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ABSTRACT 
 

 

Physiology-based pharmacokinetic models are mathematical models that 

characterize the behavior of a drug and have compartmental equations that are 

representative of specific tissues and physiological processes.[1, 2] Doxorubicin is an 

anthracycline antibiotic that is effective and widely used in anticancer therapy due to 

its potent cytotoxicity. Unfortunately, with that potency comes cardiotoxic side effects 

related to cumulative lifetime dose.[3] Specifically, the toxicity is related to the 

accumulation of the primary metabolite doxorubicinol (DOXol) in the heart.[4] Since 

the toxicity is organ-specific, the best way to characterize the behavior is through 

PBPK modeling.[2] Since PBPK models tend to be large systems of ODEs, several 

numerical methods were attempted for solving the model before a matrix-based 

approach was chosen.[5, 6] The eigenvalue/eigenvector solution was evaluated at 

three time points which were then included in a Composite Simpson’s Rule numerical 

integration for the length of some time interval.[5, 7] The PBPK model, adapted from 

a pig model, was fit to mouse data and scaled to predict rat, rabbit, dog, pig, and 

human data sets using an allometric scaling equation on the blood:plasma partition 

coefficient B : P .[8, 9, 10] 

Despite extensive investigation into dose adjustments for DOX, no covariates 

were consistently found to improve the efficacy and minimize toxicity except dosing 

schedule – infusion rate and duration.[11] The criterion for decreasing incidence of 

cardiotoxicity was maintaining a sub-toxic Cmax,heart,DOXol in the heart while 

maximizing exposure, represented by area under the concentration-time-curve (AUC).
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Thus, the original mouse data set was ideal since it included both DOX venous blood 

concentration and DOXol heart concentration.[12] The model was optimized at 10 

time points between 1 minute and 72 hours with the goal of (AUC) maximization 

without exceeding Cmax,heart,DOXol. Using these predictions, therapeutic drug 

monitoring could be executed by taking the plasma concentration samples during a 

patient’s first DOX dose, PBPK model predictions could provide AUC and 

Cmax,heart,DOXol data, which could then inform the infusion parameters for the next dose. 

Clinical thresholds for Cmax,vb have been established for incidence of adverse effects, 

and in future work, perhaps a similar threshold for cardiotoxicity could also be 

established using tissue-specific measures. 
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CHAPTER 1 

 

DOXORUBICIN: PHYSIOLOGICAL OVERVIEW 
 

 

1.1 Introduction 

 

Doxorubicin (DOX) is an anthracycline antibiotic with antineoplastic activity 

which was approved by the FDA as a chemotherapy agent in 1974.[13] It was one of the 

first two anthracyclines isolated from Streptomyces peucetius, a type of actinobacteria, in 

the 1960’s.[14, 15] It has since been one of the most commonly used drugs in cancer 

treatment. DOX is highly cytotoxic, making it an excellent anticancer drug but it is also 

known to cause extensive damage to healthy tissue.[16] It has been found to be 

efficacious in both adult and pediatric populations for a variety of cancer types, including 

solid tumors like small-cell lung cancer[17] and osteosarcoma[18], and blood cancers like 

non-Hodgkin lymphoma and leukemia.[19, 20] A list of common cancers treated with 

DOX is shown in Table 1-1. While this work will focus on the use of DOX in adults, it is 

worthwhile to mention that DOX has been a major player in pediatric oncology. The 5 

year survival rate for pediatric cancers in general has increased from ≈5% in the 1960’s 

to ≈80% in recent years, and anthracyclines like DOX are given in ≈50% of childhood 

cancer protocols.[14] It has been said that doxorubicin is the most effective anticancer 

drug to be developed, which is evidenced in its continued use today, 50 years after its 

discovery.[15] Over the years, with the development of more targeted therapies, it has
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become relatively common in clinical practice to combine novel therapeutics with DOX 

rather than to replace DOX with the novel therapeutics.[21, 22, 23, 24, 25, 26] In addition 

to continuing to include DOX in current treatment protocols, different formulations of 

DOX have been utilized. These include encapsulation in liposomes and nanoparticles for 

enhanced and targeted drug delivery.[27, 28, 22, 23] DOX is not administered orally due 

to its low bioavailability in that formulation, unpredictable and generally poor 

permeability in the intestines.[29] The scope of this work will only consider “free”, or 

unencapsulated, doxorubicin, and the current models for DOX will be discussed in a 

following section. 

Doxorubicin has a triphasic disposition, which means that it has three sequential 

half-lives.[30] Typically, a drug with triphasic disposition would be fit to a three 

compartment pharmacokinetic model, and such is the case for most models of DOX.[31, 

17, 32] In some cases, the sampling frequency is too sparse to capture one of the half-life 

phases, and DOX is fit to a two-compartment model.[33] A more in depth analysis of 

current pharmacokinetic models of DOX will follow in a later section. For doxorubicin 

the first half-life is 5 - 10 minutes, the second half-life is 30-180 minutes, and the third is 

24-36 hours.[30, 34] The terminal half-life of DOX is estimated to be between 30.8 hours 

to 48.4 hours; the terminal half life of DOXol is estimated to be between 27.8 hours and 

66.2 hours[30, 17], with a detectable mean residence time (MRT) of 45.6 hours (range 26 

hours - 83.1 hours).[35] When studied over a 48 hour sampling duration, the reported 

volume of distribution of DOX was 572 ± 215 L/m2 to 682 ± 433 L/m2 (Mean ± Standard 

Deviation).[30, 17] Recall that volume of distribution is a surrogate proportionality 

constant to relate drug concentration in blood or plasma to the amount of drug in the 



3 

 

 

body.[36] The reported plasma clearance for DOX from the same studies was from 492 

±155 ml/min/m2 to 677 ± 229 ml/min/m2.[30, 17] A study that spanned over a 72 hour 

sampling duration fell within the estimated plasma clearance at 598 ± 142 ml/min/m2.[30, 

37] In terms of rates, the estimated rate of total clearance of DOX is broken down into 

three categories - renal clearance, hepatic clearance, and formation clearance. Formation 

clearance is the loss of parent drug due to conversion of the parent drug to a metabolite. 

The clearance rates for DOX are 30.7 L/hour for total clearance, 0.66 L/hour for renal 

clearance, 29.97 L/hour for hepatic clearance, and 0.39 L/hour for formation clearance to 

the primary metabolite DOXol.[11] DOX is also known to bind heavily to both tissues 

and plasma, with an estimated unbound fraction of about 15%.[11] Overall, DOX 

exhibits linear pharmacokinetics.[32] 

A considerable obstacle in the clinical efficacy of DOX is its cardiotoxicity.[16] 

Myocardial lesions[4], congestive heart failure[18], and cardiomyopathy[38] are all 

common conditions resulting from DOX in patients. Both acute cardiotoxicity and 

cumulative dose contribute to the adverse effects, which often limits its use to induction 

therapy and short-term use under most protocols. The toxicity profile of DOX has lead to 

substantial work in identifying equivalent drugs that maintain the therapeutic efficacy of 

DOX without the devastating side effects. Anthracyclines like epirubicin and idarubicin 

and a similar drug, mitoxantrone, have garnered some success in this search, but DOX 

remains the most utilized anthracycline.[39] A lifetime cumulative maximum of 550 

mg/m2 has been implemented to help curb morbidity in patients receiving DOX.[40, 19] 

A cumulative lifetime dose measurement is used for many drugs, as well as radiation, 

whose regimens include prolonged repeated dosing or exposure. Often times these 
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cumulative exposures are related to lifetime attributable risk (LAR), which can be used in 

risk-assessment analyses for the particular drug or toxin.[41] In cancer therapy, the risk 

of adverse damage by the drug and its total dose must outweigh the potential mortality of 

the patient. The level to which a lifetime cumulative maximum is set for a drug depends 

on the population of patients it is treating. For example, if doxorubicin was effective 

against athlete’s foot, the risk of cardiotoxicity would far outweigh the benefit of relief 

from athlete’s foot. However, the risk of cardiotoxicity does not outweigh the benefit of 

curbing a potentially fatal malignancy. The cumulative lifetime dose of doxorubicin was 

determined by relating the cumulative lifetime dose to the incidence of congestive heart 

failure in patients.[42] In a small study by Von Hoff et al., increased likelihood of 

doxorubicin-induced congestive heart failure (CHF) was found to be linked to increasing 

total dose. The incidence of patients developing CHF was 3% at 400 mg/m2, 7% at 550 

mg/m2, and 18% at 700 mg/m2. Additionally, Von Hoff et al. found that the occurrence of 

CHF in these patients was significantly lower with a once per week dosing schedule than 

with a once per 3 weeks dosing schedule of doxorubicin administration.[43] One 

interesting observation from Table 1-1 is that the majority of the clinical dose regimens 

currently in use are the latter - once per 3 weeks dosing - which leads to a presumably 

higher risk for cardiotoxicity. One reason for this could be that the efficacy of DOX has 

been observed to be less with lower, more frequent doses of DOX. Some suggest that 

since the tumor growth phase is a relatively short window in the scope of the growth 

cycle of the cell. Tumor cells are most vulnerable to the cytotoxic effect of DOX during 

growth phase. Thus shorter, lower doses - even given frequently - are more likely to clear 

more quickly due to the first-order elimination of DOX and the drug effect is less likely 
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to coincide with the tumor’s growth phase.[44] Unfortunately, the more effective dosing 

schedule does involve longer, less frequent infusions, but that schedule also correlates to 

higher incidence of CHF. Finally, the study by Von Hoff et al. revealed that as the age of 

the patient increased, the incidence of CHF likewise increased.[43, 42] Data from a large 

number of clinical trials compiled by Rahman et al. showed that approximately 25% of 

patients having a cumulative dose of 500 mg/m2 experienced CHF. Additionally, some 

type of cardiotoxic event occurred in 50% of patients having a cumulative dose of 600 

mg/m2, and nearly 100% of patients having a cumulative dose at or above 800 

mg/m2.[45] Another meta-analysis of four clinical trials containing ≈ 1200 patients 

looked at the cumulative incidence of CHF in patients who received DOX. The study by 

Swain et al. found that an estimated 5% of patients at a cumulative dose of 400 mg/m2 

experienced CHF, 26% of patients experience CHF at 550 mg/m2, and 48% of patients 

experienced CHF at 700 mg/m2.[42] It is evident that while there is some variability in 

the percentage of patients who experience CHF following treatment with DOX, the trend 

is most certainly that the higher the cumulative dose, the higher the likelihood of adverse 

cardiovascular effects. 

Considering all the historical data up until this point, it is widely accepted that 

550 mg/m2 is the maximum cumulative lifetime dose for DOX that is implemented in 

chemotherapy protocols.[14, 15, 3, 39, 46] It has been found that overall, approximately 

2% of patients who receive a cumulative dose of DOX between 450 mg/m2 and 550 

mg/m2 experience CHF. [39] The accepted maximum cumulative dose of 550 mg/m2 is 

likely a compromise between increased percent risk per mg/m2 of therapeutic exposure. 
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As shown in Table 1-1, DOX is more frequently used in combination therapy 

rather than as a single agent. The maximum tolerated dose (MTD) for a single dose of 

DOX is 10 mg/kg, which is a popular dose given in murine studies of DOX.[47] Acute 

toxicity is observed in humans at a 12 mg/kg at a single dose.[48] However, clinically, 

DOX is always given in cyclic repeated doses, which is also made clear by Table 1-1.[49] 

This consideration requires much lower doses than the MTD to be given per event. 

Typically, the highest clinical dose of DOX is 75 mg/m2, or 1.9 mg/kg, which is also the 

highest dose for repeated dosing shown in Table 1-1.[47] 

Traditionally, the drugs used in combination regimens are given at or near their 

maximum tolerated doses (MTDs). While this is sometimes necessary due to virulent 

nature of cancer, it can introduce a higher risk of dose-related toxicity, which interferes 

with clinical success. Chemotherapy drugs given at doses close to their MTD are 

generally robust doses with high inter-patient variability in pharmacokinetic parameters, 

which could cause significant myeloablation in some patients.[23] Myeloablation refers 

to the administration of chemotherapy or radiation therapy that does not allow for 

hematologic recovery. In other words, myeloablation prevents the bone marrow from 

recovering from the cytotoxicity incurred from the therapy.[50] Support is needed to 

recover from myeloablation, including platelet or whole blood infusions, intravenous 

immunoglobulin (IVIG), or donor bone marrow or stem cells.[51] While myeloablation is 

desired in specific cases such as some bone marrow and stem cell transplants, in most 

cases it is avoided. Myeloablation compromises immune response and inhibits the 

effectiveness of accompanying chemotherapy or immunotherapy treatments.[23]  
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Table 1-1: List of Common Types of Cancer Treated with Doxorubicin from Prescribers’ 

Digital Reference[49] 

 
Typical Adult IV Dosing 

Indication Single Agent In Combination Therapy 

Acute lymphoid leukemia 

(ALL) 

60 to 75 mg/m2 every 21 

days 

40 to 75 mg/m2 every 21 to 28 days 

Acute myeloid leukemia 

(AML) 

60 to 75 mg/m2 every 21 

days 

40 to 75 mg/m2 every 21 to 28 days 

Breast cancer 60 to 75 mg/m2 every 21 

days 

40 to 75 mg/m2 every 21 to 28 days 

Endometrial sarcoma N/A 45 mg/m2 every 21 days for up to 7 cycles 

or until disease progression 

Ewing’s sarcoma 60 to 75 mg/m2 every 21 

days 

40 to 75 mg/m2 every 21 to 28 days 

Gastric (stomach) cancer 60 to 75 mg/m2 every 21 

days 

40 to 75 mg/m2 every 21 to 28 days 

Hodgkin lymphoma N/A 25 mg/m2 repeated every 7, 14, or 21 days 

in a 28 day cycle 

Multiple Myeloma N/A 9 mg/m2 daily for 4 days, every 28 days for 

3 to 4 cycles 

Neuroblastoma 60 to 75 mg/m2 every 21 

days 

40 to 75 mg/m2 every 21 to 28 days 

Non-Hodgkin lymphoma N/A 50 mg/m2 every 21 days for 3 to 8 cycles 

depending on response 

Osteogenic sarcoma 30 to 45 mg/m2 repeated 

for 2 or 3 days monthly 

30 to 75 mg/m2 repeated 2 or 3 days 

monthly 

Ovarian cancer 60 to 75 mg/m2 repeated 

every 21 days 

40 to 75 mg/m2 repeated every 21 to 28 

days 

Rhabdomyoscarcoma N/A 40 mg/m2 daily for 2 days in a 52 day 

cycle, repeated based on staging at 

diagnosis 

Small cell lung cancer N/A 40 to 50 mg/m2 every 3 to 4 weeks for 5 to 

8 cycles 

Soft tissue sarcomas 

(other) 

N/A 15 mg/m2 per day as a continuous IV 

infusion over 24 hours (CIV) for 4 days 

repeated every 21 days for 5 cycles 

Thymoma N/A 40 to 75 mg/m2 every 21 to 28 days 

Thyroid cancer 60 to 75 mg/m2 every 21 

days 

40 to 75 mg/m2 every 21 to 28 days 

Transitional cell bladder 

cancer 

60 to 75 mg/m2 every 21 

days 

40 to 75 mg/m2 every 21 to 28 days OR 30 

mg/m2 every 28 days for up to 3 cycles 

Wilms tumor 60 to 75 mg/m2 every 21 

days 

40 to 75 mg/m2 every 21 to 28 days 
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Overall, there is a delicate balance between maximizing the cancer-killing effects 

of a chemotherapy regimen without causing counter-productive damage to healthy cells 

and systems. DOX has been and continues to be an integral component of countless 

chemotherapy regimens for over 50 years. Evaluating the balance of DOX-induced 

cardiotoxicity and life-saving therapeutic effect, from a quantitative perspective, adds 

great value to the existing knowledge. 

 

1.2 Mechanism of Action-Cytotoxicity 

 

Although the exact mechanism for how DOX and other anthracyclines enter cells 

is not fully known, DOX is thought to enter the cell by passive diffusion through the 

plasma membrane.[52] There is also evidence to support that DOX may also enter the 

cell through carrier-mediated transport.[29] DOX then binds to proteasomes and breaches 

the nucleus through selective transport. Once inside the nucleus, DOX is in proximity to 

the DNA. Since DOX usually has a higher affinity for DNA than for the proteasome to 

which it is bound, it dissociates from the proteasome to bind to DNA. [52, 53] Once in 

the cells, DOX interacts directly with DNA, causing double-strand breaks in the DNA of 

rapidly dividing cells. Again, the complete mechanism is not fully understood[32, 54], 

despite years of use and study. However, there are two proposed and widely accepted 

mechanisms for the cytotoxic actions of DOX — (i) free radical generation and oxidative 

damage, (ii) DOX intercalation into DNA which inhibits topoisomerase II, possibly 

altering the chromatin structure.[55, 56] The following subsections will describe these 

two proposed mechanisms for the cytotoxicity of DOX in greater detail. 
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1.2.1 DNA Intercalation 

 

DOX intercalates into DNA which causes a double-strand cleavage, allowing 

tyrosine remnants of topoisomerase II to form a covalent bond with the DNA. The 

intercalation effectively traps topoisomerase II, inhibiting proper DNA repair.[54, 15] 

DNA topoisomerases are large proteins that perform critical actions in DNA strand 

separation for transcription, replication, segregation, and genetic compaction into cells. 

Compaction poses a topological constraint in DNA replication, as the entire genome of a 

single cell, around 3 billion base pairs with an equivalent length of almost 2 meters, into a 

roughly 6 µm diameter nucleus. Transcription and replication of genomes by copying 

each base by RNA and DNA polymerases requires DNA strand separation. This strand 

separation can create DNA super coiling in the flanking regions - regions adjacent to both 

the 3’ and 5’ ends of the DNA - where the two DNA strands are separated by 

polymerase-helicase complexes. Positive super-coiling occurs in front of the replication 

or transcription sites and negative super-coiling occurs behind it. Super coiling, if not 

checked by DNA topoisomerases, rapidly stalls replication and transcription and can 

cause abnormal DNA structures. In general, topoisomerases prevent super-helical tension 

and knotting in DNA compaction. 

The human genome encodes for six topoisomerases. Broadly, there are two types 

of topoisomerases in humans, Type I and Type II, of which Type I is further subdivided 

into Type IA and Type IB.[53] Both types of topoisomerase can undo the detrimental 

super-coiling during DNA strand separation, but it has been shown that other 

topoisomerases will compensate for the absence of topoisomerase I. However, cells will 

die in the mitosis phase in the absence of topoisomerase II, since it is apparently vital for 
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chromosome segregation and condensation.[57] Only topoisomerase II can separate 

catenanes - interlinked duplex DNA circles. All cells require decatenation at the end of 

the replication phase to allow for the proper segregation of newly replicated 

chromosomes.[53] After the topoisomerase II-mediated DNA damage, growth arrest 

occurs at G1 and G2, which is followed by programmed cell death.[15] 

This critical action performed by topoisomerase II makes it an excellent target for 

anti-cancer drugs. DOX is a DNA intercalator which acts in two ways to disturb 

topoisomerase depending on the concentration present. At low concentrations, DOX 

inhibits DNA religation by essentially poisoning topoisomerase II. At high 

concentrations, DOX prevents topoisomerase II from binding DNA, suppressing 

topoisomerase II.[53] To summarize, DOX is very effective in thwarting DNA 

unwinding and strand separation, which stops successful DNA replication and 

transcription. 

Additionally, a recent study by Yang et al. discovered that DOX does enhance 

nucleosome turnover around gene promoters. Enhancement of nucleosome turnover is 

consistent with the observed action of DOX, as the enhancement of turnover continues to 

increase with time of exposure to DOX. This finding was realized by genetically defining 

a murine squamous cell carcinoma line before and after DOX treatment.[54] 

1.2.2  Free Radical Generation and Oxidative Damage 

 

DOX has been found to induce the production of reactive oxygen species 

(ROS).[58] A semi-quinone is formed when a single electron is added to a quinone 

moiety in ring C of DOX. This semi-quinone quickly reduces to its parent compound, 

quinone, by reducing oxygen to ROS - hydrogen peroxide H2O2, for example. The semi-
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quinone can also oxidize with the bond between daunosamine and ring A of DOX to 

form 7-deoxaglycone through reductive deglycosidation (Figure 1-1). Aglycones are 

notably soluble in lipids and intercalate into biological membranes in vulnerable tissues, 

forming ROS in close proximity to sensitive targets.[15]  

 

 
 

Figure 1-1: Single-electron reduction-oxidation cycling of doxorubicin, taken 

from the review paper by Minotti et al.[15] 

 

 

DOX-induced ROS then initiate a number of signaling pathways that lead toward 

cell death by accelerating myofilament apoptosis, suppressing myofilament synthesis, 

altering cardiac energy metabolism, and causing ultrastructural changes to myocytes. 

(i) DOX-induced ROS activate the protein p53, a known tumor suppressor protein. 

p53 protein initiates apoptosis of myocytes through transcriptional p38 MAPK-

dependent activation. MAPK (mitogen-activated protein kinases) is a target gene 

pathway often involved in p53-mediated apoptosis.[58, 59] 

(ii) Suppressing myocyte synthesis occurs through the down-regulation of cardiac 

progenitor cell (CPCs) regulatory transcription factor GATA-4. It is thought that 

sarcomere protein synthesis is inhibited by the DOX-induced down-regulation of 

GATA-4. GATA-4 is also critial for postnatal cardiomyocyte survival.[58] 
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(iii) Adenosine triphosphate (ATP) is required for most vital processes in the body, 

but specific to the heart, ATP is required for the relaxation and contraction of the 

heart muscle. DOX diminshes cardiac energy reserves by lowering both 

phosphocreatine levels and ATP levels, destabilizing the ratio between the two. 

Adenosine monophosphate-activated protein kinase (AMPK) activates the 

catabolic pathway that leads to the production of ATP, and DOX reduces the level 

of AMPK expression, although the mechanisms underlying this inhibition are not 

clear. 

(iv) DOX simultaneously motivates calcium release and blocks sarcoplasmic 

reticulum reuptake of calcium. This interference notably disrupts calcium 

homeostasis,resulting in cytosolic calcium overload.[58] In an in-vitro study by 

Kim et al., calcium release from intracellular stores in rat cardiomyocytes was 

observed under treatment with different concentrations of DOX. The calcium 

release increased at 60 minutes after treatment with 1 µM DOX and at 15 minutes 

after treatment with 5 µM DOX.[60] This dose-dependence is consistent with the 

findings from the first proposed DOX mechanism of DNA intercalation.[53] The 

overload in calcium likely contributes to contractile dysfunction by activating 

calpain, a cysteine protease, and stimulating the release of cytochrome c, a 

proapototic factor. Calpains initiate protein turnover of structural and regulatory 

myofibrillar proteins through cleavage and release of large polypeptide 

fragments.[58] 

The caveat, as with all antineoplastic agents, DOX can not differentiate between 

healthy cells and cancer cells.[16] The cytotoxic activity of DOX is a double-edged 
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sword. The properties of DOX that make it a potent and widely-used anticancer agent for 

over 50 years are the very same properties that limit its clinical use. DOX has a 

particularly devastating effect in cardiac muscle, which has been covered briefly in the 

discussion of proposed cytotoxic mechanisms of action above. The dose-dependence of 

the pharmacodynamic effects of DOX are elucidated in both of the generally accepted 

mechanisms of DOX, making it an interesting compound for study in dose optimization. 

The following sections will discuss how the major metabolite of DOX - doxorubicinol - 

plays a greater role in cardiac damage and a lesser role in therapeutic effect. 

 

1.3 DOX Metabolites 

 

DOX is considered a low- to moderate- clearance drug, with clearance values 

ranging from 42.8 to 68.1 liters per hour.[46] (Figure 1-2).  

 

 
 

Figure 1-2: Main pathways of intracellular doxorubicin (DOX) biotransformation in 

mammalian cells, including catalytic enzymes involved in its metabolism. The 

downstream effects of the metabolites are also listed. (adapted from Edwardson et al. 

[52]) 
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Within a week of administration, approximately 50% of the dose is eliminated 

through bile and 12% through urine.The fraction eliminated through bile consists of 

approximately 50% unchanged DOX, 23% DOXol, and the remaining 27% other 

metabolites. The fraction eliminated through urine is roughly 66% unchanged DOX and 

the remainder metabolites.[4] This is consistent with the clearance rates which were 

mentioned in the introduction and originally reported by Pippa et al. The clearance rate 

for DOX by hepatic clearance was ≈97% of the total clearance rate.[11] It has been 

estimated that approximately 50% of DOX clears from the body unchanged. The 

remaining half is converted into three DOX metabolites - doxorubicinol (DOXol), 

doxorubicin deoxyaglycone metabolite (DDM), and doxorubicin semi-quinone radical 

(DSR) - through three unique metabolic pathways: 

(i) The secondary alcohol metabolite doxorubicinol (DOXol) is formed through 

hydroxylation at the C-13 carbon group. This hydroxylation is facilitated by 

carbonyl reducing enzymes, which are a heteroogenous group of cytosolic 

NADPH-dependent carbonyl reductases (CBR) and aldo-keto reductases 

(AKR).[52] Carbonyl reductases CBR1 and CBR3 are also known to contribute to 

the reduction of DOX to DOXol, but the extent to which each of these contributes 

is uncertain.[55] Accordingly, while both types of carbonyl reducing enzymes are 

involved, it has been shown that aldo-keto reductases are the primary enzymes 

involved in hydroxylation of DOX in the human heart.[52] Multiple studies have 

linked DOXol to cardiotoxicity.[52, 15, 4] Interestingly, since AKRs are fairly 

universal, the hydroxylation of DOX to DOXol occurs in all cell types.[52] This 

effect has been studied extensively in red blood cells, as well as liver and kidney 
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cells.[52, 61] Hydroxylation of DOX to DOXol is considered to be the major 

metabolic pathway and has been heavily investigated for decades.[52] Even still, 

the extent to which DOX metabolizes to DOXol is unclear (Figure 1-3). 

 

  

Figure 1-3: Molecular structure of doxorubicin 

 

 

(ii) The DOX deoxyaglycone metabolite (DDM) is formed through the one electron 

reduction of DOX. The reduction is catalyzed by NADH dehydrogenase 

(NDUFS), cytochrome P-450 reductase (CPR), xanthine oxidase, and nitric oxide 

synthase (NOS), which leads to the transformation of the quinone moiety of DOX 

to a semiquinone radical. This semiquinone radical is stable only in anaerobic 

conditions, and when exposed to oxygen, it freely re-oxidizes to regenerate its 

parent compound, quinone. The re-oxidation of the semi-quinone radical to the 

quinone produce a superoxide anion (O−2 ) and hydrogen peroxide (H2O2) as 

byproducts, both of which are reactive oxygen species (ROS). These free radicals 

then cause protein aggregation, peroxidation of lipids within cellular membranes, 

and sometimes cell death. The oxidation-reduction cycling of DOX has been 

observed in the sarcoplasmic reticulum, mitochondria, and the cytoplasm.[52] In 

addition to the production of ROS, this redox cycling of DOX has been shown to 

produce aldehydes that escape the cell and contribute to DOX toxicity.[14, 52] 
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Interestingly, DOXol also goes through a similar redox cycle and thereby 

produces similar ROS byproducts and a DOXol deoxyaglycone analog.[40]  

(iii) The last, and most poorly characterized metabolic pathway forms the doxorubicin 

semi-quinone radical (DSR). Perhaps it is least understood because it only 

accounts for ≈1-2% of DOX metabolism. DSR formation occurs through 

reductive cleavage of the side-chain carbonyl group and the glycosidic bond, also 

producing hydroxyaglycones and 7-deoxyaglycones. It has been proposed that 

this reaction is catalyzed by an NADPH-dependent reductase- and hydrolase- type 

glycosidases and xanthine dehydrogenase (XDH). These glycosidases likely 

include the NADPH quinone oxidreductases (NQO1) and NADPH-cytochrome 

P450 reductase (CPR). 

These three DOX metabolic pathways vary in extent among different tissue types 

and conditions; however, in general, the secondary alcohol DOXol is the principal 

metabolite, with substantially lower percentages of the deoxyglycone metabolite and the 

semi-quinone radical. The remainder of this section will focus on the metabolite DOXol 

and its effects on cells.[52] 

1.3.1  DOXol and Cardiotoxicity 

DOXol is thought to be the major metabolite and retains the therapeutic and 

cardiotoxic effect of the parent drug DOX.[52] The terminal half-life of DOXol is similar 

to that of DOX, around 60 hours.[34] It is common for antineoplastic drugs to be 

measurable in tissues for a prolonged time following administration and that toxicity is 

often related to drug concentration in the tissue.[62, 40] In a study done on tissue from 

autopsied human patients by Stewart et al., DOXol was the major metabolite species 
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found in all tissues.[40] A study conducted on a small cohort of breast cancer patients 

estimated the DOXol/DOX AUC ratio to be 0.26. Area under the concentration-time 

curve is a standard measure of drug exposure in pharmacokinetics and will be discussed 

more in following chapters. 

Due to the known cardiotoxic effect of DOX, the potentially extended residence 

time in cardiac tissue is of most interest. This consideration coupled with the substantial 

presence of DOXol in cardiac tissue infer that DOXol likely contributes to the 

cardioxicity seen in patients receiving DOX.[40] Like DOX, DOXol binds significantly 

to plasma and tissues, with an unbound fraction of only 17%.[11] 

Table 1-2 shows the median concentration in select tissues from the 35 autopsied 

patients. There is sizable variability in the range of values versus the median, which is 

likely due to a few factors - (i) the small sample size (n=35) with the caveat that not all 

tissues were able to be used for DOX measurement in all patients, (ii) the wide range in 

time from last DOX dose to moribund (1-931 days), and (iii) the large difference in 

cumulative lifetime dose (30-670 mg/m2). 

 

Table 1-2: Median Concentration of DOX and DOXol in Autopsy Tissue from 35 Human 

Patients in Stewart et al. Study; 35 Patients Received Cumulative Lifetime Dose of 30-

670 mg/m2 with Last Dose from 1 - 931 Days (Source [62]) 

 

 Median 

DOX Concentration (ng/g) 

Median 

DOXol Concentration (ng/g) 

Heart 58 (0-1665) 92 (0-484) 

Liver 115 (0-2030) 198 (0-674) 

Kidney 53 (0-2773) 104 (0-896) 

 

 

Each of these factors contribute to the variability in the DOX and DOXol 

measurements in tissues. The scarcity of available human autopsy tissue for such 
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observation along with ethical considerations are certainly obstacles, but the available 

data is nonetheless invaluable for comparison with subclinical studies. [40] As shown in 

Table 1-2, the liver and kidney both have higher concentrations per gram than the heart. 

Higher DOX and DOXol concentrations in the liver and kidney are also observed in 

animal species.[63, 64] However, the liver and kidney are not major sites of toxicity for 

patients receiving DOX, which leads to conjecture other factors differentiating DOX and 

DOXol behavior in tissues. One such conjecture is that liver and kidney tissues are rich in 

binding and inactivating substances due to their excretory and metabolic functionalities, 

which prevent DOX and DOXol from causing cellular damage in those tissues.[40] For 

example, reduced DOX toxicity is observed in the presence of glutathione - a common 

antioxidant found in the liver.[65] 

In a study of isolated cardiac tissue from rabbits, DOXol was nearly 30 times 

more effectual at suppressing systolic cardiac function. A 90 µM dose given at 50 µg/ml 

decreased contractility, a measure of systolic function, by roughly 69% of the baseline 

measure. In contrast, a comparable dose of DOX, 350 µM at 200 µg/ml, only depressed 

contractility by about 11% of the baseline. The maximum dose of DOX at 700 µM at 

400µg/ml only decreased contractility by 29%. Myocardial resting stress, a measure of 

diastolic cardiac function, was also tested with both DOX and DOXol using the isolated 

rabbit cardiac tissue model. DOX also had a negligible effect on diastolic cardiac 

function even at 700 µM dosing, while DOXol increased myocardial stress by 

approximately 395%. Therefore, DOXol suppressed both systolic and diastolic 

myocardial function more severely than DOX. Calcium pump activity, described as both 

Ca2+ stimulated ATPase sarcoplasmic reticulum activity and rate of calcium loading, was 
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also evaluated in both DOX and DOXol. DOX was not found to be a strong inhibitor of 

calcium pump activity, while DOXol nearly destroyed all calcium pump activity in the 

heart tissues. 

This study highlights another interesting property of DOX and its metabolite 

DOXol - its extent of intracellular uptake. DOXol is known to have less intracellular 

uptake than DOX, and yet the major species residing in tissue has been shown over time 

to be DOXol.[66] The most reasonable explanation for this inequity is that the 

hydroxylation of DOX to DOXol is carried out primarily by aldo-keto reductases 

(AKR).[52] AKRs are abundantly present in most human tissues, so it is thought that 

during this observed prolonged residence time in the tissue, DOX metabolises to DOXol 

over time.  

Disappointingly, the aggressive cell-destroying capabilities of DOXol does not 

translate to cancer cell destruction. A potency study was conducted in three different 

cancer cell lines using a metric called IC50, which is the concentration of an inhibitor 

where 50% response is observed. In this case, the concentration of DOX or DOXol 

needed to inhibit the growth of colonies by 50% compared to the control group. As 

shown by the ratio of IC50DOXol /IC50DOX in Table 1-3, it takes 5 to 28 times as much 

DOXol to inhibit the same cancer cell lines as DOX. DOXol is therefore a much less 

effective anticancer agent in comparison to DOX. In fact, it has been estimated that 

DOXol is 75 times less effective than DOX while apparently contributing heavily to the 

cardiotoxicity associated with DOX.[15, 8] It is clear that factors beyond cumulative 

lifetime dose are at play in the marked cardiac damage caused by DOX. The profoundly 

greater cardiotoxic properties of DOXol and its conversion from DOX to DOXol in the 
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tissues. This finding has been applied clinically with the lifetime maximum dose cap 

applied to DOX and other anthracyclines.[52] This is one motivation for utilizing 

therapeutic dose monitoring in anticancer drugs. Maximizing cancer-killing effect 

generally means giving as much drug as can be reasonably tolerated. With the breadth of 

data available on popular drugs like DOX, it could be possible to have a more tailored 

approach in order to curb some of the devastating side effects. 

 

Table 1-3: IC50 for DOX and DOXol in Three Cancer Cell Lines from a Study by 

Olson et al.[66] 

 

Cell line Doxorubicin, 

IC50 in µM 

Doxorubicinol, 

IC50 in µM 

DMF, 

IC50−ol/IC50−in 

PANC-1 1.4 ± 0.2 35.4 ± 4.7 25 

PD PaCa 1.6 ± 0.2 44.5 ± 0.5 28 

WD PaCa 9.8 ± 1.5 49.5 ± 1.1 5 

 

 

1.4 Conclusion 

 

Doxorubicin is a chemotherapy agent which has particularly potent cytotoxic 

capabilities, and its three metabolites are thought to also be cytotoxic in varying 

intensities. DOXol is the major metabolite and plays the greatest role in cytotoxic 

activity.[33] In general, DOXol has a greater cardiotoxic effect and a lesser therapeutic 

effect than its parent drug. While DOXol accounts for the greater majority of DOX 

metabolites, it has a much lower intracellular uptake than DOX. Conversely, while 

DOXol has a lesser effect on cancer cells, it induces a higher toxicity in healthy cells, 

particularly cardiomyocytes. Cumulative lifetime dose certainly plays a role in DOX 

toxicity, and intracellular uptake occurs with both DOX and DOXol.[66] While DOXol 

has a lesser uptake, DOXol is typically found in greater amounts per gram in tissues. This 
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is likely due to the gradual conversion of DOX to DOXol in tissues by aldo-keto 

reductases which are present in most human tissues, abundantly so in cardiac tissue.[52] 

These paradoxes complicate the therapeutic dosing of DOX in cancer patients.  

One way these challenges can be better understood is through the mathematical 

and statistical modeling using observed pre-clinical and clinical data. 

 

1.5 Outline of Content in Each Chapter 

 

Chapter 1 has outlined the properties of the anthracycline Doxorubicin (DOX) as 

a potent chemotherapy agent and also a cardiotoxin. However, the primary metabolite 

Doxorubicinol (DOXol) has been found to be the main culprit for cardiotoxicity. The 

organ-specific toxicity of the metabolite DOXol in a specific tissue can be estimated 

using what is called a physiologically-based pharmacokinetic (PBPK) model. 

The overview is intended to frame DOX/DOXol as a good candidate for 

pharmacokinetic modeling, specifically under the more physiologically based modeling 

methods that will be discussed in later sections. 

Chapter 2 will continue with background information, introducing the concepts of 

pharmacokinetic modeling. The discussion of pharmacometrics will be agnostic to the 

specific drug, DOX, but the defining of terms and methodologies of this type of modeling 

is important for understanding the models in this work.  

Chapter 3 will take the fundamentals from Chapter 2 and expand on existing 

pharmacokinetic models in DOX. However, a classic pharmacokinetic model cannot 

capture the specific organ concentrations, which is the interest of this work. Thus, the 

latter portion of Chapter 3 will introduce the more modern approach of physiologically-

based pharmacokinetic (PBPK) modeling as it pertains to DOX. A whole-body PBPK 
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porcine model of DOX, adapted from literature, will be described in detail. The PBPK 

model is comprised of a system of 44 ordinary differential equations for which there is no 

exact solution, so numerical methods must be employed to solve the system.  

Chapter 4 will walk through the process of testing different numerical methods on 

the system. The method needed to be both accurate and efficient, which for large systems 

of equations, can be a difficult balance in the programming language R. Once a suitable 

method was determined for solving the PBPK model in pigs, the model could be scaled 

across species - from sub-clinical species to humans. Sensitivity analysis and the 

optimization package ’optim’ in R was used to fit the initial data set. This data set 

contained both DOXol heart tissue concentration and venous blood DOX concentration 

in mice. Allometric equations were tested on sensitive parameters one representative rat, 

rabbit, dog, pig, and human data set to determine the best relationship.  

The final chapter discusses the potential application of the process of getting 

organ-level concentration predictions using a PBPK model and scaling it to humans. 

Therapeutic drug monitoring is used in many drugs similar to DOX in that they almost 

always have a narrow therapeutic index. Additional future work could include 

pharmacodynamic studies which relate pharmacodynamic response to some organ 

specific toxicity and the application of this process to other drugs.
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CHAPTER 2 

 

PHARMACOMETRICS OVERVIEW 

 

 

2.1 Pharmacokinetic Versus Pharmacodynamic 

 

Pharmacometrics is a contemporary discipline that characterizes interactions 

between the drug and the patient using mathematical modeling of the physiology, 

pharmacology, and disease involved. The term “pharmacometrics” was coined by the 

Journal of Pharmacokinetics and Biopharmaceutics in 1982.[67] Pharmacometric 

modeling can be generalized as one input-response model that is divided into two pieces - 

pharmacokinetic and pharmacodynamic.[68] Pharmacokinetics is broadly described by 

Holford and Sheiner in 1982 as the “study of the movement into, through, and out of the 

body.” They went on to summarize the scope of pharmacokinetics as “the processes and 

rates of drug movement from the site of absorption into the blood, distribution into the 

tissues, and elimination by metabolism.”[69] In short, pharmacokinetics explains the 

input phase which characterizes the relationship of controllable drug inputs - dose 

amount, dosage form, frequency, and route of administration - and concentration over 

time.[68] Broadly, pharmacodynamics describes the effect of the drug once it reaches its 

site of action. Specifically, pharmacodynamics considers the factors affecting the 

relationship between the drug effect and the drug concentrations at the site of action. 

Pharmacodynamics and pharmacokinetics are critically enmeshed with each other, but 

they are two distinct components of a pharmacological profile. In short, pharmacokinetics 
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is how the body handles the drug and pharmacodynamics is how the drug affects  the 

body.[69]. 

While they are considered separate sub-disciplines, they are more powerful when 

used together, as they each contain important information needed to capture observed 

relationships among dose, concentration, and effects over time, make predictions, and 

optimize dose regimens. For example, Figure 2.1 illustrates a simplified schematic of the 

input-response process for designing an optimum dose regimen. First, the 

pharmacokinetic phase explains how the drug input is related to the exposure - measured 

from concentration over time. Once the pharmacokinetic profile is obtained, the 

pharmacodynamic phase relates exposure to the effects on the body. The curved arrows 

give feedback at each step to adjust the dose regimen based on adverse or desired effect, 

which may require a change in concentration, and consequently, an adjustment in dose 

regimen, which affects the concentration. Using this model and trial-and-error adjustment 

can ultimately conclude in a mathematically optimized dose. The resultant PK/PD 

relationships are visualized in Figure 2-2. Pharmacologic effect can only be predicted and 

optimized with data from both the pharmacokinetic (concentration vs time) and the 

pharmacodynamic (effect vs concentration).[68] 

 

 

Figure 2-1: Schematic of a PK/PD workflow with feedback for the purpose of 

optimizing a dose regimen 
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Figure 2-2: Visualization of how the pharmacokinetic relationship of drug concentration 

versus time and the pharmacodynamic relationship of effect versus concentration come 

together to create an effect over time profile, adapted from Derendorf et al.[68] 

 

 

2.2  Compartmental Body Models 

 

2.2.1  Compartment Model Concept 

 

In pharmacokinetics and pharmacodynamic modeling, it is conventional to 

represent the body as a system of compartments. The simplest type of model is a one 

compartment model, which makes the assumption that the human body is one kinetically 

homogeneous compartment. It also assumes that any rates between compartments and the 

rate of elimination from the body are linear. In most cases, the anatomical analog for the 

single compartment in a one compartment model is the plasma or venous blood. 

However, the assumption cannot be made then that the one-compartment model is 

equivalent to the concentration of the drug in all the tissues and fluids in the body. 

Instead, modelers can interpret drug levels in other tissues and fluids in terms of rates of 

change. For example, a 25% decrease in the central compartment or plasma concentration 

corresponds to a 25% decrease in all other tissues and fluids in the body.[36] 
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One-compartment models are especially useful for drugs that distribute rapidly 

through the body, but often times drugs will not demonstrate a linear elimination from the 

body. In these cases, additional compartments are added to simulate the residence time of 

the drug in tissues and its eventual release back into the circulatory system before 

elimination.[36] Multi-compartment models tend to have a more defined distributive and 

post-distributive phase in their concentration versus time profiles as compared to the one-

compartment model which appears to be more constant (Figure 2-3).[36, 70]  

 

 
 

Figure 2-3: Adapted from Ratain et al., examples of one-compartment (A), two-

compartment (B), and three-compartment (C) concentration-time plot[70] 

 

 

The distributive phase characterizes the dosing of the drug and its initial 

dispersion to respective tissues and fluids in the body. The post-distributive phase 

includes the pseudo-equilibrium achieved as the drug is bound, metabolized, eliminated, 

transformed, etc. in the tissues and then released back into the circulation. The multiple 

compartments generally represent groups of organs, tissues, or fluids, which vary 

depending on the drug. In general, the organs, tissues, and fluids that decline more 

rapidly during the distributive phase than the post-distributive phase are included in what 

is called the central compartment. The peripheral compartments generally include more 

poorly perfused tissues in which drug concentrations will increase, reach steady state, and 
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slowly return to the venous blood. How these compartments are defined for a model is 

drug specific; therefore, the tissues and fluids included in the central compartment for one 

drug may be in a peripheral compartment for a different drug. For example, the brain is a 

highly perfused, or highly vascular, organ. However, in polar drugs which are unable to 

cross the blood-brain barrier, the brain would likely be included in the peripheral 

compartment; whereas, in lipid-soluble drugs that can cross the blood-brain barrier, the 

brain would likely be included in the central compartment.[68] It is important to note that 

although these compartments are mathematically representative of these tissues and 

fluids, compartments do not hold any true physiological reality.  

The time courses of these drugs in terms of rates, particularly in the peripheral 

compartments, may not exactly correspond to any actual flow rates. The compartmental 

modeling approach allows for extremely complex systems to be modeled in a reasonable, 

simplified way. At best, these peripheral compartments are a conglomeration of 

physiological functional groups of tissues and fluids. The central compartment is 

generally what is compared or fit to observed data in order to make the descriptive and 

predictive models that are actually utilized. Peripheral compartments allow the modeler 

to simulate the complex time courses of drug levels throughout the body in an 

understandable and reasonably accurate manner.[36] 

2.2.2 Compartment Model Equations 

Now that the concept of compartments has been introduced, these models can be 

discussed from a mathematical standpoint. From the perspective of an engineer, if the 

body represents a chemical plant, then the drug is the chemical moving through the 

various components in the chemical plant. The compartments can be thought of as the 
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components of the chemical plant – transforming, retaining, releasing – the chemical, or 

drug. A mass balance can be applied to the system, which is a physical application of the 

Law of Conservation of Mass. The mass entering the system must be equal to the mass 

leaving the system. This conservation of mass is true for drugs in the body - drug that 

enters the body is either stored, transformed, or eliminated from the system eventually. 

Each compartment is represented by an equation, which are then coupled into a system of 

equations. One can solve for as many unknowns as there are equations in the system; 

therefore, for example, there are three equations in a three compartment model, which 

allows the modeler to retrieve the unknown – concentration over time – for each 

compartment in the system.[71] 

The equations for compartment models can be derived from ordinary differential 

equations, and the case of the one-compartment pharmacokinetic model is the simplest 

example to derive and discuss conceptually. Concentration time course for such a model 

is shown in Figure 2-3A. The following discussion will go through the considerations in 

the parameters and relationships in a simple one-compartment pharmacokinetic model. 

Clearance (CL) is rarely measured directly in clinical practice, but rather it is 

calculated by one of the following equations using more measurable values: 

𝐶𝐿 =
𝑑𝑜𝑠𝑒

𝐴𝑈𝐶
 ,          (Eq. 2-1) 

 

𝐶𝐿 =
𝑅𝑖𝑛

𝐶𝑆𝑆
 ,         (Eq. 2-2) 

 

where AUC, or area under the concentration-versus-time curve, is the drug exposure 

integrated over time, Rin is the infusion rate, and Css is the concentration at steady 

state.[70] Equation 2-1 is typically more convenient for bolus-type injections since the 

clearance is simply dose over exposure as measured by AUC. Equation 2-1 also shows 



29 

 

the practical relationship between dose and AUC - the lower the AUC for a given dose, 

the higher the clearance and conversely, the higher the AUC for a given dose, the lower 

the clearance. For continuous infusions, a steady state is achieved in the plasma, so 

Equation 2-2 is generally more convenient. The concentration at steady state (Css) can be 

obtained from a single plasma measurement once the steady state is achieved. Then, 

clearance can be estimated by Equation 2-2 and the relationship observed. The higher the 

concentration at steady state given an infusion rate, the lower the clearance, and vice 

versa. 

Clearance can also be considered a function of both distribution and elimination, 

as shown in the following model: 

CL = Vdist × k,     (Eq. 2-3) 

where Vdist is the volume of distribution and k is the elimination constant. Vdist is the 

volume of the compartment, or conceptually, the volume of liquid the dose is diluted, and 

k is inversely proportional to the half-life of the drug. Thus, a short half-life implies a 

large k value and therefore, a high clearance. A large Vdist implies a large volume to dilute 

the dose, and thus a low initial concentration. In general, a large k value and a large Vdist 

produce a high clearance rate and fairly low plasma concentrations.[36, 70, 72] 

Now that some terms and relationships are defined, the simplest pharmacokinetic 

model follows, 

𝐶𝑃 =
𝑑𝑜𝑠𝑒

𝑉𝑑𝑖𝑠𝑡
(𝑒−𝑘𝑡),    (Eq. 2-4) 

where Cp represents the concentration in the plasma, which is most commonly the central 

compartment. Equation 2-4 assumes that the injection occurs instantaneously and that the 

entire dose is also distributed evenly throughout the body instantaneously. Modifications 
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of the equation can be made for slower injections or infusions, where two equations 

would represent the model over different time intervals: 

𝐶𝑃 =
𝑑𝑜𝑠𝑒

𝑉𝑑𝑖𝑠𝑡×𝑘×𝑇
(1 − 𝑒−𝑘𝑡)    (Eq. 2-5) 

for the interval over which the drug is being administered, where k is still the elimination 

constant and T is the time interval over which the drug is administered. When the 

infusion ends, the kinetics play out as if an instantaneous bolus as in Equation 2-4 has 

occurred at the exact moment the infusion ends. There is an initial concentration of the 

existing concentration in the plasma, or Cp, at that time point. That equation for the 

concentration over time from the end of the infusion to the end of the time interval is as 

follows: 

𝐶𝑃 = 𝐶𝑃 × 𝑇 × 𝑒
−𝑘(𝑡−𝑇)         (Eq. 2-6) 

These equations explain how this one-compartment model operates under the assumption 

that the half-life, and thus k, will remain constant, and the instantaneous rate of change 

only depends on the current concentration. A one-compartment model is not often 

inadequate for more complex pharmacokinetic data, in such cases, the data is fit to a 

multi-compartment model. Which, as discussed in the Compartment Model Concept 

section, simply couples equations similar to Equations 2-4 and 2-5 into a system 

corresponding to the number of compartments needed to fit the data. 

 

2.3 Pharmacokinetics Concepts 

Pharmacokinetic modeling is often described as the characterization of the time 

courses of drug concentration through four major processes in the body (i) absorption,(ii) 

distribution, (iii) metabolism, and (iv) excretion, commonly referred to as ADME. More 

broadly, pharmacokinetics also considers the time course of the concentration relevant 



31 

 

metabolites of the parent drug and the development of suitable models to describe 

observations or predict outcomes.[70, 68] 

One way to think of the four processes are in terms of what happens to the total 

dose. In Figure 2-4, the equivalence of the dose to the drug in four locations or processes 

in the body demonstrates the conservation of mass in a material balance. Figure 2-4 also 

shows that the ADME processes are sufficient to encompass any state a drug might be in 

transit through the body. The following subsections will discuss each of the ADME 

processes through the lens of pharmacokinetics. The following subsections will discuss 

each of the ADME processes through the lens of pharmacokinetics. 

 

 
 

Figure 2-4: A way of combining the idea of material balance and the four 

pharmacokinetic processes (Absorption, Distribution, Excretion, and Metabolism) 

 

 

2.3.1 Absorption 

Absorption in pharmacokinetics is discussed in terms of systemic absorption and 

is defined as the course of action an unchanged drug undergoes from the site of 

administration to the site of measurement. For example, under this definition, we 

consider a drug that is given orally, decomposed by 50% in the gastrointestinal tract, and 

then metabolized completely in the liver. If the site of measurement is a vein in the arm, 

the unchanged drug never reaches the site of measurement. However, if the site of 

measurement is in the portal vein, 50% of the unchanged drug reaches the site of 

administration. Any loss of drug between the administration site and the measurement 
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site will contribute to a decrease in systemic absorption. There are many possible sites of 

loss, especially in orally administered drugs. In those cases, the drug must pass through 

the gastrointestinal tract and liver where drugs are often eliminated to some extent 

through metabolism or excretion. The loss, or elimination, of unchanged drug on this 

passage through the the gut, or any drug-eliminating organ, is referred to as the first-pass 

loss.[72] Drugs which have a high first-pass loss require higher doses when administered 

orally than when administered intravenously in order to reach the same therapeutic effect. 

Drugs, when given intravenously, are able to bypass the gastrointestinal tract and liver 

before reaching the circulation. However, absorption is not only applicable to orally 

administered drugs, but also to intramuscular, intrathecal, subcutaneous, or any other 

extravascular route of administration.[68] The term bioavailability more universally 

quantifies the extent of absorption as a fraction or percentage of the administered, 

unchanged drug that is absorbed intact and reaches the site of action following any route 

of administration.[72]  

2.3.2 First-Order Kinetics 

The premise of first-order kinetics in terms of absorption following an 

extravascular dose is that the absorption of the drug is dependent on the concentration of 

the drug at that time.[73] In other words, the absorption rate is proportional to the amount 

remaining to be absorbed.[68] The most common approach to modeling absorption is to 

assume first order kinetics, which is illustrated in Figure 2-5, where A1 is the amount of 

drug at the administration site, A2 is the amount of drug in the body, CL is the clearance, 

Vdist represents the volume of distribution, dose is the amount of drug administered, ka is 

the absorption rate, and F represents the bioavailability.  
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Figure 2-5: Example of a one-compartment model with first-order absorption and also 

first-order elimination 

 

 

The model equations follow: 

𝑑𝐴1

𝑑𝑡
= −𝑘𝑎 ∗ 𝐴1     (Eq. 2-7) 

𝑑𝐴2

𝑑𝑡
= 𝑘𝑎 ∗ 𝐴1 − (

𝐶𝐿

𝑉𝑑𝑖𝑠𝑡
) ∗ 𝐴2        (Eq. 2-8) 

𝐶𝑝 =
𝐴2

𝑉𝑑𝑖𝑠𝑡
        (Eq. 2-9) 

The initial conditions for Equations 2-7 and 2-8 are: 

A1 = dose ∗ F           (Eq. 2.10) 

A2 = 0       (Eq. 2.11) 

again, where dose is the amount of drug administered and F is the bioavailability. The 

concentration in the central compartment (Cp), or the circulation, can be obtained by 

solving Equations 2-7 and 2-8 with initial conditions, Equations 2-10 and 2-11. The 

equation for the solution is as follows:[73] 

𝐶𝑝 =
𝐹∗𝑘𝑎∗𝐷𝑜𝑠𝑒

𝑉𝑑𝑖𝑠𝑡∗(𝑘𝑎− 
𝐶𝐿

𝑉𝑑𝑖𝑠𝑡 
)
∗ (𝑒 −

𝐶𝐿

𝑉𝑑𝑖𝑠𝑡
∗ 𝑡 − 𝑒−𝑘𝑎∗𝑡)        (Eq. 2-12) 

2.3.3 Zero-Order Kinetics 

In the case where a drug is absorbed at an approximately constant rate, the absorption 

kinetics are said to be zero-order.[68] In other words, a constant amount (i.e. milligrams, moles, 

etc) of drug is absorbed per unit time. This is in contrast to first-order absorption kinetics in the 

aspect that the absorption is not dependent on the concentration at that time. An example of zero-

order absorption and linear elimination in a one compartment model is shown in Figure 2-6, 
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where R0 is the zero-order input (i.e. intravenous injection or infusion), A2 is the amount of drug 

in the body, CL is the clearance, and Vdist is the volume of distribution. The model equation 

follows: 

𝑑𝐴2

𝑑𝑡
= 𝑅0 − (

𝐶𝐿

𝑉𝑑𝑖𝑠𝑡
) ∗  𝐴2     (Eq. 2-13) 

where again, Cp = A2/Vdist, as noted in Equation 2-9. By solving Equation 2-13, the concentration 

of the drug in the central compartment Cp can be expressed as: [73] 

𝐶𝑝 = 
𝑅0

𝐶𝐿
∗ (1 − 𝑒−  

𝐶𝐿

𝑉𝑑𝑖𝑠𝑡
− 𝑡)          (Eq. 2-14) 

 

 

 
 

Figure 2-6: Example of a one-compartment model with zero-order absorption and linear 

elimination 

 

 

The initial conditions for Equations 2-13 and 2-14 are: 

 

R0 = dose       (Eq. 2-15) 

 

A2 = 0        (Eq. 2-16) 

 

where dose is the amount of drug administered. The concentration in the central compartment 

(Cp) can be obtained by solving Equations 2-13 and 2-14 with initial conditions, Equations 2-15 

and 2-16. 

2.3.3.1 Flip-Flop Kinetics 

Particularly with orally administered drugs, frequent dosing can limit the effectiveness of 

a drug by lowering the likelihood that the patient will adhere to the dosing schedule. This 

problem is often referred to as patient compliance, and it is a major consideration in the drug 

delivery process. Sustained- and controlled- release formulations are ideal for drugs which 

require frequent doses due to its half-life, bioavailability, or other physiological property.[73] 
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However, in these cases, absorption is rate-limiting. That is to say, the absorption process is much 

slower than the elimination process. The peak concentration tends to occur later and is lower than 

in cases of first- and zero- order kinetics. At peak concentration, the rate of elimination increases 

and equals the rate of absorption. However, the absorption rate is so slow that there is still a 

substantial amount of drug yet to be absorbed well past the time of peak concentration. In this 

post-distributive phase, the plasma concentration is declining, since the elimination rate is still 

faster than the absorption rate, but the difference between the two rates is small. Thus, the rate of 

elimination is approximately equal to the rate of absorption. Eventually, there is no more drug left 

to be absorbed and the drug is eliminated from the body. This behavior can be deceptive, as it can 

appear that the elimination phase is very slow - when in fact it is the absorption that is slow.[68] 

Failing to recognize flip-flop kinetics when modeling orally administered drugs can lead to an 

incorrect characterization of the absorption process and an ill-specified model. Therefore, when 

possible, intravenous data is utilized to estimate the pharmacokinetic parameters associated with 

absorption. 

2.3.4 Distribution 

Distribution defines the process of reversible transfer of drug between the site of 

administration and peripheral tissues.[68] In terms of compartment models, peripheral tissues are 

the peripheral compartments in which, during the distributive phase, drug concentrations increase, 

reach steady state, and slowly return to the central compartment. Under these terms, the central 

compartment is the circulation.[36] The rate of transfer from the circulation is not necessarily the 

same rate of transfer back into the circulation. A good example of the difference in these rates is 

the enterohepatic cycle. Drug is secreted in the bile, stored in the gallbladder, and then released 

into the small intestine, where some of it is reabsorbed into the circulation.[68] 

A term mentioned briefly but not well defined in Section 2.3.1 on Absorption was the 

Vdist or volume of distribution in the equations discussing clearance and absorption kinetics. The 

volume of distribution is not a literal volume of liquid, but rather a surrogate proportionality 
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constant to relate drug concentration in blood or plasma to the amount of drug in the body.[72, 

36] Formally, it may be more appropriate to call it the apparent volume of distribution. If we 

were to consider the actual distribution volume of a drug, it would would be a fraction of total 

body water.[36] For the average adult human, total body water (TBW) accounts for 50-70% of 

the body weight.[74] TBW is broadly subdivided into extracellular fluid and intracellular fluid. 

Intracellular fluids make up for approximately 62.5% of TBW and includes fluid contained within 

cells. Extracellular fluids make up the remaining 32.5% and includes plasma and interstitial fluid. 

These categories of account for approximately one-fifth and four-fifths of total extracellular 

fluids, respectively. Transcellular fluid, that is, fluids such as ocular, cerebrospinal, and 

gastrointestinal fluids that are contained in organs, are generally not included in calculations. It is 

also important to note that the blood volume is divided between both intra- and extracellular 

fluids. Intracellular fluids exist inside the blood cells and extracellular fluids are the blood 

plasma.[75] These values are estimates, as fluids in the body are always in flux between different 

compartments of the body due to regulative mechanisms that maintain appropriate concentrations 

throughout.[74] 

Apparent volume of distribution varies by drug based on that specific drug’s 

physicochemical properties. For instance, drugs that are more extensively bound to plasma 

proteins have apparent volumes of distribution that might be smaller than their actual volumes of 

distribution. Conversely, drugs that are more extensively bound to extravascular tissues have 

apparent volumes of distribution that might be much larger than their actual volumes of 

distribution. Apparent volumes of distribution in humans can range from as small as 0.04L/kg to 

greater than 20L/kg among different drugs, some values of which exceed total body size when 

taken literally.[36, 68, 72] Now that the distinction between apparent and actual volumes of 

distribution has been made, the term volume of distribution will interchangeably refer to the 

apparent volume of distribution hereafter. 



37 

 

2.3.4.1 Membranes 

To best explain drug distribution, it is important to discuss the role and function of 

membranes. Drug transport, a key component in drug distribution, is defined as the processes and 

transport systems that facilitate the movement through membranes. The purpose of the cell 

membrane is to maintain homeostasis inside and outside of the cell body. Extracellular fluid is 

high in chloride ions and sodium, and low in potassium, phosphates, and protein. Conversely, 

intracellular fluid is high in potassium, phosphates, and protein, and low in chloride ions and 

sodium. The balance of these substances is required for healthy functioning of the body’s 

systems. 

A lipid bilayer makes up the majority of the cellular membrane with many proteins either 

partially or fully penetrating the liquid. Although some more lipophilic substances will be able to 

pass directly through the lipid bilayer, many of these proteins which penetrate the membrane 

completely can function as transport proteins.There are two general types of these transport 

proteins - channel proteins and carrier proteins. Channel proteins have aqueous spaces throughout 

and can allow water and certain ions and molecules to move through freely. Carrier proteins bind 

with molecules or ions, and the resultant conformational changes in the protein molecule allow 

the substance to pass from one side of the membrane to the other. Both channel proteins and 

carrier proteins are selective in which ions and molecules are allowed to pass through them and 

by proxy, the membrane.[76] These two types of proteins are important for describing the 

transport processes of drugs across membranes. Channel proteins are key players in diffusion and 

carrier proteins are key players in both diffusion and active transport. Diffusion and active 

transport will be expounded upon in the Transport Processes section. A few terms and 

relationships should be briefly defined before discussing the properties of cellular membranes. 

Hydrophilic and hydrophobic are terms that refer to properties of substances that are 

attracted to or repelled by water, respectively. Likewise, lipophilic and lipophobic are 
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terms that refer to properties of substances that are attracted to or repelled by lipids, 

respectively. A substance that is soluble in water and poorly soluble in non-polar lipids 

could be described as both hydrophilic and lipophobic. Conversely, a substance that is 

soluble in non-polar lipids but not soluble in water could be described as hydrophobic 

and lipophilic. In other words, the pairs of terms are interchangeable. One way to 

quantify the lipophilicity of a substance is to measure its partitioning between n-octanol, 

which is an organic solvent whose properties mimic tissue membranes, and water. 

Substances with higher partition coefficients have higher lipophilicity and vice versa.[68] 

2.3.4.2 Permeability 

Permeability is defined as the measure of a drug’s ability to cross a membrane. A 

drug is considerable highly permeable if it can pass through a membrane quickly and less 

permeable if it cannot. Quantitatively, permeability is expressed as ease of penetration of 

membrane in terms of velocity (distance per time). This unit comes from the concept of 

the net rate of transport of drug across a membrane as shown in Figure 2-7.  

 

 
 

Figure 2-7: Schematic of the contributing factors of the net transport rate across 

membranes in the cell - the permeability of the membrane, the surface are of the cell, and 

the concentration difference inside and outside the cell 

 

 

If we consider a simple example of two compartments (C1 and C2) separated by a 

membrane, the three components of net rate of transport are the concentration difference, 

the surface area (SA)of the membrane, and the permeability of the substance (P ). Since 
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net rate of transport is measured in units of volume per time, the surface area of the 

membrane is in units of area, and the concentration difference between either side of the 

membrane is unit-less, then the permeability is in units distance per time or velocity. The 

concentration difference is treated like a scalar for the net rate of transport; when the 

concentration difference is zero, the system is at equilibrium and there is no net exchange 

between the two compartments and the equation in Figure 2-7 goes to zero.[68] Just like 

in chemical equilibrium, a net change of zero does not mean there is no movement 

between the compartments C1 and C2, just that the movement is equal in both directions. 

The surface area of the membrane has a notable effect on the net rate of transport. Based 

on the illustrated equation in Figure 2-7, doubling the surface area effectively doubles the 

net rate of drug transport. Keep in mind that the permeability is a property of the drug and 

remains constant. 

Size, lipophilicity, and degree of ionization (charge) are the three molecular 

properties that most affect the passage of a drug across a given membrane. Cell 

membranes tend to be inflexible which prevents drug molecules of a certain size or steric 

conformation to pass through the membrane. For instance, some membranes do not allow 

for water-soluble molecules to pass through, so they must take the paracellular pathway 

and slip through the tight channels between cells.[68] Molecular size is an obvious 

limitation for transport and has an underlying effect on all other molecular properties 

related to transport processes. Since the majority of the cell’s membrane is made up of 

the lipid bilayer it is not surprising that a drug’s lipophilicity is another major constraint 

on membrane permeability.[76] Typically, the lower the lipophilicity, the less its 

permeability and vice versa. However, molecular size does have an overarching effect on 
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the permeability. It will not matter how lipophilic the drug is if it is too large to easily 

pass through the membrane. For instance, for permeability across skin, if the molecular 

weight of a compound is doubled with the same lipophilicity, the permeability decreases 

almost 300-fold. An common example of the interaction of size and lipophilicity in terms 

of permeability is the movement of drugs to and from the central nervous system (CNS) 

via the blood-brain barrier (BBB).[68] The blood-brain barrier is formed by the brain 

endothelium and creates a diffusional restriction in order to protects the particularly 

sensitive spinal cord and brain from unwanted substances circulating in the blood. The 

barrier property of the BBB also controls the influx and efflux of substances needed by 

and excreted from the brain and rigidly controls the ion homeostasis which is vital for 

neuronal signaling throughout the body.[77] The blood-brain barrier is composed of tight 

junctions between the endothelial capillary cells which prevent paracellular transport and 

glial processes surrounding these capillaries which are highly resistant to polar 

substances. To recap, the more polar the drug, the more hydrophilic and the more 

lipophobic.[68]  

The third major player in drug permeability across membranes is its charge or 

degree of ionization. While there are many ways the interaction between a given drug and 

a given membrane could be affected by charge, that effect is generally significant. As 

described before, molecular size, lipophilicity, and now charge, are connected in their 

effect on the drug’s permeability. The larger and more hydrophilic a molecule it is, the 

slower its permeability, with only a few exceptions. If the molecule is charged, the 

permeability of the molecule is even slower. However, some drugs are only charged at 
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certain pH values, or a physiological pH. This makes the degree of ionization important 

for understanding the permeability of a drug.[68] 

These pH dependencies are often purposeful in drug delivery systems to transport 

a drug to a target site. Anti-cancer agents are particularly good candidates for pH 

dependent drug delivery systems. Anti-cancer therapy aims to treat a specific target with 

cytotoxic agents without harming tissues along the route to the target. Additionally, 

issues with circulation stability and tumor-targeting can be solved by encapsulating or 

coating drugs within other compounds can change the surface charge of the drug and 

allow it to pass through or pass by certain membranes. It can also allow drugs to reach the 

target without being metabolized or released until it reaches a location in the body with a 

certain pH.[78] 

Most drugs are weak acids or bases and exist in an equilibrium between ionized 

and un-ionized states. The pH partition hypothesis is a common theory that was derived 

from the observation that higher total concentration of a drug is generally found on the 

side of a membrane where the pH favors a greater degree of ionization for that drug. The 

pH partition hypothesis states that only non-polar, un-ionized drugs can pass through the 

membrane. It also states that at equilibrium, the concentrations of un-ionized species are 

equal on both sides of the membrane. Finally, it states that at equilibrium, although the 

concentration of un-ionized species are the same, the total concentration can still be 

wildly different depending on the degree of ionization of the drug at the local pH. Most 

of the observed evidence for the pH partition hypothesis comes from studies specific to 

anatomical locations where there is a high variation of pH (renal excretion studies, 

gastrointenstinal absorption studies, etc.) The hypothesis fails to explain all observations, 
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so using it as a general rule can lead to inaccurate assumptions, especially in anatomical 

locations where there is less variation in pH.[68] 

2.3.4.3 Transport Processes 

The transport of drugs across cell membranes is falls into one of two categories diffusion 

or active transport. Diffusion describes the random movement of individual molecules of a 

substance either through intermolecular spaces in a membrane or through carrier protein. The key 

difference between the two is that diffusion occurs along the concentration gradient and active 

transport occurs against the concentration gradient. A concentration gradient is simply a physical 

area over which the concentration of a substance differs. Substances will diffuse from an high 

concentration to a low concentration until it reaches a state of equilibrium.[76, 68] 

2.3.4.4 Diffusion 

The first of the two processes, diffusion, is driven by the propensity of molecules 

to move down the concentration gradient. Diffusion is a phenomenon that occurs 

naturally, so no work is expended by the system. The movement of molecules across 

membranes is resultant of kinetic energy and is therefore passive. Diffusion always goes 

down the concentration gradient and therefore never occurs in the direction from low 

concentration to high concentration.[68] Diffusion across cell membranes takes place by 

either simple diffusion or facilitated diffusion. Simple diffusion can occur across cell 

membranes by two pathways transcellularly and paracellular. Transcellular transport 

describes the passage of a lipophilic drug through the lipoidal membrane of the cells and 

is the most common drug transport route. Paracellular transport accounts for the transport 

of drugs between cells, through the paracellular pathway, when they are too polar to cross 

the lipoidal cell membrane.[68, 76] The term simple diffusion indicates that the kinetic 

movement of the ions or molecules passing through the membrane do so without 
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interacting with carrier proteins. Conversely, facilitated diffusion does require the 

interaction of a carrier protein in order to cross the cell membrane. The molecules or ions 

passing through the membrane chemically bind to the carrier protein which shuttles them 

across.[76] Hence, facilitated diffusion is often referred to as carrier-mediated diffusion. 

This process is still passive, however, since the carrier proteins that are carrying the 

molecules or ions of interest still move down a concentration gradient. No work is 

expended by the system since the movement across the membrane is resultant of kinetic 

energy.[68] 

2.3.4.5 Active Transport 

The second type of process, active transport, requires work to be exerted by the 

system since the molecules or ions crossing the cellular membrane are going against the 

concentration gradient. In active transport, the drug moves from an area of low 

concentration to an area of high concentration. Recall that diffusion, which is passive, 

occurs when a drug moves from an area of high concentration to low concentration. This 

property is the fundamental difference between the two types of transport. Some common 

substances that are actively transported are sodium ions, iron ions, potassium ions, 

calcium ions, chloride ions, urate ions, and select sugars and amino acids. Active 

transport is subdivided again into two categories - primary active transport and secondary 

active transport, depending on the source of energy used to transport. Primary active 

transport describes cases when the breakdown of adenosine triphosphate (ATP) or some 

other high-energy phosphate compound is the source of energy for the transport. 

Secondary active transport describes cases where the energy for transport is derived from 

stored energy created during primary active transport. This energy is stored in the form of 
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ionic substances between the two sides of the cell membrane. Both primary and 

secondary active transport utilize carrier proteins. Recall that carrier proteins are also 

used in facilitated diffusion, but in active transport, the carrier protein functions 

differently. In active transport, the carrier protein is able to contribute energy to the 

transported molecule or ion to move it against the concentration or electrochemical 

gradient.[76] 

One example of primary active transport is the sodium-potassium pump, which is 

vital for controlling cell volume. As mentioned in the previous section on Membranes 

(Section 2.3.4), extracellular fluid is high in sodium and low in potassium, while 

intracellular fluid is low in sodium and high in potassium. The sodium-potassium 

(Na+ − K+) pump is responsible for maintaining the sodium and potassium concentration 

differences and also establishing a negative electrical voltage inside the cell. The (Na+ − 

K+) pumps sodium ions outward from low concentration intracellularly to high 

concentration extracellularly through the cellular membrane. 

Simultaneously it pumps potassium ions inward from low concentration 

extracellularly to high concentration intracellularly. Note that both potassium and sodium 

ions in this case are moving against their respective concentration gradient. [76] 

There are two general types of secondary active transport - counter-transport and 

co-transport. Each of these will be explained with an example for clarity. Counter-

transport refers to secondary active transport in the direction opposite of the primary ion. 

The sodium-calcium counter-transport occurs in nearly all cell membranes, where sodium 

ions are transported into the cells and calcium ions are transported out of the cells. In this 

case, since both ions are bound to the same carrier protein. Note here, the sodium ion is 
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moving down its concentration gradient. The transport uses stored energy from the 

sodium electrochemical gradient by allowing the sodium ions to flow along their gradient 

in exchange for the calcium ions entering. 

Co-transport mechanisms are used for glucose and several amino acids, since they 

tend to be transported into cells against large concentration gradients. In the sodium-

glucose co-transport, the transport protein has two binding sites on its exterior side, one 

for sodium and one for glucose. Similar to the sodium-calcium counter-transport 

mechanism, the energy is derived by allowing sodium to flow along its electrochemical 

gradient. A unique characteristic of this transport carrier protein is that a conformational 

change will occur in the protein only when both glucose and the sodium ion are bound at 

their exterior binding sites. This conformation change then happens automatically and 

allows both the sodium ion and glucose to pass into the cell.[76] 

2.3.4.6 Extent of Distribution 

There are two factors that affect the concentration of drug in the plasma, or 

central compartment, after the drug has been successfully distributed throughout the 

body. The first is the dose administered, and the second is referred to as the extent of 

distribution. The extent of distribution is dependent on the apparent volume of 

distribution.[68] The apparent volume of distribution (Vdist) which was discussed earlier 

in this section and refers to a proportionality constant which relates drug concentration in 

the plasma to the amount of drug in the rest of the body.[36] Here, it can be defined 

mathematically as the amount of drug in the body at equilibrium (A) divided by the 

plasma drug concentration (C): 
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𝑉𝑑𝑖𝑠𝑡 = 
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐷𝑟𝑢𝑔 𝑖𝑛 𝐵𝑜𝑑𝑦 𝑎𝑡 𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚

𝑃𝑙𝑎𝑠𝑚𝑎 𝐷𝑟𝑢𝑔 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
 =  

𝐴

𝐶
     (Eq. 2-17) 

Knowing the volume of distribution (Vdist) and the plasma volume (Vp) allows for 

the estimation of the fraction of drug in the body that is within the plasma: 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑖𝑛 𝑏𝑜𝑑𝑦 𝑤𝑖𝑡ℎ𝑖𝑛 𝑝𝑙𝑎𝑠𝑚𝑎 = 
𝑉𝑝

𝑉𝑑𝑖𝑠𝑡
   (Eq. 2-18) 

If Equation 2-18 represents the fraction within the plasma, then Equation 2.-9 

(following) provides the fraction outside the plasma, or in the rest of the body: 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑝𝑙𝑎𝑠𝑚𝑎 =  
𝑉𝑑𝑖𝑠𝑡−𝑉𝑝

𝑉𝑑𝑖𝑠𝑡
 (Eq. 2-19) 

In general, the larger the apparent volume of distribution, the smaller the fraction 

in plasma. Figure 2-8 may clarify why the apparent volume of distribution differs for 

different drugs.  

 

 
 

Figure 2-8: Simple two-compartment model, which implies that all drug in the body is 

contained in the plasma compartment (left) and the tissue compartment (right) with 

physiologic volumes of Vp and Vt, respectively 

 

 

At equilibrium, the amount of drug, A, in each compartment is expressed in terms 

of the plasma concentration, C, the physiologic volumes of the two compartments, Vp and 

Vt, and the tissue-to-plasma partition coefficient ratio, denoted as Kp, by the following 

equation: 
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𝐴 =  𝑉𝑝  × 𝐶 + 𝑉𝑡  ×  𝐾𝑝  × 𝐶         (Eq. 2-20) 

where the first term on the right-hand side of the equation represents the 

amount of drug in the plasma and the the second term represents the amount of 

drug in the tissue.[68] Conceptually, this equation reads: 

𝐴𝑚𝑜𝑢𝑛𝑡 𝑖𝑛 𝑏𝑜𝑑𝑦 = 𝐴𝑚𝑜𝑢𝑛𝑡 𝑖𝑛 𝑃𝑙𝑎𝑠𝑚𝑎 + 𝐴𝑚𝑜𝑢𝑛𝑡 𝑖𝑛 𝑇𝑖𝑠𝑠𝑢𝑒 (Eq. 2-21) 

where the first term on the right-hand side of the equation represents the amount of drug 

in the plasma and the the second term represents the amount of drug in the tissue.[68] 

Conceptually, this equation reads: 

Vdist × C = Vp × C + Vt × Kp × C,           (Eq. 2-22) 

And dividing by C, we get 

Vdist = Vp + Vt × Kp                 (Eq. 2-23) 

From Equation 2-23, we interpret the product term Vt ×Kp as the apparent volume 

of distribution for that tissue, when viewed from measurement of drug in the plasma. 

Following that logic, any number of compartments could be added on to complete the 

mass balance of drug amount in the body, with each compartment having its own 

physiologic volume and tissue-to-plasma partition coefficient Kp. Adding n compartments 

to Equation 2-23 would look like the following: 

Vdist = Vp + Vt,1 × Kp,1 + Vt,2 × Kp,2 + ... + Kp,n × Vt,n  (Eq. 2-24) 

Values of Kp can be large for some tissues and small for others, which clarifies 

why the sum of the apparent volume of distribution terms (see Equation 2-23) could sum 

to a value much larger than the actual body volume.[72, 68] Consider the adipose tissue, 

which makes up about 20% of total body volume.[79] If a Kp value of adipose tissue for 
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this drug is 5 or greater, the adipose tissue alone has already equalled or exceeded the 

literal total body volume. 

2.3.4.7 Binding 

The capacity of a drug to bind to blood components, plasma proteins, and tissues 

is a major factor in the distribution of a drug throughout the body. Total plasma 

concentration measurements include both bound and unbound drug.[68] However, an 

important distinction to make about interpreting total drug concentration is that only 

unbound drug can diffuse through membranes and exert a pharmacological effect.[72] 

Drugs that cannot pass through the cell membrane cannot reach the sites of activity, 

storage, or metabolism.[68] However, drugs that are bound to plasma proteins become 

too large to pass through the cell membrane, which means that the concentration of 

unbound drug drives drug transport, not the total concentration.[36, 68, 72] The ratio of 

unbound drug to total drug is referred to as the fraction unbound. The fraction unbound is 

also defined mathematically as, 

𝐹𝑢 = 
𝐶𝑢

𝐶
       (Eq. 2-25) 

 

where Cu is the concentration of unbound drug in the plasma and C is the total plasma 

concentration. For most drugs, the fraction unbound is constant throughout the infusion, 

so it matters very little whether total drug concentration or unbound drug concentration is 

measured. However, in some conditions, the fraction unbound will change. For instance, 

if the binding sites reach saturation or are altered in some way. Binding can be altered by 

another drug competing for the same binding protein. Patient characteristics including 

renal or hepatic impairment, recent surgery, or pregnancy, can alter the binding and 
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therefore, the fraction unbound. In these cases, measurement of the unbound 

concentration is necessary.[68] 

There can be a wide variation in the volume of distribution for a specific drug 

between patients.[72, 80, 68] Some reasons for this phenomenon that will be discussed 

include (i) binding within blood, and (ii) binding in tissues. The following paragraphs 

will discuss how binding in each location affects the variation among patients, even for 

the same drug. 

2.3.4.8 Binding Within Blood 

Drugs can bind to many different types of blood components, including plasma 

proteins and blood cells. This binding can cause the concentrations in plasma (C), whole 

blood (Cwb), and the unbound concentration in plasma water, (Cu) to be widely 

different.[72] Plasma contains proteins that bind to drugs and its concentration is 

comprised of bound and unbound drug. Serum concentration is usually close to identical 

to that of the plasma concentration. Although the protein composition of serum is slightly 

different than that of plasma, they mainly differ in method of measurement. Plasma 

concentration is measured by adding an anticoagulant to whole blood and precipitating 

out the blood cells. The concentration in the supernatant fluid, plasma, is then measured. 

Serum concentration is measured by centrifuging whole blood after it has already clotted 

and removing cells and material that forms any clots. Usually the clots are primarily 

fibrin, and the binding of most drugs to fibrin or fibrinogen is negligible. The 

concentration of the remaining serum is then measured. Whole blood refers to the 

aggregate of red blood cells, white blood cells, platelets, and assorted plasma proteins. 

Typically, an anticoagulant is added and the drug is extracted into an organic phase after 
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denaturing the plasma proteins. The blood drug concentration represents the average over 

the whole sample, since concentrations in individual components or cell fractions can be 

varied. The technique for measuring blood drug concentration is more involved, so 

plasma concentration is the most typical measurement used due to ease of analysis. A 

major goal in measuring drug concentration is to relate it to therapeutic response and 

toxicity, and often times, while perhaps the simplest method, it is not the best 

representation. Nonetheless, plasma concentration remains the most reported in 

pharmaceutical literature.[68]  

2.3.4.9 Transporters and Binding in Tissues 

The tissue-to-plasma equilibrium constant, Kp, value mentioned in the 

introduction to this section defines the ratio between drug concentration in tissues to drug 

concentration in the blood or plasma.[79] When discussing the relationship between Kp 

and the apparent volume of distribution, it was stated that Kp could be large or small 

depending on the properties of the tissue it represented. The main property that 

determines the Kp value for a certain tissue is the extent to which a drug tends to bind to 

that tissue. This process along with uptake and efflux transporters affect the 

determination of the Kp value for a specific tissue.[68] 

Binding to tissue occurs when, although a drug may have a great affinity for 

binding to plasma proteins, it has a greater affinity for binding to tissue components. 

However, the binding of a drug to tissue components cannot be as readily measured as 

the binding of drug to plasma. This is because the integrity of the tissue’s structure must 

be disrupted in order to directly measure the drug in tissues. However, tissue binding can 

be inferred from plasma measurements using the following mass balance: [68]  
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Vdist × C = Vp × C + VT W × CT W   (Eq. 2-26) 

 

where VT W is the aqueous volume outside the plasma where the drug is distributed and 

CT W is the corresponding drug concentration outside of plasma. Conceptually, Equation 

2.26 is interpreted as: 

Amount in Body = Amount in Plasma + Amount Outside of Plasma 

Drug outside of plasma is assumed to be drug in tissue. By dividing Equation 2-26 by C, 

which is the drug concentration in the plasma, 

𝑉𝑑𝑖𝑠𝑡 = 𝑉𝑝 + 𝑉𝑇𝑊  ×  
𝐶𝑇𝑊

𝐶
      (Eq. 2-27) 

Just as Equation 2.25 describes the fraction unbound in plasma, the fraction unbound in 

tissues Fu,TW is related by: 

𝐹𝑢,𝑇𝑊 =
𝐶𝑢,𝑡

𝐶𝑇𝑊
          (Eq. 2-28) 

where again, Cu,t is the drug concentration unbound in tissue and CTW is the drug 

concentration outside of the plasma. 

Since distribution equilibrium is reached when the unbound drug concentration in 

plasma Cu and the unbound drug concentration in tissues, Cu,t are equal, we get the 

equality: 

𝐶𝑇𝑊

𝐶
 =  

𝐹𝑢

𝐹𝑢,𝑡
 ,        (Eq. 2-29) 

which we can then substitute into Equation 2-28 to get: 

𝑉 =  𝑉𝑝 + 𝑉𝑇𝑊  ×  
𝐹𝑢

𝐹𝑢,𝑡
    (Eq. 2-30) 

The relationship in Equation 2-30 demonstrates that when Fu increases, the volume of 

distribution increases, but when Fu,t increases, the volume of distribution decreases. 
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2.3.4.10 Rate of Distribution to Tissues 

Upon administration of a drug - intravenous, oral, or otherwise - the systemic 

absorption and distribution to tissues takes some amount of time. Tissue distribution 

takes place to varying extents at different rates depending on the drug and the respective 

tissue.[68] The extent of the drug’s partitioning into adipose tissues, the drug’s ability to 

cross membranes, and the drug’s likelihood to bind with blood or tissues are all factors 

that determine the distribution pattern of a drug. The ability of the drug to be delivered 

into the tissue by the blood is also a determining factor. Extravasation is a term used to 

describe drug uptake into tissues from the blood. Extravasation will move toward 

equilibrium between the blood and the tissue. The rate-limiting factors for distribution 

can be one of two processes - perfusion or permeability. Rate-limitation by perfusion is a 

delivery limitation, and rate-limitation by permeability is a limitation in membrane 

passage. Perfusion rate limitation tends to occur when the tissue membranes give 

virtually no barrier to entry for the drug. As expected, this type of rate-limitation is more 

likely to occur with small, highly lipophilic molecules that pass through the lipid bilayer 

readily. Most drugs, excluding macromolecules, can also move easily through more 

loosely-knit membranes such as capillary walls of muscle tissue. However, as the 

resistance to drug transport across the cell membrane increases, the source of rate 

limitation shifts from perfusion rate limited to permeability rate limitation. In this case, 

the problem is not the delivery of the drug to the tissue or the removal of the drug from 

the tissue, but the passage across the cell membrane. 
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2.3.5 Metabolism 

Before discussing metabolism, another important concept in pharmacokinetics, 

elimination, should be mentioned. Elimination is the irreversible loss of drug from the 

site of measurement. Elimination of drugs from the body occurs through a number of 

pathways - through biliary excretion, urinary excretion or bio-transformation to other 

substances, but in pharmacometrics, is generalized into two processes - metabolism and 

excretion.[36, 68] 

Metabolism is likely the most straight forward definition in terms of the four 

pharmacokinetic processes. Metabolism here maintains a traditional definition of the 

conversion of one chemical species to another. In most cases, the resulting metabolites 

are converted irreversibly and are considered part of the total elimination of the parent 

drug from the body. In notably fewer cases, the metabolite conversion is reversible and is 

converted back to the parent drug. This process is called metabolic interconversion. In 

these cases, metabolism is only considered a route of elimination to the degree in which 

that metabolite is eliminated and thus, unable to convert back to the parent drug.[68] 

Elimination of parent drug is sometimes called formation clearance of the metabolite.[11] 

In most cases, metabolism will inactivate the drug, but some metabolites are 

pharmacologically active. Some metabolites are even more pharmacologically active than 

the parent drug. In some cases, a pharmacologically weak, or even inactive, drug with a 

may be administered for the purpose of the metabolite exacting the therapeutic effect on 

the target. These types of compounds are referred to as prodrugs.[81] Prodrugs are 

inactive compounds that are converted to active species in the body. Soft drugs are the 

antithesis to prodrugs in that they are pharmacologically active compounds that are 
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quickly metabolized after systemic absorption to minimize adverse effect on the body. 

The pharmacologic profiles of metabolites produced can vary. Some may have profiles 

similar to the parent drug, while others may behave completely differently or even 

produce adverse effects. Thus, the pharmacokinetics of any metabolites produced by a 

drug warrant therapeutic concern. When observing the body’s response to a drug, the 

time course of all active substances in the body must be considered.[68] 

Oxidation, reduction, hydrolysis, isomerization and conjugation are the most 

common metabolic reactions.[68, 81] The reaction pathway that occurs has the primary 

goal of making the compound easier to excrete from the body. The enzymes involved in 

perpetuating these reactions are found in most tissues in the body but are notably more 

concentrated in the liver.[81] It follow that while metabolism occurs in many tissues in 

the body, the primary site of metabolism is the liver.[81, 82] 

Some capacity limitation exists for most drugs, which is caused the limited 

number of enzyme sites. However, at the therapeutic concentration, which is what is 

actually given in practice, only a small percentage of the enzyme sites are occupied. In 

these cases, the metabolism rate of the drug is directly proportional to the concentration 

of drug in the body. In order words, its metabolism follows first-order kinetics.[81] Many 

of these capacity-limited reactions are described by the following Michaelis-Menten 

equation: 

−
𝑑𝐶

𝑑𝑡
=
𝑉𝑚𝑎𝑥 × 𝐶

𝐾𝑚+𝐶
     (Eq. 2-31) 

 

where −
𝑑𝐶

𝑑𝑡
 describes the rate of decline of drug concentration at time t, Km is the 

Michaelis constant, and Vmax is the theoretical maximum rate of the process. The 

Michaelis constant Km for a drug can be obtained by determining C when 
𝑑𝐶

𝑑𝑡
=
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1

2
 𝑉𝑚𝑎𝑥.[83] It is easily seen that Km is in fact equivalent to the drug concentration at 

which the rate of the metabolism is one-half of Vmax. There are special cases of the 

Michaelis-Menten equation - (i) where the Michaelis constant Km is much larger than the 

drug concentration C and (ii) where the drug concentration C is much larger than the 

Michaelis constant Km. In the first case, Equation 2.31 is reduced to:  

𝑑𝐶

𝑑𝑡
 =  

𝑉𝑚𝑎𝑥

𝐾𝑚
 × 𝐶            (Eq. 2-32) 

Equation 2-32 takes the form of first-order elimination kinetics – which would make the 

rate constant 
𝑉𝑚𝑎𝑥

𝐾𝑚
 .[36] Drug elimination is often observed to have first-order 

kinetics, so it follows that the majority of drugs have therapeutic concentrations 

that are much smaller than the Michaelis constant Km. This observation consistent 

with the relatively low percentage of enzyme sites that are occupied by drugs and 

metabolites at therapeutic concentrations.[68] The second, less common case of 

Michaelis-Menten kinetics results when Km is much larger than the drug 

concentration. In this second case, Equation 2.31 is reduced to: 

−
𝑑𝐶

𝑑𝑡
 =  𝑉𝑚𝑎𝑥           (Eq. 2-33) 

Under this condition, the rate does not depend on the drug concentration such that the 

constant rate is equal to Vmax.[36] The other special case of the Michaelis-Menten 

equation follows zero-order kinetics since the rate is independent on the drug 

concentration.[36, 68] 

2.3.6 Excretion 

Excretion is the second elimination process - defined as the irreversible loss of the 

unchanged drug from the body.[68] The primary difference between elimination by 
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metabolism and elimination by excretion is that the drug is actually removed unchanged 

rather than removed by bio-transformation.[68] 

The kidneys are the primary organs that excrete water-soluble compounds. The 

liver plays a smaller role than the kidneys in terms of excretion. Excretion through bile 

occurs to the extent that the drug is not reabsorbed by the GI tract in the enterohepatic 

cycle. Certain drugs and their metabolites are extensively excreted in bile. The drugs that 

undergo biliary excretion require active transport against a concentration gradient across 

the biliary epithelium. Another obstacle to biliary excretion occurs when plasma 

concentrations are high.[84] A transport maximum may be reached when more 

transporters are occupied, especially in the presents of substances with similar 

physiological properties.[76] Drugs that are most likely to be excreted by the liver 

through bile include drugs with a molecular weight greater than 300 grams/mole, having 

both polar and lipophilic groups. Smaller molecules are not readily excreted in bile. 

Although the liver is the lesser component in excretion, its indirect affect through 

metabolism is notable. Hepatic metabolism will often convert drugs to more water 

soluble compounds, thus allowing the kidneys to clear the drug through urine.[84] 

The glomerulus is a a filtration component in the kidney that is comprised of a 

complex bundle of capillaries lined with a delicate mesh of endothelial proteins.[85] 

About 20% of the plasma that reaches the glomerulus in the kidney is filtered through the 

glomerular endothelium. Most water and electrolytes are reabsorbed into circulation. 

However, polar compounds, including most drug metabolites are generally unable to 

diffuse through the renal tubules to be reabsorbed. These polar, water-soluble compounds 

are then excreted by the kidneys. 
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The governing concepts of membrane clearance that were discussed in the earlier 

section on absorption hold true for renal excretion.[84] Recalling the concept of fraction 

unbound, only unbound drug is contained in plasma reaching the glomerulus. Drug that is 

bound to plasma proteins are too large to diffuse through the pores of the glomerular 

endothelium and remain in circulation.[68, 76]. Along the lines of membrane clearance 

and absorption, we recall that the degree of ionization also plays a role in the passage of 

drugs across membranes. The pH of the solute a compound is in determines the 

ionization state of a weak acid or base, which includes most drugs.[78] Drugs that are 

weak acids or weak bases exist at some equilibrium between their ionized and un-ionized 

states. Urine pH varies widely,from 4.5 to 8. Lower urine pH, or more acidic urine, 

increases re-absorption of drugs that are weak acids and decreases the re-absorption of 

drugs that are weak bases. More acidic urine will also decrease the excretion of drugs that 

are weak acids and increase the excretion of drugs that are weak bases. The inverse is 

true for urine with a higher, more basic pH. With a few exceptions, the contribution to 

excretion of sweat, saliva, and respiration is relatively small.[84] 

2.3.7 Summary of Pharmacokinetic Concepts 

2.3.7.1 Absorption 

The absorption of a drug in pharmacokinetics is defined as the process by which an 

unchanged drug moves from the site of administration to the site of measurement.[68] Common 

routes or sites of administration include oral, intramuscular, intravenous, and subcutaneous. The 

most common site of measurement is an arm vein.[72, 73] 

2.3.7.2 Distribution 

The distribution of a drug in pharmacokinetics is defined as the process of reversible 

transfer of drug from one location to another in the body.[68] Drug moves to and from the site of 
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measurement and the peripheral tissues. The distribution process is observed at the site of 

measurement, usually the plasma.[68] 

2.3.7.3 Metabolism 

The metabolism of a drug in pharmacokinetics is defined as the conversion of one 

chemical species to another chemical species.[83, 81] Metabolism is one of the two elimination 

processes. However, unlike excretion, metabolism can sometimes be reversible. In drugs where 

metabolism is reversible, the extent of elimination of the drug is only to the degree of which the 

metabolite is eliminated and unable to return to the original drug.[68] 

2.3.7.4 Excretion 

The excretion of a drug in pharmacokinetics is defined as the irreversible removal of an 

unchanged drug from the body.[68] Excretion is the second of two elimination processes. The 

main organs that participate in the excretory process are the liver and the kidney, but a marginal 

amount of excretion is carried out through sweat and exhalation.[72, 36] However, renal filtration 

accounts for the majority of drug excretion.[84] 

2.3.7.5 Absorption and Disposition 

The elimination of a drug from the body is linked on a physiologic and anatomic basis to 

both systemic absorption and distribution. Disposition is a term used to encompass the 

distribution and elimination of a drug from the body. An overarching term for this pair of 

processes is needed since it is often difficult to distinguish whether a decline in the plasma 

concentration of a drug is due to distribution or elimination. Another way to describe disposition 

is all kinetic processes successive to systemic absorption. From the previous two Subsections 

2.3.5 and 2.3.6, it is important to emphasize that elimination consists of both metabolism and 

excretion. Figure 2-9 illustrates how the processes overlap using a simple two-compartment 

example.[68] Thus, the ADME process can be described as absorption (A) and disposition,  
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where disposition includes distribution (D) and the elimination processes metabolism (M) and 

excretion (E). 

 

 
 

Figure 2-9: Disposition is a collective term that refers to the processes of distribution and 

elimination; elimination includes two of the ADME processes metabolism and excretion 

 

 

2.4 Pharmacodynamics Concepts 

 

Since the focus of this work is primarily pharmacokinetic modeling without the 

pharmacodynamic component, this section will outline important terms and goals in 

pharmacodynamic modeling. It should not be left without mention, but for the scope of 

the work, a general overview with some examples should be adequate background. 

The relationship between the systemic exposure of a drug and the body’s response 

to that exposure defines the pharmacokinetics of the drug. Drugs interact with different 

organs and tissues within the body to produce a therapeutic effect. In order to achieve the 

therapeutic effect, there must be an adequate exposure at the target site. The target site is 

the location in the body that the drug is expected to “treat”.[68] For instance, in anti-

cancer therapy, the drug’s target site is the tumor.[86] However, in many cases, the 

administration site is far from the target site within the body. Another example of this 

could be an anti-psychotic drug, administered orally, then absorbed into circulation in the 
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gut, and delivered across the blood-brain-barrier to the brain.[77] Further, the target site 

may not be a plausible site of measurement (i.e. the brain, a tumor in the pancreas), so 

measurements of concentration in systemic circulation is often the surrogate site of 

measurement. These measurements are under the assumption that some fractional or 

scalar amount of the drug is at the target site. The assumption in classical 

pharmacodynamics is that any response caused by the administration of the drug is solely 

due to the parent drug, not its metabolites. Metabolites should of course be kept in mind, 

but the collective effect of the drug is measured as one lump effect unless otherwise 

specified.[68, 36] 

2.4.1 Types of Pharmacodynamic Response 

The term response is used to embrace a wide range of measurements depending 

on the purpose of the drug. Thus, responses can be classified in a number of different 

ways. Arguably the most important classification from a clinical standpoint is if the 

response is desired or harmful. However, this distinction may not always be 

straightforward.[68] For instance, the anticoagulant warfarin decreases clotting which can 

lead to a desired response - decreased likelihood of an embolism - or a harmful response - 

internal hemorrhage.[87] Broadly, pharmacodynamic responses fall into three categories 

- (i) clinical responses, (ii) surrogate endpoints, and (iii) biomarkers. The following 

paragraphs will discuss each class of pharmacodynamic response. Clinical responses (i) 

can be either objective or subjective. An objective clinical response could be measures 

like increase in survival time or decreased number of vomiting episodes, while a 

subjective clinical response could be “quality of life” or a sense of nausea. While these 

are useful, even some objective clinical responses can take years to manifest and thus, 
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tend to show great variability. These objective clinical responses often do not allow for 

intervention or guiding therapy. 

For that reason, surrogate endpoints (ii) are useful to get simple, immediate 

measurements to guide therapy or verify that the treatment is actually having an effect. 

Surrogate endpoints are simple measurements that are not necessarily a direct response to 

the drug but correlate to the clinical effect.[68] Anti-hypertensive drugs are a good 

example of this concept. The clinical response to prolonged hypertension may be 

increased incidence of stroke, but it would take many years and a large population to 

gather the incidence of strokes to see if the drug actually decreases the risk. Instead, 

taking blood pressure measurements can serve as surrogate endpoints since it has been 

proven that lower blood pressure over time decreases the incidence of strokes.[88] Blood 

pressure measurements are on the causal pathway to the clinical response, so they are an 

excellent example of a surrogate endpoint. 

Biomarkers (iii) make up the third and final category of pharmacodynamic 

responses. Generally, biomarkers are measurable effects produced by the drug. However, 

in practice, biomarkers are chosen that have some diagnostic or prognostic relevance.[68] 

For instance, blood glucose levels are good biomarkers for drugs like metformin and 

insulin that treat diabetes and insulin resistance.[89] Other biomarkers are used to 

monitor general adverse effects from the drug like liver function tests, kidney function 

tests, and white blood cell counts. These biomarkers are broadly referred to as safety 

biomarkers.[68] 

In reality, drugs produce more than just one effect, so a biomarker need not be 

related to the actual clinical effect. It could be said, then, that all pharmacodynamic 
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responses are biomarkers unless that have either been accepted as clinical response or 

have been shown through scrupulous evaluation to predict therapeutic outcome and thus 

accepted as a surrogate endpoint. The biomarkers that are most likely to be accepted as a 

surrogate endpoint are those which are on the causal pathway between drug action and 

clinical response. In other words, these biomarkers measure an effect which has been 

shown to affect some disease state or clinical outcome.[68] 

2.4.2 Assessment of Response 

With the exception of endogenous compounds such as insulin, cortisol, and 

thyroxin, drugs are not naturally occurring in the human body. Thus, in most cases, there 

is no baseline amount of drug concentration in the body to take into account. However, in 

pharmacodynamic response, there does exist a baseline measurement. The blood 

pressure, glucose level, white blood cell count, and bilirubin levels from a particular 

patient while not on the drug serve as the baseline measurement, while the same 

measurements from a particular patient while on the drug serve to characterize the drug 

effect on the patient.[68] Baseline can be a difficult variable to identify due to the 

rhythmic or cyclic physiologic changes that the body goes through daily, weekly, 

monthly, or even hourly.[68, 76] For example, circadian rhythm has been shown to effect 

baseline cortisol levels.[90] The menstruation cycle in females certainly affect baseline 

hormone levels depending on the time of the month.[91] 

For many drugs, there is also a placebo effect that factors into assessing the 

pharmacodynamic response. Placebo effect occurs when a patient receives what appears 

to be a certain drug treatment, while it is actually an inactive compound. What follows is 

a psychosocial phenomenon where the desired outcomes of the treatment actually come 
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from the patient’s anticipation of the outcome rather than the actual drug treatment. There 

is evidence that taking a placebo effects activates neurotransmitters in dopaminergic, 

opiodergic, and vasopressinergic pathways in the brain which may mimic the desired 

effect, as if the patient received the active compound instead of a placebo. The effect of 

the active compound is not present, but there could be subtle improvements or changes 

that should be accounted for in the placebo arm of a study.[92] This is especially true 

when any of the endpoints are subjective or patient-reported. Therefore, several 

components must be considered when assessing the pharmacodynamic response to a 

drug, as illustrated in Figure 2-10.[68] 

 

 
 

Figure 2-10: Illustration of the consideration of placebo response and baseline in 

addition to drug response when assessing the measured pharmacodynamic response of a 

drug 

 

 

2.4.3 Graded Versus Quantal Response 

Pharmacodynamic responses can be either graded or quantal. The magnitude of 

graded responses can be scaled or graded on a continuous spectrum within an individual, 

sometimes related to plasma or tissue concentration. Quantal responses, also referred to 

as all-or-nothing responses, do not occur on a continuous basis but discretely. It occurs, 

or it does not occur.[68] 

When the measurable pharmacodynamic response is graded, concentration versus 

time and effect versus time data for each individual is combined to relate concentration 

versus effect. When a gradient of concentrations are investigated, a continuous 
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concentration-versus-effect profile can be achieved. Graded dose-response models are 

useful in determining whether the inter-individual variation (IIV) is due to 

pharmacokinetic or pharmacodynamic causes. However, if the response is dichotomous 

(i.e. movement versus no movement, survive versus succumb, etc.), then a quantal dose-

response relationship can be investigated. Instead of relating intensity of effect to dose, 

quantal dose-response relationships can elucidate the percentage of a population that is 

affected.[93] 

2.4.4 Examples of Notable Pharmacodynamic Models 

Two general types of pharmacodynamic models are direct effect models [94] and 

the indirect effect models [95]. Interestingly, the “early days” of pharmacokinetics and 

pharmacodynamic modeling in the context of these types of mathematical modeling only 

date back to the early 1960’s. A majority of the pharmacodynamic models in use today 

have been somehow derived from one of these two types of models.[96] The following 

subsections will describe the more developed forms of each model type - the Direct 

Effect Model and the Indirect Response Model - in some detail and will attempt to make 

the pharmacodynamic concepts a little more tangible. 

2.4.4.1 Direct Effect Models 

2.4.4.1.1 The Levy Equation 

Direct effect models are derived under the assumption that drug effect is linearly 

related to the logarithm of dose.[94, 96] Equation 2-34 by Gerhard Levy in 1964 shows 

the linear relationship of effect E with the logarithm of dose R, 

E = m × log(R) + e    (Eq. 2-34) 

 

where m is the slope and e is the intercept term.[94] In a later work in 1966, Levy 

derived the following model: 



65 

 

𝐸 =  𝐸0 − 
𝑚𝑘

2.303
𝑡              (Eq. 2-35) 

where m is the linear slope which characterizes the effect-log concentration relationship 

from Equation 2-34, E0 is the theoretical intercept, and k is the first-order rate constant 

for elimination of the drug.[97] Equation 2-35 was derived from Equation 2-34 and 

describes the relationship of single compartment drug pharmacokinetics and in vivo 

effects over time. Equation 2.35 was henceforth known as the Levy equation and was 

upheld by clinical data for drugs like the alkaloid tubocurarine that showed exponential 

decline following intramuscular dosing and linear decline in the resultant muscle 

relaxation. Later, the Levy equation led to the application of these linear and log-linear 

type model to in vivo data. These models were simple to calculate by linear regression 

and could provide slope values which translated to pharmacodynamic parameters. 

Unfortunately, the Levy equation fails in some cases. The Levy equation is deficient if 

the effect is not linear - less than 20% of the maximum effect Emax - or log-linear - 

between 20% and 80% of the Emax. Thus, the model cannot be extrapolated to capture the 

maximum effect Emax.[96] 

2.4.4.1.2 Emax Model 

These weaknesses led to the introduction of the Hill equation for the 

characterization of in vivo concentration-response relationships by John G. Wagner in 

1968.[98] The Hill equation is based on receptor occupancy theory, and when 

concentration equilibrium conditions are assumed, the rate of change of the drug-receptor 

complex is represented by the following equation: 

𝑅𝐶 =  
𝑅𝑇 × 𝐶𝑎𝑐𝑡𝑖𝑜𝑛

𝐾𝐷+ 𝐶𝑎𝑐𝑡𝑖𝑜𝑛
     (Eq. 2-36) 
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where RT is the receptor density, KD is the equilibrium dissociation constant, and Caction is 

the concentration at the site of action.[96] One assumption of receptor-occupancy theory 

is that the drug effect is directly proportional to the fraction of occupied receptors: 

E = γ × RC       (Eq. 2-37) 

where RC is the drug-receptor complex and γ is a proportionality constant. Under that 

assumption, combining Equation 2-36 and 2-37 can be rearranged to fit a form of the Hill 

equation: 

𝐸 =  
𝐸𝑚𝑎𝑥 × 𝐶𝑝

𝐸𝐶50+ 𝐶𝑝
              (Eq. 2-38) 

where Emax is substituted for (γ × RT ), and EC50 is a sensitivity parameter that 

represents the drug concentration that causes 50% of maximum effect. 

Equation 2-38 is commonly referred to as the Emax model and is one of the most 

frequently used direct response models in pharmacodynamics.[73] One 

assumption of all forms of the Emax model is that maximum effect Emax and peak 

concentration Cmax occur simultaneously. The premise of this assumption is that 

the plasma drug concentration and the relevant peripheral concentration reach 

rapid equilibrium after dosing. However, this overlap does not always occur. 

There are a number of physiological reasons that drug effect would lag behind 

peak drug concentration. This disparity led to the development of models that 

capture the delay in terms of physiological mechanisms following peak 

concentration.[96] The first of these was the biophase model. 

2.4.4.1.3 Biophase Model 

The term “biophase” was conceived in 1955 by Robert Furchgott to describe the 

drug site of action.[99, 96] Sheiner et al. then developed a novel modeling approach in 
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1979 which incorporated a hypothetical “effect” compartment, which was termed the 

biophase model. The biphase model is defined by the following equation: 

𝑑𝐶𝑒

𝑑𝑡
 =  𝑘𝑒𝑜  ×  𝐶𝑝 − 𝑘𝑒𝑜  ×  𝐶𝑒    (Eq. 2-39) 

where keo is a first-order distribution rate constant, Ce is the intensity of pharmacological 

effect, and Cp is the plasma concentration. The premise of the biophase model is that the 

delay in maximum drug effect and peak concentration is due to the time it takes for the 

drug in the plasma to be distributed to the target site or site of action. Adding the 

hypothetical compartment for the quantification of the actual effect at the drug site of 

action (i.e. the biophase) accounts for the delay by prolonging the time it takes for the 

effect to occur using the rate constant keo. The biophase model is illustrated in Figure 2-

11.[96, 73] Many current, more mechanistic pharmacodynamic models today use effect 

compartments to resolve delays in treatment effect.[96, 100] 

 

 
 

Figure 2-11: Simple schematic of the biophase model originally developed by Sheiner et 

al.[101], where Cp represents the concentration in plasma compartment, Ce represents the 

hypothetical effect compartment, and keo is the first order distribution rate constant 

between compartments 
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2.4.4.1.4 Indirect Response Models 

The concept of Indirect Response (IDR) models was first introduced by E.J. 

Ariens in 1964 with the suggestion that drugs may not interact directly with receptors at 

target sites to cause drug effects.[95] Instead, the drug may interact and affect the 

behaviour of endogenous compounds in the body. It could be the subsequent effect that 

those endogenous compounds have on the target site. In other words, the drug indirectly 

affects the site of action by directly affecting substances that act on the site of action.[96] 

Indirect Response models are also frequently used as another way to account for temporal 

lag between drug response and drug concentration.[73] There exists four formalized 

Indirect Response Models that were formalized by William Jusko’s group in the early 

1990’s[102] and later found to be useful for characterizing many clinical 

pharmacodynamic effects.[103] 

2.4.4.1.5 IDR Model I 

𝑑𝑅𝑖𝑑𝑟

𝑑𝑡
 =  𝑘𝑖𝑛 (1 −

𝐼𝑚𝑎𝑥 × 𝐶𝑝

𝐼𝐶50+ 𝐶𝑝
 ) − 𝑘𝑜𝑢𝑡 × 𝑅              (Eq. 2-40) 

2.4.4.1.6 IDR Model II 

𝑑𝑅𝑖𝑑𝑟

𝑑𝑡
 =  𝑘𝑖𝑛 − 𝑘𝑜𝑢𝑡 (1 −

𝐼𝑚𝑎𝑥 × 𝐶𝑝

𝐼𝐶50 + 𝐶𝑝
 ) × 𝑅                (Eq. 2-41) 

2.4.4.1.7 IDR Model III 

𝑑𝑅𝑖𝑑𝑟

𝑑𝑡
 =  𝑘𝑖𝑛  (1 −

𝑆𝑚𝑎𝑥 × 𝐶𝑝

𝑆𝐶50 + 𝐶𝑝
 ) − 𝑘𝑜𝑢𝑡  ×  𝑅       (Eq. 2-42) 

2.4.4.1.8 IDR Model IV 

𝑑𝑅𝑖𝑑𝑟

𝑑𝑡
 =  𝑘𝑖𝑛 − 𝑘𝑜𝑢𝑡 (1 −

𝑆𝑚𝑎𝑥 × 𝐶𝑝

𝑆𝐶50 + 𝐶𝑝
 ) × 𝑅             (Eq. 2-43) 

where Ridr represents the response, Imax is the maximal effect of inhibition, IC50 is the 

concentration that triggers the half-maximal effect of inhibition, Smax is the maximal 



69 

 

effect of stimulation, SC50 is the concentration that triggers the half-maximal effect of 

stimulation. These four models apply to a wide range of clinical applications, but for the 

scope of this discussion, a few applications of IDR Model I will be briefly outlined.[73] 

One notable application of IDR Model I as shown in Equation 2-40 was its use in 

modeling the pharmacokinetic-pharmacodynamic (PK/PD) relationship of warfarin. 

Warfarin inhibits the production of prothrombin, which is a plasma protein that is 

converted to the clotting factor thrombin during the coagulation process. By inhibiting 

prothrombin, a delayed anticoagulant effect is carried out in the blood.[104, 73] Another 

common drug for which the IDR Model I in Equation 2-40 is applied is ibuprofen. 

Ibuprofen inhibits prostaglandin E2, which is known to temper immune response by 

regulating the expression of cytokines.[105] By controlling the expression of cytokines, 

ibuprofen reduces the inflammation which causes fever, and the measured 

pharmacodynamic response is fever. This is a clear example of how ibuprofen indirectly 

decreases fever, the pharmacodynamic response, by directly affecting cytokine 

expression.[106] 

 

2.5 Summary of Pharmacokinetics and Pharmacodynamics 

 

Previous sections have discussed how pharmacokinetics and pharmacodynamics 

have separately contributed to the understanding of a complete pharmacological profile 

of what the body does to the drug and what the drug does to the body, respectively.[69] 

This section will discuss the combination of pharmacokinetics with response over time, 

which has more formally come to be known as pharmacokinetic / pharmacodynamic 

(PK/PD) modeling. PK/PD modeling unites a pharmacokinetic model with a 

pharmacodynamic model to capture the full relationship between drug administration and 
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response with time.[68] Figure 2-12 illustrates both the distinct differences and inter-

dependence between PK and PD modeling.  

 

 
 

Figure 2-12: Schematic of the inter-relation of pharmacokinetic and pharmacodynamic 

modeling (adapted from Zou et al.)[73]) 

 

 

One main distinction is that pharmacokinetics deals with the drug specific and 

delivery system specific parameters associated with the system, while pharmacodynamics 

deals with the physiological system specific parameters. Pharmacokinetic models tell the 

story from dose administration to target and out of the body. Pharmacodynamic models 

take it from delivery to the target and describes the drug effect and pharmacodynamic 

response.[73] There is no doubt that PK/PD modeling has tremendously aided in drug 

discovery, drug delivery, and general progress in understanding the effects of 

therapeutics on the body. However, there still exist some caveats that must be considered 

when applying a PK/PD model to a drug or clinical concern. There are many assumptions 

made in the development of PK/PD models that cannot be easily validated. These hard-

to-validate assumptions are less of a concern for some of the simple examples noted 

earlier in this chapter, which have known mechanistic pathways. However, there are 
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more complex PK/PD relationships in advanced therapies that are in development today 

for which this challenge must be overcome. For instance, antibody-drug conjugates 

(ADCs) are complexes with a monoclonal antibody (mAb) and a linker loaded with a 

cytotoxic compound.[73] These types of drugs are of great interest as a novel approach to 

cancer therapies as new mode of delivering cytoxotic agents in a more targeted manner. 

One example of model of an ADC is a PK/PD model Brentuximab-Vedotin antibody-

drug conjugate developed by Tsuchikama et al. in 2018. The assumption was made that 

the cell-killing effect in the tumor was directly related to the drug concentration.[107] 

However, without the ability to observe the distribution cascade directly, the validity of 

this assumption is in question.[73] As the field continues to advance alongside medical 

technology, 86 there may be more opportunity to validate these types of assumptions or 

better understand the mechanisms of action. It should also be noted that these 

assumptions made in PK/PD modeling are not random guesses, but instead are based on 

some pharmacological or physiological observation or knowledge. However, the 

limitations of the models must be noted so that future information can inform future 

models. Another obstacle in PK/PD modeling that is more relevant to the work to follow 

is the extrapolation from sub-clinical species (i.e. mice, rats, etc.) to humans. Fortunately, 

there are several current, reliable methods for minimizing error in scaling parameters 

across species. One more obvious method would be choosing an appropriate animal 

species for scaling to humans. It is known that dogs are the best preclinical species for 

assessing cardiac safety in humans.[73] Mini-pigs are considered the best preclinical 

species for dermal absorption in humans.[108] Additionally, using allometric scaling 

across multiple species from preclinical species to humans can be used to improve 
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predictions by minimizing error and increasing accuracy.[73] Simple allometry is a 

generally accepted method for small molecules that are renally excreted - which is the 

case for doxorubicin.[9] Some of these animal-to-human scaling relationships have 

already been developed and are more quickly accepted. The predictive power of PK/PD 

models informed by previous observations and carefully collected data is a valuable asset 

to pharmacology and the practice of medicine today. As mentioned previously, the 

advancement in new technologies can help improve the understanding of 

physicochemical properties of drugs and their delivery systems. Improved understanding 

will do nothing but bolster the predictive ability of future PK/PD models.[73] 

 

2.6 Additional Considerations in PK/PD Modeling 

 

2.6.1 Disease Modeling 

Disease modeling is needed to understand whether therapeutic drug effects are 

curative, symptom mitigating, disease-modifying, or effective at all. Understanding how 

diseases behave and progress without medical intervention is vital to characterizing the 

effect of a drug in terms of treating the ailment. Disease modeling is sometimes referred 

to as natural history progression modeling. These types of models act as a control group 

to observe differences between treated and untreated group.[109] Disease modeling in 

humans can be precarious in terms of ethics. Clearly, it would be unethical and even cruel 

to withhold treatment from a human simply to study the natural progression of some 

disease.[110] In some cases, models are scaled from natural disease progression data 

gathered from sub-clinical species like mice, rats, pigs, etc. However, it is generally 

known that animal models do not scale perfectly to humans. Allometric scaling, a type of 

inter-species scaling, can be used to estimate model parameters extrapolated to 
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humans.[10] Additionally, data from disease models in animals can give insight into 

general disease behavior, which is sometimes used to build out probability models and 

simulations.[110] In addition to cancer, natural progression models are also widely used 

in long-term, progressive diseases with poor prognoses. These include neurodegenerative 

diseases like Muscular Sclerosis (MS)[111], Alzheimer’s Disease (AD)[112], and 

Duchenne Muscular Dystrophy (DMD)[113] for which there are scarce pharmacological 

interventions available. 

2.6.1.1 Modeling Tumor Dynamics 

Many functional forms have been developed to characterize natural tumor growth 

in terms of ordinary differential equations. The most basic - linear, exponential, logistic, 

and Gompertz will be briefly explained below. Linear growth presumes that the natural 

growth of the tumor follows a constant zero-order growth rate as shown in the example 

curve in Figure 2-13A and the following equation:  

𝑑𝑇

𝑑𝑡
 =  𝑘𝑔       (Eq. 2-44)  

where kg is the tumor growth rate constant. Exponential growth assumes that the growth 

rate follows a first-order growth rate. That is, the growth rate is proportional to the tumor 

burden, as shown in Figure 2-13B and the following equation:  

𝑑𝑇

𝑑𝑡
 =  𝑘𝑔  × 𝑇           (Eq. 2-45)  

where kg is the tumor growth rate constant and T is the tumor burden.  

The first two growth models, linear and exponential, assume that tumor growth 

has no upper limit. The tumor either grows at a constant rate or grows faster as the tumor 

volume becomes larger. However, the logistic and Gompertz growth models make a more 
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biologically realistic assumption that the tumor is limited by some carrying capacity or 

that the growth rate decreases over time. 

 

 
 

Figure 2-13: Examples of the general shapes of the four basic functional forms that 

natural tumor growth models take - linear (A), exponential (B), logistic (C) and 

Gompertz (D) (adapted from Yin et al.)[114] 

 

 

Realistically, the tumor cannot grow to an infinite volume, as tumors are in some 

organ or tissue in the body that has a finite volume that can only yield to a certain extent. 

The logistic model assumes that the natural tumor growth is limited by a carrying 

capacity. In other words, the tumor has some limit (Tmax) to its total tumor burden, as 

shown in Figure 2-13C and the following equation: 

𝑑𝑇

𝑑𝑡
 =  𝑘𝑔  × 𝑇 × (1 −

𝑇

𝑇𝑚𝑎𝑥
)      (Eq. 2.46)  

where kg is the growth rate constant, T is the tumor burden, and Tmax is the maximum 

tumor burden. As T increases, the growth rate is scaled by a smaller and smaller fraction 
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(T/Tmax). Once T is equal to Tmax, the third term in Equation 2-46 goes to zero. The growth 

rate, then, goes to zero, which indicates no further growth can occur.  

Similarly, the Gompertz model assumes that the tumor growth rate declines as it 

approaches its maximum tumor burden Tmax. This is easy to see in the example curve in 

Figure 2-13D and in the following equation: 

𝑑𝑇

𝑑𝑡
 =  𝑘𝑔  × 𝑇 × ln  (

𝑇𝑚𝑎𝑥

𝑇
)       (Eq. 2.47)  

where again, kg is the tumor growth rate constant, T is the tumor burden, and Tmax is the 

maximum tumor burden. From Equation 2-47, the growth rate is scaled by the natural 

logarithm of the proportion of T to Tmax. As long as Tmax is larger than T, the growth rate 

is positive. As T approaches the value of Tmax, the growth rate becomes exponentially 

smaller until it reaches zero when T is exactly equal to Tmax .[114] 

2.6.1.2 Disease Progression 

Accurate disease modeling is vitally important for understanding clinical 

presentation, endpoints, and progression. Modeling disease progression in terms of 

clinical pharmacology joins the understanding of the disease model and the 

pharamacokinetic and pharmacodynamic profiles. Broadly, clinical pharmacology seeks 

to master the use of medicine to treat disease. Adding pharmacokinetic and 

pharmacodynamic modeling methods have allowed for more powerful, quantifiable 

characterization of time course of drug concentration and effect in both individuals and 

populations.[109] As mentioned previously in this section, these quantitative disease 

progression models help discern between symptom-mitigation and disease-modification 

in terms of drug action and effect. This depth of understanding is integral for regulatory 

decisions and therefore, patient care.[109] In the previous discussion about different 
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types of pharmacodynamic drug responses, it could be important to know if the response 

is related to the half-life or clearance of the drug.[68] Some drugs do not alter the course 

of disease progression but only gives temporary relief to some symptom of the greater 

illness. Disease progression models are much like pharamacokinetic or pharmacodynamic 

models as multiple observations can be made on the same patient. Instead of a plasma 

sample or white blood cell count, some metric of disease status is measured over time. 

Disease status over time can be combined with PK/PD modeling for a more holistic 

picture of the interrelation of disease and treatment.[109] This discussion of disease 

progression models in terms of clinical pharmacology leads into the clinical application 

of PK/PD modeling. 

2.6.2 Clinical and Therapeutic Relevance 

All drugs are developed to treat some ailment. Likewise, all drugs have some 

adverse side effect. Some adverse effects are mild, as in the potential gastrointestinal 

discomfort following a dose of aspirin. Others have the potential to be much more 91 

dangerous, as in the case of doxorubicin and its notorious cardiotoxicity. However, any 

drug at the wrong dose can be deadly - for instance, a 200 - 300 milligram dose of aspirin 

could relieve a mild headache. A 10 gram dose could be fatal. [68] The greater objective 

for developing these PK/PD modeling methodologies is for the benefit it can have in the 

clinical setting. In much earlier years of medicine, the manner in which the correct dosing 

regimen was determined was through trial and error. While the eventual correct schedule 

can be determined under that method, many patients are at risk for suffering some level 

of unnecessary adverse effects. To compare, 0.125-0.25 mg of digoxin is given daily to 

treat congestive heart failure while morphine sulfate must be given in doses of 10-50 mg 
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up to 6 times a day to treat pain in terminal cancer patients. These treatment regimens 

were determined using this trial-and-error approach, which likely caused at the very least 

discomfort to the patients involved. Additionally, this approach adds almost nothing to 

the underlying understanding of effective dosing regimens for similar drugs.[68]  

In the early 2000’s PK and PD models have become a standard piece of 

regulatory applications for new drugs or new recommendations for current drugs.[115] 

As shown in Figure 2-14 which shows a flow chart of the drug discovery process from 

pre-clinical studies to post-marketing surveillance. At each stage of the process, some 

form of modeling is being done to guide the experimental design of the trials conducted 

along the way. Developing a PK/PD model is a step-wise process.  

 

 
 

Figure 2-14: Simplified flow chart of the drug discovery process highlighting the 

contribution of PK and PD models at each phase of the process (adapted from Derendorf 

et al.[68]) 

 

 

First, the baseline natural disease model is developed. Next, the concentration 

versus time and the concentration versus effect data provide the basis for training a model 

to characterize the drug effect. The model’s predictive power on a different dose or 
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treatment schedule can then be tested using a cross validation method (holdout, k-fold, 

etc.).[116] Once the model is considered sufficient, additional post-hoc studies can be 

done to glean relevant information. The addition of PK/PD methodologies have created a 

more rational framework for making decisions concerning drug administration. In 

addition to the fundamental concepts of 92 pharmacokinetics and pharmacodynamics that 

have been discussed at length in this chapter, a few basic concepts have added to this 

rational framework.  

First, it was understood that the intensity of a drug effect tends to increase with 

increased exposure. This is intuitive. However, the intensity of the drug effect reaches a 

capacity at which the increase in effect no longer matches the increase in concentration. 

In other words, there is some maximum effect that a drug can produce. From that, it was 

accepted that while a very high exposure will cause a very large drug effect, some of the 

effects will be undesirable. This is because drugs act on more than just one part of the 

body, despite the drug effect being intended for just the site of action. Even if the type of 

response is the same, the maximum effect that can be reached may be quite different from 

even a similar drug. Taking analgesics for example, aspirin and morphine both provide 

pain relief. However, while even a maximum dose of aspirin could likely not relieve 

intense pain from severe trauma, morphine could. These ideas combined produced the 

concept of a therapeutic window. The paradox of the therapeutic window is that too low 

of an exposure leads to insufficient therapeutic response and too high of an exposure 

leads to unwanted side effects. The narrower the therapeutic window, the smaller the 

margin of safety. Continuing the digoxin and morphine sulfate example, we now know 

that both of the drugs have a narrow therapeutic window. Morphine is eliminated from 
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the body quickly. Instead of giving a large dose at one time, which could cause excessive 

respiratory depression and even death, a frequent dosing schedule of smaller doses allows 

for the maintenance of a concentration that manages pain. Digoxin is eliminated slowly, 

so a once-daily administration is adequate 
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CHAPTER 3 

 

PK/PD OF DOX AND DOXol  
 

 

Since doxorubicin (DOX) is used so broadly in cancer treatment, it is imperative 

that the understanding of its interaction with the body is continually improving. Better 

modeling techniques should aid in more precise dosing regimens and ultimately better 

outcomes for patients. While pharmacokinetic and pharamcodynamic models are often 

used in tandem, the majority of the models created for DOX are PK focused. However, 

since DOX is used in such a wide range of cancers, the range of pharmacodynamic 

models are too broad to discuss in detail. This section will cover current PK models of 

DOX, but will only give general general mention of pharmacodynamic details. 

 

3.1 Current Models of DOX and DOXol 

 

A variety of PK models have been developed to explain the problem of DOX 

dosing (Table 3-1 and Table 3-2), but there is a range in the appropriate number of 

compartments needed to accurately model DOX and its major metabolite, doxorubicinol 

(DOXol). Some models aim for a more simplistic approach and exclude the metabolite 

entirely. For example, Piscitelli et al. developed a simplified model, explaining the PK of 

DOX as either a two-compartment or a three-compartment based on select covariates like 

body surface area and age. This model lumped DOX and DOXol into one agent instead 

of trying to investigate the PK of each individually.[17] 



81 

 

 

Table 3-1: Observed or Reported Half-Life Values for Sub-Clinical Species and Humans 

from Literature 

 
Observed half-life values 

Species Dose t1 1/2 t2 1/2 t3 1/2 Source 

Mouse 10mg/kg IV bolus 25.2min 10hr N/A [33] 

Rat 6mg/kg slow IV bolus 5.3min 3hr 17.3hr [45] 

Rabbit 5mg/kg IV bolus 4.6min 1.92hr N/A [117] 

Human 60mg/m2 4.8min 2.57hr 48.4hr [35] 

Human N/A 5.2min 1.98hr 31.9hr [118] 

Human 20-100mg/m2 12min±8 min 3.3hr±2.2hr 29.6hr±13.5hr [32] 

Human 50mg IV bolus 10min±45sec 1.42hr±6 min 28.75hr±4.67 hr [119] 

Human 15mg/m2 IV bolus 3.18min 35.53min 8.98hr [120] 

Human 30mg/m2 IV bolus 3.38min 43.79min 26.46hr [120] 

Human 50mg/m2 IV bolus 4.8min 1.37hr 20.42hr [120] 

Human 25mg/m2 IV bolus 4.8min(3.6-6.6) 3.7hr(1.3-15.4) 31.5hr(21.0-67.3) [121] 

Human 75mg/m2 IV bolus 4.8min(3.6-5.4) 2.4hr(0.5-4.5) 33.0hr(21.0-55.9) [121] 

Human 60mg/m2 IV bolus 4.8min 2.57hr 48.4hr [35] 

 

 

Table 3-2: Observes or Reported AUC Values for Sub-Clinical Species and Humans 

from Literature 

 
Observed AUC values 

Species Dose AUCDOX (ng×h/ml) AUCDOXol (ng×h/ ml) Source 

Mouse 10mg/kg 1463 N/A [33] 

Mouse 5mg/kg 1818±45 N/A [126] 

Rat 5mg/kg 516±44 666.8±100.4 [127] 

Rabbit 5mg/kg 1223.2±98.7 666.8±100.4 [128] 

Rabbit 3mg/kg 407.64±119.57 244.584±152.186 [129] 

Rabbit 3mg/kg 1216.67±116.67 N/A [117] 

Rabbit 3mg/kg 615±35 N/A [117] 

Human 50mg/m2 1426.5 N/A [120] 

Human 30mg/m2 951.34 N/A [120] 

Human 15mg/m2 519.5 N/A [120] 

Human 45-72mg/m2 1834±1007 2529.7±2699 [17] 

Human 50-75mg/m2 2055±929 N/A [130] 

Human 60mg/m2 1973.9 1298.4 [35] 

Human 50mg/m2 1660±680 N/A [131] 

Human 50mg/m2 1630±560 N/A [131] 

 

 

Another model by Kontny et al. incorporated a fourth compartment for DOXol in 

addition to a three-compartment model for DOX.[32]Perez-Blanco et al. further refined 

the model to a three-compartment model for DOX with two-compartments for 

DOXol.[31]. 
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More compartments for drug plasma concentration does not necessarily equate to 

a better model. Most data collected for pharmacokinetic studies can be fit to several 

different models, but it is a matter of finding the best fit to describe the drug’s action. 

Interestingly, the models of DOX that fit a two-compartment model have low initial 

doses, as shown in the Cusack rat model, the Brenner rabbit model, the Johansen rat 

model, and the third Erttmann human model in Table 3-3. Note that the third Erttmann 

model was given in 15 mg/m2 doses every 10 hours, which is the lowest dose given in 

any of the cited models.[120] It is possible that a higher concentration must be reached in 

order for the third elimination phase to be apparent in data. This dose-dependence has 

been evidenced previously in literature.[122] In addition, the granularity of the model has 

a great deal to do with the quality and quantity of the samples and therefore the data 

entered into the model.[70] Although PK models like the aforementioned may have 

tolerably explained the drug’s PK characteristics, none of them so far have ascertained 

the complex metabolic activity and toxicity of DOX.  

A more extensive list of existing models of DOX in literature are listed in Table 

3-3. There is a major effort in recent years to encapsulate DOX in liposomes and other 

nanoparticles in order to increase maximum residence time for better exposure or 

decrease the interaction of DOX with healthy cells outside of target site for less 

toxicity.[123, 124, 22, 28, 27, 125] However, the scope of this dissertation will be limited 

to un-encapsulated DOX, also referred to as “free doxorubicin”. Because of the pivot 

toward encapsulating DOX in recent years, some of the PK models of DOX in the 

following section may seem aged. However, the models collected in this review are some 

of the most recent free DOX models in literature. 
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Table 3-3: Summary of Existing Models of Un-Encapsulated or “Free” DOX in Sub-

Clinical Species and in Humans, as Reported from Literature 

 
Existing Pharmacokinetic Models of DOX 

Species Treatment Compartments in Model Source 

Mouse 10mg/kg IV bolus 2 or 3 [33] 

Rat 6mg/kg IV bolus 3 [45] 

Rat 2mg/kg IV bolus 2 [127] 

Rabbit 3mg/kg IV bolus 2 [129] 

Rabbit 5mg/kg IV bolus 2 [117] 

Pig 50mg/m2 over 3 min IV 3 [132] 

Human 40-60mg/m2 IV bolus 3 [120] 

Human 26.6-35mg/m2 IV bolus 3 [120] 

Human 60mg/m2 over 40 hours IV 2 [120] 

Human 70mg/m2 IV bolus 3 [133] 

Human 45-72mg/m2 IV bolus 3 [17] 

Human 20-110mg/m2 IV bolus 3+1 for DOXol [32] 

Human 50mg/m2 IV bolus[134] 3+2 for DOXol [31] 

Human 60mg/m2 IV bolus 3 [35] 

Human 50mg/m2 IV bolus 3 [131] 

Human Child N/A 3+1 for DOXol [118] 

Human Child 10-75mg/m2 IV bolus 3+1 for DOXol [135] 

 

 

 

3.2 Inter-Patient and Inter-Dose Variability 

Another obstacle that makes DOX more complicated as a cancer therapy is its 

significant inter-individual variability on clearance, exposure as measured by area under 

the concentration-time curve (AUC), and volume of distribution.[17] The 

pharmacokinetic profiles of both DOX and DOXol are Inter-individual variability (IIV) is 

a term used to describe a drug that displays significant differences in bioavailability and 

toxicity among patients. Inter-patient variability is used clinically to understand the risk 

of over-dosing or under-dosing a patient based on factors like body mass index (BMI), 

certain gene expression profiles, or renal function. Additionally, inter-occasion variability 

(IOV) describes variability in parameters or behavior between doses on the same 
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individual. The three parameters that will be discussed in this portion of the chapter will 

be variation in DOX (i) clearance, (ii) volume of distribution, and (iii) exposure (AUC). 

These three parameters are certainly interrelated. The volume of distribution is directly 

proportional to clearance, scaled by the elimination constant K as described in Equation 

2-3. This relationship is based on the idea that volume of distribution is the volume in 

which the drug is diluted.[68] DOX is eliminated linearly with first-order kinetics[31]. 

This means that the clearance is concentration dependent. A smaller volume of 

distribution for the same amount of drug results a higher concentration which effects 

clearance.[68] Further, the AUC and clearance are inversely proportional as shown in 

Equation 2-1. The lower the calculated AUC, the higher the clearance. The inverse is also 

true.[68] Practically, lower clearance means that the drug spends more time in the body 

and has a higher exposure (AUC). Variations in clearance are readily cited in the 

literature and may seem more heavily discussed in the following section, but it makes 

sense that high variability in clearance infers high variability in related parameters. Early 

conventional pharmacokinetic analyses reported from 2-fold to 5-fold inter-individual 

variability in DOX clearance in adult cancer patients with no noteworthy hepatic or renal 

impairment. This variability was present even after adjusting clearance values for body 

surface area (BSA).[46] Issues with IIV and IOV in DOX clearance still pose dangers in 

terms of cardiotoxicity and therapeutic effect.  

Although this work is focused on free doxorubicin in adults, the extensive use in 

children with malignancies gives way to rich data on properties of DOX that are also of 

interest for adult populations. In a study of DOX in children, a significant difference was 

found in the clearance rates between boys and girls. Boys in this study had a considerably 
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higher mean clearance of 591 ml/min/m2 compared to the girls whose mean clearance 

was 471 ml/min/m2.[19] An earlier study found that girls had a significantly higher 

concentration peak Cmax than boys in the same cohort.[32] Additional studies found that 

higher body fat percentage and an overweight body mass index correlated to lower 

clearance rates and higher Cmax values.[118, 44]  

The same study also found a significant difference in clearance between groups of 

children under 2 years old (infants) and over 2 years old. Infants had a higher mean 

clearance rate of 538 ml/min/m2 while children 2 and older had a mean clearance of only 

446 ml/min/m2 as shown in Table 3-4.[19] This finding is supported by other DOX 

studies in children. One study reported a significantly higher mean clearance in children 

younger than 10.5 years.[32] When studied in induction therapy for children acute 

lymphoblastic leukemia, the most common childhood malignancy, patients with lower 

clearance rates were statistically more likely to achieve complete remission.[19] This 

finding suggests that the residence time of DOX in the body is correlated to directly 

anticancer 100 effect and therefore, patient outcome. The danger, however is that longer 

residence time could correlate with higher cardiotoxicity. 
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Table 3-4: Observed or Reported Clearance Values for sub-Clinical Species and 

Humans from Literature 

 
Observed DOX Clearance 

Species Dose Clearance Source 

Mouse 10mg/kg IV 0.150 L/hr [33] 

Mouse 5mg/kg IV 4.5±0.1 [126] 

Rat 2mg/kg IV 4.08 L/kg/hr [127] 

Rabbit 3mg/kg IV 7.74 ± L/kg/hr [129] 

Rabbit 5mg/kg IV 8.196±0.432 L/hr/kg [117] 

Rabbit 5mg/kg IV 4.24±0.462 L/hr/kg [117] 

Human 50mg/m2 IV 32.0 L/hr [131] 

Human 20-110mg/m2 IV 53.3 L/hr [32] 

Human 40-100mg/m2 IV 63.6±22.7 L/h [136] 

Human 75mg/m2 IV 44.1 (36.2 - 79.9) L/h [121] 

Human 25mg/m2 IV 21.4(16.1-27.8) L/h [121] 

Human 40-75mg/m2 IV 30.4 ± 6.3 L/hr/m2 [130] 

Human 40-75mg/m2 IV 49.6 ± 14.1 L/hr/m2 [130] 

Human 40-75mg/m2 IV 28.0 ± 9.5 L/hr/m2 [130] 

Human 60mg/m2 IV 56.8 L/hr (24 - 119) [35] 

Human Infant 75mg/m2 IV 32.28 L/hr/m2 [19] 

Human Child 75mg/m2 IV 26.76 L/hr/m2 [19] 

 

 

In Table 1-1 from the previous section, it is made evident that DOX is rarely used 

as a single agent. It has been observed to be more effective when given in combination 

therapy - most often with alkaloids like vincristine or vinblastine[137], the folate 

antagonist methotrexate[138], and the cytotoxic agent cyclophosphamide. [49, 17, 139] 

One study found that when given in combination with cyclophosphamide, DOX 

clearance was reduced by approximately 30%, which is consistent with the 

literature.[136] Prolonged clearance times has been shown to increase therapeutic effect 

in single-agent doxorubicin. It would be interesting to speculate whether the increased 

efficacy of DOX when in combination with other agents is due to some synergy between 

these other anticancer agents or the prolonged residence time due to reduced clearance. It 

is likely that in reality there is some combination of both scenarios.  
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Aside from the covariates like age, gender, body composition, and concombinant 

therapy that may effect the clearance of DOX, a wide range of studies in several species 

have reported a great deal of variation within relatively homogeneous groups. A 

comparison of several pharmacokinetic studies done by Kontny et al. reported a mean 

clearance value of 53.3 L/h for DOX with 17.7% inter-individual variability and inter-

occasion variability of 21% in human cancer patients.[32] Another large study conducted 

by Rudek et al. found the mean clearance of DOX to be 63.6 L/hr with a standard 

deviation of 22.7 L/hr.[136] A comparative dose study in 16 adult female breast cancer 

patients was done by Twelves et al. to see how the pharmacokinetic parameters behaved 

at different doses (Table 3-5). 

 

Table 3-5: Observed or Reported Volumes of Distribution at Steady State of DOX for 

Sub-Clinical Species and Humans from Literature 

 
Volume of Distribution at Steady State of DOX 

Species Vdist,ss Source 

Mouse 101.0 ± 3.8 L/kg [126] 

Mouse 2.009 L/kg [33] 

Rat 194 ± 19 L/kg [127] 

Rabbit 0.79 ± 0.11 L/kg [117] 

Rabbit 2.65 ± 0.50 L/kg [117] 

Rabbit 112.4 ± 0.77 L/kg [129] 

Human 20-30 L/kg [32] 

Human 681.6 ± 433 L/m2 [17] 

Human 1081 L [121] 

Human 2198 L [121] 

Human 33.1 L/kg [35] 

Human 9.3 ± 0.97 L [131] 

 

 

For a dose of 25 mg/m2 , the mean clearance was 21.4 L/hr with a range of 16.1 - 

27.8 L/hr. For the 75 mg/m2 dose, the clearance was 44.1 L/hr with a range of 36.2 to 

79.9 L/hr.[121] Despite the small sample size, there is a noteworthy difference in the 
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clearance rates and the range of clearance rates observed. There is evidence in the 

literature that other pharmacokinetic parameters of DOX are dose-dependence, so this 

difference in clearance rates between dosing regimens is not surprising.[122] Another 

study in a randomly divided group of 26 sarcoma patients found significant difference 

between the three groups of patients. Two sets of data were used to train the model and a 

third set was used to test the model. The first training set had a mean clearance of 30.4 ± 

6.3 L/hr/m2 , the second training set had a 49.6 ± 14.1 L/hr/m2 , and the test set had a 

mean clearance of 28.0 ± 9.5 L/hr/m2 . A statistically significant difference was found 

between the second training set and the other two sets, respectively.[130] These clearance 

values along with several other literature examples are listed in Table 3-4. Note that some 

clearance values are normalised by weight in kilograms or body surface area (BSA) while 

others are not. There is some debate as to whether normalising the dose of anticancer 

agents by the patient’s BSA or weight, which is the standard of practice, actually 

decreases the inter-individual variability. Some patients still experience severe toxicity 

while others experience little to none at the same normalised BSA-based dose.[118] This 

discrepancy further drives the need for more individualized dosing regimens for drugs 

with narrow therapeutic windows. 

 

3.3 PK Modeling Solutions to DOX Drawbacks 

 

Although the pharmacokinetic profile of DOX consistently exhibits significant 

inter-individual and inter-occasion variability, as of late, only one significant covariate, 

decreased dose in hepatically impaired patients, has been successful in improving dose 

adjustment.[11, 10] However, most chemotherapy drugs require dose adjustment for 

hepatic impairment since most anticancer agents, including DOX, are metabolized in the 
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liver.[140] This finding does not necessarily add to the knowledge of how to improve 

dosing in patients that are not hepatically impaired. As mentioned earlier, there has been 

some investigation into potential factors that affect key pharmacokinetic parameters such 

as body composition[118], age[32, 135], or even pH of urine.[117, 133] Despite these 

efforts, there are no universally accepted covariates that have modernized the guidance on 

dosing of DOX.  

The literature does support that variations in infusion duration significantly impacts 

the exposure (AUC) and maximum concentration Cmax in humans.[44] It is widely 

accepted that many DOX parameters are both dose-dependent and also schedule 

dependent.[136, 120] If there are no recommended dose adjustments for DOX based on 

typical covariates, optimizing the infusion duration and dose could be an avenue for 

improving therapeutic efficacy and reducing the cardiotoxic side effect. Several studies 

have cited that lower doses given frequently reduce incidence of cardiotoxic events in 

patients receiving DOX. Likewise, doses given over a long infusion duration tend to 

decrease incidence of cardiotoxic events.[124, 141, 142] Additionally, avoiding high initial 

DOX concentrations correlate with lower cumulative cardiotoxicity, regardless of lifetime 

dose.[120]  

The focus of this work is to set up a framework for adjusting infusion rate and 

duration in order to simulate a number of scenarios to which the cardiotoxicity risk and 

therapeutic reward could be evaluated. As mentioned, the lower, more frequent dose or a 

lower dose over time has been observed to lower incidence of cardiotoxic events. 

Additionally, it has been shown that tumors are only in the 103 growth phase of their cell 

cycle for a short window of time. The therapeutic effect of the drug at the site of action 
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only acts on cancer cells in the growth phase. It is possible that some of the tumor killing 

effect is lessened when shorter infusions are given, regardless of magnitude of dose, since 

the drug effect has missed the window of time where the cell is vulnerable.[44] This work 

proposes evaluating exposure (AUC) and peak concentration (Cmax) at different doses - 

varying rate and duration - to provide a simulation framework for any clinical target.  

The cardiotoxicity of DOX is largely attributed to the accumulation of its primary 

metabolite DOXol in the heart.[11] Getting any reasonable estimation of the amount of 

DOX that is metabolized and binds to heart tissue requires a more mechanistic or 

physiological model. Despite its cardiotoxicity and inter-patient clearance variability, the 

therapeutic value of DOX as a cancer drug has kept it a first-line chemotherapy agent for 

over four decades. The risk of potential toxicity seemingly outweighs the potential negative 

result of foregoing the drug.  

Up to this point, the plasma drug concentration of DOX has been the central 

measurement of the models discussed in this work. PK/PD models typically use the plasma 

as the site of measurement and extrapolate or infer information about peripheral tissues 

based on the plasma drug concentration. Physiologically-based pharmacokinetic (PBPK) 

models incorporate more specific physiological parameters, additional compartments for 

specific tissues, and more mechanistic approaches to a full body model. This section will 

explore the use of PBPK models used for full body models that incorporate the drug’s 

interaction within specific tissues. These models incorporate more than drug plasma 

clearance, including the absorption, deposition, metabolism and excretion (ADME) of the 

drug within the body’s systems. PBPK models are promising for DOX and DOXol because 
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of its inclusion of tissues and organ systems, which will hopefully address its extensive 

deposition in tissues. 

 

3.4 Investigating PBPK Models of DOX 

 

More physiological, and therefore mechanistic, modeling has come to the 

forefront in pharmaceutical discovery and development in recent decades.[143] Modeling 

systems dynamics has been used for decades to improve process control in industrial 

settings. Likewise, the idea of modeling physiological systems has been around since the 

early- to mid- 1900’s. It has become markedly more popular in recent times due to its 

utility in drug discovery and development.[2] Modeling biological systems dynamics can 

help describe the body systems’ response to perturbation — pharmaceutical or otherwise. 

Developments in computational capabilities and pharmaceutical insight has allowed for 

this discipline to better account for both drug and patient outcomes with more 

computationally burdensome models.[144] The computational burden for PBPK models 

is greater due to the increased dimensionality of the models, as well as the increased 

complexity of the equations and systems of equations needed to detail more mechanistic 

models.  

Physiologically-based pharmacokinetic (PBPK) models are similar to more 

empirical, classic PK models in that they can produce important PK parameters like 

clearance and volume of distribution.[2] In addition, PBPK models include more in-detail 

physiological processes and parameters that are within the constraints of realistic 

physiological values.[143] Like classical PK modeling, these additional components are 

integrated into the model using theoretical compartments, each having their own general 

and intercompartmental clearance values based on its place in systemic function (Figure 
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3-1).[1] However, these compartments are less “theoretical” than in classical 

pharmacokinetic models and actually represent specific organs.[143] A more 

physiologically consistent model yields a mechanistic mathematical framework that can 

accommodate in-vitro in-vivo extrapolation (IVIVE) techniques for predicting drug 

specific parameters. They detail not only concentration-time data in plasma, but also in 

organs and tissue relevant to the specific drug and system in question. PBPK models are 

also quite useful for extrapolating an oral or intravenous dose from healthy volunteers to 

a diseased population, as long as applicable physiological properties of that target 

population are available.  

 

 
 

Figure 3-1: Example of a PBPK schematic, showing how each organ, represented as 

compartments, are connected by the circulatory system 

 

 

The compartments are also connected by venous and arterial blood compartments 

which mimic or represent the actual circulatory system.[2] An optimized PBPK model is 

capable of quantitatively predicting and defining exposure in blood, organs, and tissue, 

which is vital for efficacy and toxicity analysis.[1] Exposure information for tissues, 

especially the heart, is key to understanding the full profile of DOX and its enigmatic 

cardiotoxic effect. However, in order to create a PBPK model, it is necessary to have a 
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reasonable understanding of the mechanism of the drug and its interaction with the 

system. A delicate balance must be struck between including important drug-system 

interactions without over-parameterizing the model.  

In order to obtain that balance, the four most important components to understand 

are drug absorption, distribution, metabolism, and excretion (ADME). Absorption and 

distribution describes the passive/active transport or diffusion of the drug across 

membranes in the cells of various organs and tissues throughout the body. A general 

obstacle for this element of the model is predicting transport rates in each compartment. 

For small molecules like DOX, absorption and distribution are often concurrent. 

Metabolism for small molecules usually describes the enzymatic metabolism from the 

parent 106 drug to its metabolites, whether by CYP or non-CYP enzymes. Finally, 

excretion explains the renal and biliary elimination.[1] Data for current PBPK models is a 

conglomerate of data from previous literature and experimental data from animal studies.  

There is an abundance of data in previous literature for DOX because of its 

extensive use in cancer therapies. In vitro and in vivo studies have been done on both 

animals and humans over the past few decades. These studies have provided 

concentration values in plasma and tissues at a range of times post-infusion. This data 

was collected through timed blood draws or analysis of organs of sacrificed animals. 

Some of the earliest studies even give post-mortem organ concentrations collected from 

autopsy of human patients.[40] Despite the fact that a great deal of data is available for 

DOX, there is still much to overcome in constructing an acceptable PBPK model. As 

mentioned before, it is unclear the exact mechanism that governs the cytotoxic activity of 
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DOX.[32] There is also no definitive extent of metabolism[55], leaving these crucial 

values as unknowns to be speculated and estimated for the best possible model. 

 

3.5 Middle Ground - Minimal PBPK Modeling Approach 

 

With current pharmacological knowledge of DOX, it seems nearly impossible to 

create an exhaustive PBPK model without having to estimate to the point of becoming 

arbitrary. Despite this, Dubbelboer et al. at Uppsala University in Sweden built a 

favorable model for DOX using previously collected data from two pre-clinical studies 

done in pigs. The Dubbelboer model was a semi-PBPK model, broadly meaning they did 

not incorporate every organ and system explicitly.[8] Another more common term for 

semi-PBPK models are minimal PBPK (mPBPK) models.[143] Instead, they focused on 

the most relevant interactions and processes and included the necessary tissues to 

reasonably encompass the drug’s passage through applicable biological systems.[8] There 

has been a heightened interest recently in simplifying the structure of PBPK models for 

smoother applicability and increased transparency around what can be reasonably 

predicted.[143] The Dubbelboer model is such a model - using six tissue compartments, 

two blood compartments, and two excretion compartments as shown in Figure 3-2.  
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Figure 3-2: PBPK schematic of doxorubicin from the “binding specific” pig model 

created by Dubbelboer et al. 2017; arterial blood is denoted by the red arrows and boxes, 

venous blood by blue arrows and boxes, non-metabolizing tissues are in green, and 

metabolizing tissues are in gold 

 

 

Arterial and venous blood made up the two blood compartments, and urine and 

bile made up the two excretion compartments. As there are far more than six tissue types 

in the body, the authors saw it fit to give autonomous compartments to the lung, liver, 

and kidney while lumping the GI tract, slow perfused tissue, and rapid perfused tissue 

into the remaining three compartments respectively. They based the tissue grouping on 

the physiological similarity of the tissue and its proposed interaction with DOX. These 

six compartments were then divided into two classes – metabolizing and non-

metabolizing tissues.  

From the animal studies and previous literature, they concluded that the 

metabolism of DOX to DOXol occurs primarily in tissue. They dealt with this in the 

model by isolating the two currently known locations of metabolism—the kidney and 

liver. With generic knowledge of passive diffusion and transport in hepatic and renal 
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cells, the metabolism from DOX to DOXol is incorporated into all metabolizing tissue 

compartments only as depicted in Figure 3-3.  

 

 
 

Figure 3-3: Liver compartment schematic describing movement, metabolism, and 

excretion of DOX and DOXol in metabolizing tissues 

 

 

Concentration changes in each compartment and between compartments are 

described with ordinary differential equations as shown in Appendix A. However, in the 

Dubbelboer model, the heart compartment was left out of the specific compartments and 

presumably lumped into other tissue compartments. While this may seem surprising 

considering the established concern around cardiotoxicity, Dubbelboer’s model was 

designed to 109 investigate ways to model the intracellular binding of DOX rather than a 

full analysis of the effect of DOX and DOXol on pigs.[8] Additionally, previous work by 

Dubbelboer suggests that the interest in DOX in pigs was for the study of DOX as a 

primary agent for the treatment of hepatocellular carcinoma.[145]  

This rationale was supported by conjectures from literature, mentioned in Section 

1.3.1.[63, 64, 52, 66] Including a heart compartment as a metabolizing compartment like 

the liver and kidney gives a more realistic structure for capturing the cumulative effect of 

DOXol on the heart. The schematic of the heart compartment is shown in Figure 3-4. 
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Note that the structure is identical to that of the liver in Figure 3-3, except the heart does 

not have the excretion component. All other compartments remained unchanged, and due 

to the quite small percent of body weight that the heart makes up, its volume was 

subtracted from the slow perfused compartment to maintain the mass balance. Parameter 

values for each species can be found in Appendix G and will be discussed more in later 

sections. 

 

 

Figure 3-4: Heart compartment schematic describing movement and metabolism of DOX 

and DOXol in metabolizing tissues 

 

 

In the updated model shown in Figure 3-5, not only was a heart compartment 

added, but the heart compartment is also a metabolizing compartment. It is true that 

higher concentrations of DOXol are found in the liver and the kidney than in the heart, 

gram for gram, in both animal species and in humans.[63, 64] However, aldo-keto 

reductases, the primary enzymes involved in the hydroxylation of DOX to DOXol, are 

present in all tissues.[52] The heart tissue is thought to be more vulnerable to the 

cytotoxic effect of DOXol than the liver and kidney since the latter two possess binding 

and inactivating compounds such as glutathianone which curb the toxic effect.[65] As 
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such, the liver and the kidney are not typically sites of toxicity, while the heart 

profoundly is.  

 

 
 

Figure 3-5: PBPK schematic of doxorubicin, adapted from the pig model created by 

Dubbelboer et al. 2017 to add a heart compartment as a metabolizing compartment; 

arterial blood is denoted by the red arrows and boxes, venous blood by blue arrows and 

boxes, non-metabolizing tissues are in green, and metabolizing tissues are in gold 

 

 

There was no need to alter any of the other compartments in the original 

Dubbelboer model for two reasons. First, the model fit the data well without adding 

metabolism to any compartment, and it was not meaningful to add another compartment 

since the majority of the DOX-induced cardiotoxicity is related to the heart.[8] As 

mentioned earlier in this section, it is important to keep the number of equations and 

parameters to the fewest needed for ease of application and transparency.[143] The final 

model equations can be found in Appendix B. This approach appears to be the most 

practical in the case of DOX, as this model sufficiently describes the passage of DOX 

through the body. In general, necessary assumptions are made in order to reasonably 
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simplify the model while incorporating only the relevant details that affect the drug 

interaction. This prevents unneeded limitations on the system from cluttering the model 

and creating statistically insignificant variables for the sake of a more holistic model. 

 

3.6 Conclusion 

 

DOX is a crucial component in many cancer treatment protocols, and its 

continued use in patients is inevitable. However, as it stands, many patients are still 

under-dosed or over-dosed because dosing is often left to best estimates. A standard dose 

based on body weight or body surface area assumes that all patients will react in the same 

way to the drug. In reality, especially for drugs like 111 DOX, there is great disparity in 

the uptake, clearance, and metabolism among individuals. Optimizing individualized 

doses for patients based on identified characteristics will improve the overall therapeutic 

value of this already efficacious drug. Individualized dosing of DOX will also decrease 

the occurrence of cardiac damage in patients. The hope is to continue increasing the 

efficacy of treatment against their disease while minimizing cardiotoxic side effects.  

The use of pharmacometrics will be key in the development of these 

individualized treatment protocols. Identifying key factors for variability and better 

understanding the clearance of DOX can someday be achieved through physiologically-

based PK modeling. As shown, a semi-PBPK approach seems like the best method 

currently.  

The semi-PBPK model proposed by Dubbelboer gave excellent insight on the 

plasma and respective tissue concentration without over-parameterizing. Since DOX 

considerably deposits in tissue, a physiological approach that incorporates tissue 

compartments along with blood compartments is ideal. However, biological and 
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physiological systems are complicated, intertwined systems that produce complex time 

courses. As shown in Chapter 2, even a drug with a relatively simple time course requires 

three coupled differential equations to capture the concentration-time profile of the 

plasma.[70, 36] Creating a whole-body model, even a minimal whole-body model, could 

require many more compartments and thus equations to adequately describe the system. 

As systems of equations get larger and more complex, it is more likely that an analytical 

or exact solution for that system is not possible. For these large systems of equations, 

numerical methods must be employed to solve the system. Some of the methods used to 

effectively solve the PBPK model of DOX described in this section will be discussed in 

Chapter 4. 
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CHAPTER 4 

 

NUMERICAL METHODS FOR PBPK MODELING  
 

 

Physiologically-based pharmacokinetic (PBPK) models are used to describe the 

concentration versus time profile of a drug or substance in a subject. While classic 

pharmacokinetic (PK) models only detail plasma concentration, a physiologically-based 

model, as its name suggests, uses physiological parameters to model the concentration in 

relevant organs and tissues. These organs, similar to a classic PK model, are generalized 

as compartments. Each compartment has a corresponding ordinary differential equation 

(ODE) with time as the independent variable that describes the rate of change of drug 

concentration in each compartment. 

Unlike a classic PK model, a PBPK model requires more than a few 

compartments to describe the mass balance of the drug in the body. Thus, a very large 

system of ODEs is often associated with a PBPK model. However, the dimensionality of 

PBPK models can be computationally burdensome and inefficient. This is especially true 

in the programming language R, which is designed for statistical and data analysis, not 

necessarily for computation speed. It is generally known that ‘for’ loops and other 

conditional statements tend to be slow in the R language. R remains an extremely 

powerful open-source, free access tool across many fields. It remains one of the most 

flexible languages with a user-friendly interface R Studio, package building capabilities 

through Git, reporting features like RMarkdown, and app building capabilities through 
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RShiny. The R program is also extended by means of packages built and maintained by 

users themselves, which gives endless possibilities for the scope and expertise of its use. 

Despite its drawbacks, 112 113 the flexibility of the R language was the main rationale 

for using it for these models.[146] 

 

4.1 Traditional Numerical Methods 

 

For large and complex systems of equations, numerical methods must be 

employed to solve the system. Some common numerical methods used to solve these 

systems include Euler’s Method, Runge-Kutta Fourth Order method and Runge-Kutta 

Fehlberg Adaptive Step method. The following sections will cover these traditional 

methods since they were coded in R and applied to the PBPK model of interest.  

For large and complex systems of equations, numerical methods must be 

employed to solve the system. Some common numerical methods used to solve these 

systems include Euler’s Method, Runge-Kutta Fourth Order method and Runge-Kutta 

Fehlberg Adaptive Step method. The following sections will cover these traditional 

methods since they were coded in R and applied to the PBPK model of interest.: 

4.1.1 Euler’s Method 

 

Euler’s Method is the most rudimentary technique for approximating the solution 

of initial value problems. The general concept of Euler’s Method is to utilize multiple 

small line segments to approximate some actual curve y(t) versus t, assuming local 

linearity. Euler’s Method is also called a tangent line approximation since each of these 

small line segments are tangent to the slope at that time point. Each step is based on the 

previous step’s computed value.[147] Its simple construction is the basis for many other 

more complex approximation techniques. However, with its simplicity there are also 
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limitations, and due to these limitations, it is not always the appropriate method for real 

world problems. The goal of Euler’s Method is to find the approximate solution to a well-

posed initial value problem. Accordingly, the objective of Euler’s Method is to solve the 

well-posed 114 initial value problem,  

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦), 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦(𝑎) =  𝛼    (Eq. 4-1) 

Euler’s Method does not give a continuous approximation of the solution y(t). 

Instead, approximations of y are made at mesh points, which are values of t within the 

interval [a, b]. The approximations of y at other values of t within the interval can be 

derived through interpolation using the approximation generated at the mesh points. 

Because of this, a condition of Euler’s Method is that mesh points are equally spaced 

throughout the interval. The uniform distance between mesh points is referred to as a 

step-size, denoted here as h, which is the value of t(i+1)−ti. This condition is ensured by 

choosing a positive integer value N, setting step-size h = (b − a)/N, then selecting the 

mesh points 

𝑡𝑖 = 𝑎 + 𝑖ℎ,           (Eq. 4-2) 

for each i = 0, 1, 2, …, N. 

Euler’s Method can be derived from Taylor’s Theorem, and that derivation can be 

found in Section 5.2 of Burden’s Numerical Analysis.[5] The resulting equation for 

Euler’s Method is 

𝑤0 =  𝛼,        (Eq. 4-3) 

𝑤𝑖+1 = 𝑤𝑖 + ℎ𝑓(𝑡𝑖, 𝑤𝑖)    (Eq. 4-4) 

for each i = 0, 1, ..., N – 1. 
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This is called the difference equation associated with Euler’s Method. With 

Euler’s method, truncation and round-off error is not a major issue for systems with a 

short range of integration because relatively small time steps can be used without 

excessive computation time.[5]  

Euler’s Method was the first approximation technique tested on the system of 

ordinary differential equations related to the PBPK model. The benefit of trying 115 

Euler’s Method first is that linearity of the system is not necessary, so long as the initial 

value problem is well-posed. Euler’s Method is simple and easily to implement. 

However, as mentioned above, there are serious limitations to Euler’s Method, which 

posed issues with the large, multifaceted ODE system needed to describe the PBPK 

model.  

Euler’s Method becomes unstable with a larger step size, so high accuracy and 

low relative error is only possible with very small time steps. For problems where the 

interval is reasonably small, one can use a small step size without suffering a long 

computing time. However, in the case of many pharmacokinetic models, the interest in 

the solution is the effect of the drug over some span of time. It was quickly apparently 

that the PBPK model here needed a much smaller time step than was reasonable to 

compute using Euler’s method. The computational burden was high due to the small time 

step needed to capture the rapid change in concentration around each dose and the desired 

length of time to capture the clearance of the drug and metabolite from the system. These 

features of the PBPK model made Euler’s Method computationally costly, with the rate-

limiting step being the step size h. To make this method generalizable for PBPK models, 

a more efficient method was needed. 
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4.1.2 Runge-Kutta Methods 

 

Methods like Euler’s Method have the benefit of using the higher-order local 

truncation error, but have other drawbacks as mentioned in the previous section. Runge-

Kutta Methods also have the benefit of higher-order local truncation error but forego the 

time-consuming process of calculating and evaluating the derivatives of the equation.  

Runge-Kutta Fourth Order evaluates each equation four times per time step while 

Euler evaluates each equation only once per time step. To make Runge-Kutta Fourth 

Order more advantageous, a higher accuracy should be achieved at a step size four times 

larger than for Euler’s Method. The formula for Runge-Kutta 116 Fourth Order contains 

a weighted average of f(t, y) at points within the interval tn ≤ t ≤ t n+1 and is given by 

𝑤0 =  𝛼, 

𝑘1 = ℎ𝑓(𝑡𝑖, 𝑤𝑖), 

𝑘2 = ℎ𝑓 (𝑡𝑖 + 
ℎ

2
,𝑤𝑖 + 

1

2
 𝑘𝑖), 

𝑘3 = ℎ𝑓 (𝑡𝑖 + 
ℎ

2
,𝑤𝑖 + 

1

2
 𝑘2), 

𝑘4 = ℎ𝑓(𝑡𝑖+1, 𝑤𝑖 + 𝑘3), 

𝑤𝑖+1 = 𝑤𝑖 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4), 

for each i = 0, 1, ..., N − 1. This summation 1/6 (k1 + 2k2 + 2k3 + k4) is taken as an average 

slope. In the equations above, k1 is the slope at the left side of the interval, k2 is the slope 

at the midpoint using Euler’s formula from tn to tn + h/2, k3 is a second estimate of the 

slope at the midpoint, and k4 is the slope at the right side of the interval, tn + h. As long as 

the solution has five continuous derivatives, Runge-Kutta Order Four has a local 

truncation error proportional to h5 for a finite time interval the global truncation error of 
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at most O(h4). Compared to Euler’s method in the previous section, which has local 

truncation errors proportional to h, h2 ,and h3 , Runge-Kutta Order Four should be two to 

three orders of magnitude more accurate than Euler’s method and other Taylor derived 

methods.[5] 

The relative simplicity of the Runge-Kutta Order Four method and the improved 

accuracy was the rationale for applying it to our PBPK model. As mentioned before, for 

the same accuracy, the Runge-Kutta Order Four should be as accurate as Euler’s Method 

with a step size four times as large. In practice, however, the step size still needed to be 

extremely small to capture the rapid change following the dose. With the increased 

complexity, the run times per iteration were actually much slower than with Euler’s 

Method with only marginally better accuracy. It was apparent that there was a possibility 

that the ODE system was having issues with stiffness. 

4.1.2.1  Stiffness 

 

A stiff differential equation is defined as an equation which becomes numerically 

unstable when solved using certain numerical methods, unless an extremely small time 

step is used. All approximation methods for initial value problems mentioned here, and in 

general, include error terms that are derivatives of higher order than the solution to the 

equation.[148] When the magnitude of the derivative increases but the magnitude of the 

solution does not, there is no predictable error bound that can be used to estimate the 

accuracy of the approximation. In these cases, the error can grow such that it dominates 

the calculation. An equation having this property is said to be a stiff equation.[7]  

Our large system of equations evidently had some stiff and some non-stiff 

portions of only certain equations. In some cases, the volume that the concentration was 
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divided by was much smaller in one compartment and much larger in others. For 

example, when a concentration spread over a large volume, say the arterial blood, entered 

a smaller compartment like the cellular sub-compartment of the kidney, there would often 

be up to an order of magnitude of difference between the two volumes. As the drug 

entered the compartment, the concentration or amount would spike orders of magnitude 

as it was moved into a much smaller volume. This rapid change may happen at some time 

point in one equation, while the major change in the venous blood would occur mainly at 

the dosing intervals. In a complex system of 40 equations, these concentration spikes 

could happen at many different times. The primary issue, however, was the rapid change 

in concentration at each dose, which required a very small time step to capture the 

injection profile, followed by a period of very little change as the drug cleared the 

system. The very small time step needed over the first time interval was unnecessary for 

the remainder of the time interval, but without it, the injection profile was not well 

captured.  

Of course, the human body is not divided into literal compartments, but the 

physiological challenge of representing the systems of the body must be discretized in 

some way. While these volume changes may not pose a problem in reality, these 

compartmental surrogates for human organs pose a mathematical challenge to overcome. 

The identification of the PBPK system as stiff led us to move on to more adaptive 

methods that were designed to better control the error bound. 

4.1.3 Adaptive-Step Runge-Kutta-Fehlberg 

 

To address the issue of stiffness in the PBPK system, adaptive-step methods were 

investigated. Adaptive methods incorporate error control, which adds an estimate of 
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truncation error without requiring the approximation of higher-order derivatives of the 

function.[7] In general, adaptive step methods will alter the step size as it moves through 

the time interval, based on the amount of change occurring in the sub-interval. The 

general idea is that given some tolerance ϵ > 0, the fewest number of mesh points could 

be used to guarantee that the global error |y(ti)− wi| does not exceed the tolerance E 

anywhere in the solution. This concept of setting a tolerance to which the error cannot 

exceed is sometimes referred to as inequality in terms of error control.[5] While in 

general the global error cannot be determined directly, there is a close correlation 

between the local truncation error and the global error. To briefly summarize the idea, the 

general concept of adaptive step methods is to use the fewest data points while not 

exceeding a certain upper bound on error, which almost always requires that the step 

sizes be unequally spaced. When considering computation time, this optimization of 

number of mesh points is unnecessary for simple problems. In those cases, it may be 

possible to use a fairly large step size with adequate accuracy and a short computation 

time. However, in the case of stiff differential equations, the extremely small step size 

needed to control the error in some subintervals carries high computational burden when 

forced to apply a constant step size to the entire time interval.[148] As mentioned 

previously, in cases of pharmacokinetic models, one of the components of interest is the 

clearance of the drug, which can take anywhere from hours to days. For a stiff system in 

this context, the extremely small time step for an interval of many hours or days is not 

practical. 

After already structuring the system for Runge-Kutta Method Order Four, the 

Runge-Kutta-Fehlberg Method was a logical adaptive step method to implement first. 
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The Runge-Kutta-Felhberg method estimates the local error of a fourth-order Runge-

Kutta method, 

𝑤𝑖+1 = 𝑤𝑖 +
25

216
𝑘1 +

1408

2565
𝑘3 +

2197

4104
𝑘4 −

1

5
𝑘5 ,        (Eq. 4-5) 

by using a Runge-Kutta method with local truncation error of order five 

�̃�𝑖+1 = 𝑤𝑖 +
16

135
𝑘1 +

6656

12825
𝑘3 +

28561

56430
𝑘4 −

9

50
𝑘5 +

2

55
𝑘6         (Eq. 4-6) 

Where the coefficient equations are 

𝑘1 = ℎ𝑓(𝑡𝑖, 𝑤𝑖), 

𝑘2 = ℎ𝑓 (𝑡𝑖 + 
ℎ

4
,𝑤𝑖 + 

1

4
 𝑘𝑖), 

𝑘3 = ℎ𝑓 (𝑡𝑖 + 
3ℎ

8
,𝑤𝑖 + 

3

32
 𝑘1 +

9

32
𝑘2), 

𝑘4 = ℎ𝑓 (𝑡𝑖 + 
12ℎ

13
,𝑤𝑖 + 

1932

2197
 𝑘1 −

7200

2197
𝑘2 +

7296

2197
𝑘3), 

𝑘5 = ℎ𝑓 (𝑡𝑖 + ℎ,𝑤𝑖 + 
439

216
𝑘1 − 8𝑘2 + 

3680

513
 𝑘3 −

845

4104
𝑘4), 

𝑘6 = ℎ𝑓 (𝑡𝑖 +
ℎ

2
,𝑤𝑖 − 

8

27
𝑘1 + 2𝑘2 − 

3544

2565
 𝑘3 +

1859

4104
𝑘4 −

11

40
𝑘5) 

This Runge-Kutta method with the above coefficients define the Runge-Kutta 

Fehlberg method and require only six evaluations of the function. This particular 120 

method has an advantage over more arbitrary Runge-Kutta methods combining fourth 

and fifth order. Such methods require at least four evaluations of the function for the 

fourth-order method and six evaluations for order five, bringing the total to a minimum of 

ten evaluations of the function per time step. This significantly decreases the computation 

time. 
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The difference in the two local truncation errors |w˜i+1−wi+1| is interchangeably 

denoted as R and compared to the tolerance ϵ set by the user at the ithstep. This 

comparison essentially determines the action to be taken on the step size using an 

adjustment factor q. The value of q is used differently at each ith step depending on 

whether or not R is greater than the defined tolerance ϵ. That is to say, whether the error 

at that step is acceptable to the user. 

If R > ϵ, the initial choice of the step-size h at the ith step is rejected and the 

calculation is repeated using a different step-size qh. If R ≤ ϵ, then the error is within the 

tolerance and the computed value at the ith step is accepted. The step size is changed to qh 

for the (i + 1)st step. 

Repeating function evaluations is costly, so q is usually chosen conservatively to 

lessen the chance of R exceeding ϵ. For example, for the Runge-Kutta-Fehlberg method 

with n = 4, is a common choice for calculation q. This convention was used when 

evaluating the PBPK model of interest.[7]  

𝑞 = (
∈ℎ

2|�̃�𝑖+1−𝑤𝑖+1|
) 
1

4          (Eq. 4-7 

= 0.84 (
∈ℎ

|�̃�𝑖+1−𝑤𝑖+1|
) 
1

4             (Eq. 4-8) 

= 0.84 (
∈

R
) 
1

𝑛 ,            (Eq. 4-9) 

There are some optional additions to the algorithm that help eliminate large 

changes in step size from one step to the next. This is done to reduce time spent using 

small step sizes in regions with irregular derivatives of the function and avoid very large 

step sizes that could skip over sensitive regions. If the only concern is error control, only 

the step-size decrease procedure is needed and the step-size increase procedure could be 
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omitted from the algorithm.[5] In the case of our PBPK model, the computation time was 

a major inhibitor, so both procedures were implemented in the algorithm to save time. 

When we executed the Runge-Kutta-Fehlberg Method, the accuracy improved 

considerably. However, despite efforts to save computation time, it was still extremely 

slow. The time step remained very small throughout the time interval, making it 

somewhat infeasible for the model fitting and parameter estimation necessary for the 

future purposes of our model. After much consideration and adjusting the model, it was 

best to move on to another method for solving the system. 

4.1.4 Summarizing Traditional Methods 

 

The first method used to solve the system was Euler’s Method, since it is simple 

and its structure is common to many other more complicated methods. It is a great option 

for solving a system of linear equation as an initial value problem. However, the system 

was unstable except for very small time steps. Computation was unacceptably slow due 

to the length of the time interval needed for PBPK modeling. For better stability, the 

Runge-Kutta Order Four was implemented to solve the system. This method evaluates 

the function four times at each time point with the rationale that for the same accuracy as 

Euler’s Method, a Runge-Kutta Order Four could use a step size four times larger. This 

feature was attractive. Unfortunately, very small time steps were still necessary to solve 

the system, and the complexity of the method actually slowed the computation down in 

R. It was at this point that we realized the system had an issue with stiffness, so an 

adaptive-step method – Runge-Kutta-Fehlberg Method – was applied. Using this method 

greatly improved the accuracy of the solution and handled the stiffness. However, the 

computation time was still too slow for practical purposes of model fitting. 
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4.2. Eigenvalue/Eigenvector Solution 

 

The final method uses the eigenvalue/eigenvector solution to a system of linear 

ODEs.[149] At its core, R has a suite of operators for matrix calculations. Because of its 

design, matrix manipulation is computationally fast in R. Computation speed is critical 

for model fitting and parameter estimation, especially for large models, because of the 

need to calculate the solution many times. When using R, solving a system of equations 

as a matrix should compute faster than when written directly as a system of subsequent 

equations.[146] 

In this method, the ODEs are represented as an n x n rate coefficient matrix (A) of 

blood flow rates divided by compartment volume and an n x 1 initial condition matrix (x) 

define a system of homogeneous equations.[7, 149] 

x′=Ax      (Eq. 4-10) 

In the homogeneous case, some of the injection profile is lost. The model only 

captures the flow of drug through the body and its clearance, as if at t0, the full injection 

amount exists in the venous blood compartment. The model realistically could only 

capture bolus type infusions or quasi-instantaneous injections. This can be remedied by 

the addition of a rate vector g(t), but this also makes the system non-homogeneous. 

For a non-homogeneous system, the additional vector is added as shown below. 

This column vector g(t) represents injection rate as a function of time. This system not 

only allows for the infusion profile to be captured but also allows for more realistic 

scenarios. 

x′=Ax +g(t)         (Eq. 4-11) 



113 

 

Very large systems of ODEs are often difficult to solve analytically, so in order to 

show our method is accurate for large systems, we will walk through a smaller example 

from Elementary Differential Equations by Boyce et al.[7] This simple example will be 

written and solved in R and compared to the analytical solution to verify the accuracy of 

the method choice and the code. The example will take the place of the formula for the 

method, since it is a much clearer illustration than the direct definition. 

4.2.1 Simple Homogeneous Example 

 

Consider the simple homogeneous case, 

𝑥′ = (
−2 1
1 −2

)𝑥 = 𝐴𝑥.                (Eq. 4-12) 

The coefficient matrix A is real and symmetric, and we assume that x = ξert , we 

obtain the algebraic system, 

(
−2 − 𝑟 1
1 −2 − 𝑟

) (𝜉1
𝜉2
) = (0

0
).         (Eq. 4-13) 

The Eigenvalues satisfy 

(−2 − r)(−2 − r) − 1 = r2 + 4r + 3 = (r + 3)(r + 1) = 0        (Eq. 4-14) 

so r1 = −3 and r2 = −1. For r = −3, Equation 4.13 becomes 

(
1 1
1 1

) (𝜉1
𝜉2
) = (0

0
).              (Eq. 4-15) 

Hence, ξ2 = ξ1 and the corresponding eigenvector ξ(1) corresponding to the 

eigenvalue, r1 = −3 can be taken as 

𝜉(1) = (1
1
)        (Eq. 4-16) 

Similarly, for r = −1, Equation 4-13 becomes 

(
−1 1
1 −1

) (𝜉1
𝜉2
) = (0

0
).               (Eq. 4-17) 
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Hence, ξ1 = ξ2 and the corresponding eigenvector ξ(2) corresponding to the 

eigenvalue r2 = −1 can be taken as 

𝜉(2) = ( 1
−1
)        (Eq. 4-18) 

Thus, a fundamental set of solutions for the system in Equation 4.12 is 

𝑥(1)(𝑡) = (1
1
)𝑒−𝑡, 𝑥(2)(𝑡) = ( 1

−1
)𝑒−3𝑡.          (Eq. 4-19) 

and the general solution is 

𝑥 = 𝑐1𝑥
(1)(𝑡) + 𝑐2𝑥

2(𝑡) = 𝑐1(
1
1
)𝑒−𝑡 + 𝑐2(

1
−1
)𝑒−3𝑡.           (Eq. 4-20) 

The general solution of the homogeneous case is key to obtaining the particular 

solution for the non-homogeneous case. The fundamental matrix Ψ(t) is the starting point 

for nearly all methods of solving non-homogeneous systems. Ψ(t) obtained from the 

general solution by the following method.[7] 

4.2.2 Simple Non-Homogeneous Example 

Suppose that that x(1), ..., x(n) form a fundamental set of solutions as in Equation 

4.19 for the equation  

x′ = P(t)x        (Eq. 4-21) 

on some interval α < t < β. Then the matrix 

Ψ(t) = (
𝑥1
(1)(𝑡) ⋯ 𝑥1

(𝑛)(𝑡)
⋮ ⋱ ⋮

𝑥𝑛
(1)(𝑡) ⋯ 𝑥𝑛

(𝑛)(𝑡)

)        (Eq. 4-22) 

whose columns are the vectors x(1), ..., x(n) is said to be a fundamental matrix for the 

system. So, for the example above, the fundamental matrix is 

 

Ψ(t) = (𝑒
−𝑡 𝑒−3𝑡

𝑒−𝑡 −𝑒−3𝑡
)               (Eq. 4-23) 

 

which is useful for solving the non-homogeneous system, 
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𝑥′ = (
−2 1
1 −2

)𝑥 + (2𝑒
−𝑡

3𝑡
) = 𝐴𝑥 + 𝑔(𝑡).     (Eq. 4-24) 

 

We use Variation of Parameters to solve this system. The solution x of this system 

is given as x = Ψ(t)u(t), where u(t) satisfies Ψ(t)u(t) = g(t), or 

(𝑒
−𝑡 𝑒−3𝑡

𝑒−𝑡 −𝑒−3𝑡
) (
𝑢1
′

𝑢2
′ ) = (

2𝑒−𝑡

3𝑡
)           (Eq. 4-25) 

 

By left-multiplying the fundamental matrix on both sides, the ut (t) vector can be 

obtained. This approach is used in the consequent code, but for now, the following 

equations are obtained by row reduction. 

𝑢1
′ = 𝑒2𝑡 −

3

2
𝑡𝑒3𝑡 , 𝑢2

′ = 1 +
3

2
𝑡𝑒𝑡.             (Eq. 4-26) 

 

Hence, 

 

x = Ψ(t)u(t)                    (Eq. 4-27) 

 

= 𝑐1 (
1
1
) 𝑒−𝑡 + 𝑐2 (

1
−1
) 𝑒−3𝑡 + (

1
1
) 𝑡𝑒−𝑡 +

1

2
(
1
−1
) 𝑒−𝑡 + (

1
2
) 𝑡 −

1

3
(
4
5
) .    (Eq. 4-28) 

 

The determine the integration constants, the system should be solved at some time 

point in the interval. For the remaining points in the solution, the integration constants c1 

and c2 do not change. For instance, when x0 = 0, t = 0, constants c1, c2 are - 
2

3
 and 

3

2
 , respectively. [7] Those constants will remain true as long as the initial conditions and 

equations do not change. 

Once these integration constants are determined, this process provides a solution 

to the system at any specified time. Its major limitation being it only produces a solution 

for the last time point, which should be a reasonably small time interval in order to 

capture the change in y adequately. However, we are able to use that solution as the initial 

condition for the next iteration of the function. 
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4.2.3 Numerical Integration: Series of Eigenvalue/Eigenvector Solutions of  

 Initial Value Problems 

 

This small non-homogeneous system is solved in preparation for the ultimate goal 

of the solving a large system of equations. This larger physiological system will be 

solved over a fairly long time interval since the clearance of the drug from the body, a 

behavior of interest, can be many hours or days long depending on the half-life of the 

drug. Because this large time interval is much greater than a suitable interval for a single 

iteration of our Eigenvalue/Eigenvector solution described in the previous section. 

Instead, the solution to a sufficiently small time interval will become the new initial 

condition for the next iteration of the method. These exact solutions are then to be 

integrated over using a numerical integration method. Numerical integration is needed 

since in some cases, there is no explicit or easy obtainable anti-derivative to be calculated 

for the equations of the system. [150] 

Numerical integration is based on a summation technique called numerical 

quadrature, which simply means using a sum ∑ 𝑎𝑖𝑓(𝑥𝑖)
𝑛
𝑖=𝑜  to approximate ∫ 𝑓

𝑏

𝑎
(𝑥)𝑑𝑥. 

The method requires choosing a set of distinct points on the interval [a, b]. From the 

chosen points, numerical quadrature calls for integrating over a Lagrange interpolating 

polynomial. Common methods that use Lagrange interpolating polynomials with equally 

spaced points include the Trapezoidal Rule and Simpson’s Rule. These types of methods 

are in the family of Newton-Cotes formulas. More detail and derivations for these 

techniques in Section 4.3 of Burden’s Numerical Analysis.[5] Using a Taylor Series 

expansion and the Weighted Mean Value Theorem for Integrals gives Simpson’s 1/3 

Rule: 
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∫ 𝑓(𝑥)𝑑𝑥 =
ℎ

3
[𝑓(𝑥0) + 4𝑓(𝑥1

𝑥2

𝑥0
) + 𝑓(𝑥2)] −

ℎ5

90
𝑓(4)(𝜉(𝑥)).       (Eq. 4-29) 

Notice in Equation 4.29 that the error term in Simpson’s Rule involves the fourth 

derivative of 𝑓, meaning it gives an exact result when applied to a polynomial of degree 

three or less. In contrast, the error term of the Trapezoidal rule ( can only give an exact 

result for a polynomial of degree one. When choosing a numerical integration technique, 

Simpson’s Rule was preferable simply due to its improved accuracy. Aside from the 

higher-order derivative in the error term, the midpoint calculation included in Simpson’s 

Rule gives the approximation more balance. Returning to the problem, the integration 

from x0 and x2 using Simpson’s Rule described in Equation 4.29 are replaced by some 

u′(t) from Variation of Parameters (recall Equation 4.26). We obtain the values for each 

time point τ by solving u′(t) at an odd number of time points.[5] This integral effectively 

replaces the integral portion of the equation since u′(t) is obtained by multiplying the 

inverted fundamental matrix by the ‘g vector’ at the given time interval.[7] 

𝑥(𝑡) = Φ(𝑡)𝑥0 +Φ(𝑡) ∫ Φ−1(𝑠)𝑔(𝑠)𝑑𝑠,
𝑡

𝑡0
               (Eq. 4-30) 

 

Once x(t) is calculated, it becomes the new initial condition for the next iteration; 

thus becoming a series of initial value problems. The schematic of the general process is 

shown in Figure 4-1 and the model code is available in Appendix E. 

 

 
 

Figure 4-1: A schematic of the general process of the matrix-based numerical method 
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Figure 4-2 shows that the accuracy for larger step sizes is comparable to smaller 

ones. The previous examples show that the concept of utilizing an eigenvalue / 

eigenvector solution with numerical integration is a valid technique for solving large 

systems of ordinary differential equations. However, one of the primary issues with the 

physiological system of interest is stiffness. 

 

 

Figure 4-2: Solutions to 2 x 2 example, solved with three different step-sizes and 

compared to the exact solution at each time point. The accuracy compared to the step-size 

here demonstrates the negligible loss of accuracy for larger step sizes using this method 

 

 

For stiff systems, there are even more appropriate numerical integration 

techniques that can be implemented to improve efficiency. Similar to the Adaptive-Step 

Runge-Kutta-Fehlberg method discussed in Section 4.1.3, numerical integration methods 

can be extended to adaptive numerical quadrature methods. Recalling that, in general, 

adaptive step methods seek to use the fewest data points while not exceeding a certain 

upper bound on error. This goal is rarely achieved with equally spaced points. Instead, 

adaptive step methods adjust the step size with each iteration, depending on the amount 

of change occurring in that particular 130 time interval. The primary issue with stiffness 

is the need to maintain a very small step size in order for the system to be stable.[7, 148] 
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A small time step size over long time periods cause concern with computational 

efficacy. For the purposes of this work in solving the 44 compartment PBPK model, 

using the matrix framework allowed for even models with time intervals spanning up to 

96 hours at step sizes of 0.05 to solve within minutes. The issue of stiffness, while still 

present in this model system, did not hinder the computation speed enough to justify the 

additional effort and complexity. Therefore, a more complex adaptive method would not 

add a necessary improvement in this case. Were this method to become necessary for a 

particularly stiff physiological system, the following approach would be appropriate for 

varying the step size. 

4.2.3.1 Adaptive Numerical Integration 

 

If a more efficient option had become necessary, this matrix method could be 

further generalized by equipping the method to solve both stiff and non-stiff systems. For 

large systems with significant changes in some time intervals and not in others, the issue 

of stiffness could be remedied by implementing an adaptive numerical integration 

technique to increase computation efficiency. Since the structure of Simpson’s Rule was 

already present for the matrix method, it would be intuitive to choose the adaptive step 

method corresponding to Simpson’s Rule - Adaptive Composite Simpson’s Rule. First, 

we must briefly explain the structure of Composite Simpson’s Rule in order to move on 

to the adaptive version. The primary difference in Simpson’s Rule and Composite 

Simpson’s Rule is how the step-size h is calculated. While Simpson’s Rule calculates h 

as (b − a)/2, Composite Simpson’s Rule uses h = (b − a)/n for any positive even integer 

n. This gives the flexibility of subdividing the interval [a, b] into n even sub-intervals 

instead of 2 in regular Simpson’s Rule’s. In general, Newton-Cotes methods like 



120 

 

Simpson’s Rule, Trapezoidal rule, and the like, are less suitable for long integration 

intervals than piece-wise methods. Composite Simpson’s Rule is one such method that 

uses a lower-order Simpson’s Rule. To maintain accuracy over a large interval, a high-

degree formula would be required since higher-degree polynomials tend to oscillate. 

Coefficients for high-order formulas are difficult to obtain, so using a lower-order 

Newton-Cotes formula like Simpson’s Rule for a piece-wise approach is beneficial. The 

lower order derivative The lower order derivative in the error term is compensated for by 

the ability to make the step-size h considerably smaller for intervals with considerably 

more change. This method is outlined in Section 4.4 of Burden’s Numerical Analysis, 

specifically in Algorithm 4.1. Composite Simpson’s Rule is the most frequently used 

quadrature algorithm for general purposes.[5]  

Then, with the added advantage of choosing an even integer value for n, Adaptive 

Composite Simpson’s Rule uses Algorithm 4.3 in Section 4.6 of Burden’s Numerical 

Analysis to continue to divide sub-intervals into increasingly more sub-intervals for areas 

where there is great change until the error is below some tolerance. In Algorithm 4.3, the 

error is determined using the difference between the approximation of Simpson’s Rule 

and the approximation for the summation of the approximations for the halved sub-

intervals. In other words, if the total interval a to b is bisected by c, then the Algorithm 

calculates from a to midpoint c with a midpoint between. The same process is done for 

the sub-interval c to b. The sum of the approximations of those two halves are compared 

against the original Simpson’s Rule approximation to see if error falls within a tolerance. 

If it does, the approximation is accepted, and the integration progresses to the next time-

step. If it does not, each half sub-interval is halved again, and the process described above 
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is carried out on each of the two new halves.[5] For very tricky systems, this algorithm 

could be a great solution, and it may be interesting to consider for future work. 

 

4.3 Comparison of Methods 

 

Unlike the traditional numerical methods, this matrix method is not susceptible to 

issues with stiffness since the analytical solution for each time interval is calculated and 

then numerically integrated using Adaptive Composite Simpson’s rule. It allows the 

modeler to use an adaptive time step, maintaining fewer mesh points for the same 

accuracy. Thus, any linear or approximately linear system can be described using this 

method in a more efficient way than traditional adaptive-step methods. This textbook 

example solved analytically and using this matrix-based numerical approach served as an 

initial validation for the R code. As mentioned in earlier sections, the overall process for 

solving any system of linear ordinary differential equations is broken down into a few 

matrices that go into one simple function and output a matrix of concentrations from the 

initial time to the final time at increments of two times the step size (Figure 4-3). The 

increments are twice the step size due to the numerical integration in Composite Simpson 

rule. The function in R contains all the matrix manipulation shown in the sections for 

Variation Parameters along with the implementation of Simpson’s 1/3 Rule for the 

integration over time. 
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Figure 4-3: A more detailed flow of the inputs and outputs of the matrix-based numerical 

method 

 

 

4.4 Compartmental Model Examples 

 

4.4.1 Three-Compartment PK Model Example 

Once the functions for calculating the solutions were trustworthy, we were wary 

of making a jump from a 2 x 2 matrix example to a 40 x 40 complex physiological 

system without an intermediate step. From the literature, a simple three-compartment 

pharmacokinetic model of Remifentanil was chosen.[151] This model was described by 

three coupled first-order ordinary differential equations that were clearly published in the 

paper with all necessary parameters and plots, making it ideal for reproduction for 

validation. The equations shown below describe the model in Figure 4-4. 
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Figure 4-4: A traditional representation of a three-compartment pharmacokinetic model 

described by Cascone et al 

 

 

Central Compartment 

 

V1 
𝑑𝐶𝑝

𝑑𝑡
 = −CL1C1 + k21V2C2 + k31C3V3 − [(k12 + k13 + k10)C1]V1 + I(t) 

 

Highly Perfused Compartment 

 

V2 
𝑑𝐶2

𝑑𝑡
 = k12C1V1 − k21C2V2 − Cl2C2 

 

Scarcely Perfused Compartment 

 

V3
𝑑𝐶3

𝑑𝑡
 = k13C1V1 − k31C3V3 − Cl3C3 

 

Instead of representing the system in the traditional equation format, the same 

equations can be represented in matrix format as shown below, where the matrix A 

represents the rate coefficients and parameters, x represents the initial conditions, or in 

this case, the initial concentrations, g(t) is the dose vector, and x′ is the solution to the 

system at a given time.[7] 
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(

 
 −((

𝐶𝑙1

𝑉1
) + 𝑘12 + 𝑘13 + 𝑘10) 

𝑘12𝑉1/𝑉2
𝑘13𝑉1/𝑉3

𝑘21𝑉2/𝑉1

−((
𝐶𝑙2

𝑉2
) + 𝑘21)

0

 

 𝑘31𝑉3/𝑉1
0

−((
𝐶𝑙3

𝑉3
) + 𝑘31)

)

 
 

(

 
 

𝐶1

𝐶2

𝐶3)

 
 
+   

 

(

 
 

𝐼(𝑡)

0

0 )

 
 
=

(

 
 

𝑑𝐶1/𝑑𝑡

𝑑𝐶2/𝑑𝑡

𝑑𝐶3/𝑑𝑡)

 
 

          (Eq. 4-31) 

 

Instead of attempting to solve directly for the analytical solution over the two-

hour span of observations, a plot from the paper digitized paper and compared it to the 

solution generated by our matrix method. The observations overlaid on our model 

predictions using the author’s parameters are shown in Figure 4-5. As you can see, the 

model fit is good, and the curve is comparable to the curve generated by the original 

authors. [151] The source R code for this model example is available in Appendix C. 

 

 
 

Figure 4-5: Plot of observed versus model predicted values for the human Remfentanil 

model, illustrating that the pbpkme method works at least as well as traditional numerical 

methods on classic compartmental pharmacokinetic models 
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4.4.2 Physiologically-Based Pharmacokinetic (PBPK) Example 

The solutions from the three-compartment model were validation enough to move 

forward to this forty compartment PBPK model of doxorubicin (DOX) from literature, 

which is the model of interest. There were too many equations to reasonably list them all 

for the purpose of this paper, but the full equations can be found in the online 

Supplementary Material from the original paper.[8] The general schematic of the PBPK 

model (Figure 4-6) is complex in itself, including both bound and unbound drug for five 

non-metabolizing compartments, two blood compartments, two metabolizing 

compartments with three sub-compartments each, for both the parent drug, doxorubicin, 

and the metabolite, doxorubicinol.  

 

 
 

Figure 4-6: Plot of observed versus model predicted values for the human Remfentanil 

model, illustrating that the pbpkme method works at least as well as traditional numerical 

methods on classic compartmental pharmacokinetic models 

 

 

The metabolism from DOX to DOXol in this model is described by Michaelis-

Menten kinetics[83], and for DOX, the substrate concentration is negligibly smaller than 

the Michaelis constant.[17, 66, 128] This means the reaction rate and concentration are 
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directly proportionate to each other, the reaction remains first-order linear. The two 

equations highlighted in Figure 4-6 show that these types of models, while described by 

first-order ordinary differential equations, have considerable complexity in addition to 

dimensionality.  

It should be little surprise that a system like this would run into issues of stiffness 

and computational efficiency. Just like in the previous three-compartment model, we 

represent the differential equations in matrix format. The detail in a model this large 

complex would make the actual matrix unreadable here, but the structure is shown above. 

The matrix components, A, x, g(t),and xt retain the same meaning as in the three-

compartment model.[7, 151] This matrix structure is universal no matter how many 

ordinary differential equations are in the system, which makes it generalizable. With the 

variety and complexity of mathematical models needed throughout the field of 

pharmaceutical sciences, this structure is ideal for application in pharmacometrics. 

(
−(𝑄1/𝑉1) ⋯ (𝑄𝑛/𝑉1)

⋮ ⋱ ⋮
−(𝑄1/𝑉𝑛) ⋯ (𝑄𝑛/𝑉𝑛)

)(
𝐶10
⋮
𝐶𝑛0

) = (
𝑑𝐶10/𝑑𝑡

⋮
𝑑𝐶𝑛0/𝑑𝑡

)   (Eq. 4-32) 

No exact solution can be computed for this model, so another visual predictive 

check was implemented for validation. A plot from the original paper[8] was digitized 

and compared to the solution generated by the matrix-based method, and the results are 

shown in Figure 4-7. The red dashed line is from literature, and the matrix solution is in 

blue – you can see they overlay almost exactly, which was an excellent validation that 

this method works. 
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Figure 4-7: Predictions from the model solved with the matrix-based numerical method 

overlaid on the predictions generated by the digitized predictions from Dubbelboer et al. 

 

 

4.5 Conclusion 

 

Linear systems of ordinary differential equations have limitless application in all 

fields of study and in countless real-world problems. Combining two established methods 

– Variation of Parameters[7] and Simpson’s 1/3 Rule[5] – gives an elegant framework for 

solving any linear system of ordinary differential equations, but especially those dealing 

with stiffness and long computation time. In those cases, this matrix-based numerical 

method is likely to perform better than many traditional methods when solved in R. Stiff, 

high-dimensional ODE systems are unsurprisingly common in PK and PBPK models, 

since they are characterizing a physiological system. One limitation to this method is that, 

as briefly mentioned in Section 2.2.1, there is an assumption of linearity. The systems of 

equations for most PBPK models can be assumed to be linear or can be linearized. This 

assumption can generally be made since there is physiological reality tied to the bounds 
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on the parameters. These bounds are generally of such small magnitude that in practice, 

concentration values never reach a point that the behavior cannot be captured with linear 

or first-order kinetics.[36, 68, 152] Most often, non-linearity occurs when, at some time 

point, a critical concentration is reached where the binding or metabolism kinetics causes 

non-linear clearance.[153] If a non-linear system of differential equations is necessary to 

describe the system, several approaches have been applied successfully to these PBPK 

models. Some of these approaches include Runge-Kutta methods and inductive methods 

of generating approximations for these non-linear systems using iterative linearization as 

described by Duffull.[152] PK and PBPK modeling are becoming standard of practice for 

many regulatory agencies, and because of that, most major players in the pharmaceutical 

industry prefer to use PK and PBPK modeling at some point in their pipeline.[154] 
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CHAPTER 5  

 

INTER-SPECIES SCALING 

 

 

In the previous sections, a whole-body minimal PBPK model of DOX was 

developed by modifying a previous porcine model from literature.[8] The purpose of the 

PBPK model was to estimate the behavior of DOXol in the heart in order give better 

insight into dose adjustments for DOX due to its limiting cardiotoxicity. Next, a matrix-

based method was developed for efficiently solving large, complex systems of 

differential equations that describe the PBPK model.[6, 5] While the ability to achieve 

insight into DOXol concentration in the heart of a mouse, a rat, or even a pig is useful for 

gaining a deeper understanding of DOX, it is less useful clinically. Since the availability 

of data of DOXol in the heart is virtually non-existent in humans, it becomes necessary to 

accurately scale the parameters in the model from the sub-clinical species that do have 

the heart DOXol concentrations. In the case of the data collected for this dissertation, the 

only DOXol concentration versus time data in the heart available was in a mouse model. 

Thankfully, extrapolation across species of common pre-clinical animals is a central 

process in pharmaceutical research and development.[155] 

 

5.1 Allometry Concepts 
 

One of the most common ways of this inter-species extrapolation is through 

allometry. Allometry is broadly defined as the study of size and its consequences. The 
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term first originated in engineering and was coined by Huxley and Tessier in 1936 to 

describe properties that change proportionally with size.[156] Just a few years later, 

Benedict demonstrated that basal metabolic rate (BMR) did not scale linearly with body 

weight by plotting total heat production against body weight. Kleiber defined the 

metabolic rate for mammals by the allometric equation: 

Pmet = 70 × M 3/4           (Eq. 5-1) 

which is still widely used today.[156] The concept of allometric scaling was originally 

based on the power-log relationship that exists between the body weight and drug 

clearance in mammals. The general form of this power function is: 

Y = aWb       (Eq. 5-2) 

where Y is the new parameter or parameter of interest, a is the coefficient, W is the body 

weight of the subject, and b is the exponent of the allometric equation. The parameters a 

and b are fitted empirically where the exponent b is the slope of the regression line when 

plotted on a log-log scale.[157] 

Allometric scaling methods have been modified and updated for the past several 

decades and have become a fast and convenient way to either interpolate or extrapolate 

pharmacokinetic parameters between species.[156] It is one of the most commonly used 

methods for scaling clearance from sub-clincal species to humans.[158] However, studies 

have indicated that drug clearance cannot, in every case, be reliably predicted by just 

Equation 5-2.[157]. Some improvements have been made over the years to bolster the 

predictive ability of allometric scaling. Adjustments for brain weight (BRW), maximum 

life-span potential (MLP), unbound fraction in plasma, liver blood flow (LBF) methods, 

and corrections for metabolic clearance.[159, 160, 161, 162, 163] As is true with most 
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applied mathematical methods, different allometric scaling methods have advantages and 

disadvantages, and in some cases, more sophisticated inter-species scaling methods are 

necessary.[156] The main benefit to single-species allometry is its cost effectiveness.[9] 

For the model described throughout this work, simple allometry was used to scale 

parameters between species. 

 

5.2 Inter-Species Scaling of Doxorubicin 

 

The most common pharmacokinetic parameters extrapolated using allometry are 

clearance, volume-of-distribution, and elimination half-life.[164] In DOX, these three 

parameters have been identified as having high inter-patient variability as well as inter-

occasion variability. The inter-species scaling of pharmacokinetic parameters like 

clearance is generally well-predicted using simple allometry for both macro-molecule 

drugs and small-molecule drugs that are excreted renally. Small molecules that are 

hepatically eliminated, however, tend to have higher prediction error using simple 

allometry, even with multiple species. The prediction error is generally linked to 

hepatically eliminated, small-molecule drugs that have low hepatic extraction ratio 

(Eh).[9] The hepatic extraction ratio is a drug-specific parameter that is a combination of 

several other drug-specific physiological PK parameters - fraction of unbound drug in 

blood, hepatic intrinsic clearance of unbound drug, and hepatic blood flow.[165] 

Fortunately, prediction error has been shown to be reduced by correcting the simple 

allometric equation by Maximum Life-Span Potential (MLP) or brain weight (BRW).[9] 

The MLP and BRW for mouse, rabbit, dog, pig, and human are listed in Table 5-1.  
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Table 5-1: Calculated Maximum-Lifespan Potential and Brain Weight - Values 

Commonly Used as Correction Factors for Inter-Species Scaling of Hepatically 

Eliminated Drugs like DOX in Several Laboratory Animals and to Humans (Source [161, 

166, 167, 168, 169]) 

 

Correction Factors for Allometric Scaling 

Species Calculated MLP (years) Brain Weight (% body weight) 

Mouse  2.67 1.65 

Rat  4.70 0.72 

Rabbit  8.00 0.39 

Dog 19.70 0.78 

Pig 11.40 0.50 

Human 93.40 2.00 

 

 

For small-molecule drugs like DOX, even single species allometry with a fixed 

allometric exponent can be useful. Finding a single best value for the allometric exponent 

is difficult, but in general, allometric exponent values of between 0.65 and 0.70 give 

acceptable predictions for common PK parameters across species and to humans.[9] 

5.2.1 Determination of Model Parameters 

 

For the inter-species scaling performed in this work, physiological parameters for 

mouse, rat, rabbit, dog, pig, and human were obtained from literature. The data was 

collected by digitizing plots using the Quintessa Graph Grabber software.[170] Sampling 

times were recorded from literature, when available, and the data series’ pulled from the 

graphs were pulled at those time points with reasonable accuracy. Some of the graphs 

were from very old studies and had poor image quality. Some graphs for DOX and 

DOXol have very long observation times that were measured in hours due to the long 

half-lives of DOX and DOXol (recall Table 3-1).[31, 32] In these cases especially, it was 

difficult to distinguish between a 5 and 15 minute time point on a graph. It is understood 

that some additional variation was introduced with human error. However, for all the 

digitized data, the shape and magnitude were congruous with that of the original data 
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presentation. Any units for dose or concentration measurements were standardized to µM 

for consistency. For weight-adjusted dosing by body weight in kilograms, the reported 

mean weight of the subjects was used. If no mean weight in kilograms was reported, 

accepted average values were used.[171] Similarly, in larger mammals and in human, 

body surface area (BSA) is a common way to adjust dosing by size.[118] If BSA was 

used in dose calculations, the BSA was estimated using mass in kilograms with 

conversion factors from Nair et al.[171] Dose volumes, if not given explicitly in the paper 

or supplementary information, were taken from recommended industry dosing guidelines 

for laboratory animals.[172] 

Since the original model from which our matrix model was adapted was a pig 

model [8], the pig parameters were the initial values used. As such, several specific 

parameters that were incorporated into the model were not readily available in literature. 

One reason for this is that the Dubbelboer pig model was designed as a minimal PBPK 

model, as noted in Section 3.5. A notable advantage in the Dubbelboer model is its 

simplified approach to association/dissociation constants - Clon and Cloff - as opposed to 

the traditional approach of assigning compartment specific partition coefficients 

(generally denoted as Kp,u,tissue). The benefit of this approach is that it helps keep a rather 

complex model from becoming over parameterized. The Dubbelboer model also included 

several binding parameters which are similar but nuanced. The Fup,DOX and Fup,DOXol 

represents the formal fraction of the tissue compartments that were unbound. The 

movement between the bound and unbound compartments were dictated by the Clon and 

Cloff parameters. The intracellular binding site, designated as bind site, represents the 

volume the tissue compartment that was available for binding. It is a surrogate for the 
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arbitrary volume for the nucleus of the tissue’s cells, DNA, and cardiolipin. This fraction 

represents all intracellular binding sites for DOX and DOXol. The value for bind site was 

set to 0.2, to represent the extensive binding of DOX to intracellular structures within 

tissues. In other words, effectively 20% of the tissue volume is available for binding in 

most compartments. The only exception being the kidney, liver, and heart, in which the 

cellular sub-compartment is the only portion that contains intracellular binding sites. This 

effect was accomplished by multiplying the volume fraction (Tables 5.2 and 5.3) by bind 

site for the bound tissue compartment and (1-bind site) for the unbound tissue 

compartment. 

 

Table 5-2: Fraction of Body Weight of Each Sub-Compartment Within the Kidney and 

the Liver Originally Determined in the Dubbelboer Pig Model and Used Throughout All 

Species in this Inter-Species Scaling (Source [8]) 

 

Sub-Compartment Breakdown of Volume in Liver and Kidney 

Kidney - Vascular 0.05 

Kidney - Extracellular 0.159 

Kidney - Cellular 0.791 

Liver - Vascular 0.055 

Liver - Extracellular 0.159 

Liver - Cellular 0.786 
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Table 5-3: Fraction of Total Body Weight for Each Respective Compartment for Each 

Species used in Inter-Species Scaling of DOX. The Pig Parameters in Both Tables were 

Adapted from Dubbelboer.[145] Mouse, Rat, Dog, and Human Parameters were Adapted 

from the International Life Sciences Institute Resource.[173] The parameters for the 

Rabbit were Adapted from a Meta-Analyses Done by Davies.[174] 

 

Physiological Parameters for Various Sub-Clinical Species 

 Mouse Rat Rabbit Dog Pig Human 

Volume (Fraction of Total Body Weight) 

Blood 0.049 0.075 0.082 0.082 0.0553 0.079 

Lung 0.007 0.006 0.0085 0.008 0.0109 0.025 

Heart 0.005 0.025 0.003 0.008 0.005 0.005 

Kidney 0.017 0.008 0.0075 0.005 0.0055 0.004 

GI/Spleen 0.099 0.071 0.0604 0.08 0.0861 0.031 

Liver 0.055 0.035 0.0499 0.033 0.0316 0.026 

Slow Perfused 0.726 0.718 0.674 0.779 0.7154 0.794 

Rapid Perfused 0.042 0.064 0.115 0.008 0.0952 0.053 

 

 

However, it posed a challenge for finding equitable parameters in the literature 

that represented these universal association and dissociation constants. Additionally, 

intra-organ clearance parameters that represented passive diffusion (Pdiff ) and membrane 

clearance (Clmem) were universal for all compartments, which is less common in PBPK 

modeling. Even more so, the original Dubbelboer model did not include a heart 

compartment, which was vital to the research question of this work. In order to maintain 

the mass balance of drug in to drug out, original values of the physiological parameters in 

the Dubblelboer had to be adjusted. 

A wealth of parameter data for a range of species was found in a meta-analysis of 

the literature by the International Life Sciences Institute. This resource was used to 

properly adjust the volume fractions to a physiologically relevant balance that included 

the heart.[173] The exact breakdown of the sub-compartments of the liver and kidney and 

the combination of tissues given specific compartments versus lumped into slow or rapid 

perfused tissue were unique to the Dubbelboer model. In order to create physiological 
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parameter sets analogous to the structure of the Dubbelboer model, values from literature 

were used to determine realistic values for each of the compartments included in the 

model.[173] The final physiological parameters in the model are listed in Table 5-2, 

Table 5-3, and Table 5-4.  

 

Table 5-4: Fraction of Total Cardiac Output for Each Respective Compartment for Each 

Species used in Inter-Species Scaling of DOX. The Pig Parameters in Both Tables were 

Adapted from Dubbelboer.[145] Mouse, Rat, Dog, and Human Parameters were Adapted 

from the International Life Sciences Institute Resource.[173] The Parameters for the 

Rabbit were Adapted from a Meta-Analyses Done by Davies.[174] 

 

Physiological Parameters for Various Sub-Clinical Species 

 Mouse Rat Rabbit Dog Pig Human 

Blood Flow (Fraction of Cardiac Output)  

Portal Vein 0.14 0.153 0.264 0.46 0.21 0.18 

Hepatic Artery 0.02 0.021 0.0698 0.251 0.05 0.047 

Lung 1 1 1 1 1 1 

Heart 0.066 0.049 0.0302 0.046 0.04 0.04 

Kidney 0.091 0.141 0.151 0.173 0.114 0.175 

GI/Spleen 0.14 0.153 0.226 0.046 0.21 0.18 

Liver 0.161 0.141 0.334 0.297 0.114 0.175 

Slow Perfused 0.217 0.528 0.292 0.277 0.05 0.342 

Rapid Perfused 0.033 0.023 0.0604 0.022 0.536 0.13 

 

 

The pig parameters in all three tables were adapted from Dubbelboer.[145] 

Mouse, rat, dog, and human parameters were adapted from the International Life 

Sciences Institute resource.[173] The parameters for the rabbit were adapted from a meta-

analyses done by Davies.[174] In Section 3.5, the structure of the sub-compartments of 

the metabolizing compartments were illustrated in Figure 3-3 for organs with both 

metabolism and excretion - liver and kidney- and Figure 3-4 for metabolism only - the 

heart. Note that since the heart compartment was not included in the original model, 

equivalent tissue parameter breakdowns for the sub-compartment of the heart as a 

metabolizing compartment were not available.[8] The kidney values for the fraction of 
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the compartment that is vascular, extracellular, and cellular were used for the heart 

compartment. The rationale for this was that the kidney and heart were closer in total 

body volume (Table 5-3) and fraction of cardiac output (Table 5-4). Additionally, in 

Section 1.3.1, it was discussed higher DOX and DOXol concentrations per gram than the 

heart but were not major sites of toxicity. A reason cited for this paradox is that the liver 

and kidney contain a greater number of inactivating and binding enzymes that reduce the 

toxic effect and eliminate the parent drug. As mentioned, DOX is hepatically eliminated 

so one possibility is that the concentration of inactivating and eliminating enzymes is 

higher in the liver. The heart tissue does not contain the as high of a concentration per 

gram of those enzymes that a true metabolizing and excreting organ would. Thus, the 

liver may be a less suitable analog for the heart than the kidney, which is known to be 

responsible for less metabolism of DOX. Additionally, Table 1-2 from a human autopsy 

study done in humans showed that the concentration per gram of DOX and DOXol in the 

heart was more similar to the kidney.[40] 

As shown in Table 1-2, the liver and kidney both have higher concentrations per 

gram than the heart. Higher DOX and DOXol concentrations in the liver and kidney are 

also observed in animal species.[63, 64] However, the liver and kidney are not major 

sites of toxicity for patients receiving DOX, which leads to conjecture other factors 

differentiating DOX and DOXol behavior in tissues. One such conjecture is that liver and 

kidney tissues are rich in binding and inactivating substances due to their excretory and 

metabolic functionalities, which prevent DOX and DOXol from causing cellular damage 

in those tissues.[40] For example, reduced DOX toxicity is observed in the presence of 

glutathione - a common antioxidant found in the liver.[65] 
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As mentioned before, the initial parameter set used in the Dubbelboer PBPK 

model was the starting point for estimating parameters in the Final PBPK Model. Most 

parameters from the Dubbelboer were retained except for a few parameters that were 

adjusted to accommodate the addition of the heart compartment, as a metabolizing 

compartment, into the model. These parameters were used as the starting values for the 

sensitivity analysis in the following section and are listed in Table 5- 5 and Table 5-6. 

 

Table 5-5: Results of Sensitivity Analysis as Shown by Percent Change in the Objective 

Function Value (Inner Cells of Table) Given a Percent Change (Top Row in Table) in 

Parameter (Leftmost Column), Ranked from Most Change to Least Change 
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Table 5-6: The First Section Contains Parameter Values with Variability in Percent 

Coefficient of Variation Reported by Dubbelboer Et Al. [8] if no %CV Is Reported, then 

the Parameter was Assumed or Taken from Literature by The Authors. The Second 

Section Contains Parameters that were Estimated for the New Model, Based on the 

Dubbelboer Model, Containing the Heart Compartment. These Parameters Remained 

Constant Across All the Data Sets Used in Scaling 

 
Parameters in the Final Model 

Parameters Directly from Dubbelboer et al. 

Parameter Value (%CV ) Units 

Pdiff,DOX 15 L/min 

Pdiff,DOXol 15 L/min 

Clmem,DOXol 0.00357 (52) L/min 

Clon,DOXol 0.109 (38) L/min 

Cloff,DOX 0.000115 (11) L/min 

Clexcr,ki,DOX 0.215 (24) L/min 

Clexcr,ki,DOXol 0.0154 (42) L/min 

Clexcr,li,DOX 0.213 (450) L/min 

Clexcr,li,DOXol 0.178 (65) L/min 

SFkidney 14.7 (17) - 

SFheart 3.39 (240) - 

SFliver 1.21 (22) - 

CbCpDOX 1.3 - 

CbCpDOXol 1.3 - 

GFR 2.4 ml/min/kg 

Vmax,liver 337 pmol/(mg protein ×min) 

Km,liver 163 µM 

Vmax,kidney 127 pmol/(mg protein ×min) 

Km,kidney 134 µM 

Parameters Fitted to Final Model 

Clmem,DOX 0.9 L/min 

Clon,DOX 0.3465 L/min 

Cloff,DOXol 0.00000284 L/min 

Vmax,heart 85 pmol/(mg protein ×min) 

Km,heart 15 µM 

Fup,DOX 0.00007 - 

Fup,DOXol 0.00007 - 

bind site 0.2 - 

 

 

5.2.2 Extrapolation to Humans 

 

Rather than starting from scratch, allometric equations for DOX existing in 

literature were collected and were tested on the observations from literature. Many of the 
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papers suggested scaling parameters from a rodent model (i.e. rat or mouse) since that is 

generally the earliest in vivo data that is collected in a pharmacokinetic study.[36, 9, 156] 

Additionally, the mouse was chosen as the standard for scaling purposes since it is one of 

the few data sets that clearly included the metabolite DOXol concentration in the heart 

compartment. 

The van der Vijgh data set became the basis for all subsequent scaling since it had 

both venous blood and heart observations for both DOX and DOXol.[12] The venous 

blood DOX concentration and the heart DOXol concentration were the two 

concentration-time courses of interest due to the desire to maximize therapeutic effect 

(venous blood, DOX) and minimize cardiotoxicity (heart, DOXol). 

A sensitivity analysis was carried out on the van der Vijgh data set by varying the 

original parameter values by ±5%, ±10%, and ±20% and measuring the percent change in 

the objective function. The objective function was a least squares regression 

measurement between the observed values of concentration and the model 

predictions.[175] These results of this sensitivity analysis are shown in Table 5-5. The 

percent change in the objective function value for each respective percent change in the 

parameter value was ranked from most change to least change. There is a clear order of 

magnitude difference in percent change between the third and fourth parameters in Table 

5-5. Thus, the first parameter - B : P- was considered to be sensitive and the others were 

fixed. The Blood:Plasma Partition Coefficient (B : P ) is a measurement of a drug 

concentration between whole blood and plasma. Plasma measurements are typically the 

favored method of measurement in pharmacokinetic studies, which can be misleading if 

the drug has a particularly high affinity for binding to red blood cells (RBC) in whole 
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blood.[176] It is determined experimentally using an RBC partitioning assay where 

whole blood is centrifuged and the concentration of the compound is measured in the 

separated fluids - plasma and red blood cells.[177] Understanding a drug’s interaction 

with red blood cells is important for whole body PBPK models. Drugs with a high 

binding affinity to red blood cells could cause a concentration sink in the whole blood 

that is not captured in plasma concentration measurements.[176] DOX has been shown to 

heavily interact and bind with red blood cells and even negatively affect their function 

and integrity.[178] It is not wholly surprising, then, that this Blood:Plasma Partition 

Coefficient (B : P ) was a sensitive parameter in the model. The fraction of DOX bound 

to red blood cells directly affects the remaining DOX available in the plasma. The 

concentration of DOX in plasma is then divided again into bound and unbound fractions 

(Fup,DOX and Fup,DOXol). Recall that only unbound drug in the plasma is bioavailable. 

The remaining fixed parameters are listed in Table 5-6. The top section of Table 

5-6 contains parameter values with variability in percent coefficient of variation reported 

by Dubbelboer et al.[8] If no %CV is reported, then the parameter was assumed or taken 

from literature by the authors. The bottom section contains parameters that were 

estimated for the new model, based on the Dubbelboer model, containing the heart 

compartment. The parameters listed in this table remained constant across all the data sets 

used in scaling. A flow chart of the process of developing the model structure and 

parameters are shown in Figure 5-1. 
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Figure 5-1: Flow chart of the process of developing the model structure and parameters, 

starting with Dubbelboer Model[8] and progressing to the mouse model that was used for 

inter-species scaling.[12] 

 

 

The other parameter that was varied between species was cardiac output (CO). 

There are a range of values that have been observed in different laboratory animals and in 

humans.[179] Cardiac output was one of the most influential physiological parameters 

that affected the fit of the various models. The cardiac output (CO) is measured as the 

stroke volume times the heart rate in beats per minute. It is difficult to measure cardiac 

output since stroke volume is defined as the volume pumped out of the left ventricle 

during each systolic contraction.[180] Because of the need for invasive measurement in a 

living animal, there is some disagreement around the best way to measure cardiac output 

in lab animals.[180, 181, 179, 182] One study done by Cabrales et al. found that for 

animals less than 100 grams, cardiac output scales linearly at 197 (ml/min)/kg ± 

18.8.[183] For 20 gram mice, that translates to 39.4 ml/min ± 3.76 ml/min which is 

consistent with the model fits for the mouse models.[12, 33, 126]) Other factors could 

also contribute to variation in cardiac output. Since heart beats per minute directly affects 

cardiac output, anesthetized animals, resting animals, and active animals of identical 

species and size could have two disjoint ranges of cardiac output measurements.[173] For 
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instance, Beznack tested cardiac output of 180 gram - 240 gram laboratory rats in various 

states of activity, which wildly varied their cardiac output reporting values as low as 31 ± 

5 ml/min and as high as 178 ± 11 ml/min [184]. An early study by Howell found that the 

mean cardiac output for dogs was 236 ml/min with a wide range (91 ml/min - 509 

ml/min).[185]  

Despite the known variability in cardiac output, Figure 5-2 shows a general 

upward trend in cardiac output with respect to body weight. First, the most sensitive 

parameter B : P was estimated on heart DOXol and venous blood DOX concentration 

observations in mice from van der Vijgh et al. using the ’optim’ package in RStudio. A 

built-in Brent method within ’optim’ was used to fit the parameter by asking the function 

to minimize the least squares objective function.[12, 146, 186] The most important 

agreement between observations and predictions from the van der Vijgh data set is the 

DOXol concentration in the heart compartment, which is shown in Figure 5-3.  

 

 
 

Figure 5-2: Plot of cardiac output by body weight in kilograms of each study used for the 

allometric inter-species scaling 
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Figure 5-3: Heart DOXol concentration observations from van der Vijgh mouse data set 

with model predictions overlaid[12] 

 

 

Observations for three additional mouse data sets were then used to overlay model 

predictions on the observed data to validate the model.[187, 188, 127] The results of 

these predictions are shown in Figure 5-4, demonstrating that the model could reasonably 

predict DOX concentration in mice. 

 

 
 

Figure 5-4: Venous blood DOX concentration observations from four mouse data sets - 

A.) Asperen et al.[126], B.) Dai et al.[189], C.) Formelli et al.[33], and D.) van der Vijgh 

et al.[12] - with model predictions overlaid 
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Next, the blood:plasma coefficient B : P value was estimated for one data set from 

each species using each allometric equation to see how the model performed in scaling 

from mouse to the other species. Rahman, Johansen, Oosterbaan, Dubbelboer, and 

Krarup were chosen as representative data sets for rats, rabbits, dogs, pigs, and humans, 

respectively. The following equation was the first to be tested on these data: 

PARnew = PARmouse × (
𝐵𝑊𝑛𝑒𝑤

𝐵𝑊𝑚𝑜𝑢𝑠𝑒
) 0.67                   (Eq. 5-3) 

where PARnew is the scaled parameter for the larger species, PARmouse is the mouse 

parameter, BWnew is the body weight for the larger species, BWmouse is the mouse body 

weight and the 0.67 is the allometric exponent that was utilized for scaling DOX from 

mouse to man in a study by Lee et al. This study who a similar meta-analysis to examine 

how specifically DOX PK parameters scaled from a mouse to a human using simple 

allometry.[64] Allometric exponents between 0.6 to 0.7 are typically acceptable for 

scaling small-molecule drugs across species.[9] 

The equation worked well for mouse to rabbit and reasonably well for mouse to 

rat, but it did not scale well for mouse to pig, dog, human.[12, 133, 132, 190, 192] This 

issue was not entirely surprising though, since it is known that adjustments for BRW or 

MLP reduce prediction error in scaling with small-molecules that are hepatically 

eliminated.[9] It was also known that DOX is one of these hepatically eliminated small-

molecule drugs that has been characterized as having low, medium, and high hepatic 

extraction ratio (ranging from 0.14 to 0.79) by different studies.[11] Due to this range and 

the fact that prediction error is linked to low hepatic extraction ratio, the adjustments 

suggested in Huh et al. were implemented in order to improve the overall fit of the 

models as they were scaled. This study found that there was benefit in implementing the 
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correction factor of Maximum Life-Span Potential or Brain Weight for the low hepatic 

extraction ratio drugs.[9] An exception can be made if the allometric exponent is < 0.71. 

While the allometric exponent estimated in the study by Lee et al. was below that 

threshold at 0.67, the decision was made to move forward with adding a correction factor. 

The general rule is if the allometric exponent is between 0.71 and 1, MLP is the 

appropriate correction factor. If the allometric exponent is > 1, BRW is the appropriate 

correction factor. Since Equation 5.3 did fit some of the species well, its general form 

was maintained with just the correction factor added. The following equation resulted: 

PARnew × MLPnew = PARmouse × (
𝐵𝑊𝑛𝑒𝑤

𝐵𝑊𝑚𝑜𝑢𝑠𝑒
) 0.67                (Eq. 5-4) 

where MLP is specific to the new species used in scaling as listed in Table 5-1. This 

correction factor remedied the poor fits in the pig, dog, and human species and improved 

the fit in rats. The plots of the observed and predicted concentration over time for each 

species are shown in Figures 5.5 - 5.9. Additional data sets for each species, having 

different mean body weights BW , dose regimens, and experiment conditions, to test how 

this equation performed. The final parameter values for CO, BW , and the scaling factors 

for each of the individual data sets are in Table 5-7 for sub-clinical species and Table 5-8 

in humans. The plots of the concentration versus time predictions over the observed data 

for each respective data set fit by the allometric scaling are listed in Appendix F. 

An important clarification about this allometric equation is that all other species 

parameters are scaled from the mouse parameters. In other words, the scaling does not 

proceed from mouse to rat, then rat to rabbit, and so on. Instead, the mouse scales to the 

rat or to the rabbit or to the human. This approach is cost effective in practice since 

mouse studies are generally much less expensive than those in larger animals.  
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Figure 5-5: Observed and predicted venous blood DOX concentration in rats after 

applying allometric scaling - A.) with MLP Correction Factor and B.) without MLP 

Correction Factor to the parameter B : P (Data source: Rahman et al.[45]) 

 

 

 
 

Figure 5-6: Observed and predicted venous blood DOX concentration in rabbits after 

applying allometric scaling - A.) with MLP Correction Factor and B.) without MLP 

Correction Factor to the parameter B : P (Data source: Johansen et al.[117]) 
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Figure 5-7: Observed and predicted venous blood DOX concentration in dogs after 

applying allometric scaling - A.) with MLP Correction Factor and B.) without MLP 

Correction Factor to the parameter B : P (Data source: Oosterbaan et al.[192]) 

 

 

 
 

Figure 5-8: Observed and predicted venous blood DOX concentration in pigs after 

applying allometric scaling - A.) with MLP Correction Factor and B.) without MLP 

Correction Factor to the parameter B : P (Data source: Dubbelboer et al.[8]) 
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Figure 5-9: Observed and predicted venous blood DOX concentration in humans after 

applying allometric scaling - A.) with MLP Correction Factor and B.) without MLP 

Correction Factor to the parameter B : P (Data source: Krarup et al.[45]) 
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Table 5-7: Final Parameter Values for CO, BW , and the Scaling Factors for Each of the 

Individual Data Sets 

 
 Mouse  

  van der 

Vijgh[12] 

Formelli[33] Dai[189] Asperen[126]  

 BP 1.5 1.5 1.5 1.5  

 CO (L/min/kg) 30 50 40 50  

 BW (kg) 0.002 0.002 0.0035 0.0022  

 dose 10 mg/kg 5 mg/kg 10 mg/kg 5 mg/kg  

 duration (min) 1 1 1 1  

 Rat  

  Colombo[187] Rahman[45] Cusack[127] Yesair[188]  

 BP 7.56 10.16 10.16 9.16  

 CO (L/min/kg) 260 200 290 205  

 BW (kg)     0.225 0.35 0.35 0.3  

  BWrat 0.67 
BWmouse 

23.674 31.829 31.829 28.707  

 MLP (years) 4.7 4.7 4.7 4.7  

 dose 5 mg/kg 6 mg/kg 2 mg/kg 10 mg/kg  

 duration (min) 1 1 1 1  

 Rabbit  

  Johansen[117] Bachur[190] Cusack[191] Brenner[12]  

 BP 28.36 31.67 31.67 25.18  

 CO (L/min/kg) 250.14 200 200 325  

 BW (kg)     3.45 4.2 4.2 3  

  BWrabbit 0.67 
BWmouse 

147.451 168.224 168.224 134.3  

 MLP (years) 8 8 8 8  

 dose 5 mg/kg 5 mg/kg 5 mg/kg 3 mg/kg  

 duration (min) 5 1 1 5  

 
Dog 

 

  Oosterbaan[192] Oosterbaan[192] Baldwin[193]   

 BP 23.31 22.86 27.31   

 CO (L/min/kg) 509 509 410   

 BW (kg) 

( BWdog )0.67 

10.5 10.2 13   

 BWmouse 310.818 304.840 358.634   

 MLP (years) 19.7 19.7 19.7   

 dose 1.5 mg/kg 1.27 mg/kg 1.5 mg/kg   

 duration (min) 1 1 1   

 
Pig 

 

  August[194] Dubbelboer[8] Dubbelboer[8]   

 B : P 62.89 76.42 76.42   

 CO (L/min/kg) 55.14 68.14 85.14   

 BW (kg) 

( BWpig )0.67 

20 26.7 26.7   

 BWmouse 478 580.8 580.8   

 MLP (years) 8 8 8   

 dose 1 mg/kg 0.6 mg/kg 0.63 mg/kg   

 duration (min) 90 5.05 50   
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Table 5-8: Final Model Parameters for 5 Human Data Sets in which Equation 5-4 was 

used to Scale B:P by Body Weight 

 
Estimated or Assumed Parameters in Humans Determined with Inter-Species Scaling 

Source [133] [34] [34] [120] [80] 

BP 15.32 17.79 17.79 17.79 17.79 

CO (L/min/kg) 107.14 97.1 97.1 97.1 107.14 

BW (kg) 56 70 70 70 70 
 
BWhuman 

0.67
 

BWmouse 
954.104 1107.964 1107.964 1107.964 1107.964 

MLP (years) 93.4 93.4 93.4 93.4 93.4 

dose 70 mg/m2 36 mg/m2 30 mg/m2 15 mg/m2 75 mg/m2 

duration (min) 1 5760 1 1 15 

 

 

Additionally, since regulatory agencies require testing to be conducted in a rodent 

and non-rodent species before proceeding to humans, having insight into moving from 

rodent to non-rodent studies is both cost- and time-efficient. In terms of the Blood:Plasma 

Coefficient B : P , an interesting trend was observed when looking at the Log-Log plots 

of the B : P values versus the body weight BW of the animals (Figure 5-10).  
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Figure 5-10: Plot of Blood:Plasma Partition Coefficient for each study used in the 

allometric interspecies scaling - the top plot shows the trend in the parameter with the 

Maximum Life-Span Potential (MLP) Correction Factor while the bottom plot shows the 

trend in the parameter without the correction factor. 

 

 

Without the Maximum Life-Span (MLP ) correction factor (bottom plot in Figure 

5-10), there is a neat positive correlation of B : P based on body size, which is to be 

expected with allometric scaling. However, when the MLP correction factor is added, the 

B : P values for the human are much lower. This deviates from pure allometry in that the 

parameter scales not only on body weight, but also in longevity. The idea that MLP is an 

appropriate corrector for hepatically cleared small-molecule drugs originates from the 

inverse correlation between longevity and hepatic cytochrome P450 (CYP450) drug 

oxidation rates.[161, 9] In other words, the longer the lifespan of a particular species, the 

lower the hepatic oxidation of CYP450.[195] CPR receives an electron from NADPH 

and distributes it to CYP450, which then becomes capable of metabolizing drugs.[196] 

This detail is particularly interesting for DOX since, while DOXol is metabolized by 

aldo-keto- and carbonyl- reductases, both aglycone metabolite formations involve the 
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CYP450 enzyme.[4] The aglycone metabolites, doxorubicin deoxyaglycone and 

doxorubicin semiquinone radical, are both notably less cardiotoxic than DOXol.[52] The 

extent to which the more cardiotoxic metabolite, DOXol, metabolizes versus its aglycone 

counterparts could be affected by this correlation of species longevity and CYP450 

oxidation rates in the liver. While this is an interesting conjecture, it is beyond the scope 

of this work. Whether B : P is the actual parameter that affects the predictive ability of 

this model to scale from mouse to rat, rabbit, dog, pig, and human is beyond the scope of 

the available data and interest for this work. Overall, B : P affects the availability of DOX 

in plasma and by proxy, free DOX in plasma available for metabolism, cell-killing, 

clearance, and binding.[68] Whether the effect is direct or indirect, the adjustment of the 

B : P parameter has a major effect on the behavior of the DOX and DOXol predictions 

with this model across species. 

The corresponding R code for the physiological parameters shown in Table 5-3, 

Table 5-4, Table 5-2 for each species are available in Appendix G. The equations for the 

final model are available in Appendix B and the corresponding R code in Appendix D. 
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CHAPTER 6 

 

CONCLUSIONS  
 

 

6.1 Future Work 

6.1.1 Therapeutic Drug Monitoring for DOX 

6.1.1.1 Therapeutic Index 

In earlier chapters, a minimal physiology-based pharmacokinetic model was 

constructed that could accurately predict the concentration of DOX and DOXol over 

time. Physiologic and pharmacokinetic parameters were established that could predict 

specifically the venous blood concentration of DOX and heart concentration of DOXol 

using an allometric scaling equation. PBPK models have been recognized as a promising 

tool for characterization of tissue-level parameters for better understanding of 

individualized pharmacologic response. As previously mentioned, PBPK models are 

more likely to be over-parameterized and therefore, less reliable for predictions. More 

work is needed in bolstering and validation of the use of PBPK models for drugs with 

high inter-patient and inter-occasion variability and narrow therapeutic windows for 

drugs with organ-specific toxicities.[197]  

The concept of a therapeutic window was introduced in Chapter 2. A related term 

that quantifies the width of this “window” is the therapeutic index (TI). The therapeutic 

index is defined as the range of doses at which a drug is considered effective without 

adverse side effects. In animals, this is measured by the lethal dose of the drug for 50% of  
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the population divided by the minimum effective concentration for 50% of the population 

as shown in Eq. 6-1. 

𝑇𝐼 =  
𝐿𝐶50

𝐸𝐶50
                                                (Eq. 6-1) 

where LC50 and EC50 is the lethal dose and minimum effective concentration for 50% of 

the population, respectively. Equation 6.1 is a very straightforward definition of 

therapeutic index, but assessing the therapeutic index in humans requires a larger margin 

of safety and is more difficult to define.[197] 

In humans, the therapeutic index is the range of doses that were effective in 

clinical trials for the median of the participants without unacceptable adverse effects. For 

most drugs, this range is wide enough that the maximum plasma concentration Cmax and 

area under the plasma concentration-time curve (AUC) fall well above the minimum 

therapeutic concentration and well below the toxic concentration. In other words, the 

therapeutic index is wide enough that for most people at recommended prescribed doses, 

these drugs show clinical efficacy with a healthy margin of safety.[198] The difficulty in 

determining the therapeutic index in humans, especially in anticancer drugs, is there is 

not a well-defined number that works universally.[44] 

6.1.1.2 Therapeutic Drug Monitoring for DOX and DOXol 

As mentioned in Chapter 1, despite the known narrow therapeutic index and high 

inter-patient and inter-occasion variability of DOX, there are almost no covariates that 

significantly inform dose adjustments.[11, 64] Dose adjustments for body mass index 

[118], age [32, 135], acidity of urine [117, 133], and hepatic impairment [140] have all 

been investigated thoroughly. The only truly significant factor that improves the dose of 

DOX is adjustment for hepatic impairment, which is essentially standard practice for 
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antineoplastic agents.[140]. This discrepancy further drives the need for more 

individualized dosing regimens for drugs with narrow therapeutic windows.[11, 64]  

However, the exposure (AUC) and the maximum concentration Cmax in humans 

are significantly impacted by the rate and duration of DOX infusions.[44] The dose- and 

schedule- dependence of the pharmacokinetic parameters of DOX has been widely 

observed.[136, 120] Clinically, the side effects of doxorubicin (nausea, vomiting, 

cardiotoxicity) have been shown to decrease as the maximum venous blood concentration 

Cmax in venous blood.[44, 141]. The amount of drug in venous blood is directly correlated 

to the amount of drug distributed to the various tissues, i.e. the heart, since the venous 

blood is the compartment in which the dose is administered.[8] Recall that the total dose 

that goes to the venous blood is transported through the lung to be oxygenated and into 

the arterial blood. The total dose then moves from the arterial blood into the to the extent 

of the flow rate and volume for the vascular compartment of the heart. This 

proportionality leads to the idea that a similar reduction in side effects could likewise be 

linked to the Cmax in the heart. In a study comparing a homogeneous group of breast 

cancer patients receiving DOX either in the conventional IV bolus or a continuous 48 or 

96 hour infusion, ≈47% of the patients in the IV bolus group developed severe 

morphological changes in cardiac tissue as opposed to only ≈9% of the patients receiving 

continuous extended doses.[141] A study done in rabbits showed a 15-fold reduction in 

Cmax from an IV bolus injection to a 69 minute IV infusion.[44]  

It has been observed that the values of AUC and Cmax are proportional to the total 

amount of drug administered in an intravenous bolus under the assumption of linear 

kinetics. A similar, more comprehensive study was conducted by Eksborg where the Cmax 
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and AUC were calculated from patients receiving I.V. infusions of DOX ranging from 20 

to 60 mg/m2 with varying infusion times ranging from 3 minutes to 16 hours. The results 

from this study showed that increasing the infusion duration from 45 minutes to 16 hours 

showed a relatively unchanged therapeutic exposure (plasma AUC), but a 25-fold 

decrease in normalized maximum plasma concentration Cmax at 4 hours and a greater than 

65-fold decrease at 16 hours. It has been reported that clinically, side effects were 

considered tolerable when Cmax is below 60 ng/ml. This constraint means that a 30 mg/m2 

dose should no shorter than 16 hours in order to avoid unacceptable adverse effects, by 

their calculations.[44] This type of dose adjustment based on peak concentration could be 

especially useful if a peak heart DOXol concentration, extrapolated from a plasma 

concentration sample using the PBPK model, could be determined in a similar way. 

Referring again to Table 1-1, most doses are given clinically in fractionated, 

repeated lower doses, which likely allow for clearance of the drug before the subsequent 

dose.[199] However, there may be reason to believe that fractionated dosing has a 

detrimental effect on the therapeutic drug effect on tumor cells. This same recovery time 

that allows DOX to clear the system may also give tumor cells time to recover between 

doses.[142] Additionally, the faster the drug clears, the lower the residence time. Since 

tumors are cell-cycle dependent, lower residence time decreases the chance that the drug 

will reach the tumor cells during their most vulnerable growth phase.[44] As mentioned 

in Chapter 2, the breadth of cancer types that DOX treats makes the relation of 

pharmacodynamic response and dosing schedule too broad of a topic to include in the 

scope of this work. It would certainly be a compelling next step to find an optimum 

balance between tumor killing effect and cardiotoxicity. The extent to which this study 
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will contribute to that balance is by developing a framework that can predict 

concentration in specific tissues for dose monitoring. In general, there is compelling 

evidence in literature that any dose given over a longer time and fractionated doses given 

more frequently can reduce the incidence of cardiotoxicity.[141, 142] 

A similar approach is taken in this work, except instead of the maximum plasma 

concentration, the maximum heart concentration of the metabolite DOXol is extrapolated 

from the PBPK model for the assessment of toxicity. PBPK models lend themselves as a 

useful tool for modeling metabolism kinetics and concentration in a specific tissue or 

organ. The total drug exposure or therapeutic effect, as measured by area under the 

concentration-versus-time curve (AUC), was maximized using the PBPK model and 

’optimize’ function in R.[200, 146, 8]. This optimization function was a better choice 

than other multi-dimensional optimization packages like those used in fitting the PBPK 

model parameters (‘optim’), since only one parameter was being maximized for the 

function.[186] The ’optimization’ function takes an interval of possible values to search, 

the choice of minimization or maximization of the function, the function to be optimized. 

The method used by this function utilizes a combination of the golden search method and 

successive parabolic interpolation and is designed for continuous functions and one-

dimensional optimization.[200] The golden search method is similar to bisection methods 

and searches within the interval for the extrema within the interval. This is particularly 

useful for optimizations like this study which have physiological bounds within these 

values must lie. The algorithm can be relatively slow, but it is robust.[201] The ranges in 

which the rate or total dose were tested were 9 mg/m2 - 75 mg/m2 based on the extremes 

of the ranges which DOX is currently given in humans (Table 1-1).[199]. This equated to 
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a range of 32 µM to 350 µM. A range of 30 µM to 500 µM was were implemented as the 

upper and lower bounds for possible rates in order to give the optimization more room to 

explore higher doses that are still within physiological possibility. Since the rate or total 

dose was the parameter being estimated, the optimization was run in intervals of 1, 5, 30, 

60, 120, 360, 720, 1440, 2160, 2880, and 4320. These are based on clinical dosing 

duration values for DOX in adult humans.[34, 121, 133, 80] A penalty on the objective 

function was added for the maximum concentration of DOXol in the heart exceeding 

10−3 based on the observed values of DOXol in the mouse heart reported by van der 

Vijgh.[12] The values for the physiological and pharmacokinetic parameters in the PBPK 

model used for these minimizations are those listed in Table 5-6. 

The optimization routine for the PBPK model predictions was run for each 

infusion duration listed in Table 6-1 with the goal of maximizing the exposure for that 

length of infusion without exceeding 10−3. Figure 6-1 shows a schematic of the iterative 

process of the therapeutic dose monitoring approach. Figure 6-2 shows both AUC and 

dose given (infusion rate) versus the infusion duration given the maximum concentration 

of DOXol in the heart stayed below 10−3. The red vertical line indicates the infusion 

rate/dose and infusion duration where the AUC is maximized while still maintaining 

Cmax,heart,DOXol of below 10−3. Interestingly, these results show that there is a diminishing 

return for increasing the dose for a greater than 2 hour infusion. To maximize therapeutic 

efficacy only to the extent that some Cmax,heart,DOXol is not exceeded, a 2 hour infusion 

duration at a total dose of 69.3 µM. The plots of this infusion rate and duration 

combination are shown in Figures 6.3 and 6.4. The significant binding of DOXol in the 

heart is seen in Figure 6-4, since the peak concentration occurs ≈45 hours following the 
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end of the infusion. Only then does it begin to clear from the heart tissue, whereas in the 

venous blood, the concentration is more than an order of magnitude lower at the same 

time point of 2728.25 minutes. 

 

Table 6-1: AUC and Cmax for the Predictions Generated by the PBPK Model 

 
Infusion Time (min) Total Dose AUCvb Cmax,heart,DOXol (µM) 

1 55.0 73.62 0.00099 

5 66.0 75.71 0.00099 

30 68.5 75.80 0.00099 

60 69.0 76.01 0.00099 

120 69.3 76.07 0.00099 

720 69.35 74.71 0.00099 

1440 69.4 73.13 0.00099 

2160 69.5 71.53 0.00099 

2880 70.15 70.38 0.00099 

4320 71.0 67.08 0.00099 

 

 

 
 

Figure 6-1: Schematic of the iterative process of the therapeutic dose monitoring 

approach outlined in this work for individualizing DOX therapy 
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Figure 6-2: Plot of venous blood AUC values versus infusion duration at the maximum 

dose that does not exceed Cmax,heart,DOXol of 10−3 -the open circles represent the AUC 

values, the closed dark green circle indicates the point at which the AUC is highest; the 

solid line represents the infusion rate or maximum total dose for the corresponding 

infusion duration, with the blue closed circle indicating the dose at which the AUC is 

highest; the vertical line highlights the optimal infusion duration at which AUC is 

maximized while still remaining below Cmax,heart,DOXol 

 

 

 
 

Figure 6-3: DOX venous blood concentration versus time plot in humans using the 

infusion parameters (infusion rate - 69.3 µM over 120 minutes) from the optimization 

shown in Table 6-1 and Figure 6-2 - AUC for the infusion simulated out to 96 hours 
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Figure 6-4: DOXol heart concentration versus time plot in humans using the infusion 

parameters (infusion rate - 69.3 µM over 120 minutes) from the optimization shown in 

Table 6-1 and Figure 6-2 - Cmax,heart,DOXol is reached at 2827.25 minutes but does not 

exceed the threshold of 10−3 for the infusion simulated out to 96 hours 

 

 

6.1.1.3 Use of PBPK Predictions for Therapeutic Dose Monitoring of DOX 

Similar to the study done by Eksborg where the Cmax and AUC in plasma were 

compared for different infusion durations, a framework such as this could allow for 

deeper insight into the relationship between infusion parameters and exposure and 

toxicity profiles for DOX. It would be interesting to eventually develop a valid PBPK 

model such that a clinical threshold for adverse effects of DOX could be established for 

Cmax,heart,DOXol as it has been for Cmax,vb.[202] If achieved, a therapeutic drug monitoring 

process could be used to predict the infusion duration necessary to maintain a 

Cmax,heart,DOXol below that clinical threshold to significantly reduce the incidence of 

cardiotoxicity from a more direct measure. Not only could this predictive framework be 

useful for dose improvement based on organ-specific toxicities, but also for toxicity 

related to metabolites since PBPK models are well-suited for modeling more complex 

mechanistic metabolite activity.[2] The utility of a predictive model such as the one 
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demonstrated here could be extremely useful in any number of narrow therapeutic index 

drugs. 

The general process of how the predictive PBPK model could be used for 

individualized therapeutic drug monitoring is illustrated in Figure 6.1. First, an initial 

dose would be given to the patient in accordance with the standard dose calculations for 

the respective disease. Plasma samples would be collected at various time points. From 

that data, the pharmacokinetic parameters would be estimated for that particular patient. 

The infusion rate and duration could then be optimized by fixing the parameters from the 

previous step using PBPK model predictions to obtain the desired target exposure that 

does not exceed the maximum DOXol concentration in the heart. The next dose would 

follow the updated infusion parameters. The knowledge gained from the predictions of a 

PBPK model like the one in this study could be used to help individualize DOX dosing 

regimens in the future. 

6.1.2 Pharmacodynamic Studies 

It has been observed that frequent, fractionated doses tend to decrease DOX-

induced cardiotoxicity. Additionally, there is evidence that since a certain Cmax 

thresholdis correlated clinically to adverse effects, prolonged infusions may also decrease 

carditoxicity for roughly the same exposure (AUC).[44] Some studies claim that 

therapeutic efficacy may even be increased for 10 - 96 hour intravenous infusions 

compared to the same dose over a shorter period.[203] One reason for this could be that 

tumor cells are only in the growth phase, the time when they are most vulnerable to drug 

effect, for a short period of time. The circadian pacemaker in the hypothalamus of the 

brain guides the daily flux of activity in peripheral organs and is best recognized as the 
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“circadian rhythm” that regulates sleep. The circadian rhythm is also known to control 

the time Cancer tissues show tissue-specific daily variation in DNA synthesis activity and 

are more susceptible to drug effect during different times of the day. Therefore, even the 

time of day could effect the potency of a drug on a target tissue depending on the current 

phase of the cell cycle. [204] Therefore, there is a possibility that the shorter, intermittent 

infusions like those used clinically could be missing the tumor growth phase “window” in 

some instances.[44] Since longer infusions also decrease cardiotoxicity, it may be 

interesting to see if an optimum exists among infusion rate, infusion duration, exposure, 

maximum dose, and therapeutic efficacy.  

Future work could include adding a pharmacodynamic component which would 

add the concentration-effect piece to the current concentration-time profiles described 

here. Having an understanding of how infusion rate and duration affects cardiotoxicity is 

useful, but if the therapeutic purpose of the drug is compromised, then the potential 

morbidity of the disease being treated quickly outweighs the potential morbidity of 

cardiotoxic adverse effects. 

6.1.3 Application to Other Drugs 

As mentioned before, the utility of this approach is not exclusive to DOX, but 

could be extended to any drug with a narrow therapeutic index with a tissue-specific 

toxicity. While this may seem like a limited scope, the drugs that fall into this category 

are some of the most widely used for their respective indications. For instance, 

methotrexate is a competitive inhibitor of dihydrofolate reductase, which is a key enzyme 

for synthesizing nucleic acid.[197] It is used in some of the most common forms of 

cancer - for example, acute lymphoblastic leukemia (ALL), lung cancer, brain tumors, 
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and carcinomas. Toxicities include leukopenia, thrombocytopenia, and acute kidney 

injury (AKI).[197, 205] Timed blood draws are needed in order to monitor the renal 

clearance of methotrexate, but it may be useful to gain more insight into the methotrexate 

concentration in the kidney for more individually tailored dosing. Similarly, 

aminoglycoside antibiotics like Streptomycin are used to treat systemic, life-threatening 

infections. However, severe nephrotoxicity can occur in patients due to the high inter-

patient variability in clearance. Perhaps a more interesting application could be the anti-

manic agent lithium. Therapeutic drug monitoring is vital for lithium for both efficacy 

and to prevent brain lithium toxicity. While the blood concentration of lithium has been 

known to be approximately analogous to brain concentration, a PBPK model-informed 

prediction of brain concentration may improve the understanding of the drug and drugs 

similar.[197]  

 

6.2 Conclusion 

 

Pharmacometrics is a discipline that quantifies what the body does to the drug - 

pharmacokinetics - and what the drug does to the body - pharmacodynamics.[67, 69] 

Pharmacokinetics (PK) is described as the science of characterizing the time course of 

drug concentration through four processes - absorption, distribution, metabolism, and 

excretion. These processes are often referred to as ADME processes.[130, 68] 

Pharmacokinetic models generally represent different locations in the body as 

compartments, which are represented by mathematical equations. Although they are 

representative of physiological spaces in the body, they do not hold any true 

physiological reality and may not correspond directly to any real tissue or fluid 

compartment. Classic PK models are generally broken into a central compartment with a 
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few peripheral compartments that allow the system to empirically mimic the complex 

time course that a drug actually takes when binding, metabolizing, and clearing the body. 

Physiology-based pharmacokinetic (PBPK) modeling are more heavily based on the 

physiology of the system and tend to have compartments and inter-compartmental 

clearance rates that are more representative of specific tissues and physiological 

processes.[1, 2] Some important considerations in the development of PBPK models 

include both passive and active diffusion rates across cell membranes, metabolic 

pathways, extent of binding to blood components and proteins, and excretion or clearance 

parameters which are crucial to building a more mechanistic model.[143, 2] 

Doxorubicin (DOX) is the drug of interest for this particular work. DOX is an 

anthracycline antibiotic drug that is administered in a wide range of cancer types due to 

its potent cytotoxicity. However, with its robust cell-killing properties comes a high 

incidence of debilitating cardiotoxicity which can lead to cardiomyopathy and congestive 

heart failure linked to accumulated dose.[3, 40] Cumulative doses of 400 mg/m2 to 550 

mg/m2 have shown increased incidence of these cardiac adverse events and will 

sometimes lead to discontinuation of therapy.[141] Since its development in the late 

1960’s, many pharmacokinetic models have been developed to better characterize DOX 

and have described its clearance as either a two- or a three- compartment model in sub-

clinical species such as mice, rats, and pigs as well as in humans.[12, 45, 8, 121] It has 

been observed experimentally across species that lower doses tend to exhibit bi-phasic 

clearance (two-compartment model) while moderate to high doses tend to exhibit tri-

phasic clearance behavior (three-compartment model).[44, 121] The extenuating issue 

with DOX is that its cardiotoxicity is related to accumulation of its primary metabolite, 
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doxorubicinol (DOXol) in the heart.[40, 12] Since classic compartmental 

pharmacokinetic models are not tissue-specific enough to characterize and simulate the 

DOXol concentration in the heart, PBPK models of DOX have been developed for better 

understanding of the binding of the drug in tissues.[8, 64] A PBPK model of DOX was 

constructed by adapting an existing pig model from the literature to include a heart 

compartment in order to characterize the DOXol concentration in the heart.[8] Since 

cardiotoxicity is known to be related to the accumulation of DOXol in the heart, it was 

also designated as a metabolizing compartment.[4]  

While classic PK models are generally represented by a few ordinary differential 

equations (ODEs), PBPK models can have many ordinary differential equations with a 

larger number of parameters to describe the physiological processes involved in the 

model.[2] For large systems of ODEs, numerical methods are needed to solve the 

system.[147, 5] Each numerical method for solving ODE systems come with benefits and 

drawbacks, but the general strategy is to begin with the simplest method possible and add 

complexity as needed.[5] Euler’s Method was the first method used to solve the system, 

but it proved to require too small of a time step for the needed efficiency.[147] The 

fourth-order Runge-Kutta method was the next method used since it has a higher 

accuracy and is typically more stable, but it still required a very small time step to capture 

the concentration-time profile of DOX. Additionally, it was discovered that the system 

had issues with stiffness, so an adaptive Runge-Kutta method was implemented next. The 

Runge-Kutta Fehlberg method is a numerical method which varies the length of the time 

step according to the amount of change occurring in the time interval, which decreases 

the computation time while maintaining the accuracy needed.[5] Unfortunately, the added 
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complexity of the equations in this method was still computationally slow when executed 

in R.[146] Since matrices tend to be more palatable in R, the system of equation was 

converted into matrix format, which consisted of (i) a rate coefficient matrix describing 

the rate of change in drug concentration in each compartment relative to each 

concentration (A matrix), (ii) an initial conditions matrix representing the amount of drug 

in each compartment at the beginning of the respective time interval (x vector), and (iii) 

the dose vector representing the dose that will be administered in each respective 

tissue/compartment (g vector). Variation of Parameters was used to solve the matrix 

system,  

Ax + g(t) = x′ 

at three equidistant time points (t0, t1, and t2). Those three time points were then 

numerically integrated over using Composite Simpson’s Rule. That solution xt then 

becomes the new initial condition for x for the next iteration of what becomes a series of 

initial value problems. [7, 5] 

This method was able to solve the PBPK model, represented by a system of a total 

of 44 first-order ordinary differential equations, reasonably quickly. Physiological 

parameters such as volume and blood flow fractions were obtained from literature for 

mice, rats, rabbits, pigs, and humans. [8, 174, 173] First, the parameters were estimated 

for a mouse data set that contained concentration versus time data for both the venous 

blood and the heart for both DOX and DOXol.[12] These parameters were then fixed and 

scaled to predict rat, rabbit dog, pig, and human data sets using an allometric scaling 

equation on the blood:plasma partition coefficient B : P .[8, 9, 10] The allometric 

equation was derived from a previous inter-species scaling study for DOX which took the 
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approach of scaling from mice other rodents, non-rodents, or humans.[64] This equation 

successfully scaled using B : P for rat and human data sets, but failed to adequately 

predict in rabbits, dogs, or pigs. Another study suggested the addition of the correction 

factor of Maximum Life-Span potential for hepatically-eliminated small-molecule drugs 

with low hepatic extraction ratios (Eh). DOX has been described as such a drug. [9] The 

addition of this correction factor allowed for the mouse parameter set to adequately 

predict the DOX concentration in venous blood (Cvb,DOX) and the DOXol concentration in 

the heart (Cheart,DOXol). The ultimate goal was to scale from mouse to humans for 

therapeutic drug monitoring. Additional validation for the equation came from the fact 

that the allometric equation also fit for rats, rabbits, dogs, and pigs. 

Despite numerous studies and pharmacokinetic models of DOX, there are almost 

no covariates that consistently improve the dose of DOX, with the exception of dose 

reduction for hepatic impairment.[11, 140] However, dosing schedule – infusion rate and 

duration- have been shown to affect both drug efficacy and incidence of 

cardiotoxicity.[11] A study done in data from cancer patients receiving DOX at different 

infusion durations showed that increasing the infusion length did not greatly affect 

exposure (AUC) but did significantly decrease the maximum concentration (Cmax). 

Clinically, values of Cmax above a certain threshold have been correlated to adverse 

effects. This study suggested extending the infusion length for the necessary dose in order 

to avoid exceeding that Cmax value since there was no noticeable loss in therapeutic 

exposure.[202] 

A framework similar to the one in this study such as could allow for deeper 

insight into the relationship between infusion parameters and exposure and toxicity 
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profiles for DOX. However, in this case, the criterion for decreasing incidence of 

cardiotoxicity was maintaining a sub-toxic Cmax,heart,DOXol in the heart while maximizing 

exposure, represented by area under the concentration-time-curve (AUC). The PBPK 

model was was optimized at 10 time points between 1 minute and 72 hours (4320 

minutes). The ’optimize’ function in R was given an interval of 30µM to 500µM to 

search, which is approximately the range which DOX is given clinically.[146, 200, 199] 

The goal of the optimization was to maximize the value of (AUC) without the 

Cmax,heart,DOXol value of 10−3 Using these predictions, by way of a penalty on the objective 

function value. 

Especially since many other covariates have failed to improve dosing schedules 

for DOX, understanding the relationship of infusion rate and duration on exposure and 

toxicity of DOX is invaluable. The potential for reduction of cardiotoxicity without 

compromising the therapeutic exposure of DOX could inform future studies and improve 

outcomes for the many patients who are treated with DOX for various cancer types.[11, 

202] During a patient’s first dose of DOX with standard dosing parameters, plasma 

samples could be collected and a concentration-time profile for the individual patient 

could be created. The PBPK model predictions could provide AUC and Cmax,heart,DOXol 

data, and an assessment could be made whether or not the infusion rate and duration are 

appropriate for maximum therapeutic effect without elevating the risk for cardiotoxic 

adverse effects. If necessary, the infusion parameters could then be adjusted for that 

patient’s next dose. Clinical thresholds for Cmax,vb have been established for incidence of 

adverse effects, and in future work, perhaps a similar threshold for cardiotoxicity could 

also be established using tissue-specific measures. As the use of PBPK models in drug 
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discovery and drug delivery increase, it is not unreasonable to think that this approach to 

therapeutic drug monitoring is feasible in the near future.[143] The knowledge gained 

from the predictions of a PBPK model like the one in this study could be used to help 

individualize DOX dosing regimens in the future. 
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APPENDIX B 

 

FINAL MODEL EQUATIONS
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APPENDIX C 

 

THREE COMPARTMENT MODEL EXAMPLE CODE
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APPENDIX D 

 

FINAL MODEL CODE IN R
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APPENDIX E 

 

MATRIX ODE SOLVER CODE
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APPENDIX F 

 

MODEL FITS BY SPECIES
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CODE SETUP FOR PBPK PARAMETERS
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THERAPEUTIC OPTIMIZATION CODE
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