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Abstract

Deep learning has become ubiquitous in science and industry for classifying im-

ages or identifying patterns in data. The most widely used approach to training

convolutional neural networks is supervised learning, which requires a large set of

annotated data. To elude the high cost of collecting and annotating datasets, self-

supervised learning methods represent a promising way to learn the common func-

tions of images and videos from large-scale unlabeled data without using human-

annotated labels. This thesis provides the results of using self-supervised learning

and explainable AI to localise objects in images from electron microscopes. The work

used a synthetic geometric dataset and a synthetic pollen dataset. The classifica-

tion was used as a pretext task. Different methods of explainable AI were applied:

Grad-CAM and backpropagation-based approaches showed the lack of prospects;

at the same time, the Extremal Perturbation function has shown efficiency. As a

result of the downstream localisation task, the objects of interest were detected with

competitive accuracy for one-class images. The advantages and limitations of the

approach have been analysed. Directions for further work are proposed.
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1 Introduction

Machine learning technologies are a fast-growing area of artificial intelligence (AI).

These technologies have been used in many promising industry projects and scientific

research, which has allowed machine learning to develop widely in recent years [93],

[40], [16], [82].

Over the past decade, there have been a number of remarkable achievements in

machine learning and, in particular, in deep learning techniques based on artificial

neural networks [23].

A long history of AI research started in 1956 continuing nowadays in the epoch

of ”third revolution of neural networks” as some researchers named it [106] [79].

Increasing the number of publications [120], [128] and in general, the progress in

the field of neural networks observed since the end of the 2000s. One of the key

factors was the development and improvement of quality and size of datasets [9].

Also, computing power that can handle them has appeared. It stands to mention,

that the widespread adoption of GPUs (and later appearance of professional GPUs),

virtually unlimited storage options, and the development of big data technologies

have become a necessary basis for the evolution of deep learning [23].

The presence of large datasets gave an opportunity for the development and

adoption of deep learning. However, creating large-scale datasets requires collect-

ing and annotating a vast amount of data. This process is time-consuming and

expensive. One of the possible solutions is learning visual features from large-scale

unlabeled data (images or videos) without using any human annotations. In other

words, formulate an unsupervised learning problem as a supervised one. Replacing

the human annotation by creatively using some properties of the data to create a

pseudo supervised task. This is the self-supervised learning approach.

Self-supervised learning has achieved impressive results in last years [42], [59],

[84]. The method is a promising technique and functional tool for scientists in differ-

ent areas [53] [121]. Self-supervised learning is becoming one a promising approach

in areas such as Nanoscience, Material science, Biology [125], [19]. Scanning elec-

tron microscopy (SEM) is one of the main tools for researchers from these branches.

SEM can produce a large number of images. Humans for labelling the data after

every experiment are impossible to come by.

The ability to identify, recognise or localise a specific type of object for extensive

datasets produce a particular interest in Self-Supervised Learning from scientists.

[53], [19], [50].

Within this thesis, the theory and practice of using self-supervised learning as

part of a deep learning task are studied. A classification task, object recognition

and localisation problem are presented in details. An overview of the methods of

explainable AI and their classification is given. The use of a classification task with

a subsequent application of methods of explainable AI, and finally, the use of a

localisation task for the detection of objects on different SEM-based datasets will
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be shown. In the final part of the thesis, conclusions about the work are presented.

The results are summarized and directions for further work are proposed.
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2 Problem Statement and Datasets

The scientific task for the work will be presented in the chapter. Moreover, the

datasets used in the thesis will be presented in detail in the following chapter. Three

datasets were used. The concept and the structure of the data in all datasets are

similar and will be described below.

2.1 Problem Statement

The main goal of this work is to use Deep Neural Networks and a combination of

Self-Supervised learning and Explainable AI to localize objects in images obtained

with a scanning electron microscope (SEM).

This results in the following sub-tasks:

1. Use a classification task as a pretext task of self-supervised learning task to

classify signal/non-signal images in different datasets;

2. Use methods of explainable AI to extract representations that are sensitive to

the matter responsible for the network’s output;

3. Apply localisation methods by using explainable AI representations to count

the objects in the signal images of the datasets.

2.2 Datasets

2.2.1 Diamond dataset

The diamond dataset was created from the images of a scanning electron microscope.

The object of observation was the results of the laser beam experiment based on

[31]. In this experiment, a metal disc was placed inside an accelerated plasma.

After bombardment, the disk was placed under a Scanning Electron Microscope

and several regions of the disc were imaged.

According to the authors of the dataset, the experiment progress was: ”The

initial motivation was heating a polystyrene foil which is backed by a metal plate.

The laser ablates the material and creates a shock wave that traverses the foil. Upon

exit from the foil, the diamonds exit the foil as well and are deposited on the metal

plate. The metal plate is then analyzed with a scanning electron microscope”.

The dataset contains 1553 (1280*960 greyscale) images from the electron mi-

croscope in total. The dataset contains images with different level of magnification

from m01 till m31. The most interesting part of the dataset is the m03-m06 magni-

fication images. This part counts 387 images.
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Figure 1: Diagram of the spatial distribution of instances on the metal disc on a diamond dataset

[116]

Images from the dataset categorized according to the figure 2:

• centre (‘c‘)

• right (‘r‘) from the centre

• left (‘l‘) from the centre

• ‘halo‘ or ‘halo2‘

• ‘control‘ (on the edge)

The core has the highest density of diamonds images. The second-highest

density is in the halo region. No diamonds or just an insufficient amount is in the

control region.

This is a fully blind sample. Named contamination control sample (CCS). A

metal disk, that didn’t receive any shock compressed material serves as a reference

without diamonds.

It is worth to mention that potentially, diamonds could be anywhere. As a

pipe was pressed on the rim of the metal plate, the control samples are expected

to have no or not many diamonds. If there are diamonds in this region, they likely

stem from contamination during the transport of the metal discs.

Figure 2: Example image from the diamond dataset
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2.2.2 Pollen dataset

The pollen synthetic dataset [110] was created for testing machine learning models

on segmentation or bounding box regression and classification tasks. The description

of the dataset is taken from [110].

The pollen dataset counts 80.000 (resolution: 1280x1280 pixels RGB) images

of ”airborne pollen of different sizes within their natural range”:

• 10.000 images Chenopodium bonus-henricus [29] making up the medium-sized

pollen

• 10.000 images Corylus colurna [30] making up the medium-sized pollen

• 10.000 images Urtica dioica [114] making up the smaller pollen

• 10.000 images Secale cereale [102] making up the larger pollen

• 4x10.000 images each containing artefacts such as dust or burst pollen and a

mix of pollen in the following ratios divided into 4 categories:

– ’equal split’ category contains: 25% Chenopodium bonus-henricus, 25%

Corylus colurna, 25% Urtica dioica, 25% Secale cereale;

– ’smaller pollen split’ category contains: 70% Urtica dioica, 10% Chenopodium

bonus-henricus, 10% Corylus colurna, 10% Secale cereale;

– ’middle pollen split’ category contains: 40% Corylus colurna, 10% Chenopodium

bonus-henricus, 25% Urtica dioica, 25% Secale cereale;

– ’bigger pollen split’ category contains: 70% Secale cereale, 10% Urtica

dioica, 10% Chenopodium bonus-henricus, 10% Corylus colurna

The data set is supported by an annotation set. It consists of:

• monochrome masks of each pollen slide (ignoring artefacts) for segmentation;

• x and y-coordinates of the bounding boxes containing all pixels of each of the

pollen for regression;

• class names for each labelled pollen

Figure 3: Example of image from the pollen dataset [110]
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2.2.3 Geometric dataset

The Geometric dataset has been made especially for the purpose of the thesis. The

Geometrical dataset was created for testing machine learning models on classification

and localisation tasks.

This dataset was designed in a similar fashion as the real research dataset.

The Geometric dataset and the Diamond dataset were made on a similar con-

cept of the spatial distribution of instances. Classes of datasets were made based

on this distribution. At the same time ratio of instances in categories are similar to

the pollen dataset.

It contains 90.000 (1280x1280 greyscale) images of geometric shapes (circles,

triangles, rectangles) of different sizes:

• 15.000 images contain only Circles

• 15.000 images contain only Triangles

• 15.000 images contain only Rectangles

• 3x15.000 images contain a mix of geometric shapes in the following ratios di-

vided into 3 categories:

– ’Core’ category has 15.000 images. It contains: Rectangles: 10%, Triangles:

10%, Circles: 80%. This is a simulation of the area with the highest density

of objects of interest (circles).

– ’Halo’ category has 15.000 images. It contains: Rectangles: 45%, Triangles:

45%, Circles: 10%. This is a simulation of the area with the second-highest

density of objects of interest (circles).

– ’Control’ category has 15.000 images. It contains: Rectangles: 50% Tri-

angles: 50%. This is a simulation of the area with no objects of interest

(circles).

Figure 4: Example of image from the geometrical dataset []
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3 Theory

In the following chapter, the basics that are necessary for the work are presented. A

taxonomy of learning problems in machine learning is presented. The classification

problem, Object recognition and localisation problem are presented in details. An

overview of the methods of explainable AI and their classification is given. The

details of backpropagation and perturbation based methods of explainable AI are

given.

3.1 Introduction Deep Learning

The history of the Deep learning (DL) starts in 1967 [123]. The first learning al-

gorithm was published by Alexei Grigorievich Ivakhnenko and Valentin Grigorevich

Lapa in the paper Cybernetics and Forecasting Techniques [43]. The article was

about controlled feed-forward deep multilayer perceptrons. After that, in 1971 A.

G. Ivakhnenko described a network trained by batch processing [49]. Other working

architectures for machine learning, architectures built for computer vision, began

their history with the ”Neocognitron” presented in 1980 by Kunihiko Fukushima.

[36]. The term “deep learning”, in turn, was presented to the world by Rina Dechter

in 1986 [24] [25] and artificial neural networks were introduced by Igor Aisenberg

and colleagues in 2000 [11]. 2012 was marked by the win of the ImageNet compe-

tition by the system based on the Convolutional Neural Network (CNN) [61], [20].

In the same year, a multitasking deep neural network won the ”Merck Molecular

Activity Challenge” [21]. This year was named later as the beginning of the “deep

learning revolution” [105].
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Figure 5: Connection of terms AI, ML, DL [40]

Briefly, the term Machine learning (ML) can be described as ”algorithms that

improve automatically through experience” [81]. Deep learning is a group of tasks

that is a part of machine learning. The visualization of the classification can be

found in Figure 5. This work focuses on deep learning topics.

Deep learning extracts high-level features from raw input using a variety of

sequential nonlinear transformations organized in multiple layers; this structure is

usually represented as artificial neural networks [67]. In this approach, successive

transformations of the input data are produced until a final transformation predicts

the output.

Most modern approaches to deep learning are based on artificial neural net-

works (NN). Neural networks form the basic building blocks - artificial neurons

named Perceptrons (inspired by biological neurons). The structure of which can be

represented as:

Figure 6: One Perceptron [44]

In Figure 6: hl−1
i is the input to the unit in layer l; wli,j is the weight on link

from unit i in layer l− 1 to this unit; alj is a linear combination of the input; blj is a

bias value; h(x) is the output (input to next unit), e.g. logistic, ReLU [124], [44].
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Neurons are organized in layers. The word ”deep” in the ”deep learning” term

is connected with the number of layers in the model through which the data is

converted. Figure 7 presents an example of a neural network with one hidden layer

(not directly observable from the model inputs and outputs). The number of layers

can be several hundred [103]. Having more than one hidden layer allow neural

networks to learn data representations consist of multiple levels of abstraction.

Figure 7: The Neural network with hidden layer [75]

Based on the type of data available and the studying research question, the

scientist will select a learning algorithm using a specific learning model.

There are three types of machine learning:

1. Supervised Learning (see 3.1.1)

2. Unsupervised Learning (often referred as part of Semi-supervised and unsuper-

vised problem learning)

3. Reinforcement Learning [56]

Supervised learning

1. Regression task - forecast based on a sample of objects with different charac-

teristics. Regression is the problem connected with approximating a function

of transformation input variables to a continuous output variable. Continuous

output variables are a real-values [17].

2. The task of classification is to predict outputs (belonging to one or another

category) based on a set of features. There are a finite number of outputs. The

task of approximating a function of mapping from input variables to discrete

output variables is a classification. The output variables are labels (categories).

The required function probabilistically predicts the class or label for observation

(the instance from the dataset).

Unsupervised Learning

1. Clustering. Algorithms that learn hidden patterns from unlabelled data

named Unsupervised learning methods [118]. Clustering, which is part of un-

supervised learning, groups instances based on their similarity without using
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class labels, that is, the task of clustering is to distribute data across a number

of groups.

2. The purpose of anomaly detection is to separate anomalies from standard

cases. At first glance, this coincides with the task of classification, but there

is one significant difference: anomalies are rare, and the training examples on

which you can train a machine learning model to identify such objects are small.

In practice, such a task is, for example, the detection of fraudulent activities

with credit or debit cards.

3. Dimensionality reduction is a method for reducing the number of input

functions (variables) in a dataset. A large number of input functions makes the

prediction task more difficult for the model. The reduction of dimensions can

be used to visualize data [90].

4. Approaches for learning latent variable models. Observed data of these mod-

els were generated by unknown latent variables. Models define the opportunity

to clarify prior knowledge and structural relationships in complex datasets. A

common case is when the latent variables predict the mean of observations. It

can be used in Natural Language processing. [58], [12].

It is important to mention that modern research in Deep Learning is not limited

to the problems listed above. There are Hybrid problems, for example:

1. Self-Supervised Learning (see 3.1.2)

2. Semi-Supervised and Unsupervised Learning

3. Multi-Instance Learning [18]

The majority of machine learning tasks fall into one of the following categories

and frequently has a link to more general tasks mentioned above.

Due to the context and task of the thesis only supervised learning will be

considered. Among hybrid learning problems, Self-Supervised Learning receives

closer scrutiny as a main approach of the thesis. The mathematical foundation of

this chapter is based on [13].

3.1.1 Supervised learning

Supervised learning can be formulated informally as the problem of finding in family

g : Θ → Y X of functions, one g : X → Y that minimizes a weighted sum of two

objectives:

1. g deviates little from a finite set
{

(xs, ys)
}
s∈S of input-output-pairs

2. g has low complexity, as quantified by a function R : Θ→ R+
0
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Where S 6=Ø finite. S has a name set of samples.

It is known that the family g can have meaning beyond a simple parameteriza-

tion of functions from X to Y . For example, Θ can be a set of forms, g are functions

defined by these forms, and R the length of forms. Then, supervised learning is

actually a problem of optimizing over forms of functions, and R penalizes the com-

plexity of these forms. Furthermore, g can be chosen so as to primarily restrict the

set of functions from X to Y .

Focus of the attention will be concentrate exclusively on the special case when

Y is finite. For the simplicity assume Y =
{

0,1
}

.

Optimize over a family f : R : Θ → RX and defining g w.r.t. f via a function

L : R×
{

0, 1
}
→ R+

0 called a loss function, such that

∀θ ∈ Θ ∀x ∈ X : gθ(x) = argmin
ŷ∈
{

0,1
} L(fθ(x), ŷ) (1)

The equation 1 and its derivation was formulated in this way in [13], reproduced

here.

This approach performs sequential transformations of the input data until the

final transform predicts the output. These transforms are derived from predefined

input-output pairs so that the network knows from examples of how the transforms

should be performed.

For the supervised learning classification task, it is necessary to identify which

of a set of labels a new observation belongs to. It can be done based on a training

set of data containing instances where the labelling was made.

3.1.2 Self-Supervised learning

Self-supervised learning is a way that virtually unlimited labels can be generated

from existing images and to use these labels to learn the representations [59] [53].

Thus, instead of human annotations, creative exploit of some property of data

is used (to set up a pseudo-supervised task).

As far as the representation is learned, it is possible to use transfer learning to

tweak it for some supervised tasks such as classification or localisation (downstream

task).The downstream task is used to evaluate the quality of features learned in the

self-supervised learning [53].

In comparison with supervised learning methods that require a data pair Xs =

fθ(xs) and ys while ys is annotated by humans, self-supervised learning trained

with data Xs as well at the same time with its pseudo label Ps. Ps is automatically

generated for a pre-defined pretext task involving zero human annotation. Attributes

of images or videos can be used for a generation the pseudo label Ps (for example

the context of images), or by traditional hand-designed methods.

Many self-directed learning techniques have been developed for learning visual

features with not using human-annotated labels.
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D =
{
Ps
}
s∈S is a set of N training data. The training loss function is defined

as:

min
y∈Y

inf
θ∈Θ

λR(θ) +
1

|S|
∑
s∈S

L(fθ(xs), ps) (2)

The methods can be marked as self-supervised learning so long as pseudo labels

P are generated automatically without involving human annotations. The main

focus of this thesis will be on the self-supervised learning method used developments

other methods designed for visual feature learning. Of particular interest is the fact

that the features of the self-supervised learning methods can be carried over to

multiple visual tasks and perform new tasks by exploring limited labelled data [53].

The classification about the self-supervised pretext tasks was presented in [53].

It can be presented as:

1. Generation-based Methods: Techniques of this category study visual features

by solving pretext tasks that involve the creation of images or videos.

Visual features are learned during the imaging process. The group of methods:

image colorization [129], image super resolution [64], image inpainting [89],

image generation with Generative Adversarial Networks (GANs) [41], [131].

2. Context-based pretext tasks: When developing pretext contextual tasks, the

contextual features of images or videos are mainly used, such as contextual

similarity, spatial structure, temporal structure.

(a) Context Similarity: Pretext tasks are mainly designed on the similarity

of the context between fragments of images. The method include: image

clustering based methods [85], graph constraint-based methods [66].

(b) Spatial Context Structure: Convolutional neural networks based on spa-

tial relationships between image fragments can be trained by Pretext tasks.

This type of methods includes: image jigsaw puzzle [84] [57], context pre-

diction [27], and geometric transformation recognition [54], [37].

(c) Temporal Context Structure: ”The temporal order from videos is used as

supervision signal” [80], [65].

3. Free Semantic Label-based Methods: Generated automatically semantic labels

can be used for training neural networks by these tasks. The labels can be

generated by traditional algorithms [32], [117] or by game engines. The part

of the group are: moving object segmentation [88], [62], contour detection [97],

[47], relative depth prediction [52], and etc.

4. Cross Modal-based Methods: This type of pretext tasks trains NN to check the

match of two different channels of input data. The methods include: Visual-

Audio Correspondence Verification [14], RGB-Flow Correspondence Verifica-

tion [101] and egomotion [51].
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3.2 Classification

Labelled data is required for classification. There is a training sample in which

objects are presented in the form of their feature description (feature vector) and

class label. It is necessary to find an algorithm for each new object (its attribute

description) that will define the class label of this object. This is equivalent to

building a dividing surface in a multidimensional feature space.

There are different methods for the classification task:

• Logistic Regression;

• Decision Tree Algorithm;

• k-Nearest Neighbor (KNN);

• Artificial Neural Networks and Deep Neural Networks;

• and many other methods.

According to the task of the thesis, classification using deep neural networks is

of interest. The learning problem can be written as follows. The formulation of the

learning problem in this way was presented in [13], reproduced here.

For any finite set A 6=Ø the elements of which should be classified and any

finite set B 6=Ø of class labels, there is a special interest in maps ϕ : A → B that

assign to every element a ∈ A exactly label of one class ϕ(a) ∈ B. Maps are exactly

those subsets of ϕ ⊆ A× B that satisfy

∀a ∈ A ∃b ∈ B : (a, b) ∈ ϕ (3)

∀a ∈ A ∀b, b′ ∈ B : (a, b) ∈ ϕ ∧ (a, b′) ∈ ϕ⇒ b = b′ (4)

They are characterized by functions y : A× B →
{

0, 1
}

that satisfy

∀a ∈ A :
∑
b∈B

yab = 1 (5)

The problem of learning and inference maps have to be reduced to a problem

of learning and inference of solutions by choosing limited data with

S = A× B (6)

Y =
{
y : A× B →

{
0, 1
}
| ∀a ∈ A :

∑
b∈B yab = 1

}
(7)

Let’s consider some finite set V 6=Ø and constrained data (S,X, x, Y ) with

S = A×B as in 6, X = B×RV and Y as in 7. More specific, let’s assume that, for

any (a, b) ∈ A× B, the class label b is the first attribute of (a, b), i.e.,

∀a ∈ A ∀b ∈ B : ∃x̂ ∈ RV : xab = (b, x̂) (8)
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In a special case, this is labeled data, in which only one Y =
{
y
}

is given with

y satisfying the constraints 6 [13].

Regarding linear functions, more specifically: Θ = RB×V and f : Θ→ RX such

that

∀θ ∈ Θ ∀b ∈ B ∀x̂ ∈ RV : fθ((b, x̂)) =
∑
v∈V

θbvx̂v = 〈θb, x̂〉 (9)

For the formulation of the learning problem the Random variables (formulated

in [13] and reproduced here) should be denoted.

Random variables

• For any (a, b) ∈ A × B, let Xab be a random variable whose realization is a

vector xab ∈ B × RV , called the attribute vector of (a, b)

• For any (a, b) ∈ A × B, let Yab be a random variable whose realization is a

binary number yab ∈
{

0, 1
}

, called the decision of classifying a as b

• For any b ∈ B, and v ∈ V let Θbv be a random variable whose realization is a

real number θbv ∈ R, called a parameter

• Let Z be a random variable whose realization is a subset z ⊆
{

0, 1
}A×B

.

Learning problem

The lemma formulated in [13] are reproduced here, recalling here only what is

necessary, without the proof.

Lemma 1 Estimating maximally probable parameters θ, given attributes x and de-

cisions y [13], i.e.,

argmax
θ∈RB×V

pΘ|X,Y (θ, x, y) (10)

is identical to the supervised learning problem w.r.t. L, R and λ such that

∀r ∈ R ∀ŷ ∈
{

0, 1
}

: L(r, ŷ) = −ŷr + log(1 + 2r) (11)

∀θ ∈ Θ : R(θ) = ||θ||22 (12)

λ =
log e

2σ2
(13)

Moreover, this problem separates into |B| independent supervised learning prob-

lems, each w.r.t. parameters in RV , with L and λ as above, and with

∀θ′ ∈ RV : R′(θ′) = ||θ′||22 (14)
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Analyzing the above formulation of the classification problem as an instance of

a supervised learning problem and given training data consisting of pairs of input-

output values the task of the classification can be written as follows. The task is

to ”analyze” the training data and create an estimated function that can be used

to classify new instances to which the network did not have access by assigning the

most likely class label to each one. Thus, the outputs of the model are probability

vectors.

3.3 Explainable AI with extremal perturbation

Deep learning (DL) algorithms can collect and process large amounts of data. It

showed success in competitions such as Imagenet [61]. DL models can learn complex

patterns that allow them to make predictions about data not included in the training.

At the same time, DL algorithms are complex and difficult to understand. Many

neural networks are not designed to be interpretable. Lack of transparency and

accountability of models used in vast numbers of areas can have serious consequences

due to incorrect usage and inability to justify the models and results. This section

in many ways based on [38] and [33].

There are a need and interest among the research community for clarifying the

basics of deep learning predictions and a more intuitive understanding of results

from deep learning networks.

Explanations of work and focus of deep networks can be divided into two

groups: explaining the processing of data by the network and explaining the repre-

sentation of data within the network [38].

Explanations of Deep Network Processing. It also referred to as the Attribu-

tion approach. This is the main approach for explainable AI. It includes methods

which are aiming to reduce the complexity of the neural network or add some minor

changes into the network to see the results of the experiment and based on this

make conclusions about the effects of the network. In other words which parts of

the input of the network are the most responsible for the output. Examples are:

• Approximation-based methods. The approach is illustrated by LIME method

[98] and [112]. In these models, the black box system is explained by analyzing

the disturbance behaviour of the input data, and then the data is used to build

a local more simple linear model that using as a downgraded representation for

the full model.

• Backpropagation methods. These are attribution techniques that use back-

propagation to track information from the output of the network back to the

input, or a middle layer.

• Perturbation methods. For these methods inputs of the model is being pertur-

bated and to observe changes in the output. It can be implemented by occlusion
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patterns, optimization of spatial perturbation mask, or by perturbations of the

input.

• Visualizations of intermediate activations. To characterize the behaviour of the

filter the algorithm learns dataset examples from the training set that maxi-

mally activate the filter. In addition, there is an approach that studies the

image, which reconstructs the intermediate network activations using the nat-

ural image to visual clarity.

• Automatic-Rule Extraction. An automatic rule extraction is an approach for

summarizing decisions. The approach supposes the extraction of rules. Exam-

ples of this approach are the FERNN [109], KT method [87] etc.

• Decision trees [122]. It is a simple algorithm based on a sequence of decisions.

The decisions made according to Information Gain [122].

Explanations of Deep Network Representations. The explanation of deep net-

work representations has a goal to understand the structure and role of the data

flowing through ”bottlenecks”. It can be done on different stages, where the network

learns:

• Layers

• Individual Units

• Representation Vectors

Explanation-Producing Systems. The aim of the method is to create a network

that is designed to be easier to explain. There are several different approaches:

• Attention Networks

• Disentangled Representations

• Generated Explanations

The most interest in the context of the thesis has two methods from ”Expla-

nations of Deep Network Processing” group: Backpropagation-based methods and

Perturbation based methods.

3.3.1 Backpropagation-based methods

This kind of approach often has an aim to obtain the map showing which parts of

the input data actually have an influence on the network output (salience map).

Some authors group these approaches in the ”salience mapping” category. In some

methods, a salience map can be created by directly computing the input gradient

[112]. It uses unmodified backpropagation and visualizes the derivative of the net-

work’s output. Another approach is (e.g., Guided Backprop [115], and SmoothGrad
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[113]) reduce the noise in the gradient signal by fine-tuning the backpropagation

rules of certain layers.

Because derivatives can miss important features of the information that pass

through a network, some of the approaches have been designed to propagate quanti-

ties other than gradients. Such methods include CAM [130], GradCAM [107]. These

methods use combining gradients, weights of the network and activations at certain

layers.

Grad-CAM The Grad-CAM method is based on the CAM [130] method. CNN

architecture is modified using the CAM approach. Fully-connected layers of the

CNN architecture was replaced by convolutional layers and a global average pooling

layers [68]. Thereby it achieves class-specific feature maps. The Grad-CAM method

combines feature maps using the gradient signal which makes not necessary the

neural network architecture modifications. This makes it possible to apply the

approach to ready-made architectures based on CNN [107].

Figure 8: Grad-CAM architecture [10]

Grad-CAM uses gradient information supplied to the final CNN convolutional

layer for importance assignment values for every neuron for a specific solution of

interest.

To obtain a localization map with class discrimination LyGrad−CAM ∈ Ru×v of

width u and height v, Grad-CAM computes the gradient gy (which is a score for

class Y) relative to the Ak. They are feature map activations of the convolutional

layer. To obtain importance weights αyk gradients are combined into a global average-

pooled for width and height. The index i is for the width dimension and j is for the

width dimension [107]:

αyk =

global average pooling︷ ︸︸ ︷
1

Z

∑
i

∑
j

∂gy

∂Akij︸ ︷︷ ︸
gradients via backprop

(15)

According to the Grad-CAM authors [107]: ”Weight αyk shows a partial lin-
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earization of the deep network downstream from A, and captures the ‘importance’

of feature map k for a target class y”.

Heatmap of Grad-CAM is a weighted combination of activation maps followed

by a RelU function:

LyGrad−CAM ∈ R
u×v = ReLU

(∑
k

αykA
k

)
︸ ︷︷ ︸
linear combination

(16)

These methods are based on trivial modifications of the backpropagation al-

gorithm. Thereby, these methods are efficient. However, except for the explicit

advantages of these methods, there are some disadvantages. Analysis of publica-

tions [74] [8] [33] have shown that methods can ”see” average network features but

in some cases not able to characterise intermediate activations or individual outputs.

The authors of the following papers come to similar conclusions. More over that

modern researches show that commonly used saliency map approaches less trust-

worthy than previously thought [15] [26]. Saliency map methods fail at least once in

conducted experiments[15]. The authors recommend use detection or segmentation

models for the localisation task instead of saliency maps in the high-risk domain of

medical imaging.

3.3.2 Perturbation-based methods

These techniques amount to selectively deleting (or preserving) portions of the input

data and noticing the effect of this makes on the model output. The advantage of

the approach is that the value of analysis is clear from the beginning.

Perturbation method can be formulated as it was done in [33]: Let x : Ω→ R3

be a colorful image where Ω =
{

0, ..., H − 1
}
×
{

0, ...,W − 1
}

is a discrete lattice.

Φ is a model, e.g. CNN. It maps the image to a scalar output value Φ(x) ∈ R [33].

These methods study which part of x excite the model causing the response

Φ(x) to be large. Par excellence, it is necessary to find a mask m assigning to every

pixel u ∈ Ω a value m(u) ∈
{

0, 1
}

, where m(u) = 1 means that the pixel maximally

contributes to the output. A value m(u) = 0 relates to no contribution at all.

The importance of a pixel can be evaluated as follows: the mask should be used

to induce a local perturbation of the image: x̂ = m ⊗ x. All pixels with m(u) = 1

are saved, while other pixels are blurry. The aim here is to find a small subset of

pixels that are (when stored) enough to store a large output value Φ(m⊗x). In the

frame of the article [34] authors use the following approach to identify salient pixels

by solving an optimization problem:

mλ,β = argmax
m

Φ(m⊗ x)− λ||m||1 − βS(m). (17)

The first part of the equation 17 promotes to increase in the response of the

network. The second part forces the mask to highlight a small part of the input
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image, blurring other pixels. The third part is responsible for the smoothness of the

mask [33].

How correctly noted the authors of the articles [99], [33]: there is a problem

with the formulation presented in equation 17. Terms presented in the equation are

not rateable. The choice of different λ and β values in equation 17 will result in

different masks. It is not possible to compare them properly.

Extremal perturbation The solution of the issue mentioned in equation 17 was

found by authors of [33]. They have presented the constraint for the area of the

mask to make it a fixed value (as a fraction a|Ω| of the input image area). Also,

they propose to control the mask smoothness by choosing it in a fixed set of smooth

functions M.

The mask that maximizes the model’s output was presented in [33]:

ma = argmax
m: ||m||1=a|Ω|, m∈M

Φ(m⊗ x). (18)

It is important to say that for the chosen area a the resulting mask is a function

of a only. The concept of extremal perturbation (EP) was defined as follows. Φ0 is

a a lower bound on the model’s output. The next step is to find the ”smallest mask

that achieves at least this output level”[33] (same as changing the parameter a in

equation 18):

a∗ = min
{
a : Φ(ma ⊗ x) ≥ Φ0

}
. (19)

The mask m∗a is extremal because saving a portion smaller then this from the

input image is not enough to trigger a network response above Φ0.

A single extremal mask is informative since it characterizes a family of input

perturbations. [33]. This makes extremal perturbations similar by a concept to

methods like [98], [34], which analyzing input-output mapping, for example, the

gradient [112] and LIME [98].

To define area constraint it is necessary to optimize equation 18 by a gradient-

based method, authors relax the mask to span the full range [0, 1]. One of the

potential approaches, in this case, is to count a number of m(u) values which are

close to the value 1 and penalize masks in case the count is different from the target

value a|Ω|. To do this authors propose a vecsort vector which is contains vectorised

and sorted values in non-decreasing order. vecsort(m) ∈ [0, 1]|Ω|. The output of

vecsort(m) is a vector ra ∈ [0, 1]|Ω| if the mask m satisfies the area constraint

exactly. The vector is consisting of (1 − a)|Ω| zeros followed by a|Ω| ones. The

regularization term: Ra(m) = ||vecsort(m)− ra||2. The equation 18 takes the form:

ma = argmax
m∈M

Φ(m⊗ x)− λRa(m). (20)
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In addition, to solve optimization issues the authors of [33] developed the new

max-convolution operator and smooth max operator for the smoothing of the ex-

tremal perturbation mask.

Figure 9: Convolution operators for smooth masks [33]

The comparison of the extremal perturbation method with the attribution

methods shown in Figure 10.

Figure 10: Comparison of attribution methods [33]. Comparison of the extremal perturbations

(optimal area a in box) to several popular attribution methods: gradient [112], guided backprop-

agation [115], Grad-CAM [107], and RISE [91]

The standard approach to evaluate attribution methods is the Pointing game.

The method assumes to correlate semantic annotations in images with the output

of methods. The saliency map for each of the object classes presented in the image

has to be computed by the attribution method. ”One gets hit if the maximum point

on the saliency map is contained within the object” [126]. The overall accuracy

contains the number of hits versus the number of hits and misses.

The results of the evaluations of the extremal perturbation (EP) method on

the PASCAL and COCO datasets is competitive with other methods. See the Table

1
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Table 1: Pointing game. Mean accuracy on the pointing game over the full data splits (All) and a

subset of difficult images (Diff). Results from PyTorch re-implementation using TorchRay package

[33]

VOC07 Test

(All/Diff)

VOC07 Test

(All/Diff)

COCO14 Val

(All/Diff)

COCO14 Val

(All/Diff)

Method VGG16 ResNet50 VGG16 ResNet50

Cntr 69.6/42.4 69.6/42.4 27.8/19.5 27.8/19.5

Grad 76.3/56.9 72.3/56.8 37.7/31.4 35.0/29.4

DConv 67.5/44.2 68.6/44.7 30.7/23.0 30.0/21.9

Giud 75.9/53.0 77.2/59.4 39.1/31.4 42.1/35.3

MWP 77.1/56.6 84.4/70.8 39.8/32.8 49.6/43.9

cMWP 79.9/66.5 90.7/82.1 49.7/44.3 58.5/53.6

RISE 86.9/75.1 86.4/78.8 50.8/45.3 54.7/50.0

GCAM 86.6/74.0 90.4/ 82.3 54.2/49.0 57.3/52.3

Exremal pertur-

bation

88.0/76.1 88.9/78.7 51.5/45.9 56.5/51.5

The approach of extremal perturbation analysis avoids some of the issues of

prior work in this area and can be useful for the explanation of the basics of the

decision of Deep neural networks.

3.4 Object Recognition and Localisation

Recognition and localization of visual images are some of the most important com-

ponents for modern information systems, automatic systems and systems for making

decisions. Issues bounded with the identification of objects and signals, character-

ized by a set of certain properties and characteristics, originate in such industries

as robotics, autonomous vehicles driving, search for information, analysis and mon-

itoring of visual data, and artificial intelligence research.

Object recognition is a common term to explain a cluster of computer vision

tasks that connected with the identification of objects in images. Object localization

and object detection are popular tasks of computer vision [72].

Localisation : Identifying the position of the object by educting the object by

making a frame. The frame has the name ”bounding box”.

Input : The input contains several objects located on one image (for example a

photograph).

Output : Bounding boxes, one or several of them (e.g. defined by coordinates).

Object detection: Classification and detection of all objects in the image. It

also means the assignment of a class label to every object and the creation of a

bounding box for every object. Thus, object detection combines classification and

localisation tasks.

Input : The input contains several objects located on one image (for example a

photograph).
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Output : Bounding boxes, one or several of them (e.g. defined by coordinates),

plus a class label for every detected object (bounding box).

The localisation task is a version of the object recognition problem. The for-

mulation of the task is limiting the tasks to objects with the same type within an

image. These two tasks have a close connection and the same deep learning models

are using.

In the next sub-section, Convolutional Neural Networks (CNNs) will be con-

sidered, which are used for the object localisation and object detection tasks.

Convolutional Neural Networks Neural networks based on multilayer perceptrons

were the standard approach for imaging before CNN. CNN solves this problem by

taking 2D image topology into account and using a new type of architecture. CNN is

made up of different types of layers: connected layers, pooling layers, convolutional

layers. Convolutional neural networks provide partial resilience to changes in scale,

displacement, rotation, change of perspective, and other distortions. The example

of CNN work was presented in Figure 11. ReLU function was used as the activation

function for this example.

ReLU(x) = max(0, x). (21)

Figure 11: Sketch of a CNN classify images [100]

The Convolutional Layer has a set of trainable filter masks. The size of

these filters is usually small. The filter size is usually taken in the range from 3x3x3

to 7x7x3 (the last number is equal to the depth of the input). If the size then it will

not be able to distinguish any signs, if it is too large, then the number of connections

between neurons increases.

The filter mask slides over the entire area and is applied to each pixel of the

input image and finds certain features of the objects. These filters can be thought

of as detectors of certain visual characteristics.

To reduce the number of parameters and therefore the computation the Pool-

ing layer performs a reduction of the spatial size. Usually, the maximum of a

2x2 area is taken to reduce the size which means that 75% of the activations are

discarded. Figure 12 is illustrating this process.
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The next step after the convolution is the Pooling layer. It takes as input

small, separate pieces of the image (usually 2x2) and combines each piece into a

single value. Several aggregation methods are possible, most often a maximum of

four pixels is selected. The layer can reduce the number of parameters, which will

lead to fewer calculations. This can be thought of as downsampling.

Figure 12: Pooling layer operation [55]

After a series of convolutional and pooling layers, the next step is fully-

connected layers with a softmax layer as the final layer. It takes each pixel as

an independent value. The softmax function turns a vector of real numbers into a

vector of probabilities. The output values are the probabilities of the image falling

into a particular class.

Architectures for localisation and object detection Modern object detectors are

based on a proposal-based two-stage mechanism. The R-CNN framework family

[39] is one of the most popular architectures today. The family includes the R-CNN,

Fast R-CNN, and Faster-RCNN. In the first step, a set of potential object locations

is created, and in the second step, every candidate location is classified as one of

the foreground classes or as background classes by a CNN 3.4. Thanks to a number

of improvements [96] [70], this two-stage structure consistently provides the best

accuracy in the complex COCO test [69]. This paragraph in many ways based on

[71].

There are several types of architectures used in object detectors:

• Classic Object Detectors. The paradigm in which the classifier is using a dense

image grid has the name a sliding window paradigm.

One of the first papers regarding the sliding-window approach was the work

of LeCun et al. [63]. Through a sequence of advances such as HOG [22] and

”integral channel features” [28] it was the leading detection method in computer

vision, with the grow of deep learning [60], however two-stage detectors very

soon started to be a main object detection method.

• Two-stage Detectors. This is the main method in the area of modern object

detection. ”In the first step, a set of candidates is created that must contain all

objects while filtering out most of the negative locations, and in the second step,

the candidates are classified” [71]. R-CNN [39] made an upgrade the second-

stage classifier to a convolutional network. R-CNN had improvements such as
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using ”learned object proposals” [92] [96], increasing speed of work [45], [127].

One of the most significant improvements under the R-CNN network was the

integration of Region Proposal Networks (RPN) with the second-stage classifier

into a single convolution network creating the Faster RCNN.

Figure 13: Summary of the Faster R-CNN Model Architecture. Taken from: Faster R-CNN:

Towards Real-Time Object Detection With Region Proposal Networks [96].

• One-stage Detectors. One-stage detectors are used to regularly and tightly

sample the locations of objects. One of the first deep networks object detectors

with one stage was OverFeat [108]. SSD [73] [35] and YOLO [94] [95] are

examples of one-stage detectors. Both of them are focused on speed. YOLO

and SSD have an accuracy of around 10-40%. The accuracy of these methods

is relative to state-of-the-art two-stage methods [71]. Two-stage detectors can

be faster by reducing the resolution of the input image and the number of the

proposals, but one-stage methods are inferior in accuracy even with a bigger

compute supply [48]. Despite this, one of the best results among one-stage

detectors shows Retinanet architecture [71].

RetinaNet is a unified single network consisting of a backbone network and

two sub-networks designed for specific tasks. The backbone computes a convolu-

tional feature map for the input instance (image). The backbone is an autonomous

convolutional network.

The first subnet makes the convolutional classification of objects at the output

of the backbone. The second subnet is responsible for the convolutional bounding

box regression. The two mentioned subnets have a special design created for the

specific task of one-stage dense detection. It is presented in Figure 14.

Focal Loss (FL) has been presented also in [71]. If during training there is an

extreme imbalance between the foreground and background classes the focal loss

can be used. It is an important part of RetinaNet architecture.

FL(pt) = −(1− pt)γlog(pt) (22)
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where pt ∈ [0, 1] for the class label y = 1 it is a model’s estimated probability.

pt =

{
p if y = 1

1− p otherwise
(23)

Thus the Focal Loss adds a factor (1− pt)γ to the standard cross-entropy cri-

terion. The Cross Entropy (CE) in turn can be formulated as ”the average number

of bits needed to encode data coming from a source with distribution p when we

use model q” [83]. Setting γ > 0 decreases the loss for correctly classified examples

(pt > 0.5), putting more focus on difficult, misclassified examples. When γ = 0,

authors make a conclusion that Focal Loss is equivalent to Cross Entropy. γ = 2

works in practice and the RetinaNet is comparatively sensible to γ ∈ [0.5, 5][71].

The focal loss adjusts the class imbalance. This factor is important for single-

stage detectors. It gives an opportunity to effectively training on different kind of

examples. The examples can be used without sampling as well as without negatives

suppressing losses and computed gradients.

RetinaNet contains the following parts:

Feature Pyramid Network Backbone. Authors adopt the Feature Pyramid Net-

work (FPN)as the backbone network for RetinaNet. Originally it was presented in

[70]. ”FPN augments a standard CNN with a top-down pathway and side connec-

tions to the network” [70]. Thus authors build FPN on top of the ResNet architec-

ture.

Anchors : Authors use translation-invariant anchor boxes corresponding with

what was used in the Region Proposal Networks (RPN) [96] variant in [70].

At the same time, every anchor was appointed one-hot vector of classifica-

tion targets of length K. K is the number of object classes and the 4-vector of the

regression target box.

Classification Subnet : It predicts the probability of the potential event in which

an object being present at every position for every and object classes (K), anchors

(A) . This subnet represented by a minor Fully convolutional network attached to

every FPN layer.

Box Regression Subnet : In addition to the object classification subnet, authors

attach minor FCN to every level of the pyramid. ”The creation of Box Regression

Subnet aims to regress the offset from every anchor box to a nearest ”ground-truth

object”” (if it exists)[71].
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Figure 14: The one-stage RetinaNet network architecture [71]

As was written before, RetinaNet uses a Feature Pyramid Network (FPN)

[70] backbone on top of ResNet architecture [46]. It was presented in Figure 14.

According to figure: (a) This is ResNet architecture. FPN stage (b) has the aim of

generating a rich multiscale pyramid of convolutional functions. This is a backbone.

Classification Subnet (c) (for classifying anchor boxes) and Box Regression Subnet

(d) (for regressing from anchor boxes to ”ground-truth object” boxes) have been

attached to this backbone.

According to the authors, the network was designed is deliberately simple to

focus on a new focal loss function that closing the ”distance” in accuracy between the

presented single-stage detector and modern two-stage detectors such as the Faster

R-CNN with FPN, while operating at higher speeds [71].

Results of the comparison ReinaNet architecture on the challenging COCO

dataset in comparison with both one-stage and two-stage models are presented in

[71] as well. The COCO dataset has its own detection evaluation metrics [69].

The main terms of the COCO-metrics presented as follows. IoU is defined as

the area of intersection of the predicted bounding box and ground truth box divided

by the area of the union of them. The main metrics are Average Precision (AP) and

Average Recall (AR), where the precision can be formulated as a positive predictive

value and recall as a true positive rate. AR is the recall averaged over all IoU. AP

is the area under the precision-recall curve (it was also averaged across all classes of

the dataset).

Compared to other one-stage methods, the RetinaNet architecture (with ResNet-

101) achieves in the Average Precision metric: 39.1 vs. 33.2 of the DSSD [35] which

has obtained the closest result. Compared to modern two-stage methods, RetinaNet

(with ResNeXt-101) achieves in the Average Precision metric 40.8 in comparison

with the best performing Faster R-CNN model (with Inception-ResNet-v2-TDM)

[111] who achieves 36.8.
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4 Experiments

This chapter will describe the setup and the execution of all experiments. The

datasets have been are described in chapter 2.2 and the conclusions are presented

in chapter 5.

The experiments were performed on all three datasets (diamond dataset, geo-

metrical dataset, pollen dataset) mentioned in chapter 2.2.

4.1 Training Setup

For training any networks for this thesis, two similar HPC clusters were used. Sub-

tasks of the thesis were distributed among them.

To perform the first sub-task of the thesis (classification task), the software

and hardware environment of the ML partition of the TU Dresden cluster (Taurus)

[78] [76] was used. This cluster is called the HPC-DA system.

With the HPC-DA system, the TU Dresden provides the infrastructure for

High-Performance Computing and Data Analysis for computing projects with a

focus on one of the following areas:

• Machine learning scenarios for large systems

• Evaluation of various hardware settings for large machine learning problems,

including accelerator and compute node configuration and memory technologies

• Processing of large datasets on highly parallel infrastructure.

Thereby, the HPC-DA systems is a suitable platform for the thesis realisation.

HPC-DA system is built from IBM Power9 nodes [77]. HPC-DA system in-

cludes 32 IBM AC922 nodes with this configuration for each node:

• 2 x IBM Power9 CPU (2.80 GHz, 3.10 GHz boost, 22 cores)

• 256 GB RAM DDR4 2666MHz

• 6x NVIDIA VOLTA V100 with 32GB HBM2

• NVLINK bandwidth 150 GB/s between GPUs and host

To implement the used ML networks, PyTorch/1.6.0 was used.

For the classification task, the HPC-DA system was used. For the purpose

of the training one node with 4 NVIDIA VOLTA V100 was used. The job was

distributed by PyTorch distributed data-parallel tool.

As was written before, HPC-DA is built on the basis of Power9 architecture

from IBM. The main feature of the Power9 architecture (ppc64le) is the ability to

work with the NVIDIA Volta V100 GPU with NV-Link support [6]. The Power9

architecture is not as common as the x86 architecture. This means that not all

applications and packages have the support of this architecture. In particular, the
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TorchRay package for Pytorch, which implements the extreme perturbation func-

tion (see 3.3.2), does not support ppc64le. The Taurus partition based on the x86

architecture provides NVIDIA k20 and k80 on board. Thus, a different HPC cluster

was used for other subsections of the thesis.

For the thesis sub-task number 2 (extract representation of neural network) and

sub-task number 3 (localisation task) HPC Helmholz Zentrum Dresden-Rossendorf

[104] cluster named Hemera was used. An important feature of the Hemera cluster

is the availability of NVIDIA V100 / P100 GPU, on the x86 architecture.

Hemera contains 88 CPU nodes each with 40 Intel Xeon Gold and 24 GPU

nodes each with 28 cores and 4 Nvidia GPUs type Tesla P100 or V100. The network

of the hemera cluster is constructed of an EDR InfiniBand (100Gbit/s).

For the purpose of sub-task number 2 and sub-task number 3 one node with

1 NVIDIA VOLTA V100 was used. To implement the used ML networks, Py-

Torch/1.6.0 was used.

4.2 Classification

4.2.1 Experiment’s Progress and Results

According to sub-task No. 1, it is necessary to make a classification. The course

of the experiment in terms of classification will be presented. For classification,

the architecture ResNet [46] was used. For the purpose of the thesis, two types of

ResNet architecture was used: ResNet18, ResNet50. A comparison has been made.

Details can be found in table 2.

Each dataset was split into two datasets. The first sub-dataset contains only

images with only one kind of object per image. The second sub-dataset contains

images that contain a combination of different types of objects. For simplicity,

hereinafter in the text, the first sub-dataset (one kind of objects per image) is named

”simple”, and the second sub-dataset (different kinds of objects per image) is named

”mixed” dataset. Thus, the geometric mixed dataset contains the categories ”core”,

”halo”, ”control” in a single image (see 2.2.3). The pollen mixed dataset contains

’equal split’, ’smaller pollen split’, ’middle pollen split’, ’bigger pollen split’ in a

single image (see 2.2.2).

As preparation for the training, each sub-dataset was randomly split into 3

parts: training, test and validation part(with ratio 80% 15% 5% respectively).

The training was done in 20 epoch with batch size 32 for ResNet18 and batch

size 16 for ResNet50.

SGD optimizer was used with the Reduce learning rate scheduler. Cross-

Entropy loss, 2-fold cross-validation are implemented.

Models were trained on the training data and tested on the ’test’ data. The

results are presented in Table 2. The table also shows the accuracy of the test data.

The F1 score is also presented in the table. This value can be interpreted as a

weighted average of precision and recall [3].
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Table 2: Classification results. Comparison of results obtained for datasets for ResNet18 and

ResNet50 architectures

Dataset model archi-

tecture

Accuracy

(test set)

F1 AP** AR**

Geometric

dataset

simple

ResNet18 0.984 0.915 1.0 1.0

Geometric

dataset

mixed

ResNet18 0.710 0.812

Geometric

dataset

mixed

ResNet50 0.713 0.815 0.815 0.889

Pollen

dataset

simple

ResNet18 1.000 1.000 1.0 1.0

Pollen

dataset

mixed

ResNet18 0.672 0.677

Pollen

dataset

mixed

ResNet50 0.664 0.678 0.594 0.625

Pollen

dataset

full*

ResNet18 0.834 0.805

Pollen

dataset

full*

ResNet50 0.835 0.812

Diamond

dataset

ResNet18 0.475 0.125

Diamond

dataset

(pretrained)

ResNet50 0.575 0.130

*Full dataset contains all instances of pollen dataset. ** AP - Average Precis-

sion, **AR - Average Recall (See Section 4.4.1, [2]).

The images in the dataset were pre-processed. Within its framework, augmen-

tation and normalization were carried out.

The augmentation of Image data technique was used to artificially expand the

size of a training dataset to improve the performance and ability of the model to

generalize. Random horizontal mirroring and random rotation were applied to each

instance of the dataset. Also, the images have been converted to grayscale pixel

intensities.
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Figure 15: Accuracy for each class for full pollen dataset

Table 3: Classification accuracy results per class for sub-datasets

Name of the

class

model archi-

tecture

Accuracy Name of the

class

model archi-

tecture

Accuracy

Geometric

simple

dataset:

ResNet18 Pollen simple

dataset:

ResNet18

Circles 0.99 Chenopodium 1.00

Triangles 1.00 Corylus 1.00

Rectangles 0.89 Secale 1.00

- - - Urtica 1.00

Geometric

mixed

dataset:

ResNet50 Pollen mixed

dataset:

ResNet50

Core 0.86 bigger pollen

split

0.81

Halo 0.18 equal split 0.51

Control 1.00 middle pollen

split

0.55

- - - smaller

pollen split

0.69

The accuracy results for classes (categories) for each dataset are presented in

the table 3.
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Figure 16: Relation of training loss from number of images for pollen simple dataset

4.2.2 Intermediate Summary of Classification results

Classification accuracy results per class for sub-datasets presented in Table 3. The

diamond dataset shows the lowest accuracy around other datasets. To obtained

better results for the diamond dataset, the ResNet50 were pretrained on a similar

SEM-based dataset [82] and tested on the diamond dataset. However, the attempt

to use the pretrained neural network shows an accuracy of 10% higher than the

original but the threshold sill not much higher than 50 %.

ResNet18 and ResNet50 architectures were trained on all datasets. The results

presented in table 2 show that ResNet18 and ResNet50 show similar results. It

is possible to see that the results of ResNet18 and ResNet50 for mixed datasets

(presented as an example) differ within 1 %. Training on simple sub-datasets with

ResNet18 gives almost 100% results. Based on this, it was decided to continue

working with ResNet18 for simple datasets and use ResNet50 for mixed datasets.

Table 3 shows that for extreme categories, where the difference between object

types is strong, the classification works well (Core, Control, Bigger pollen split,

Smaller pollen split). However, for categories with an intermediate position, the

classification shows the probability results in lower 50% (Halo) or not much higher

than 50 % (Middle pollen split, Equal split). It correlates with the F1 score (which

is connected with the balance in the dataset) 0.677 for the pollen mixed dataset and

1.00 for the pollen simple dataset.

4.3 Expainable AI methods

4.3.1 Experiment’s progress and Results of the Grad-CAM method in comparison

with Integrated Gradients and Occlusion method

As described earlier in the 3.3.1 the Grad-CAM method is one approach to explain

deep network predictions. The method was chosen in part 3.3 as one of the po-

tential approaches for completing sub-task number 2 requiring the use of methods

of ”explainable AI” to extract representations that are sensitive to the matter re-

sponsible for the network’s output. According to the pipeline of the approach, these

representations will be used further as an input for the localisation task (see 4.4).
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Grad-CAM has been used for experiments along with other methods. Several

methods from attribution-based approaches have been tested. Several methods from

attribution-based approaches have been tested. Compared to Grad-CAM, the results

of gradient-based attribution methods and perturbation-based attribution methods

were presented. In particular, the results of Grad-CAM, integrated gradients (IG)

and occlusion techniques are presented in this chapter. These methods have been

selected from attribution-based approaches as showing the best results.

Methods have been applied for random images with different labels from the

validation part of each dataset. The methods were used for images with both cor-

rectly and incorrectly predicted labels. Grad-CAM has been implemented by the

Captum package. Captum is an ”extensible library for model interpretability built

by the PyTorch” [5]. Captum has a wide range of state-of-the-art algorithms. The

Integrated gradient method (IG) and Occlusion method have also been implemented

using Captum.

Results of Extremal perturbation function will be presented in the 4.3.2. The

results obtained by different methods will be compared in the 4.3.3.

From all the results obtained, a sample for presentation was selected for each

data subset. The sample contains three images (a, b, c). For clarity, all three

methods were applied to each image.
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Figure 17: Images from a geometric simple sub-dataset (first column) after processing with inte-

grated gradients, occlusion, Grad-CAM, respectively. a - true: rectangles, predicted: triangles; b

- true: circles, predicted: circles; c - true: rectangles, predicted: rectangles

The results for a simple subset of the pollen dataset are presented above. Im-

age ”a” contains rectangles and is marked accordingly. The image was mistakenly

labelled as an image with triangles during classification. The labels for the images

”b” (circles) and ”c” (rectangles) were correctly predicted.

For image ”a” in figure 17, the integrated gradient method shows only one of

two rectangles with many visual artefacts at the borders. The occlusion method only

shows visual artefacts. After Grad-CAM processing, one rectangle can be clearly

identified and the other rectangle is barely visible. Grad-CAM also shows visual

artefacts. Similar results can be found for images ”b” and ”c”.
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Figure 18: Images from a pollen simple sub-dataset (first column) after processing with inte-

grated gradients, occlusion, Grad-CAM, respectively. a - true: Utica, predicted: Utica; b - true:

Chenopodium, predicted: Chenopodium; c - true: Secale, predicted: Secale

The results for the ’simple’ sub-dataset of the pollen dataset are presented

above.

An example of results for a simple subset of pollen data is presented below.

For example, image ”b” in Figure 18 contains 5 Chenopodium pollen particles and

has been labelled accordingly. At the time of classification, the image was correctly

identified as an image with Chenopodium pollen particles. The integrated gradient

method for image ”b” shows all 5 particles with visual artefacts evenly distributed

over the image. The occlusion method shows all 5 particles with visual artefacts.

After Grad-CAM processing, 3 particles can be clearly identified and 2 particles near

the boundaries are barely visible. Grad-CAM does not show visual artefacts. IG

was detected false positives on the image ”a”. Occlusion was detected false positives

for the image ”c”.
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Figure 19: Images from a geometrical mixed sub-dataset (first column) after processing with

integrated gradients, occlusion, Grad-CAM, respectively. a - true: core, predicted: core; b - true:

halo, predicted: control; c - true: control, predicted: control

An example of results for a mixed subset of a geometric dataset is presented

above. Image ”a” contains three circles of different diameters and is labelled as

”core”. At the time of classification, the image label was correctly predicted to be

”core”.

The integrated gradient method shows part of the outlines of the circles. The

occlusion method shows all forms, but with visual artefacts. After processing with

Grad-CAM two circles can be partially identified, while other figures are not visible.
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Figure 20: Images from a pollen mixed sub-dataset after processing with integrated gradients,

occlusion, Grad-CAM, respectively. a - true: equal split, predicted: equal split; b - true: middle

pollen split, predicted: middle pollen split; c - true: middle pollen split, predicted: middle pollen

split

An example of the result of a mixed subset of pollen data is presented above.

For example, image ”a” in Figure 20 contains Chenopodium bonus-henricus (medium

size particles), 2 Utrica dioica (smallest particles), 1 Secale cereale (biggest parti-

cle) pollen particles and one particle of foreign object. The image was marked as

’equal split’. At the time of classification, the image was correctly predicted to be

an ”equal split” image.

The integrated gradient method clearly shows 3 particles (1 Secale cereale and

2 Chenopodium Bonus-henricus), other particles cannot be identified behind visual

artefacts evenly distributed over the image. Particles cannot be identified behind

visual artefacts as a result of the occlusion method. After Grad-CAM processing

3 massive particles can be clearly identified and 2 other particles are barely visible

behind visual artefacts.
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Figure 21: The sample of images from all sub-datasets after after processing with integrated

gradients, occlusion, Grad-CAM, respectively. a - geometrical simple dataset; b - pollen simple

dataset; c - geometrical mixed dataset; d - pollen mixed dataset

Figure 21 shows examples of images from all datasets, combined into one collage

for clarity.

The following results can be found by examining the drawing 21. The occlusion

method creates many artefacts in the output and rarely allows the correct image

areas to be rendered. In many cases, the method cannot identify all image objects,

especially for mixed datasets. At the same time, the integrated gradient method

creates visual artefacts. The integrated gradient detection scheme is similar to

the Grad-CAM detection scheme. Experimental results for the Grad-CAM method

showed that this method can only register average network properties. In half of

the cases, the method cannot identify all image objects for the mixed dataset. For

a mixed pollen dataset, Grad-CAM can clearly identify massive particles, but small

particles are barely visible behind visual artefacts.
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4.3.2 Experiment’s Progress and Results of Extremal Perturbations Method

The extremal perturbations method is a method for interpreting neural network

predictions. See 3.3.2 for details. Along with the Grad-CAM method, the extremal

perturbations method is one potential approach for fulfilling sub-objective number

2 of the thesis (for extracting views that are sensitive to the issue responsible for the

network output). The results obtained at this stage will be used for the localisation

task (see 4.4).

The pipeline for using the extremal perturbation method is the same as in

the case of the Grad-Cam method: applying the method to random images with

different labels from the test set of each dataset. The method was used for images

with both correctly and incorrectly predicted labels. Extremal perturbations and

Grad-CAM were used on the same images to compare methods and select the most

appropriate approach for the thesis.

The Extremal perturbation method was implemented by Torchray [4]. The

TorchRay package implements methods for visualising deep convolutional neural

networks using PyTorch. The Torchray package was created by the authors of the

paper [33] which originally introduced the extremal perturbation method.

The method tends to find the area of the input image that maximally excites

the exact output or intermediate activation of the model. The extremal perturbation

function finds a mask that increases activation.

The extremal perturbation method takes a model, an image and a target acti-

vation channel (the label). The output of the method is an optimized mask with a

maximum number of activations in the channel

The extremal perturbation function allows the setup of various parameters to

better tune the method for different datasets. The function allows to set up the

following parameters: the parameter of the area which is a list of target areas; the

number of iterations for optimizing the masks; the number of levels (blocks) with

which it is possible to discretize and linearly interpolate the disturbance; mask step;

mask smoothing.

Various sets of parameters have been tested. The goal was to find a set of

parameters that would be stable across different images from the same dataset and

universal across all datasets used in the thesis.
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Figure 22: The image from the geometrical datasets after the Extremal perturbation method

processing with set of parameters number 1. a - simple geometric dataset: true - rectangles,

predicted - rectangles; b - simple geometric dataset: true - triangles, predicted - triangles; c -

mixed geometric dataset: true - control, predicted - halo

The set of parameters number 1: areas [0.02]; maximum iterations 800; step/sigma

10, 12; image size [1, 1, 224, 224]; number of levels 8; mask resolution torch.Size([1,

1, 23, 23]). The image 22 shows a sample of images from a simple geometric dataset

after being processed by the extremal perturbation method with the parameter set

number 1. Image size reduced to (224 * 224). On a simple geometric dataset, the

method shows only one shape. The method did not find any shape on the geometric

mixed dataset.

The set of parameters number 2: areas [0.1]; maximum iterations 300; step/sigma

14, 12; image size [1, 1, 1280, 1280]; number of levels 10; mask resolution torch.Size([1,

1, 92, 92]). The image 45 shows a sample of images from a simple geometric dataset

after being processed by the extremal perturbation method with the parameter set

number 2.

On a simple geometric dataset, the method shows figures in all three examples.

However, it also shows a computation artefact at the bottom of all images.

The set of parameters number 3: areas [0.1]; maximum iterations 300; step/sigma

9, 12; image size [1, 1, 1280, 1280]; number of levels 8; mask resolution torch.Size([1,
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1, 143, 143]). The image 46 shows a sample of images from a simple geometric

dataset after being processed by the extremal perturbation method with the param-

eter set number 3.

The experiment was continued with the set of parameters number 3. The

extremal perturbation method with the selected set of parameters does not show

artefacts and determines most of the objects in the output.

Results for all four datasets are presented. Based on the results, a sample was

selected randomly for each sub-dataset. The sample contains three images (a, b, c).

Figure 23: The sample of images from all sub-datasets after processing with the Extremal pertur-

bation method. a - geometrical simple dataset; b - pollen simple dataset; c - geometrical mixed

dataset; d - pollen mixed dataset. Left image - image after EP; Right image - original image



4 EXPERIMENTS 46

On a simple geometric dataset and a simple pollen dataset, the method clearly

shows shapes and particles. The results of using the extremal perturbation func-

tion have a slight artefact at the boundaries. Small particles in the simple pollen

dataset can be detected, but at the same time, the methods detect artefacts. On a

mixed geometric dataset and a mixed pollen dataset, the method shows shapes and

particles, but without clear boundaries. The method detects debris particles in the

mixed pollen dataset.

4.3.3 Intermediate Summary of Explainable AI methods. Dataset for Localisation

Task

To logically continue the structure of the report, it is necessary to present several

brief intermediate results comparing the various methods of Explainable AI. The

main method has to be chosen to complete the current sub-task and use the results

of the method for the localisation task.

Thus, the method should reveal the area of the image that most likely led to

the prediction of the classifier. This uncovered region is the object that has to be

put a bounding box around and produce a coco-like dataset.

The main criterion for explainable AI methods was an accurate and clear un-

derstanding of the questions responsible for predicting the classifier. The selected

contours or areas must match the position of objects in the original image. Visual

artefacts should be kept to a minimum in order to create a bounding box for the

subsequent localisation task.

The results of using explainable AI methods were presented in the previous

subsections. The occlusion method shows less stable results among all methods for

both simple and mixed datasets and creates a lot of visual artefacts, which makes

images obtained with this method unsuitable for image processing. The differences

in the results of the method are averaged, which makes the method imprecise and

inappropriate for the purpose of the thesis.

The integrated gradient method shows the correct outlines of some objects,

especially for simple datasets. It is more stable than the occlusion method, but

creates a lot of visual artefacts, making the method imprecise and unsuitable for

thesis purposes.

Grad-CAM has fewer artefacts than occlusion and integrated gradients. It

shows the position of objects (their positions can be visually distinguished), but not

in all cases. For mixed datasets, it can only detect few object in the image. Grad-

CAM can clearly identify massive particles, but small particles are barely visible

behind visual artefacts for mixed datasets.

All of these methods can capture average network properties, but cannot char-

acterize individual outputs.

Captum was chosen as a realisation for the Integrated Gradients method, Oc-

clusion method and the Grad-CAM method. Captum is one of the few packages that

allow implementing these methods. Another important point is that the Captum
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package has the ability to use these methods only for images with a resolution of

224 x 224 pixels, which makes post-processing difficult.

On a simple geometric dataset and a simple pollen dataset, the extremal per-

turbation method clearly shows shapes and particles. It shows stable results. The

results of using the extremal perturbation function have a slight artefact at the

boundaries. At the same time method show stable accuracy for mixed datasets.

As a result of the comparison of the data from of presented methods given in

4.3.1, 4.3.2, the Extremal perturbation method was chosen as the main method in

order to complete the sub-task number 2. The next step is to prepare a dataset

from the results of the method for the localization task (sub-task number 3). To

complete the final sub-task it was decided to use a coco-like dataset [69].

The extremal perturbation function was applied to each image from the vali-

dation dataset. The result of using the extremal perturbation function is a tensor

that can be shown as an image. To prepare the dataset, the mask used by the

extremal perturbation function was extracted as a black and white image (i.e., a bi-

nary mask). This was done for every image of a validation set of every used dataset.

Since the extremal perturbation function in many cases can only capture the outline

of an object or its scattered parts, it is necessary to use image processing methods to

create a single mask for one object in the image. For this purpose, the morphological

functions (such as closing and dilation) from scikit-image package [119] were used.

Further, for each object on the image, the binary mask annotations were encoded

into a png image. The pycococreator tool [1] was used then to create annotations

and reorganise the data into coco-like dataset. For geometrical and pollen ’simple’

datasets all objects on one image were labelled with one class. For geometrical and

pollen ’mixed’ datasets objects on the image were labelled by label function from

”measure label” tool of the scikit-image package. This function labels connected

regions of an integer array.

4.4 Localisation

4.4.1 Experiment’s Progress and Results

To complete sub-task number three localisation have to be used. A dataset was

prepared based on the result of using the extremal perturbation function. The

technique and results of using Explainable AI methods were presented in 4.3. The

main purpose of this part of the work is to localise objects on signal images of

datasets presented in chapter 2.2 of the thesis.

For the purpose of the thesis, the classification task is a pretext task and the

localisation task has the role of a downstream task.

For the purpose of the localisation RetinaNet [71] architecture was used. As a

specific implementation of the RetinaNet architecture, the PyTorch implementation

from [7] was used. As an FPN part, (see 3.4) of the RetinaNet, the ResNet-50

architecture was used.
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The following datasets were used for the training during the localisation:

• Simple geometrical dataset

• Simple pollen dataset

• Mixed geometrical dataset

• Mixed pollen dataset

• Diamond dataset

All datasets used in the localisation part of the work can be divided into three

types:

• EP datasets - datasets with images after the processing by extremal perturba-

tion method with annotations obtained in the process of the work;

• GT datasets - ’ground truth’ datasets with original images (without EP) with

annotations obtained in the process of the work;

• GT datasets with original annotations - datasets with raw/original images

(without EP) with original annotations provided by the creators of the dataset

(only pollen dataset)

In preparation for training, each sub-dataset was randomly divided into 2 parts:

training and validation part (with ratio 90% 10%, respectively).

EP datasets and GT datasets have a coco-like dataset structure. The metrics

used for the coco dataset were used to estimate the effectiveness of the RetinaNet

in the downstream task for these datasets. The ’ground truth’ GT dataset was

prepared for each sub-datasets used in the thesis to evaluate the model objectively.

EP datasets were prepared according to the technique described in 4.3.3. GT

datasets were prepared from original datasets before the extremal perturbation was

applied on images. Annotations for images for EP and GT datasets were made by

the pycococreator tool [1]. To obtain the masks required for pycococreator to work,

a similar technique was used as in 4.3.3. As was written earlier for ’simple’ datasets

all objects on one image were labelled with one class; for ’mixed’ datasets objects

on the image were labelled by label function from the ’measure label’ tool of the

scikit-image package. This function labels connected regions of an integer array.

GT datasets with original annotations have a custom format. It contains an-

notations in CSV files. There are two pollen sub-datasets with this format. The

reason is that the authors of the original pollen dataset were prepared annotations

in this way. The original geometrical dataset doesn’t have it.

In this way, for the localisation task, several experiments have been carried out.

The model has been trained on EP and GT version of each sub-dataset separately.

For the pollen sub-datasets, the model has been additionally trained on raw/original
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”ground truth” images from these datasets (GT datasets with original annotations).

The results of the validation are presented as follows.

The results of localisation are presented in Table 4, Table 5, Table 6, Table 7.

The results are presented as quality metrics for results of localisation when a

model was validated on different datasets. The standard coco metrics includes 10

IoU (Intersection over Union) thresholds from 0.5 to 0.95 with a step size of 0.05.

The coco metrics were used in Table 4, Table 5, Table 6.

Table 4 presented the following results: results of the model trained on EP

dataset and validated on EP dataset; for the comparison results from the model

trained on GT dataset and validated on GT dataset have been added for each

dataset (GT mark).

For the purpose to impose a high-quality constraint on the object detection

interval 0.8:1.0 was created. These results are shown in Table 5, Table 6.

Table 5 presented the following results: results of the model trained on EP

dataset and validated on EP dataset; for the comparison results from the model

trained on GT dataset and validated on GT dataset have been added for each

dataset (GT mark).

Table 6: To evaluate the model objectively, results for a model trained on

EP dataset and validated on GT dataset have been presented as well. For the

comparison purpose, results from the model trained on the GT dataset and validated

on the GT dataset for each dataset (GT mark) have been presented as well.

Moreover, the results of the validation on GT datasets with original annotations

for pollen sub-datasets have been presented in Table 7.

As a final step, localisation visualisation was performed. A sample of the results

for all sub-datasets was presented in Figure 24, Figure 25, Figure 26. The objects

in the output image were counted by enumerating bounding boxes.
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Table 7: Results of the Average Precision metric (IoU threshold 0.8-1.00) obtained with respect

to GT datasets with original annotations (i.e raw/original ”ground truth” images from pollen sub-

datasets with original annotations) for the model trained: GT(o) - on raw/original ”ground truth”

images from these datasets; EP - on images (masks) from EP pollen sub-datasets

Name of the

class

model archi-

tecture

AP Name of the

class

model archi-

tecture

AP

Pollen simple

dataset:

GT(o) Pollen simple

dataset:

EP

Chenopodium 0.156 Chenopodium 0.041

Corylus 0.131 Corylus 0.00

Secale 0.203 Secale 0.00

Urtica 0.0 Urtica 0.00

Pollen mixed

dataset:

GT(o) Pollen mixed

dataset:

EP

Chenopodium 0.088 Chenopodium 0.0136

Corylus 0.084 Corylus 0.011

Secale 0.181 Secale 0.108

Urtica 0.0 Urtica 0.0
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Figure 24: The sample of images from EP datasets (i.e images after EP from all sub-datasets

with annotations obtained in the process of the work) after applying the studied approach where

the model was trained on EP datasets (masks). a - geometrical simple dataset; b - pollen simple

dataset; c - geometrical mixed dataset; d - pollen mixed dataset. Left image - an original image;

Right image - an image after using the method
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Figure 25: The sample of images from GT datasets (i.e ”ground truth” images from all sub-

datasets with annotations obtained in the process of the work) after applying the studied ap-

proach where the model was trained on EP datasets (masks). a - geometrical simple dataset; b -

geometrical mixed dataset; c - pollen simple dataset; d - pollen mixed dataset.

Figure 26: The sample of images from GT datasets with original annotations (i.e raw/original

”ground truth” images from pollen sub-datasets with original annotations) after applying the

studied approach where the model was trained on EP images (masks). a - pollen simple dataset;

b - pollen mixed dataset.

4.4.2 Intermediate Summary of Localisation Results

To analyze the results of the work, the following should be recalled. To obtain the re-

sults in presented tables with quality metrics the classification was made and the EP

was run on the results of classification. Once EP ”converged”, labels were assigned

to all regions that EP uncovered for each class. The next step was localisation. The
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flow of the thesis pipeline is presented in Figure 27.

Figure 27: The pipeline of the thesis

The primary metrics for the Tables 4, 5, 6 are row number 1 and row number

6.

The models trained on the GT dataset and also validated on the GT dataset

show general structure and information about the datasets themselves (Table 5).

The model trained on EP dataset and validated on EP dataset shows the effective-

ness of the model (RetinaNet) on the localisation task (Table 5).

The model trained on EP dataset and validated on GT dataset show the results

of using the studied approach in general regarding selected sub-dataset. In this way

Table, 6 shows the main results of the thesis.

The best results were obtained with a simple pollen dataset and a simple geo-

metric dataset(see Table 6). These results are expected for simple datasets because

images with only one object type per image are the simplest material for the model.

See the Figure 24, Figure 25. However, the geometric mixed dataset shows result

almost on the same level as a simple geometric dataset. At the same time, the com-

parison of the results obtained for the simple pollen dataset for the model trained

on the EP and GT datasets and validated on the GT dataset shows a bigger gap

than similar results for the simple geometric dataset and geometric mixed dataset.

The best result for a simple pollen dataset obtained for the model trained on

the GT dataset and validated also on the GT dataset can be attributed to the

homogeneity of one class of a simple pollen dataset. Each dataset class differs from

others in both shape and size. Whereas in a geometric simple dataset, the sizes of

figures of the same class can be different, See Figure 54.

For the pollen dataset, the precision drops from simple to mixed substantially

(comparing both for datasets after EP and GT datasets); That indicates that Reti-

naNet mixes up different classes of pollen quite easily. See Figure 25, Figure 24,

Figure 62. However, it must be said that visual analysis of post-EP images from

mixed datasets prepared for the localization problem shows that the labels assigned
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by the algorithm rarely correspond to real ”ground truths” labels. At the same time

data from Table 7 shows that there is a difference in results for GT dataset with

original annotations between the pollen simple and pollen mixed datasets.

Both precision (AP) and recall (AR) show the values where the geometric

simple GT dataset is on par with the values of the geometric mixed GT dataset (see

Table 6). However, one might expect that the task of detecting objects from several

classes is more difficult. The reason may be that the dimensions of the geometric

shapes for the geometric dataset with the same label can be different. This can be

difficult for the model (See Figure54).

Originally, the coco-like metrics has a ”small” scale for the IoU. Objects in the

coco dataset that define an area less than 32x32 belong to small. However, the tables

above don’t have this scale. The reason for that the RetinaNet with the proposed

approach can not localize small objects. However, for the geometrical simple dataset,

the values 0.075 for AR and 0.077 for AP were found for the ”small” scale. For the

pollen simple dataset, the value was 0.01 for both AP and AR. Probably, one of the

potential explanations is that the size of objects in images is bigger than 32*32. For

the ”Utrica” category (smaller particles) in the pollen simple dataset the size of one

particle on the edge of this value. According to Table 7 the value of AP is 0.0 even

for the model trained on the GT dataset with original annotations and validated on

this dataset.

In general, comparison of results for AP obtained for the models trained on GT

datasets and validated also on the GT datasets presented in Table 6 and in Table 7

show that the approach (for annotating datasets without original annotations) used

in the thesis can be applied for the preparation of datasets for the localisation.

At the same time model trained on the EP dataset and validated on the GT

datasets with original annotations (see Table 7) shows worse results than models

trained on GT datasets with original annotations and validated also on this dataset.

It shows the necessity of prepossessing images for validation of models trained on

EP datasets.

The results presented in the Table 5 generally correlate with the results pre-

sented in the Table 4.

The value of AR in the Table 5 has a average value higher than 55% and in the

Table 4 higher than 70%. It indicates the general suitability RetinaNet architecture

for the presented datasets.

The Diamond dataset presented in the tables 5, 4 performed poorly. The reason

for that probably that the size of the dataset not enough for the approach. The

localisation result even for GT dataset AP = 0.055 correlates with a low accuracy

result (0.575) for classification.

AP and AR result in Table 6 show similar values for models trained on EP

datasets and GT datasets for medium IoU area for geometric simple and geometric

mixed datasets . In this way, RetinaNet performs best on the middle objects of the

geometric dataset.
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Localisation visualisation was performed. A sample of the results for all sub-

datasets was presented in Figure 24, Figure 25, Figure 26. The results for all datasets

separately presented in Appendix D.

Results of the visualisation are correlates with results in tables 6, 4. For the

geometric simple and mixed datasets, the number of counted objects in many cases

correlates with the real number of objects in the images (counted by rough visual

estimation).

The average difference for all datasets between the results obtained for the

model trained on the EP dataset validated on the GT dataset, and the model trained

on the GT dataset validated on the GT dataset is roughly 50%. At the same time,

AP and AR result for the medium size objects of geometric simple and geometric

mixed datasets (see Table 6) shows that RetinaNet trained on the EP datasets

performs on GT datasets almost as good as RetinaNet trained on ”ground truth”

GT datasets.
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5 Conclusion and Outlook

In this chapter, the results of this work are summarized. Finally, open points of

the work are addressed that allow further investigations and improvements for the

presented approach.

Deep neural networks with a combination of self-supervised learning and ex-

plainable AI have been used to localize objects in images from a scanning electron

microscope (SEM) datasets (or similar datasets). To accomplish the task, HZDR

and TU Dresden HPC clusters were used. The experimental setup and infrastructure

are described in 4.1, and the experiment progress, technical details and problems

are described in 4.2, 4.3, 4.4.

5.1 Conclusion

The main objects of research were geometric and pollen datasets. The classification

was done for all datasets. The results obtained during the classification show the

validity of the choice of ResNet architecture. The accuracy for simple datasets

approaches 100 % with F1 0.915 - 1.000 for ResNet18. Mixed datasets show an

accuracy of 67% - 71% for both ResNet18 and Resnet50. These indicators are at

an adequate level, and this shows the possibility of using a ResNet-based model for

SEM datasets and use these models as a pretext task for self-supervised learning.

The experiment carried out and the review of articles showed the difference

between the approaches of various methods of Explainable AI, the results of these

methods, their problems and features were also considered. The main comparison

was between the Grad-CAM method and the extremal perturbation method.

The integrated gradient method and the occlusion method were applied for

comparison with the Grad-CAM method. The occlusion method creates a lot of

artefacts in the output and rarely allows to visualise the correct areas in the image.

Integrated gradients show a low accuracy, in many cases, the method cannot identify

all image objects, especially for mixed datasets. At the same time, the integrated

gradient method creates visual artefacts. The detection scheme of the Integrated

gradients method is similar to that of the Grad-CAM method. However, all of these

factors make the integrated gradient method and the occlusion method unsuitable

for the purpose of the thesis.

The results of the experiments for the Grad-CAM method showed that this

method can only record the average properties of the network. In half of the cases,

the method cannot identify all image objects for the mixed dataset. For a mixed

pollen dataset, Grad-CAM can clearly identify massive particles, but small parti-

cles are barely visible behind visual artefacts. In case the model made an incorrect

prediction, Grad-CAM will not be able to clearly identify the objects in the im-

age. Captum’s implementation of the Grad-CAM method, the integrated gradients

method and the Occlusion method made the use of these methods inconvenient. All

of the above factors make the use of the Grad-CAM method unacceptable for the
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thesis.

The best results were obtained using the method of extremal perturbations.

The extremal perturbations function can identify most objects in various datasets.

The method works especially well with simple datasets. For mixed datasets, it can

also visualise correct areas of the images, but with less precision. The method re-

quires customization for a specific set of data. It is difficult to customize the method

for different datasets. The method creates artefacts at the borders, but they can

be cut off. Among the methods considered, the method of extremal perturbations

is of greatest interest for the thesis problem. Based on the results of the method of

extremal perturbations, a dataset was created for the localization task. The details

and the method of creating the dataset were presented.

The results presented in Table 6 correspond to the performance of the locali-

sation task for the RetinaNet trained on different datasets with respect to ”ground

truth” datasets. The average difference between the results obtained for the model

trained on the EP dataset validated on the GT dataset, and the model trained on the

GT dataset validated on the GT dataset is roughly 50%. However, AP and AR re-

sult for the medium size objects of geometric simple and geometric mixed datasets

(see Table 6) shows that RetinaNet trained on the EP datasets performs on GT

datasets almost as good as RetinaNet trained on ”ground truth” GT datasets.

For a pollen dataset, accuracy drops significantly from a simple dataset to a

mixed dataset (for GT datasets and for EP datasets). This result shows that Reti-

naNet mixes different classes of pollen datasets. However, it is necessary to mention

that labels assigned by the algorithm during the preparation of the datasets for the

localisation task were assigned not accurately. The main priority was the study

of using the approach for datasets with one label per image. Using the approach

to localize objects for datasets with more than one object type per image requires

further study.

For a simple geometric dataset, a detailed analysis shows that objects occupy-

ing more than 30% of images were detected as several contours and were counted

as several objects (see Figure 54). The same problem was found for a geometric

mixed dataset. This issue was not found for the mixed pollen dataset. Addition-

ally, in the pollen sub-datasets, Utrica dioica particles (the smallest fraction) were

poorly detected due to their size for all datasets and all models (see Table 7). The

extremal perturbation method found them with artefacts or did not find them at

all. RetinaNet can not find them on GT datasets with original annotations.

Localisation visualisation was performed. Results of the visualisation are corre-

lates with results in the tables 6, 4. The best results were obtained for geometrical

datasets. The number of counted objects in many cases correlates with the real

number of objects in the images.

The obtained data and conclusions allow speaking with restrained optimism

about the moderate success of the method on simple datasets and the potential use

of this method for similar datasets. The most suitable datasets for this method are
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simple SEM-based datasets with one type of medium-sized objects per image.

The Approach to Self-Supervised Object Localisation through Deep Learning

based classification has been developed. It has been shown that the studied approach

can be effective with some limitations on simple datasets with one object type per

image. The result was presented for both geometrical and pollen datasets.
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5.2 Outlook

The investigated approach can be effective with some limitations on simple datasets

with one object type per image. However, using a deep learning classification ap-

proach to localize objects for datasets with more than one object type per image

requires further study.

The setting and selection of the values of the extremal perturbation function

are for further study. With a deeper understanding of how settings of extremal

perturbation affect specific datasets, it possible to achieve significantly better per-

formance. This is especially important for small objects. The study has shown

that this approach cannot detect small particles or may not detect enough of them,

although it is able to classify images with small particles.

In addition, learning and applying more advanced image processing techniques

to prepare a post-EP dataset for a localization task can improve localization perfor-

mance.



63

Appendices

A Results of Classification

Figure 28: The diagram of correlation accuracy/epoch for full pollen dataset

Figure 29: The diagram of correlation loss/epoch for full pollen dataset
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Figure 30: The diagram of correlation accuracy/epoch for mixe pollen dataset

Figure 31: The diagram of correlation loss/epoch for mixed pollen dataset
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Figure 32: The diagram of correlation loss/number of images for mixed pollen dataset

B Results of Results of Grad-CAM, Integrated Gradients

and Occlusion method

The following subsection shows images not listed in the main part of the thesis of

listed before in lower quality.

Figure 33: The image from geometrical ’simple’ sub-dataset after the Integrated-gradients method

processing



B RESULTS OF RESULTS OF GRAD-CAM, INTEGRATEDGRADIENTS ANDOCCLUSIONMETHOD66

Figure 34: The image from geometrical ’simple’ sub-dataset after the Occlusion method processing

Figure 35: The image from the geometrical ’simple’ sub-dataset after the Grad-CAM processing

Figure 36: The image from pollen dataset after the Integrated-gradient method processing
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Figure 37: The image from pollen dataset after the Occlusion-based method processing

Figure 38: The image from the pollen dataset after the Grad-CAM processing

Figure 39: The image from geometrical mixed dataset after the Integrated-gradient method pro-

cessing
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Figure 40: The image from geometrical mixed dataset after the Occlusion-based method processing

Figure 41: The image from the geometrical mixed dataset after the Grad-CAM processing

Figure 42: The image from the pollen mixed dataset after the Integrated-gradient method pro-

cessing
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Figure 43: The image from geometrical mixed dataset after the Occlusion-based method processing

Figure 44: The image from the pollen mixed dataset after the Grad-CAM processing
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C Results of Extremal Perturbations

Figure 45: The image from the geometrical simple dataset after the Extremal perturbation method

processing with set of parameters number 2
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Figure 46: The image from the geometrical simple dataset after the Extremal Perturbation method

processing with set of parameters number 3. Left image - image after EP; Right image - original

image
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Figure 47: Images from a pollen simple sub-dataset after processing with Extremal Perturbation.

Left image - image after EP; Right image - original image
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Figure 48: Images from a geometrical mixed sub-dataset after processing with Extremal Pertur-

bation. Left image - image after EP; Right image - original image
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Figure 49: Images from a pollen mixed sub-dataset after processing with Extremal Perturbation.

Left image - image after EP; Right image - original image
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Figure 50: The image from the geometrical simple dataset after the Extremal perturbation method

processing

Figure 51: The image from the pollen simple dataset after the Extremal perturbation method

processing

Figure 52: The image from the geometrical mixed dataset after the Extremal perturbation method

processing
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Figure 53: The image from the pollen mixed dataset after the Extremal perturbation method

processing

D Results of Localisation

Figure 54: The sample of 4 images from geometric simple sub-dataset after applying the approach

to self-supervised object localisation through deep learning based classification
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Figure 55: The sample of 4 images from pollen simple sub-dataset after applying the approach to

self-supervised object localisation through deep learning based classification

Figure 56: The sample of 4 images from geometric mixed sub-dataset after applying the approach

to self-supervised object localisation through deep learning based classification
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Figure 57: The sample of 4 images from pollen mixed sub-dataset after applying the approach to

self-supervised object localisation through deep learning based classification

Figure 58: The sample of images from GT geometric simple sub-dataset after applying the model

trained on EP dataset
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Figure 59: The sample of images from GT geometric mixed sub-dataset after applying the model

trained on EP dataset

Figure 60: The sample of images from GT pollen simple sub-dataset after applying the model

trained on EP dataset



D RESULTS OF LOCALISATION 80

Figure 61: The sample of images from GT pollen mixed sub-dataset after applying the model

trained on EP dataset

Figure 62: The sample of images from GT datasets with original annotations pollen simple sub-

dataset after applying the model trained on EP dataset
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Figure 63: The sample of images from GT datasets with original annotations pollen mixed sub-

dataset after applying the model trained on EP dataset
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[16] T. Baltrušaitis, C. Ahuja, and L.-P. Morency. Multimodal machine learning:

A survey and taxonomy. IEEE transactions on pattern analysis and machine

intelligence, 41(2):423–443, 2018.

[17] J. Brownlee. Difference between classification and regression in machine learn-

ing. Machine Learning Mastery, 25, 2017.

[18] M. Carbonneau, V. Cheplygina, E. Granger, and G. Gagnon. Multiple in-

stance learning: A survey of problem characteristics and applications. CoRR,

abs/1612.03365, 2016.

[19] L. Chen, P. Bentley, K. Mori, K. Misawa, M. Fujiwara, and D. Rueckert. Self-

supervised learning for medical image analysis using image context restoration.

Medical Image Analysis, 58:101539, 2019.

[20] D. C. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural

networks for image classification. CoRR, abs/1202.2745, 2012.

[21] G. E. Dahl, N. Jaitly, and R. Salakhutdinov. Multi-task neural networks for

qsar predictions. arXiv preprint arXiv:1406.1231, 2014.

[22] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.

In 2005 IEEE computer society conference on computer vision and pattern

recognition (CVPR’05), volume 1, pages 886–893. Ieee, 2005.

[23] J. Dean. The deep learning revolution and its implications for computer ar-

chitecture and chip design. CoRR, abs/1911.05289, 2019.

[24] R. Dechter. Learning while searching in constraint-satisfaction problems. 1986.

[25] R. Dechter. Learning while searching in constraint-satisfaction-problems.

pages 178–185, 01 1986.

[26] A. J. DeGrave, J. D. Janizek, and S.-I. Lee. Ai for radiographic covid-19

detection selects shortcuts over signal. medRxiv, 2020.

[27] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation

learning by context prediction. In Proceedings of the IEEE international con-

ference on computer vision, pages 1422–1430, 2015.

[28] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel features. 2009.



REFERENCES 84

[29] A.-J. Dorne. Variation in seed germination inhibition of chenopodium bonus-

henricus in relation to altitude of plant growth. Canadian journal of Botany,

59(10):1893–1901, 1981.

[30] V. Erdogan and S. A. Mehlenbacher. Interspecific hybridization in hazel-

nut (corylus). Journal of the American Society for Horticultural Science,

125(4):489–497, 2000.

[31] A. K. S. et. all. Nanodiamonds from laser-induced shock compres-

sion of polystyrene: Extraction under way - publications repository -

helmholtz-zentrum dresden-rossendorf, hzdr. https://www.hzdr.de/db/

!Publications?pNid=head&pSelMenu=0&pSelTitle=30247. (Accessed on

02/01/2021).

[32] A. Faktor and M. Irani. Video segmentation by non-local consensus voting.

In BMVC, volume 2, page 8, 2014.

[33] R. Fong, M. Patrick, and A. Vedaldi. Understanding deep networks via ex-

tremal perturbations and smooth masks. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 2950–2958, 2019.

[34] R. C. Fong and A. Vedaldi. Interpretable explanations of black boxes by

meaningful perturbation. In Proceedings of the IEEE International Conference

on Computer Vision, pages 3429–3437, 2017.

[35] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg. Dssd: Deconvolutional

single shot detector. arXiv preprint arXiv:1701.06659, 2017.

[36] K. Fukushima and S. Miyake. Neocognitron: A new algorithm for pattern

recognition tolerant of deformations and shifts in position. Pattern recognition,

15(6):455–469, 1982.

[37] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learning

by predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

[38] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal. Ex-

plaining explanations: An overview of interpretability of machine learning. In

2018 IEEE 5th International Conference on data science and advanced ana-

lytics (DSAA), pages 80–89. IEEE, 2018.

[39] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for

accurate object detection and semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 580–587,

2014.

[40] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

https://www.hzdr.de/db/!Publications?pNid=head&pSelMenu=0&pSelTitle=30247
https://www.hzdr.de/db/!Publications?pNid=head&pSelMenu=0&pSelTitle=30247
http://www.deeplearningbook.org


REFERENCES 85

[41] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio. Generative adversarial networks. arXiv

preprint arXiv:1406.2661, 2014.

[42] P. Goyal, D. Mahajan, A. Gupta, and I. Misra. Scaling and benchmarking self-

supervised visual representation learning. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 6391–6400, 2019.

[43] I. A. Grigorevich and L. V. Grigorevich. Cybernetics and forecasting tech-

niques. 1967.

[44] B. Guthier. Machine learning 2 lectures. winter semester 2018/19, tu dresden.

(Accessed on 01/25/2021), 2018.

[45] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convo-

lutional networks for visual recognition. IEEE transactions on pattern analysis

and machine intelligence, 37(9):1904–1916, 2015.

[46] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[47] S. Hu, X. Chen, and X. Tong. Point sets joint registration and co-segmentation.

The Visual Computer, 35(12):1841–1853, 2019.

[48] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,

Z. Wojna, Y. Song, S. Guadarrama, et al. Speed/accuracy trade-offs for mod-

ern convolutional object detectors. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 7310–7311, 2017.

[49] A. G. Ivakhnenko. Polynomial theory of complex systems. IEEE transactions

on Systems, Man, and Cybernetics, (4):364–378, 1971.

[50] S. Jawed, J. Grabocka, and L. Schmidt-Thieme. Self-supervised learning for

semi-supervised time series classification. In H. W. Lauw, R. C.-W. Wong,

A. Ntoulas, E.-P. Lim, S.-K. Ng, and S. J. Pan, editors, Advances in Knowl-

edge Discovery and Data Mining, pages 499–511, Cham, 2020. Springer Inter-

national Publishing.

[51] D. Jayaraman and K. Grauman. Learning image representations equivariant

to ego-motion. CoRR, abs/1505.02206, 2015.

[52] H. Jiang, G. Larsson, M. M. G. Shakhnarovich, and E. Learned-Miller. Self-

supervised relative depth learning for urban scene understanding. In Proceed-

ings of the European Conference on Computer Vision (ECCV), pages 19–35,

2018.



REFERENCES 86

[53] L. Jing and Y. Tian. Self-supervised visual feature learning with deep neural

networks: A survey. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2020.

[54] L. Jing, X. Yang, J. Liu, and Y. Tian. Self-supervised spatiotemporal feature

learning via video rotation prediction. arXiv preprint arXiv:1811.11387, 2018.

[55] J. Johnson and A. Karpathy. Convolutional neural networks (cnns / convnets).

http://cs231n.github.io/convolutional-networks/ last visited 2019-09-

30.

[56] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A

survey. CoRR, cs.AI/9605103, 1996.

[57] D. Kim, D. Cho, D. Yoo, and I. S. Kweon. Learning image representations

by completing damaged jigsaw puzzles. In 2018 IEEE Winter Conference on

Applications of Computer Vision (WACV), pages 793–802. IEEE, 2018.

[58] Y. Kim, S. Wiseman, and A. M. Rush. A tutorial on deep latent variable

models of natural language. CoRR, abs/1812.06834, 2018.

[59] A. Kolesnikov, X. Zhai, and L. Beyer. Revisiting self-supervised visual repre-

sentation learning. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 1920–1929, 2019.

[60] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with

deep convolutional neural networks. Advances in neural information processing

systems, 25:1097–1105, 2012.

[61] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with

deep convolutional neural networks. Communications of the ACM, 60(6):84–

90, 2017.

[62] G. Larsson, M. Maire, and G. Shakhnarovich. Colorization as a proxy task for

visual understanding. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 6874–6883, 2017.

[63] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-

bard, and L. D. Jackel. Backpropagation applied to handwritten zip code

recognition. Neural computation, 1(4):541–551, 1989.

[64] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,

A. Aitken, A. Tejani, J. Totz, Z. Wang, et al. Photo-realistic single image

super-resolution using a generative adversarial network. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 4681–4690,

2017.

http://cs231n.github.io/convolutional-networks/


REFERENCES 87

[65] H.-Y. Lee, J.-B. Huang, M. Singh, and M.-H. Yang. Unsupervised representa-

tion learning by sorting sequences. In Proceedings of the IEEE International

Conference on Computer Vision, pages 667–676, 2017.

[66] D. Li, W.-C. Hung, J.-B. Huang, S. Wang, N. Ahuja, and M.-H. Yang. Unsu-

pervised visual representation learning by graph-based consistent constraints.

In European Conference on Computer Vision, pages 678–694. Springer, 2016.

[67] D. Y. Li Deng. Deep Learning: Methods and Applications, volume 7. 2014.

[68] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv preprint

arXiv:1312.4400, 2013.

[69] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,

P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO:

common objects in context. CoRR, abs/1405.0312, 2014.

[70] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature

pyramid networks for object detection. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 2117–2125, 2017.

[71] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense

object detection. In Proceedings of the IEEE international conference on com-

puter vision, pages 2980–2988, 2017.

[72] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen.
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