][(∇xU

n+1
j )2 − (∇xU

n
j )2]

− 1

2τ
h
N−1∑
j=m

c9[(k2)j+ 1
2
− h2

24
(D2)j+ 1

2
][(∇xU

n+1
j )2 − (∇xU

n
j )2]

+
h2

24
c̃9(D1) 1

2
(∇xŪ

n+ 1
2

0 )(δtU
n+ 1

2
0 )− h2

24
c̃9(D1)m− 1

2
(∇xŪ

n+ 1
2

m−1)(δtU
n+ 1

2
m )

+
h2

24
c9(D2)m+ 1

2
(∇xŪ

n+ 1
2

m )(δtU
n+ 1

2
m )− h2

24
c9(D2)N− 1

2
(∇xŪ

n+ 1
2

N−1)(δtU
n+ 1

2
N )

+ hc̃9

m∑
j=0

g
n+ 1

2
j δtU

n+ 1
2

j + hc9

N∑
j=m+1

g
n+ 1

2
j δtU

n+ 1
2

j . (3.72)

By the Cauchy-Schwarz inequality, we have
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∇xŪ
n+ 1

2
i δtU

n+ 1
2

j ≤ 1

4ε
(∇xŪ

n+ 1
2

i )2 + ε(δtU
n+ 1

2
j )2

≤ 1

8ε
[(∇xU

n+1
i )2 + (∇xU

n
i )2] + ε(δtU

n+ 1
2

j )2, (3.73a)

g
n+ 1

2
j δtU

n+ 1
2

j ≤ 1

4ε
(g
n+ 1

2
j )2 + ε(δtU

n+ 1
2

j )2, (3.73b)

and hence if h is small enough, then Eq. (3.72) can be further written as

RHS ≤− h
m−1∑
j=0

c̃9

2τ
[(k1)j+ 1

2
− h2

24
(D1)j+ 1

2
][(∇xU

n+1
j )2 − (∇xU

n
j )2]

− h
N−1∑
j=m

c9

2τ
[(k2)j+ 1

2
− h2

24
(D2)j+ 1

2
][(∇xU

n+1
j )2 − (∇xU

n
j )2]

+
h2

192ε
c̃9

∣∣∣(D1) 1
2

∣∣∣ [∇x(U
n+1
0 )2 +∇x(U

n
0 )2] +

h2ε

24
c̃9(δtU

n+ 1
2

0 )2

+
h2

192ε
c̃9

∣∣∣(D1)m− 1
2

∣∣∣ [∇x(U
n+1
m−1)2 +∇x(U

n
m−1)2] +

h2ε

24
c̃9(δtU

n+ 1
2

m )2

+
h2

192ε
c9

∣∣∣(D2)m+ 1
2

∣∣∣ [∇x(U
n+1
m )2 +∇x(U

n
m)2] +

h2ε

24
c9(δtU

n+ 1
2

m )2

+
h2

192ε
c9

∣∣∣(D2)N− 1
2

∣∣∣ [∇x(U
n+1
N−1)2 +∇x(U

n
N−1)2] +

h2ε

24
c9(δtU

n+ 1
2

N )2

+ hεc̃9

m∑
j=0

(δtU
n+ 1

2
j )2 + hεc9

N∑
j=m+1

(δtU
n+ 1

2
j )2

+ c̃9
1

4ε
h

m∑
j=0

(g
n+ 1

2
j )2 + c9

1

4ε
h

N∑
j=m+1

(g
n+ 1

2
j )2. (3.74)

Choosing small ε and a constant ε0 ≥ max(hεc9/24, hεc̃9/24, εc9, εc̃9) such that

K − ε0 ≥ 0,

we obtain from Eqs. (3.68) and (3.74) that
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(K − ε0)h[(δtU
n+ 1

2
0 )2 +

N−1∑
j=1

(δtU
n+ 1

2
j )2 + (δtU

n+ 1
2

N )2] + h

m−1∑
j=0

c̃9

2τ
[(k1)j+ 1

2
− h2

24
(D1)j+ 1

2
]

[(∇xU
n+1
j )2 − (∇xU

n
j )2] + h

N−1∑
j=m

c9

2τ
[(k2)j+ 1

2
− h2

24
(D2)j+ 1

2
][(∇xU

n+1
j )2 − (∇xU

n
j )2]

≤ h2

192ε
c̃9(
∣∣∣(D1) 1

2

∣∣∣ [∇x(U
n+1
0 )2 +∇x(U

n
0 )2] +

∣∣∣(D1)m− 1
2

∣∣∣ [∇x(U
n+1
m−1)2 +∇x(U

n
m−1)2])

+
h2

192ε
c9(
∣∣∣(D2)m+ 1

2

∣∣∣ [∇x(U
n+1
m )2 +∇x(U

n+1
m )2] +

∣∣∣(D2)N− 1
2

∣∣∣ [∇x(U
n+1
N−1)2+

∇x(U
n
N−1)2]) + c̃9

1

4ε
h

m∑
j=0

(g
n+ 1

2
j )2 + c9

1

4ε
h

N∑
j=m+1

(g
n+ 1

2
j )2. (3.75)

Using the notation in Eq. (3.61) and noticing

c̃9

192ε

∣∣∣(D1)j+ 1
2

∣∣∣ =
c̃9

192ε

∣∣∣(D1)j+ 1
2

∣∣∣
(k1)j+ 1

2

(k1)j+ 1
2
≤ A(k1)j+ 1

2
, (3.76)

where A = maxj[c̃9

∣∣(D1)j+1/2

∣∣ (k1)j+1/2, c9

∣∣(D2)j+1/2

∣∣ (k2)j+1/2]/(192ε), Eq. (3.75)

can be simplified to

En+1 − En ≤ Ahτ(En+1 + En) + 2τGn+ 1
2 , (3.77)

implying that

(1− Ahτ)(En+1 − En) ≤ 2AhτEn + 2τGn+ 1
2 . (3.78)

If τ is sufficiently small such that 1− Ahτ ≥ 1/2, then we have

En+1 − En ≤ 4AτEn + 4τGn+ 1
2 , (3.79)

implying that

En ≤ E0 + 4Aτ
n−1∑
k=0

Ek + 4τ
n−1∑
k=0

Gk+ 1
2 . (3.80)

By the Gronwall inequality, we obtain the priori estimate in Eq. (3.60).
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Using the above priori estimate, we can straightforwardly obtain the following

theorem.

Theorem 3.3.2. Assume that (U1)
n
j and (U2)

n
j are two numerical solutions

obtained based on the scheme in Eq. (3.56a)-Eq. (3.56e) with same boundary

and interfacial conditions, but different initial conditions and source terms F
(1)
1 (x, t) ,

F
(1)
2 (x, t) and F

(2)
1 (x, t) , F

(2)
2 (x, t). Let Un

j = (U2)nj −(U1)nj , and F1(x, t) = F
(2)
1 (x, t)−

F
(1)
1 (x, t), F2(x, t) = F

(2)
2 (x, t)− F (1)

2 (x, t). Then it holds

En ≤ exp(CT )[E0 + T max
0≤k≤n−1

Gk+ 1
2 ], (3.81)

where 0 ≤ nτ ≤ T and

En = h
m−1∑
j=0

1

2
c̃9[(k1)j+ 1

2
− h2

24
(D1)j+ 1

2
](∇xU

n
j )2

+ h
N−1∑
j=m

1

2
c9[(k2)j+ 1

2
− h2

24
(D2)j+ 1

2
](∇xU

n
j )2, (3.82a)

Gk+ 1
2 =

1

4ε
c̃9h

m∑
j=0

[(g)
k+ 1

2
j ]2 +

1

4ε
c9h

N∑
j=m+1

[(g)
k+ 1

2
j ]2. (3.82b)

Here, (g)
k+1/2
j is a mesh function related only to the source terms. Eq. (81) indicates

that the scheme is unconditionally stable (i.e., no restriction on the mesh ratio).

We now analyze the convergence of the present scheme. For simplicity, we first

define the inner products and norms for mesh functions as

(un, vn) = h

N∑
j=0

unj v
n
j , ||un||2 = h

N∑
j=0

(unj )2, ||un||∞ = max
0≤j≤N

|unj |. (3.83)

Lemma 3.3.2 [115]. For any mesh function vj, j = 0, · · · , N , and any positive

constant ε, it holds

||v||2∞ ≤ ε||∇xv||2 + (
1

ε
+

1

L
)||v||2. (3.84)
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Theorem 3.3. Assume that u(xj, tn) is the analytical solution of Eqs. (3.1)-

(3.4) and Un
j is the numerical solution obtained based on the scheme in Eq. (3.56a)-

Eq. (3.56e), respectively. Let enj = u(xj, tn)− Un
j . Then it holds

||en||∞ ≤ K(τ 2 + h4), (3.85)

where K is a constant.

Proof. It can be seen that enj satisfies

C1δte
n+ 1

2
0 + C2δte

n+ 1
2

1 =
1

h
(k1)1/2

ē
n+ 1

2
1 − ēn+ 1

2
0

h
+ r

n+ 1
2

0 ; (3.86a)

(C4)jδte
n+ 1

2
j−1 + (C5)jδte

n+ 1
2

j + (C6)jδte
n+ 1

2
j+1 =

1

h2
[(k1)j+ 1

2
− h2

24
(D1)j+ 1

2
](ē

n+ 1
2

j+1 − ē
n+ 1

2
j )

− 1

h2
[(k1)j− 1

2
− h2

24
(D1)j− 1

2
](ē

n+ 1
2

j − ēn+ 1
2

j−1 )

+ r
n+ 1

2
j , 1 ≤ j ≤ m− 1; (3.86b)

C7δte
n+ 1

2
m−1 + C8δte

n+ 1
2

m + C9δte
n+ 1

2
m+1 =

1

h2
[C0(k2)m+ 1

2
(ē
n+ 1

2
m+1 − ē

n+ 1
2

m )

− (k1)m− 1
2
(ē
n+ 1

2
m − ēn+ 1

2
m−1)]

+ r
n+ 1

2
m ; (3.86c)

(C̃4)jδte
n+ 1

2
j−1 + (C̃5)jδte

n+ 1
2

j + (C̃6)jδte
n+ 1

2
j+1 =

1

h2
[(k2)j+ 1

2
− h2

24
(D2)j+ 1

2
](ē

n+ 1
2

j+1 − ē
n+ 1

2
j )

− 1

h2
[(k2)j− 1

2
− h2

24
(D2)j− 1

2
](ē

n+ 1
2

j − ēn+ 1
2

j−1 )

+ r
n+ 1

2
j ,m+ 1 ≤ j ≤ N − 1; (3.86d)
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C̃1δte
n+ 1

2
N + C̃2δte

n+ 1
2

N−1 = −1

h
(k2)N− 1

2

ē
n+ 1

2
N − ēn+ 1

2
N−1

h
+ r

n+ 1
2

N , (3.86e)

e0
j = 0, j = 0, 1, · · · , N, (3.86f)

where r
n+1/2
j is O(τ 2 + h3) at x0, xm, xN , and is O(τ 2 + h4) at xj, j = 1, · · · , m− 1,

m+ 1, · · · , N − 1. From now on, for simplicity we denote K as a positive constant

without specifying. At different places, it may have a different value.

We multiply Eqs. (3.86a)-(3.86e) by hc̃9δte
n+1/2
0 , hc̃9δte

n+1/2
j , hc̃9δte

n+1/2
m ,

hc9δte
n+1/2
j , and hc9δte

n+1/2
N , respectively, where c̃9 and c9 are given in Lemmas 3.2.5.

and 3.2.6, and then add the results together. Proceeding in the same way by which

we obtained Eq. (3.75) and then replacing n by p and summing up to k, we obtain

when h is small enough that

K
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p
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192ε
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2
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where
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R = c̃9he
k+1
0

r
k+ 1

2
0

τ
−

k∑
p=1

c̃9he
p
0

r
p+ 1

2
0 − rp−

1
2

0

τ
− c̃9he

0
0

r
1
2
0

τ
+ c̃9he

k+1
m

r
k+ 1

2
m

τ

−
k∑
p=1

c̃9he
p
m

r
p+ 1

2
m − rp−

1
2

m

τ
− c̃9he

0
m

r
1
2
m

τ
+ c9he

k+1
N

r
k+ 1

2
N

τ

−
k∑
p=1

c9he
p
N

r
p+ 1

2
m − rp−

1
2

m

τ
− c9he

0
N

r
1
2
N

τ
+

k∑
p=0

1

4ε
c̃9h

m−1∑
j=1

(r
p+ 1

2
j )2

+
k∑
p=0

1

4ε
c9h

N−1∑
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Here, we have used the fact that

k∑
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(δte
p+ 1

2
0 )r
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−
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1
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τ
. (3.88)

Using a similar procedure as before, one may obtain

h
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where
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We choose h small enough such that

(k1)j+1/2 − h2(D1)j+1/2/24 ≥ K, (3.90a)

−hc̃9

∣∣∣(D1) 1
2

∣∣∣ /(192ε) ≥ −K (3.90b)

and, as well as for other terms. As such, we obtain
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and using Eq. (3.91) and the values of r
k+1/2
j , Eq. (3.89) can be simplified to

K(1− τ)h
N−1∑
j=0

(∇xe
k+1
j )2 +Kτ
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p=0

||δtep+
1
2 ||2
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∣∣ek+1
m

∣∣ (τ 2 + h3)

+
k∑
p=1

Kτh |epm| (τ 2 + h3) +Kh
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N

∣∣ (τ 2 + h3) +
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Kτh |epN | (τ
2 + h3)

+K(τ 2 + h4)2. (3.93)

As such, we obtain

K(1− τ)h
N∑
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(∇xe
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j )2 +Kτ
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2 ||2
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||ep||∞ +K(τ 2 + h4)2. (3.94)

Since e0
i = 0 and hence

ek+1
i = τ

k∑
p=0

δte
p+ 1

2
i , (3.95)

we obtain

(ek+1
i )2 = (τ

k∑
p=0

δte
p+ 1

2
i )2 ≤ Tτ

k∑
p=0

(δte
p+ 1

2
i )2. (3.96)

Multiplying Eq. (3.96) by h and summing up for i, we have

1

T
||ek+1||2 ≤ τ

k∑
p=0

||δtep+
1
2 ||2, (3.97)

implying that
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K(1− τ)||∇xe
k+1||2 +

K

T
||ek+1||2

≤ KτEk +K(τ 2 + h4)||ek+1||∞ +K(τ 2 + h4)τ
k∑
p=0

||ep||∞ +K(τ 2 + h4)2. (3.98)

By Lemma 3.3.2 and the Cauchy-Schwarz inequality, we obtain

K(1− τ)||ek+1||2∞ ≤ KτEk +K(τ 2 + h4)||ek+1||∞ +K(τ 2 + h4)τ
k∑
p=0

||ep||∞

+K(τ 2 + h4)2

≤ KτEk +
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2
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||ep||2∞
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K

2
(τ 2 + h4)2 +K(τ 2 + h4)2. (3.99)

Note that

h2(∇xe
p
j)

2 = h2[
epj+1 − e

p
j

h
]2

≤ 2[(epj+1)2 + (epj)
2]

≤ 4||ep||2∞, (3.100)

implying that Ek ≤ K
∑k

p=0 ||ep||2∞. Therefore, if τ is small enough such that

1− 2Kτ ≥ 1/2, then we obtain from Eq. (3.99) that

||ek+1||2∞ ≤ Kτ
k∑
p=0

||ep||2∞ +K(τ 2 + h4)2. (3.101)

Thus, by the Gronwall inequality, we obtain

||ek+1||2∞ ≤ K(τ 2 + h4)2[1 +KT exp(KT )], (3.102)
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and hence complete the proof.

It should be pointed out that Sun and Dai [115] obtained a fourth-order compact

finite difference scheme for the heat conduction equation with constant coefficients

in double layers. Although their scheme is unconditionally stable, there are some

restrictions on coefficients (see Eqs. (4.1)-(4.3) in [62]). The present scheme does not

have such restrictions on coefficients even if the coefficients are constants.

3.4 Numerical Example

To verify the accuracy of the present scheme in Eq. (3.56), we first consider a

simple heat conduction problem as

ut =
∂

∂x

(
2(x2 + x+ 1)ux

)
+ F1(x, t), 0 ≤ x ≤ 1, t > 0, (3.103a)

ut =
∂

∂x

(
(x2 + x+ 1)ux

)
+ F2(x, t), 1 ≤ x ≤ 2, t > 0, (3.103b)

where the source terms are

F1(x, t) = [8π2(x2 + x+ 1)− 1]e−tsin(2πx)− 4π(2x+ 1)e−tcos(2πx), (3.103c)

F2(x, t) = [16π2(x2 + x+ 1)− 1]e−tsin(4πx)− 4π(2x+ 1)e−tcos(4πx), (3.103d)

the initial and boundary conditions are given as

u(x, 0) = sin(2πx), 0 ≤ x ≤ 1; u(x, 0) = sin(4πx), 1 ≤ x ≤ 2; (3.103e)

ux(0, t) = 2π, ux(2, t) = 4π, t ≥ 0, (3.103f)

and the interfacial condition at x = 1 is

u(1−, t) = u(1+, t), 6ux(1−, t) = 3ux(1+, t), t ≥ 0. (3.103g)
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It can be seen that the analytical solution for the above problem is u(x, t) =

e−tsin(2πx) when 0 ≤ x ≤ 1, and u(x, t) = etsin(4πx) when 1 ≤ x ≤ 2.
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Figure 3.2: Solution profile at t = 1 along the x-direction.

Table 3.1: Maximum error and convergence order in space when τ = 10−6 and
0 ≤ t ≤ 1.

h E(τ, h) Convergence order
1/10 2.96772209× 10−1 -
1/20 1.83704916× 10−2 4.00
1/40 1.14868809× 10−3 3.99
1/80 7.18955235 ×10−5 3.99

In our computation, we calculated the maximum error E(τ, h) = maxj,n |u(xj, tn)

−Un
j | and the convergence orders in space and in time are based on q = log(E(τ, h2)/E(τ, h1))

/log(h2/h1) and q = log(E(τ2, h)/ E(τ1, h))/log(τ2/τ1), respectively. In particular, we

computed the convergence order in space by choosing h = 1/10,1/20,1/40,1/80 and

τ = 10−6, and on the other hand, we computed the convergence order in time by

choosing τ = 1/10, 1/20, 1/40, 1/80 and h = 10−5. Results are listed in Table 3.1 and
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Table 3.2: Maximum error and convergence order in time when h = 10−5 and
0 ≤ t ≤ 1.

h E(τ, h) Convergence order
1/10 2.54812728× 10−3 -
1/20 6.38902058× 10−4 1.99
1/40 1.53023681× 10−4 2.06
1/80 3.47321759× 10−5 2.13

3.2. From these two tables, one may see that the convergence orders in space and in

time are about 4.0 and 2.0, respectively, which coincide with the theoretical analysis.

Figure 3.2 shows the profile of the solution at t = 1 obtained based on the present

scheme using h = 1/80 and τ = 10−6.

3.5 Summary

In this chapter, we have derived some important lemmas for developing a

compact finite difference scheme for solving the heat conduction equation with variable

coefficients. Based on these lemmas, we have derived a higher order finite difference

method for solving the heat conduction with variable coefficients in double layers.

The scheme has fourth-order accuracy in space and second-order accuracy in time.

The stability and convergence of the scheme have been analyzed and proved using the

discrete energy method. Finally, the scheme has been tested in an example to verify

the accuracy and the convergence order. This work has already been published in the

journal Applied Mathematics and Computation, volume 386, 2020 [172]. The doi for

the article is https://doi.org/10.1016/j.amc.2020.125516.

https://doi.org/10.1016/j.amc.2020.125516


CHAPTER 4

ARTIFICIAL NEURAL METHOD FOR
DOUBLE-LAYERED STRUCTURES

4.1 Parabolic Two-Temperature Heat Conduction Equation in
Double-Layered Structure

Figure 4.1: Schematic diagram for a double-layered film, where 0 ≤ x ≤ xl represents
the first layer and xl ≤ x ≤ xL represents the second layer.

In this chapter, we consider a double-layered thin film exposed to an ultrashort-

pulsed laser heating, where the governing equations are the parabolic two-step model

as shown in 4.1:

C(m)
e (T (m)

e )
∂T

(m)
e

∂t
=

∂

∂x

(
k(m)
e

∂T
(m)
e

∂x

)
−G(m)(T (m)

e − T (m)
l ) + S(m)(x, t), (4.1a)

C
(m)
l

∂T
(m)
l

∂t
= G(m)(T (m)

e − T (m)
l ), (4.1b)

where the heat source is given as

S(m)(x, t) = 0.94
1−R
tpδ

J exp

(
−xm
δ
− 2.77(

t− 2tp
tp

)2

)
, (4.2)
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with the initial condition

T (m)
e (x, 0) = T

(m)
l (x, 0) = T0;

∂T
(m)
e (x, 0)

∂t
=
∂T

(m)
l (x, 0)

∂t
= 0, (4.3a)

the thermal insulated boundary condition

∂T
(m)
e (0, t)

∂x
=
∂T

(m)
l (0, t)

∂x
= 0,

∂T
(m)
e (xL, t)

∂x
=
∂T

(m)
l (xL, t)

∂x
= 0, (4.3b)

and the perfectly thermal-contact interfacial condition

T (1)
e (xl, t) = T (2)

e (xl, t); k(1)
e

∂T
(1)
e

∂x
= k(2)

e

∂T
(2)
e

∂x
. (4.3c)

Here, m = 1, 2 represent the first layer (0 ≤ x ≤ xl) and the second layer (xl ≤ x ≤ xL),

respectively, and 0 ≤ t ≤ tT , T0 is the initial temperature, C
(m)
e (T

(m)
e ) = C

(m)
e0 T

(m)
e /T0,

and k
(m)
e = k

(m)
e0 T

(m)
e /T

(m)
l where C

(m)
e0 and k

(m)
e0 are constant heat capacity and

conductivity.

For the heat source, R = 0.93 is the reflectivity, tp = 0.1 (ps) is the full-

width-at-half-maximum duration of the laser pulse, δ = 15.3 (nm) is the radiation

penetration depth, J = 500 (Jm2) is laser fluency.

The above parabolic two-temperature model and its extension to hyperbolic two-

temperature models coupled with the insulated boundary condition, where ∂Te/∂~n =

∂Tl/∂~n = 0 and ~n is the outward normal vector on the boundary, have been widely

used in thermal analysis for micro/nanoscale heat conduction in thin films induced by

the ultrashort-pulsed laser heating. We refer readers to references in the literature

such as [172-189] and to Tzou[191] as well as to the references therein for details. In

this study, we would like to develop a neural network method for solving the above

model and predict the lattice and electron temperatures.
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4.2 Neural Network Method

In order for the neural nets to learn better, we make the above equations in

dimensionless form by introducing the following variables:

T ∗(m)
e =

T
(m)
e − T0

T0

, T
∗(m)
l =

T
(m)
l − T0

T0

, (4.4a)

x∗ =
x

xL
, δ∗ =

δ

xL
, t∗ =

t

tT
, t∗p =

tp
tT
. (4.4b)

Replacing T
(m)
e , T

(m)
l , x, t and tp in Eqs. (4.1)-(4.3) based on Eq. (4.4), we obtain

C∗(m)
e

∂T
∗(m)
e

∂t∗
=

∂

∂x∗

(
k∗(m)
e

∂T
∗(m)
e

∂x∗

)
−G∗(m)(T ∗(m)

e − T ∗(m)
l ) + S∗(m)(x∗m, t

∗), (4.5a)

C
(m)
l

∂T
∗(m)
l

∂t∗
= G∗(m)(T ∗(m)

e − T ∗(m)
l ), (4.5b)

where the heat source is given as

S∗(m)(x∗m, t
∗) = 0.94

1−R
t∗pδ
∗ J

∗ exp

(
−x

∗
m

δ∗
− 2.77(

t∗ − 2t∗p
t∗p

)2

)
, (4.6)

with the initial condition

T ∗(m)
e (x∗m, 0) = T

∗(m)
l (x∗m, 0) = 0;

∂T
∗(m)
e (x∗m, 0)

∂t∗
=
∂T
∗(m)
l (x∗m, 0)

∂t∗
= 0, (4.7)

the thermal insulated boundary condition

∂T
∗(m)
e (0, t∗)

∂x∗
=
∂T
∗(m)
l (0, t∗)

∂x∗
= 0,

∂T
∗(m)
e (1, t∗)

∂x∗
=
∂T
∗(m)
l (1, t∗)

∂x∗
= 0, (4.8a)

and the perfectly thermal-contact interfacial condition

T ∗(1)
e (x∗l , t

∗) = T ∗(2)
e (x∗l , t

∗), k∗(1)
e

∂T
∗(1)
e

∂x∗
= k∗(2)

e

∂T
∗(2)
e

∂x∗
. (4.8b)

Here, C
∗(m)
e = C

(m)
e0 (T

∗(m)
e + 1), k

∗(m)
e = tTk

(m)
e0 (T

∗(m)
e + 1)/(x2

L(T
∗(m)
l + 1)), G∗(m) = tT

G(m), J∗ = J/(xLT0), 0 < x∗ = xl/xL < 1. For simplicity, we omit asterisks in the

following texts.
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Figure 4.2: ANN schematic for solving the parabolic two-temperature model.

Since there are four unknowns (i.e.,T
(1)
e T

(2)
e , T

(1)
l , T

(2)
2 ), we first design four

individual neural nets and make all the neural nets fully connected, as shown in Figure

4.2. Here, u1, v1 represent the electron and lattice temperatures in the first layer, and

u2, v2 represent the electron and lattice temperatures in the second layer, respectively.

We assume that neural nets NN1, NN2, NN3, and NN4 have L1, L2, L3 and L4 number

of hidden layers, and M1, M2, M3 and M4 number of hidden units, respectively. Let
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the input be X = (x, t). The output from NN1, which is the ANN solution u1 can be

expressed as

u1(x, t) =

M1∑
i=1

W
(1)
i z

(L1)
i + b(1), (4.9a)

z
(j)
i = σ(

M1∑
k=1

W
(1,j)
k,i z

(j−1)
k + b

(1,j)
i ), j = 2, ..., L1; i = 1, 2, ...,M1; (4.9b)

z
(1)
i = σ(W

(1,0)
i x+W

(1,1)
i t+ b

(1,0)
i ), i = 1, 2, ...,M1; (4.9c)

where σ is the activation function which is the hyperbolic tangent function (i.e.,

σ(y) = (ey − e−y)/(ey + e−y)). Here, W
(1,0)
i , W

(1,1)
i W

(1,j)
k,i , W

(1)
i , b

(1,0)
i , b

(1,j)
i , b(1) are

weights and biases which are to be optimized. For simplicity, we list all the weights

and biases into a vector and denote θ(1) = [W
(1,0)
1 , · · · ,W (1,0)

M1
,W

(1,1)
1 , · · · ,W (1,1)

M1
,

· · · ,W (1)
1 , · · · ,W (1)

M1
,· · · , b(1,0)

1 , · · · , b(1,0)
M1

, · · · , b(1)]. For the neural net NN2, NN3 and

NN4, we have similar expressions for v1, u2, v2 as the above u1, and vectors θ(2), θ(3)

and θ(4) as set of weights and biases for NN2, NN3 and NN4, respectively. Let

θ = [θ(1),θ(2),θ(3),θ(4)]. We define the loss function as

JLoss(θ) = Loss
(1)
PDE1 + Loss

(2)
PDE1 + Loss

(1)
PDE2 + Loss

(2)
PDE2

+ Loss
(1)
IC + Loss

(2)
IC + Loss

(1)
BC + Loss

(2)
BC + LossIF , (4.10)

where Loss
(m)
PDE1, Loss

(m)
PDE2, Loss

(m)
IC , Loss

(m)
BC , and LossIF are loss functions calculated

based on PDEs in Eqs. (4.8a)-(4.8b), the initial condition in Eq. (4.7), the boundary

condition in Eq. (4.8a), and the interface condition in Eq. (4.8b), respectively. These
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loss functions are expressed in l2-norm as

Loss
(m)
IC =

1

N
(m)
IC

N
(m)
IC∑
i=1

|um(xi, 0)− Te(xi, 0)|2, (4.11a)

Loss
(m)
BC =

1

N
(1,m)
BC

[

N
(1,m)
BC∑
i=1

|um(0, ti)− T (m)
e (0, ti)|2 +

N
(1,m)
BC∑
i=1

|vm(0, ti)− T (m)
l (0, ti)|2]

+
1

N
(2,m)
BC

[

N
(2,m)
BC∑
i=1

|um(1, ti)− T (m)
e (1, ti)|2

+

N
(2,m)
BC∑
i=1

|vm(1, ti)− T (m)
l (1, ti)|2], (4.11b)

LossIF =
1

NIF

NIF∑
i=1

|u1(l, ti)− u2(l, ti)|2

+
1

NIF

NIF∑
i=1

|k(1)
e

∂u1(l, ti)

∂x
− k(2)

e

∂u2(l, ti)

∂x
|2, (4.11c)

Loss
(m)
PDE1 =

1

N
(m)
PDE

N
(m)
PDE∑
i=1

|C(m)
e (um)t(xi, ti)− (k(m)

e (um)x)x(xi, ti)

+G[um(xi, ti)− vm(xi, ti)]− S(m)(xi, ti)|2, (4.11d)

Loss
(m)
PDE2 =

1

N
(m)
PDE

N
(m)
PDE∑
i=1

|C(m)
l (vm)t(xi, ti)−G[um(xi, ti)− vm(xi, ti)]|2. (4.11e)

Here, m = 1, 2 represents the first and second layers, respectively. N
(m)
IC , N

(1,m)
BC ,N

(1,m)
BC ,

NIF and N
(m)
PDE are numbers of training points selected from the initial condition,

boundary condition, interface condition and the interior domain.

To obtain the optimal θ from JLoss(θ), we use a combination of the Adam

Optimization method [168] and the L-BFGS method [169] for optimizing the weights

and biases. The Adam method is a gradient based optimization technique that uses for
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estimates of lower order moments while the L-BFGS is a quasi-Newton method that

uses approximate Hessian matrix. We use the Adam Optimization method because

of its efficiency in computation and fewer memory requirements and because it is

invariant to diagonal re-scaling of the gradients and is well suited for large number

of data points. On the other hand, the L-BFGS method is more stable than other

optimization algorithms and can handle large batch sizes very well. And also since the

L-BFGS uses curvature information from only the most recent iterations, it is more

practical and saves time as well as storage space. The L-BFGS has a tendency to be

attracted to saddle points, whereas the Adam method avoids saddle points. Therefore,

we believe that a combination of both methods could be better. In this study, we first

apply the Adam optimization method followed by the L-BFGS method to achieve

better convergence for obtaining the optimal θ.

Note that the Adam Optimization method involves the hyper-parameters α,

β1, and β2, where α is the learning rate, and β1, β2 are the exponential decay rates for

the moment estimates. To start the Adam method, we initialize the first and second

moment vector represented by m0 and v0 to 0. Let θ0 be the starting initial weights

and biases of the neural net. And let (θ∗j )0 represent the individual elements of θ0. We

compute the gradient of JLoss(θ) with respect to each component in θ and store it as

(gj)1 = ∇(θ∗j )0JLoss((θ
∗
j )0). (4.12a)

We then update the first and second moment vectors as

(mj)1 = β1(mj)0 + (1− β1)(gj)1, (vj)1 = β2(vj)0 + (1− β2)(gj)
2
1, (4.12b)
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After computing the bias corrected first and 2nd moments

(m̄j)1 =
(mj)1

1− β1
1

, (v̄j)1 =
(vj)1

1− β1
2

, (4.12c)

and hence update θ as

(θ∗j )1 = (θ∗j )0 − α ·
(m̄j)1√
(v̄j)1 + ε

. (4.12d)

The process continues till the maximum number N1 of iterations is completed and the

Adam optimization θ is saved as θN1 .

We then start the L-BFGS method with θ̄0 = θN1as

(θ̄∗j )i+1 = (θ̄∗j )i − αiBi∇θ∗j
JLoss(θ̄i), i = 0, 1, ..., N2 − 1, (4.13a)

where N2 is the maximum number of iterations, αi is the step length. Here, Bi

represents the inverse Hessian approximation, which is given by

Bi = VT
i−1Bi−1Vi−1 + ρi−1si−1s

T
i−1, (4.13b)

where

si = θ̄i+1 − θ̄i, ri = ∇θJLoss(θ̄i+1)−∇θJLoss(θ̄i),ρi =
1

rTi si
, (4.13c)

Vi = I− ρiris
T
i ,B0 = I, or B0 =

sT0 r0

rT0 r0

I. (4.13d)

Note that we store only a limited number of Bi implicitly by storing say (w) pairs of

(si,ri) used in the above equations.

It should be pointed out that because the pulse duration is very short, this

requires the random learning points to be able to catch the pulse in order to obtain

the accurate solution. In this study, we divide the whole time interval into several

sub-intervals and then run the algorithm for the first sub-interval to obtain the neural
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network solutions. Once they are done, we use the solutions at the time end of the

sub-interval as the initial condition for the next sub-interval and run the algorithm

until all the solutions are obtained. In this way, we can obtain a more accurate as well

as faster solution. The main idea is to select a high resolution of training points across

time for the first interval. This ensures the proper catching of the pulse. The next

time intervals can be of lower resolution, and by using the already captured result as

an initial condition we can propagate on the next sub-interval rather quickly, utilizing

fewer points for training. This technique increases the speed as well as accuracy of

the neural network solution.
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4.3 Algorithm

Algorithm: ANN for solving the parabolic two-temperature model

Step 1. Initialize weights and biases in θ0; set maximum iterations

Nmax = N1 +N2; select training points X = (x, t) for input;

calculate JLoss(θ0)

Step 2. Compare with tolerance ε (default machine floating-point precision)

or threshold if JLoss(θ0) ≤ ε or iteration number ≥ Nmax return θ0

else

Step 3. Adam Optimization method

Set α (learning rate), β1(=0.99), β2(= 0.999), m0 = 0,v0 = 0

and k (iteration)

while k ≤ N1 do

k ← k + 1

g1 ← ∇θJLoss(θk−1); mk ← β1mk−1 + (1− β1)gk;

vk ← β2vk−1 + (1− β1)g2
k

m̄k ←mk/(1− βk1 ); v̄k ← vk/(1− βk2 )

θk ← θk−1 − α·m̄k/(
√

¯|vk|+ ε) (ε = 10−8)

end while and return θN1

Step 4. L-BFGS method

Set θ̄0 = θN1 , w = integer, i← 0

while i ≤ N2 do
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set B0 = I for i = 0 and B0 =
sT0 r0
rT0 r0

I for i > 0

pi ← −Bi∇θJLoss(θ̄i)

n ← min(i, w − 1)

Bi ← (VT
i−1...V

T
i−1−n)B0(Vi−1−n...Vi−1)

+ρi−1−n(VT
i−1...V

T
i−n)si−1−ns

T
i−n(Vi−n...Vi−1)

+ρi−n(VT
i−1...V

T
i−n+1)si−ns

T
i−n(Vi−n+1...Vi−1)

+...+ ρi−1si−1s
T
i−1

θ̄i+1 = θ̄i + αipi

end while and return θ̄N2

end if

Step 5. Input domain required for prediction; output u1, v1, u2, v2

based on θ̄N2 ; transform u1, v1, u2, v2 back to the solutions

with dimensions

4.4 Convergence Analysis

Since we require the loss function to be small in the artificial neural network

computation, we may assume that JLoss(θ) ≤ ε, where ε is small value. Note that

the neural network solutions, um, vm, are composite functions of hyperbolic tangent

functions, which are smooth functions. Thus, we may assume that they satisfy the

following problem as

C(m)
e

∂um
∂t

= k(m)
e

∂2um
∂x2

−G(m)(um − vm) + S(m) + ϕ(m)
e , (4.14a)

C
(m)
l

∂vm
∂t

= G(m)(um − vm) + ϕ
(m)
l , (4.14b)
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with initial and boundary condition

um(x, 0) = T0 + η(m)
e , vm(x, 0) = T0 + η

(m)
l , (4.15a)

∂u1

∂x
(0, t) = φ(1),

∂u2

∂x
(1, t) = φ(2), (4.15b)

and the interfacial condition at x = xl

k(1)
e

∂u1

∂x
= k(2)

e

∂u2

∂x
+ ψ1, U (1)

e = U (2)
e + ψ2. (4.16)

Here, ϕ
(m)
e , ϕ

(m)
l , η

(m)
e , φ(m), ψ1 and ψ2 are functions which are assumed to satisfy

max{
∣∣ϕ(m)

e

∣∣ , ∣∣∣ϕ(m)
l

∣∣∣ , ∣∣η(m)
e

∣∣ , ∣∣φ(m)
∣∣ , |ψ1| , |ψ1|} ≤ ε, (4.17)

where m = 1 for 0 ≤ x ≤ xl, m = 2 for xl ≤ x ≤ 1, and 0 ≤ t ≤ 1.

We would like to show the convergence of the ANN solution to the analytical

solutions in Eqs. (4.5)-(4.8).

Theorem 4.4.1. Assume that the analytical solutions and the neural network

solutions are smooth. The loss function JLoss(θ) ≤ ε, where ε is small value. Assume

that C
(m)
e and k

(m)
e (m = 1, 2) are constants. Then, it holds∫ 1

0

∫ xl

0

[(E(1)
e )2 + (E

(1)
l )2]dxdt+

∫ 1

0

∫ 1

xl

[(E(2)
e )2 + (E

(2)
l )2]dxdt ≤ εA, (4.18)

where A is a constant.

Proof. Let E
(m)
e (x, t) = um − T (m)

e and E
(m)
l (x, t) = vm − T (m)

l . From Eqs.

(4.5)-(4.8) and Eqs. (4.14)-(4.16), we obtain E
(m)
e and E

(m)
l satisfying

C(m)
e

∂E
(m)
e

∂t
= k(m)

e

∂2um
∂x2

−G(m)(E(m)
e − E(m)

l ) + ϕ(m)
e , (4.19a)

C
(m)
l

∂E
(m)
l

∂t
= G(m)(E(m)

e − E(m)
l ) + ϕ

(m)
l , (4.19b)
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with initial and boundary conditions

E(m)
e (x, 0) = η(m)

e , E
(m)
l (x, 0) = η

(m)
l , (4.20a)

∂E
(1)
e

∂x
(0, t) = φ(1),

∂E
(2)
e

∂x
(1, t) = φ(2), (4.20b)

and the interfacial condition at x = xl

E(1)
e (xl, t) = E(2)

e (xl, t) + ψ1, k(1)
e

∂E
(1)
e

∂x
(xl, t) = k(2)

e

∂E
(2)
e

∂x
(xl, t) + ψ2. (4.20c)

Multiplying Eq. (4.19a) by E
(m)
e and Eq. (4.19b) by E

(m)
l , and integrating

them with respect to x over [0, xl] for m = 1, and over [xl, 1] for m = 2, respectively,

and then summing the results, we obtain

1

2

d

dt

∫ xl

0

[C(1)
e (E(1)

e )2 + C
(1)
l (E(1)

e )2]dx+
1

2

d

dt

∫ 1

xl

[C(2)
e (E(2)

e )2 + C
(2)
l (E(2)

e )2]dx

+

∫ xl

0

k(1)
e (

∂E
(1)
e

∂x
)2dx+

∫ 1

xl

k(2)
e (

∂E
(2)
e

∂x
)2dx+

∫ xl

0

G(1)[E(1)
e − E

(1)
l ]2dx

+

∫ 1

xl

G(2)[E(2)
e − E

(2)
l ]2dx

=k(1)
e

∂E1
e

∂x
E(1)
e |

xl
0 + k(2)

e

∂E
(2)
e

∂x
E(2)
e |xLxl +

∫ xl

0

ϕ(1)
e E(1)

e dx+

∫ xl

0

ϕ
(1)
l E

(1)
l dx

+

∫ 1

xl

ϕ(1)
e E(2)

e dx+

∫ 1

xl

ϕ
(2)
l E

(2)
l dx. (4.21)

Based on the interfacial condition and boundary condition Eqs. (4.20b)-(4.20c), we

have∣∣∣∣∣k(1)
e

∂E
(1)
e

∂x
E(1)
e |

xl
0 + k(2)

e

∂E
(2)
e

∂x
E(2)
e |1xl

∣∣∣∣∣ ≤
∣∣∣∣∣[k(2)

e

∂E
(2)
e

∂x
E(2)
e − k(1)

e

∂E
(1)
e

∂x
E(1)
e ]|xl

∣∣∣∣∣
+

∣∣∣∣∣k(1)
e

∂E
(1)
e

∂x
E(1)
e |0

∣∣∣∣∣+

∣∣∣∣∣k(2)
e

∂E
(2)
e

∂x
E(2)
e |1

∣∣∣∣∣ (4.22a)
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∣∣∣∣∣k(1)
e

∂E
(1)
e

∂x
E(1)
e |

xl
0 + k(2)

e

∂E
(2)
e

∂x
E(2)
e |1xl

∣∣∣∣∣
≤

∣∣∣∣∣[k(2)
e

∂E
(2)
e

∂x
E(2)
e − (k(2)

e

∂E
(2)
e

∂x
+ ψ2)(E(2)

e + ψ1)]|xl

∣∣∣∣∣+
∣∣k(1)
e φ(1)E(1)

e |0
∣∣+
∣∣k(2)
e φ(2)E(2)

e |1
∣∣

≤

∣∣∣∣∣[k(2)
e

∂E
(2)
e

∂x
ψ1 + ψ2(E(2)

e + ψ1)]|xl

∣∣∣∣∣+
∣∣k(1)
e φ(1)E(1)

e |0
∣∣+
∣∣k(2)
e φ(2)E(2)

e |1
∣∣ . (4.22b)

Using the smoothness of solutions and Eq. (4.17), Eq. (4.22) can be further simplified

to ∣∣∣∣∣k(1)
e

∂E
(1)
e

∂x
E(1)
e |

xl
0 + k(2)

e

∂E
(2)
e

∂x
E(2)
e |1xl

∣∣∣∣∣ ≤ εB1, (4.23)

where B1 is a constant. Using the Cauchy-Schwarz inequality and Eq. (4.17), we have

2

∫ xl

0

ϕ(1)
e E(1)

e dx+ 2

∫ xl

0

ϕ
(1)
l E

(1)
l dx+ 2

∫ 1

xl

ϕ(1)
e E(2)

e dx+ 2

∫ 1

xl

ϕ
(2)
l E

(2)
l dx

≤ ε2B2 +

∫ xl

0

[C(1)
e (E(1)

e )2 + C
(1)
l (E

(1)
l )2]dx+

∫ 1

xl

[C(2)
e (E(2)

e )2 + C
(2)
l (E

(2)
l )2]dx,

(4.24)

where B2 = 1

C
(1)
e

+ 1

C
(1)
l

+ 1

C
(2)
e

+ 1

C
(2)
l

. Substituting Eqs. (4.23) - (4.24) into Eq. (4.21)

and then denoting

D(t) =

∫ xl

0

[C(1)
e (E(1)

e )2 + C1
l (E

(1)
l )2]dx+

∫ 1

xl

[C(2)
e (E(2)

e )2 + C2
l (E

(2)
l )2]dx, (4.25)

Eq. (4.21) becomes

d

dt
D(t) ≤ D(t) + εB1 + ε2B2, (4.26)

implying that

D(t) ≤ et[

∫ t

0

e−τ (εB1 + ε2B2)dτ +D(0)] ≤ et[εB1 + ε2B2 +D(0)]. (4.27)
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Thus, we obtain ∫ 1

0

D(t)dt ≤ [εB1 + ε2B2 +D(0)]

∫ 1

0

etdt

≤ [εB1 + ε2B2 +D(0)]e1. (4.28)

Note that

D(0) =

∫ xl

0

[C(1)
e (η(1)

e )2 + C
(1)
l (η

(1)
l )2]dx+

∫ 1

xl

[C(2)
e (η(2)

e )2 + C
(2)
l (η

(2)
l )2]dx

≤ ε2B3, (4.29)

where B3 is a constant. We obtain

B4

∫ 1

0

∫ xl

0

[(E(1)
e )2 + (E

(1)
l )2]dxdt+

∫ 1

0

∫ 1

xl

[(E(2)
e )2 + (E

(2)
l )2]dxdt

≤
∫ 1

0

D(t)dt ≤ [εB1 + ε2B2 + ε2B3]e1, (4.30)

where B4 = min{C(1)
e , C

(2)
e , C

(1)
l , C

(2)
l }, and hence Eq. (4.18) is obtained, where

A = e[B1 + εB2 + εB3]/B4.

4.5 Summary

In this chapter, we have presented an artificial neural network (ANN) method

and its algorithm for solving the parabolic two-temperature heat conduction equations

in double-layered thin films exposed to ultrashort-pulsed lasers. Convergence of the

ANN solution to the analytical solution has been analyzed theoretically. This work

has already been published in the journal International Journal of Heat and Mass

Transfer, volume 178, 2021 [196]. The doi for the article is https://doi.org/10.1016/.

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121616


CHAPTER 5

SIMULATION OF HEAT CONDUCTION IN
GOLD-CHROMIUM THIN FILMS EXPOSED TO

ULTRASHORT-PULSED LASERS

In this chapter, we will present our numerical results obtained based on the

gradient preserved scheme and the neural network method developed in chapters 3

and 4 for solving parabolic two-temperature model in double-layered thin film exposed

to ultrashort-pulse laser heating.

5.1 Results Obtained Based on Gradient Preserved Method

To show the applicability of the Gradient Preserved Method, we consider a

50-nm gold film padding on a 50-nm chromium film, which is exposed to the ultrashort-

pulsed laser heating. This is a benchmark problem given in [80], and the temperature

rise in these two films can be modeled by the well-known parabolic two-temperature

heat conduction model as

Cm
e (T (m)

e )
∂T

(m)
e

∂t
=

∂

∂x

(
km

T
(m)
e

T
(m)
l

∂T
(m)
e

∂x

)
−G(m)(T (m)

e − T (m)
l ) + S(xm, t), (5.1a)

C
(m)
l

∂T
(m)
l

∂t
= G(m)(T (m)

e − T (m)
l ), (5.1b)

where the heat source is given as

S(xm, t) = 0.94
1−R
tpδ

J exp

(
−xm
δ
− 2.77(

t− 2tp
tp

)2

)
, (5.1c)
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with the initial condition as

T (m)
e (x, 0) = T

(m)
l (x, 0) = 300K, (5.1d)

∂T
(m)
e (x, 0)

∂t
=
∂T

(m)
l (x, 0)

∂t
= 0, (5.1e)

the thermal insulated boundary condition as

∂T
(m)
e (0, t)

∂x
=
∂T

(m)
l (0, t)

∂x
= 0,

∂T
(m)
e (L, t)

∂x
=
∂T

(m)
l (L, t)

∂x
= 0, (5.1f)

and the thermal perfectly insulated interfacial condition as

k1
T

(1)
e

T
(1)
(l)

∂T
(1)
e

∂x
= k2

T
(2)
e

T
(2)
(l)

∂T
(2)
e

∂x
, (5.1g)

T (1)
e (l, t) = T

(1)
l (l, t). (5.1h)

Here, m = 1, 2 represents the gold layer (0 ≤ x ≤ l) and the chromium layer

(l ≤ x ≤ L), respectively, with l = 50 (nm) and L = 100 (nm). Te and Tl are the

electron and lattice temperatures, respectively, km is the thermal conductivity, G(m)

is the electron-lattice coupling factor, C
(m)
e = (C0

e )(m)Te/T0 and C
(m)
l are the electron

heat capacity and the lattice heat capacity, respectively. The thermal properties of

these parameters are listed in Table 5.1 [80].

Table 5.1: Thermal properties of gold and chromium.

Parameters Gold Chromium

G 2.6× 1016 Wm−3K−1 42× 1016 Wm−3K−1

C0
e 2.1× 104 Jm−3K−1 5.8× 104 Jm−3K−1

Cl 2.5× 106 Jm−3K−1 3.3× 106 Jm−3K−1

k 315 Wm−1K−1 94 Wm−1K−1
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For the heat source, R = 0.93 is the reflectivity; tp = 0.1 (ps) is the full-width-

at-half-maximum duration of the laser pulse; δ = 0.1 (fs) is the radiation penetration

depth, and J = 500 (Jm2) is laser fluency.

It can be seen that Eq. (5.1a) is virtually a nonlinear equation. To apply our

present method to the model, we employ three levels in time, n− 1, n, n+ 1, where

in our scheme Eq. (3.56), is set to be

km(x) =
kmT

(m)
e (x, tn)

T
(m)
l (x, tn)

, (5.2a)

C(m)
e (T (m)

e ) = C(m)
e (T (m)

e (x, tn)). (5.2b)

. As such, the scheme for solving the above model can be expressed for the left

hand-side boundary as

α1δt(T
(1)
e )n0 + α2δt(T

(1)
e )n1 =

1

h
[(k1)1/2

(T̄
(1)
e )n1 − (T̄

(1)
e )n0

h
− α3(k1)0α(tn)]

+ [− h

12
+
h2

24

(k1x)0

(k1)0

]α′(tn) + β1G
(1)(T̄ (1)

e − T̄
(1)
l )n0

+ β2G
(1)(T̄ (1)

e − T̄
(1)
l )n1 + fn0 ; (5.3a)

for the first layer as

(α4)jδt(T
(1)
e )nj−1 + (α5)jδt(T

(1)
e )nj + (α6)jδt(T

(1)
e )nj+1

=
1

h2
[(k1)j+ 1

2
− h2

24
(D1)j+ 1

2
]((T̄e

(1)
)nj+1 − (T̄e

(1)
)nj )− 1

h2
[(k1)j− 1

2

− h2

24
(D1)j− 1

2
]((T̄e

(1)
)nj − (T̄e

(1)
)nj−1) + β3G

(1)(T̄ (1)
e − T̄

(1)
l )nj−1

+ β4G
(1)(T̄ (1)

e − T̄
(1)
l )nj + β5G

(1)(T̄ (1)
e − T̄

(1)
l )nj+1 + fnj , 1 ≤ j ≤ l − 1; (5.3b)
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for the interface as

α7δt(T
(1)
e )nl−1 + α10δt(T

(1)
e )nl + α̃7δt(T

(2)
e )nl+1

=
1

h2
[α0(k2)l+ 1

2
((̄T

(2)

e )nl+1 − ¯(Te
(2)

)nl )− (k1)l− 1
2
( ¯(Te

(1)
)nl − ¯(Te

(1)
)nl−1)]

+ β6G
(1)(T̄ (1)

e − T̄
(1)
l )nl− + β7G

(1)(T̄ (1)
e − T̄

(1)
l )nl−1 + α0β̃6G

(2)(T̄e
(2) − T̄l

(2)
)nl+

+ α0β̃7G
(2)(T̄ (2)

e − T̄
(2)
l )nl+1 + fnl ; (5.3c)

for the second layer as

(α̃4)jδt(T
(2)
e )nj−1 + (α̃5)jδt(T

(2)
e )nj + (α̃6)jδt(T

(2)
e )nj+1 =

1

h2
[(k2)j+ 1

2
− h2

24
(D2)j+ 1

2
]

((T̄e
(2)

)nj+1 − (T̄e
(2)

)nj )− 1

h2
[(k2)j− 1

2
− h2

24
(D2)j− 1

2
]((T̄e

(2)
)nj − (T̄e

(2)
)nj−1)

+ β̃3G
(2)(T̄e

(2) − T̄l
(2)

)nj−1 + β̃4G
(2)(T̄e

(2) − T̄l
(2)

)nj + β̃5G
(2)(T̄e

(2) − T̄l
(2)

)nj+1

+ f̃nj , l + 1 ≤ j ≤ N − 1;m (5.3d)

for the right hand-side boundary as

α̃1δt(T
(2)
e )nN + α̃2δt(T

(2)
e )nN−1 =

1

h
[α̃3(k2)Nβ(tn)− (k2)N− 1

2

(T̄e
(2)

)nN − (T̄e
(2)

)nN−1

h
]

+ [
h

12
+
h2

24

(k2x)N
(k2)N

]β′(tn) + β̃1G
(2)(T̄e

(2) − T̄l
(2)

)nN

+ β̃2G
(2)(T̄e

(2) − T̄l
(2)

)nN−1 + fnN ; (5.3e)

where

α1 = (
5

12
− h

12

(k1x)0

(k1)0

+
h2

48

[4(k1x)0]2 − 3(k1)0(k1xx)0

[(k1)0]2
)C(1)

e (T (1)
e )n0 , (5.4a)

α2 = (
1

12
)C(1)

e (T (1)
e )n0 , (5.4b)
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α3 = (1 +
h2

24(k1)0

[
2[(k1x)0]2

(k1)0

− (k1xxx)0]

+
h3

48(k1)0

[
5(k1)0(k1x)0(k1xx)0 − 4[(k1x)0]3

[(k1)0]2
− (k1xxx)0])C(1)

e (T (1)
e )n0 , (5.4c)

fn0 = [
1

2
− h

12

(k1x)0

(k1)0

− h2

48

4[(k1x)0]2 − 3(k1)0(k1xx)0

[(k1)0]2
]Sn0

+ [
h

6
− h2

24

(k1x)0

(k1)0

](Sx)
n
0 +

h2

24
(Sxx)

n
0 ; (5.4d)

α̃1 = (
5

12
+

h

12

(k2x)N
(k2)N

+
h2

48

4[(k2x)N ]2 − 3(k2)N(k2xx)N
[(k2)N ]2

)C(2)
e (T (2)

e )nN , (5.5a)

α̃2 = (
1

12
)C(2)

e (T (2)
e )nN , (5.5b)

α̃3 = (1 +
h2

24(k2)N
[
2[(k2x)N ]2

(k2)N
− (k2xxx)N ]

− h3

48(k2)N
[
5(k2)N(k2x)N(k2xx)N − 4[(k2x)N ]3

[(k2)N ]2
− (k2xxx)N ])C(2)

e (T (2)
e )nN ,

(5.5c)

fnN = [
1

2
+

h

12

(k2x)N
(k2)N

+
h2

48

4[(k2x)N ]2 − 3(k2)N(k2xx)N
[(k2)N ]2

]SnN

− [
h

6
+
h2

24

(k2x)N
(k2)N

](Sx)
n
N +

h2

24
(Sxx)

n
N ; (5.5d)

(α4)j = (
1

12
+

h

24

(k1x)j−1

(k1)j−1

)C(1)
e (T (1)

e )nj , (5.6a)

(α5)j = (
5

6
)C(1)

e (T (1)
e )nj , (5.6b)

(α6)j = (
1

12
− h

24

(k1x)j+1

(k1)j+1

)C(1)
e (T (1)

e )nj , (5.6c)

(D1)
j+1

2

= 2
[(k1x)j+ 1

2
]2

(k1)j+ 1
2

− (k1xx)j+ 1
2
, (5.6d)
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fnj = [1− h2

12

(k1)j(k1xx)j − (k1)2
j

(k1)2
j

]Snj −
h2

12

(k1x)j
(k1)j

(Sx)
n
j +

h2

12
(Sxx)

n
j ; (5.6e)

(α̃4)j = (
1

12
+

h

24

(k2x)j−1

(k2)j−1

)C(2)
e (T (2)

e )nj , (5.6a)

(α̃5)j = (
5

6
)C(2)

e (T (2)
e )nj , (5.6b)

(α̃6)j = (
1

12
− h

24

(k2x)j+1

(k2)j+1

)C(2)
e (T (2)

e )nj , (5.7c)

(D2)j+ 1
2

= 2
[(k2x)j+ 1

2
]2

(k2)j+ 1
2

− (k2xx)j+ 1
2
, (5.7d)

f̃nj = [1− h2

12

(k2)j(k2xx)j − (k2)2
j

(k2)2
j

]S
n+ 1

2
j − h2

12

(k2x)j
(k2)j

(Sx)
n
j +

h2

12
(Sxx)

n+ 1
2

j ; (5.7e)

α9 = 1 +
h2

12(k1)l− 1
2

[
(k1x)l− 1

2
(k1x)l− 1

2

(k1)l− 1
2

− (k1)l−2 − 2(k1)l−1 + (k1)l
2h2

], (5.8a)

α̃9 = 1 +
h2

12(k2)l+ 1
2

[
(k2x)l+ 1

2
(k2x)l+ 1

2

(k2)l+ 1
2

− (k1)l − 2(k1)l+1 + (k1)l+2

2h2
], (5.8b)

α0 =
α9

α̃9

, (5.8c)

α8 = [
3

8
α9 +

h

24

(k1x)l− 1
2

(k1)l− 1
2

− 1

24
]C(1)

e (T (1)
e )n

l− 1
2
, (5.8d)

α7 = [
1

8
α9 −

h

24

(k1x)l− 1
2

(k1)l− 1
2

+
1

24
]C(1)

e (T (1)
e )n

l− 1
2
, (5.8e)

α̃8 = [
3

8
α̃9 −

h

24

(k2x)l+ 1
2

(k2)l+ 1
2

+
1

24
]C(2)

e (T (2)
e )n

l+ 1
2
, (5.8f)

α̃7 = [
1

8
α̃9 −

h

24

(k2x)l+ 1
2

(k2)l+ 1
2

− 1

24
]C(2)

e (T (2)
e )n

l+ 1
2
, (5.8g)

α10 = α8 + α0α̃8, (5.8h)
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fnl = −(
α9

2
− h

12

(k1x)l− 1
2

(k1)l− 1
2

)S
n+ 1

2

l− 1
2

+ (
−α9h

8
+

h

24
)(Sx)

n
l− 1

2

+ α0[(
α̃9

2
+

h

12

(k2x)l+ 1
2

(k2)l+ 1
2

)Sn
l+ 1

2
+ (

α̃9h

8
− h

24
)(Sx)

n
l+ 1

2
]; (5.8i)

β1 = β̃1 =
−5

12
, β2 = β̃2 =

−1

12
, (5.9a)

β3 =
−1

12
− h

24

k1x(x)

k1(x)
, (5.9b)

β4 =
−5

12
+
h2

12

k1(x)k1xx(x)− (k1x(x))2

(k1(x))2
, (5.9c)

β5 =
−1

12
+

h

24

k1x(x)

k1(x)
, (5.9d)

β̃3 =
−1

12
− h

24

k2x(x)

k2(x)
, (5.9e)

β̃4 =
−5

12
+
h2

12

k2(x)k2xx(x)− (k2x(x))2

(k2(x))2
, (5.9f)

β̃5 =
−1

12
+

h

24

k2x(x)

k2(x)
, (5.9g)

β6 = −3

8
α9 −

h

24

(k1x)l− 1
2

(k1)l− 1
2

− 1

24
, β̃6 = −3

8
α̃9 +

h

24

(k2x)l+ 1
2

(k2)l+ 1
2

+
1

24
, (5.9h)

β7 = −1

8
α9 +

h

24

(k1x)l− 1
2

(k1)l− 1
2

− 1

24
, β̃7 = −1

8
α̃9 +

h

24

(k2x)l+ 1
2

(k2)l+ 1
2

− 1

24
. (5.9i)

Here, we use the notations

δt(T
(m)
e )nj =

(Tme )n+1
j − (Tme )n−1

j

2τ
,(T̄e

(m)
)nj =

(Tme )n+1
j + (Tme )n−1

j

2
,

(T̄l
(m)

)nj =
(Tml )n+1

j + (Tml )n−1
j

2
.

In our computation, we chose 40 grid points in the x-direction with h =

2.5 × 10−6(mm) and τ = 0.001(ps). Based on our scheme, we obtained that the
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maximum temperature rise is 3474.80 (K). Figure 5.1 represents electron temperature

profiles and lattice temperature profiles respectively at various times in the 50-nm

gold/ 50-nm chromium two-layer film during 0.1 (ps) laser pulse heating with J = 500

Jm−2. As compared with Fig. 6 given in [80], our numerical results are not visibly

different from those shown in Fig. 6 in [80]. In particular, we would like to point out

that Fig. 6 in [80] was obtained based on the Cranck-Nicolson scheme on a 400-grid

point mesh, which is a second order accurate scheme. On the other hand, our results

were obtained based on a 40-grid point mesh, which is many fewer grid points. This

indicates the advantage of our higher-order compact scheme.

5.2 Results Obtained Based on the Artificial Neural Network Method

To test the applicability of the present artificial neural network method and its

algorithm, we consider the parabolic two-temperature heat conduction model in Eqs.

(4.1)-(4.3) in three cases: (i) linear one dimension where C
(m)
e and k

(m)
e are constants;

(ii) nonlinear one dimension where C
(m)
e = C

(m)
e0 T

(m)
e /T0 and k

(m)
e = k

(m)
e0 T

(m)
e /T

(m)
l ;

and (iii) nonlinear two dimensions in x and y where C
(m)
e = C

(m)
e0 T

(m)
e /T0 and k

(m)
e =

k
(m)
e0 T

(m)
e /T

(m)
l . In the algorithm, we chose β1 = 0.99, β1 = 0.99, ε = 10−8.

Case 1 (Linear one dimension). We consider a 50nm gold layer padding

on a 50nm chromium layer exposed to a ultrashort-pulsed laser heating where the

parameters in the energy absorption rate were chosen to be J = 13.4 (J/m2), R = 0.93,

tp = 100 (fs), δ = 15.3 (nm) [170], the thermal properties of gold and chromium were

listed in Table 5.1 and T0 = 300 (K). Since a lower laser fluence J was chosen, we

assumed C
(m)
e = C

(m)
e0 and k

(m)
e = k

(m)
e0 in Eq. (4.1a), which becomes a linear equation.
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For this case, we would compare our ANN solutions with those obtained in

[116], where the time interval is 0 ≤ t ≤ 1 (ps). To catch the pulse duration, we

first divided the time interval into three sub-intervals as (i) 0 ≤ t ≤ 0.5 and (ii)

0.5 ≤ t ≤ 1.0. For 0 ≤ t ≤ 0.5, we made a dimensionless transformation based on

Eq. (4.4) where tT = 0.25. We then discretized t and x into 400 and 400 grid points,

respectively, and chose randomly 80 grid points as initial, boundary, and interface

training points for Eqs. (4.7)-(4.8) from the discretized set of points.We further

used the Latin hypercube sampling technique[86] to select 25,000 computer-generated

random points as training points for the PDEs in Eq. (4.5) in each layer within the

dimensionless domain of 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1. Because the pulse occurs in this

time sub-interval, we designed 11 hidden-layers with 150 units each for the neural

nets in Figure 4.2 to capture the pulse. In our algorithm, we set the iteration number

N1 = 50000 for the Adam optimization method and N2 = 50000 for the L-BFGS

method. Based on the algorithm, we obtained the final value of the loss function to be

9.668900 × 10−6, and hence obtained the values of weights and biases for u1, v1, u2,

and v2 in this sub-interval. The training time for this interval was 20493.2312 seconds.

For 0.5 ≤ t ≤ 1.0 (ps), we first used the obtained values of u1, v1, u2, and v2 at

t = 0.5 (ps) as the initial values for the PDEs in Eq. (4.5). and made a dimensionless

transformation based on Eq. (4.4), where t0 = 0.5, tT = 1.0 and

t∗ =
t− t0
tT − t0

, t∗p =
tp − t0
tT − t0

. (5.9)

We then discretized t and x into 100 and 200 grid points, respectively, and chose

randomly 50 grid points as initial, boundary, and interface training points for Eqs.
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(4.7)-(4.8) from the discretized set of points, and then we selected 20,000 computer

generated random points (using latin hyper cube sampling technique) as the training

points for the PDEs in Eq. (4.5) in each layer. We kept the hidden layers and units

as well as the number of iterations same as those used for the first time interval, and

based on the algorithm, we obtained the final value of the loss function to be 7.312010

× 10−5, and the values of u1, v1, u2, and v2, in this sub-interval. The training time

for this interval was 19271.5810 seconds.

Figure 5.2 shows electron temperature profiles and lattice temperature profiles

respectively at various times t = 0.2, 0.25, 0.5, 1.0 (ps), respectively. As compared

with Figures 2 and 3 obtained in [170], we see from Figure 5.2 that our present results

agree well with those in [170].

Case 2 (Nonlinear one dimension). We considered a 50nm gold layer

padding on a 50nm chromium layer exposed to a ultrashort-pulsed laser heating where

the parameters in the energy absorption rate were chosen to be J = 500 (J/m2),

R = 0.93, tp = 100 (fs), δ = 15.3 (nm) [80], and T0 = 300 (K). Since laser fluence J is

higher, we chose C
(m)
e = C

(m)
e0 T

(m)
e /T0 and k

(m)
e = k

(m)
e0 T

(m)
e /T

(m)
l in Eq. (4.1a), which

becomes a nonlinear equation.

For this case, we would compare our ANN solutions with those obtained in

[80]. Note that the initial condition in [80] was set at t = -2tp. We chose the time

interval to be 0 ≤ t ≤ 6.2 (ps) in our computation. Once the solutions were obtained,

we shifted the time back by -2tp to compare with those in [80]. To simulate the

nonlinear heat conduction, we divided the time interval into three intervals as: (i)

0 ≤ t ≤ 0.7, (ii) 0.7 ≤ t ≤ 1.2 and (iii) 1.2 ≤ t ≤ 6.2. We discretized t and x into
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500 and 400 grid points, respectively, and chose randomly 50 grid points as initial,

boundary, and interface training points for Eqs. (4.7)-(4.8) from the discretized set

of points. Then we selected 10,000 computer generated random points (using latin

hyper cube sampling technique) as training points for the PDEs in Eq. (4.5) in each

layer. Here, we used higher resolution points in t to capture the pulse properly. In

our algorithm, we employed 4 hidden-layers with 100 units each for the neural nets

in Figure 4.2 and set N1 = N2 = 50000. Based on the algorithm, we obtained the

final values of the loss function at t = 0.3 (ps) and t = 0.7 (ps) to be 4.7904734 ×

10−5, and hence obtained the values of weights and biases for u1, v1, u2, and v2 in this

sub-interval. The training time for this time interval was 4095.0951 seconds.

For 0.7 ≤ t ≤ 1.2, we used 4 hidden layers with 80 hidden units each and

discretized t and x into 300 and 200 grid points, respectively, with 40 grid points as

initial, boundary and interficial training points and the same number of training points

for the PDE’s and the same number of iterations as used in the first time sub-interval.

Based on the algorithm, we obtained the final loss function value to be 6.262183 ×

10−5, and hence obtained the values of weights and biases for u1, v1, u2, and v2 in this

sub-interval. The training time for this tie interval was 4189.9203 seconds.

For 1.2 ≤ t ≤ 6.2, we used 5 hidden layers with 120 units each and discretized

into dimensionless intervals 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1 into 400 and 200 grid points,

respectively, with the same numbers of training points for initial, boundary, and

interface as above but 20,000 training points for the PDEs in Eq. (4.5) for each layer.

Here, we selected more training points of slightly higher resolution and more number

of layers and units because the time interval is longer as compared to the other time
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intervals. Based on the algorithm, we obtained the final loss value to be 3.4241533 ×

10−5. The training time for this time interval was 4860.0788 seconds.

Figure 5.3 shows electron temperature profiles and lattice temperature profiles

at various times t = 0.1, 0.5, 1.0, 2.0, 6.0 (ps), respectively, which were obtained based

on the solutions of u1, v1, u2 and v2 after the time was shifted back by -2tp. As

compared with FIG. 6 obtained in [80], we see from Figure 5.3 that the present

solutions agree well with those obtained in [80].

It should be pointed out that for the linear case, more hidden layers and units

along with more training points were used as compared to the nonlinear case. This

is because for the linear case, the lattice temperature remains almost same for most

of the part except for a very small jump at the interface. To capture such a small

jump, the number of layers and units needs to be high along with more training points.

Furthermore, from our experience more high resolution training points are needed

to capture the pulse. Once the pulse is captured, one may use fewer training points,

layers and units for the other time intervals.

Case 3 (Nonlinear two dimensions). We extended the above Case 2 to a

two-dimensional case, where the parabolic two-temperature model is given as

C
(m)
e0 T (m)

e

∂T
(m)
e

∂t
=

∂

∂x

(
k

(m)
e0

T
(m)
e

T
(m)
l

∂T
(m)
e

∂x

)
+

∂

∂y

(
k

(m)
e0

T
(m)
e

T
(m)
l

∂T
(m)
e

∂y

)

−G(m)(T (m)
e − T (m)

l ) + S(xm, y, t), (5.10a)

C
(m)
l

∂T
(m)
l

∂t
= G(m)(T (m)

e − T (m)
l ), (5.10b)
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with the heat source

S(xm, t) = 0.94
1−R
tpδ

J exp

(
−xm
δ
− (y − y0)2

ω2
− 2.77(

t− 2tp
tp

)2

)
, (5.10c)

the initial condition

T (m)
e (x, y, 0) = T

(m)
l (x, y, 0) = T0,

∂T
(m)
e (x, y, 0)

∂t
=
∂T

(m)
l (x, y, 0)

∂t
= 0, (5.10d)

the thermal insulated boundary conditions

∂T
(m)
e (0, y, t)

∂x
=
∂T

(m)
l (0, y, t)

∂x
= 0,

∂T
(m)
e (xL, y, t)

∂x
=
∂T

(m)
l (xL, y, t)

∂x
= 0, (5.10e)

∂T
(m)
e (x, 0, t)

∂x
=
∂T

(m)
l (x, 0, t)

∂x
= 0,

∂T
(m)
e (x, yL, t)

∂x
=
∂T

(m)
l (x, yL, t)

∂x
= 0, (5.10f)

and the interfacial condition at x = xl

T (1)
e = T (2)

e , k
(1)
e0

T
(1)
e

T
(1)
l

∂T
(1)
e

∂x
= k

(2)
e0

T
(2)
e

T
(2)
l

∂T
(2)
e

∂x
. (5.10g)

Here, m = 1, 2 represents the first layer (0 ≤ x ≤ xl , 0 ≤ y ≤ yL ) and the second

layer (xl ≤ x ≤ xL, 0 ≤ y ≤ yL), respectively.

We would like to point out that in the two dimension case, z
(1)
i in Eq. (4.9c)

changes to

z
(1)
i = σ(W

(1,0)
i x+ W̄

(1,0)
i y +W

(1,1)
i t+ b

(1,0)
i ), i = 1, 2, ...,M1; (5.11)

Also, the loss function in Eq. (4.10) will have additional loss terms from the other

boundaries as shown in Eq. (5.10).

For this case, we considered a 50nm× 1000nm gold layer padding on a

50nm×1000nm chromium layer exposed to a ultrashort-pulsed laser heating where the

parameters in the energy absorption rate were chosen to be J = 500 (J/m2), R = 0.93,

tp = 100 (fs), δ = 15.3 (nm) [80], T0 = 300 (K), and ω = 10−6 (m) [171]. We compared
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our ANN solutions with those obtained in [80], where the time interval is 0 ≤ t ≤ 6.2

(ps).

Again we first divided the time interval into four subintervals as: (i) 0 ≤ t ≤ 0.7,

(ii) 0.7 ≤ t ≤ 1.2, (iii) 1.2 ≤ t ≤ 2.2 and (iv) 2.2 ≤ t ≤ 6.2. For 0 ≤ t ≤ 0.7, we

employed 5 hidden layers with 100 units each for the neural nets in Figure 4.2 . We

discretized the dimensionless intervals 0 ≤ t ≤ 1, 0 ≤ x ≤ 1 and 0 ≤ y ≤ 10 into 500,

1200 and 500 grid points, respectively, and chose randomly 400 grid points as initial,

boundary, and interface training points for Eqs. (5.10d)-(5.10g) from the discretized

set of points. Then we selected 35,000 computer generated random points (using latin

hyper cube sampling technique) as training points for the PDEs in Eq. (5.10a)-(5.10b)

in each layer within the dimensionless domain of 0 ≤ t ≤ 1, 0 ≤ x ≤ 1 and 0 ≤ y ≤ 10.

In our algorithm, we set the iteration number N1 = 100000 for Adam Optimization

method with learning rate of 0.0001 and N2 = 50000 for L-BFGS method. Based on

the algorithm, we obtained the final value of the loss function to be 5.89723 × 10−6

for t = 0.3 and t = 0.7 (ps). The training time for this time interval was 21584.0974.

For 0.7 ≤ t ≤ 1.2, we kept the same neural net structure and discretized t ,

x and y into 100, 600 and 400 grid points with selection of 150 random grid points

as initial, boundary, and interface training points for Eqs. (5.10d)-(5.10g) from the

discretized set of points. We further selected 10000 computer generated random points

(using latin hyper cube sampling technique) as training points for the PDEs in Eq.

(5.10a)-(5.10b) in each layer within the dimensionless domain of 0 ≤ t ≤ 1, 0 ≤ x ≤ 1

and 0 ≤ y ≤ 10. In our algorithm, we set the iteration number N1 = N2 = 50000 for

both Adam optimization and L-BFGS method. Based on the algorithm, we obtained
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the loss function value to be 2.5809063 × 10−6. The training time for this time interval

was 14599.0725 seconds.

For the rest of the time subintervals, we kept the same configuration and

number of training points used for 0.7 ≤ t ≤ 1.2. Based on the algorithm, we obtained

the values of loss function to be 2.5809063 × 10−5 and 6.2730214 × 10−5, respectively.

The training time for all these time intervals was quite close to the previous time

interval.

Figure 5.4 shows the electron temperature profiles and lattice temperature

profiles at the cross-section y = 500 (nm). One may see from the figure that the result

agrees well with that in the nonlinear case and that obtained in FIG. 6 obtained in

[80]. Figure 5.5 and Figure 5.6 display contours of electron temperature distributions

and lattice temperature distribution at various times t = 0.1, 0.5, 1.0, 2.0, 6.0 (ps),

respectively.

5.3 Summary

In this chapter, we have applied the Gradient Preserved Method and Artificial

Neural Network Method to solve the well-known parabolic two-temperature heat

conduction model and predict the electron and lattice temperatures of a 50-nm gold

film padding on a 50-nm chromium film, which is exposed to the ultrashort-pulsed

laser heating. We have then compared both the results with each other and also with

the benchmark results. Results show that they agree well with each other.
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Figure 5.1: (a) Electron temperature and (b) lattice temperature profiles at various
times in a 50-nm gold/ 50-nm chromium two-layer film, with interface at 50-nm,
during 0.1 (ps) ultrashort-pulsed laser heating at a fluence of 500 Jm−2 .
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Figure 5.2: (a) Electron temperature and (b) lattice temperature profiles at various
times in a 50-nm gold/ 50-nm chromium two-layer film, with interface at 50-nm,
during 0.1 (ps) ultrashort-pulsed laser heating at a fluence of 13.4 Jm−2.
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Figure 5.3: (a) Electron temperature and (b) lattice temperature profiles at various
times in a 50-nm gold/ 50-nm chromium two-layer film, with interface at 50-nm,
during 0.1 (ps) ultrashort-pulsed laser heating at a fluence of 500 Jm−2 .
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Figure 5.4: (a) Electron temperature and (b) lattice temperature profiles at various
times in a 1000-nm wide, 50-nm gold/50-nm chromium two-layer film, with interface
at 50-nm along the x-axis, during 0.1 (ps) ultrashort-pulsed laser heating at a fluence
of 500 Jm−2 at the cross section y= 500(nm).
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(a) t = 0.1 ps (b) t= 0.5 ps

(c) t = 1 ps (d) t= 2 ps

(e) t= 6 ps

Figure 5.5: Contours of electron temperature distributions at various times in a
1000 nm wide, 50-nm gold/ 50-nm chromium two-layered thin film, with interface at
x = 50-nm, during 0.1 (ps) ultrashort-pulsed laser heating at a fluence of 500 Jm−2 .
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(a) t = 0.1 ps (b) t= 0.5 ps

(c) t = 1 ps (d) t= 2 ps

(e) t= 6 ps

Figure 5.6: Contours of lattice temperature distributions at various times in a 1000
nm wide, 50-nm gold/ 50-nm chromium two-layered thin film, with interface at x =
50-nm, during 0.1 (ps) ultrashort-pulsed laser heating at a fluence of 500 Jm−2 .



CHAPTER 6

CONCLUSIONS

In this dissertation, we have developed two computational methods for solving

heat conduction in double layers. In the first method, we have presented an accurate

compact finite difference scheme for solving the heat conduction equation with spatially

variable coefficients in double layers. The scheme is obtained based on the three-

grid point Compact Finite Difference Method. While deriving the scheme, we have

preserved the derivative term on the boundary and interface and hence we call

it the Gradient Preserved Method. We have then shown by the Discrete Energy

Method that the scheme is unconditionally stable and fourth order accurate in space

and second order accurate in time. The method is tested by an example to verify

the convergence order and accuracy. This method is extended to deal with the

temaperature-dependent coefficient case, which is shown with the applicability of

the present method in predicting the temperature profiles when a gold-chromium

micro-scale double layer is exposed to an ultrashort pulsed laser heating. We compared

the result with the benchmark in[80] and showed that with our method we can achieve

the same result using 1/10th of the grid-points used in that benchmark.

In the second method, we have presented an Artificial Neural Network (ANN)

method and its algorithm for solving the parabolic two-temperature heat conduction

equations in double-layered thin films exposed to ultrashort-pulsed lasers. Convergence
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of the ANN solution to the analytical solution has been theoretically analyzed. We have

tested the ANN method and its algorithm in three cases for predicting the electron and

lattice temperatures in a gold layer padding on a chromium layer exposed to ultrashort-

pulsed lasers. Results show that the present ANN method is promising. This present

ANN method and its algorithm can be easily extended to three-dimensional cases or

to deal with the parabolic N-temperature model where there are N energy carriers in

the materials such as cells exposed to ultrashort-pulsed lasers [192, 193, 194, 195]. It

should be pointed out that when N is large, solving the N-temperature model using

the common numerical methods will be very tedious. However, the present ANN

method can solve the N-temperature model more effectively with the aid of GPU

computing. Also, this method shows in general the way to capture very high shock

values using neural networks.

In the future, the research will focus on thermal analysis in three-dimensional

multi-layered thin films, and/or more complicated geometric materials, as well as other

models related to the ultrashort-pulsed laser heating, especially when the mean free

path of the electron is larger than the length of the material. Also, further research

will be directed towards: (i) making the ANN method faster and (ii) combining the

numerical method and the neural network method to come up with a hybrid technique.
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