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ABSTRACT

On Paradoxical Examples of Real Functions

by Cheng-Han Pan

This dissertation is a summary of the author’s research work, supervised by Professor Krzysztof
Ciesielski, based on three published articles in the Journal of Mathematical Analysis and Applica-
tions and one published article in the Banach Journal of Mathematical Analysis. Our work focuses on
the study of paradoxical real functions regarding differentiability and generalized continuity within
the foundations of real analysis. The reasons why they are paradoxical are directly connected to
their definitions, which will be provided and explained in the later texts. Note that all functions
discussed in the dissertation are single-variable and real valued, that is, well-defined from a proper
or improper subset of the set R of real numbers into R.

The material is presented in two independent chapters. Chapter 1 consists of a study of nowhere-
monotone differentiable functions to which we refer as the differentiable monsters. Almost 130
years after A. Köpcke constructed the first differentiable monster and after its many simplifications,
K. Ciesielski noticed a few years ago the simplest such construction by far. This construction was a
shifted difference of two arbitrary strictly increasing Pompeiu-like functions, that is, of differentiable
functions with their derivatives vanishing on a dense subset of their domain. However, not every
differentiable monster of bounded variation admits such a Jordan-like decomposition that possesses
Pompeiu-likeness. We have first characterized differentiable monsters that can be decomposed in
such a “nice” way as those that are a difference of two increasing differentiable functions. Secondly,
as Jarńık’s extension theorem allows a differentiable extension to be as “good” as being smooth on
the extended parts, we work on the other direction and make a differentiable extension as “bad”
as being nowhere-monotone on the extended parts. Since it is an easy consequence of Darboux’s
theorem that a differentiable monster must be Pompeiu-like, we have shown that a typical function in
a designated complete metric space, which consists of all differentiable extensions that are Pompeiu-
like on the extended part, is nowhere-monotone on the extended part. On the other hand, we have
also shown that the family of nowhere nowhere-monotone functions is dense in this space.

In Chapter 2, we additionally impose a set-theoretical axiom that the set R is not a union of less
than continuum-many meager sets. A Darboux function is a function that satisfies the intermediate
value property, so the classes of Darboux-like functions represent a group of functions that are
continuous in a generalized sense. On the contrary, Sierpiński-Zygmund functions, first constructed
in 1923 by W. Sierpiński and A. Zygmund, have as little of the standard continuity as possible. The
algebra of subsets generated by these classes and the Sierpiński-Zygmund functions has nine atoms,
that is, the smallest nonempty elements of the algebra. In this work, we have crafted a lemma
that easily create examples in each of these nine atoms with transfinite induction. Note that the
examples within the seven of the nine atoms were first discovered by K. Ciesielski and C.-H. Pan
and had been included in a survey of Sierpiński-Zygmund functions in 2019 by K. Ciesielski and
J. Seoane-Sepúlveda. As lineability of the main classes of Darboux-like functions, as well as of
Sierpiński-Zygmund functions, has been intensively studied, our presented work has caused some
on-going researches in the lineability of the nine smaller classes mentioned above.
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Chapter 1

Paradoxes in Differentiability

This chapter is based on the three published articles [21, 22, 65], in which [21] started the research

of finding “bad” extensions of differentiable functions, [22] studied its typicality in a designated

complete metric space of differentiable extensions, and [65] refined the extension method and applied

it to modify differentiable functions of bounded variation.1 The presentation of this chapter starts

with the results from the most recent article [65] and then revisits the earlier results from [21,22].

1.1 Introduction

How much continuity follows from differentiability? It is well-known that the answer is all. On

the other hand, how much differentiability follows from continuity? In the past, mathematicians

commonly believed that a continuous function should be differentiable on a “significantly large”

subset of its domain. Shortly, the first published example of a Weierstrass’s monster—everywhere

continuous but differentiable at no point—was given by K. Weierstrass and appeared in an 1872

paper.2 Since then, many different examples of Weierstrass’s monsters have been described.3 One

of the most elegant among them, in our opinion, is the Takagi-van der Waerden construction.4 Our

1Authors publishing in Elsevier journals have rights to use their works, in full or in part, for a wide range of scholarly,
non-commercial purposes, which include inclusion in a thesis or dissertation, without needing to seek permission as
long as DOI links to the versions of records on ScienceDirect are provided.

2See [31] or [78]. It is worthy to mention that both C. Cellérier [14] and B. Bolzano [41,44] described such functions
before K. Weierstrass. However, their constructions were not published in their lifetimes and were rediscovered
considerably after 1872.

3See [75] or a book [40].
4Takagi-van der Waerden functions used to be called just van der Waerden functions, based on van der Waerden’s

influential 1930 paper [77]. Since then, it was noticed that T. Takagi had already described such functions in his 1901
paper [74]. However, this work was overlooked for a time in the West due to Japan’s isolation in the early twentieth
century. See a survey [2] of the Takagi functions.

1
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favorite Takagi-van der Waerden type of a Weierstrass’s monster is defined, on R, as

f(x) :=

∞∑
n=0

4nfn(x), (1.1)

where fn(x) := mink∈Z
∣∣x− k

8n

∣∣ is the distance from x ∈ R to the set 1
8nZ =

{
k
8n : k ∈ Z

}
.5 Notice

that every Weierstrass’s monster is nowhere-monotone.6 Seemingly, nowhere-monotone is a “bad”

property for differentiability due to the fractal nature of spikes that it has. Thus, it is natural to in-

quire on how much differentiability a nowhere-monotone function can have. Surprisingly, the answer

to this question is all. The existence of everywhere differentiable nowhere-monotone functions, to

which we refer as differentiable monsters, is considerably less known in the mathematical community

than that of the Weierstrass’s monsters.

The subject of Chapter 1 is a study in different variations of differentiable monsters and their

constructions. In particular, in Section 1.2 we present a new simple construction of a differentiable

monster as a difference of two monotone differentiable functions, which has inspired us to discuss,

in Section 1.3, a Jordan-like decomposability problem for differentiable monsters. In Sections 1.4

and 1.5, we take advantage of Jarńık’s extension theorem together with Lemma 1.3.8 from Section 1.3

to study the differentiable extensions and their spaces.

1.2 A simple construction of differentiable monsters

Definition 1.2.1. A function is called a differentiable monster provided it maps a nontrivial interval

J ⊆ R into R, it is differentiable, and monotone on no nontrivial subinterval of J .

What is so fascinating about a differentiable monster? It must be the fact that its graph simulta-

neously has two seemingly contradictive properties of being “silky” and very “coarse”. The first such

example was constructed in late 1880s by Alfred Köpcke in three consecutive papers [52–54]. Since

then, a multitude of different constructions of such maps has been described, see [8,17,30,48,79,80].

For more history on the subject, see [10, section 2]. It is an easy consequence of the mean value

theorem that a differentiable f : J → R is a differentiable monster if, and only if,

the sets [f ′ > 0] and [f ′ < 0] are dense in J . (1.2)

5See [17] or [71, theorem 7.18].
6Suppose f is monotone on any nontrivial (a, b) ⊆ R. By Lebesgue differentiation theorem, f is differentiable

almost everywhere, in sense of Lebesgue measure, in (a, b).
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Here, for any g : X → R and M ∈ R, the symbols [g > M ] and [g < M ] denote the preimages

g−1((M,∞)) and g−1((−∞,M)). The sets [g ≥ M ], [g ≤ M ], and [g = M ] are defined simi-

larly. Since any derivative has the Darboux property,7 the property (1.2) implies that for every

differentiable monster f : J → R,

[f ′ = 0] is dense in J . (1.3)

Köpcke’s construction of a differentiable monster is rather complicated. To better understand it,

Dimitrie Pompeiu in his 1905 Ph.D. thesis [67], written under supervision of Henri Poincaré, studied

the functions that have the property (1.3). Nowadays, a derivative satisfying (1.3)—vanishing on a

dense subset of its domain—is called a Pompeiu derivative.8 In Chapter 1, we are interested in the

primitives of Pompeiu derivatives, to which we refer as Pompeiu-like functions.9

Definition 1.2.2. A function f from a nontrivial interval J ⊆ R into R is called Pompeiu-like

provided it is differentiable and satisfies (1.3), that is, its derivative vanishes on a dense subset of

its domain.

Pompeiu, in his 1907 article [68], described a very simple construction of a strictly increasing

Pompeiu-like function G from a bounded interval (t′, t′′) ⊆ R onto (x′, x′′): it is the inverse of a map

F : (x′, x′′)→ (t′, t′′) defined as

F (x) =
∑
n∈N

An(x− qn)
1
3 , (1.4)

where {qn : n ∈ N} is any countable dense subset of (x′, x′′), and 〈An〉n∈N is any sequence of positive

numbers such that
∑
n∈NAn converges. Note that F is strictly increasing and therefore invertible,

as is each map An(x− qn)
1
3 . Also, F admits at every point a positive (finite or infinite) derivative,

infinite at each qn, so its inverse function G is differentiable, admitting at every point a non-vertical

tangent, with zero derivative at each F (qn).

It looked that this simply defined functions should be easily turned into a differentiable monster.

Nevertheless, it took over a century to transform G by the elementary means into a differentiable

monster. Specifically, it was known for a while (see [30] or [10, section 2]) that if G : (t′, t′′)→ (x′, x′′)

is a strictly increasing Pompeiu-like function, then there exists a diffeomorphism δ : (t′, t′′)→ (t′, t′′)

such that f := (G ◦ δ)−G is a differentiable monster. However, the construction of δ still required

7It is commonly known as the intermediate value property. See [26, theorem 2.1] or [3, theorem 5.16].
8It is not clear who started this trend, but D. Pompeiu himself called those derivatives fonctions de M. Köpcke in

[67] and [68].
9This is to clarify the slight difference between Pompeiu functions and Pompeiu-like functions. In a 1963 article

of Solomon Marcus [56], he defined a G : [a, b] → R to be a Pompeiu function provided G′ is bounded, and [G′ = 0]
“equals” a dense set without interior. Marcus’s definition does not quite fit this article since we have not only
managed to handle cases of unbounded derivatives, but also like to have a Banach space when derivatives are bounded.
Therefore, we remove “boundedness” and replace “equals” with “contains”.

3



some work. This changed with a publication of K. Ciesielski’s 2018 article [17], where it is noticed

that if h : R→ R is strictly increasing Pompeiu-like, then for any t in a dense Gδ subset of R,

the map f(x) := h(x− t)− h(x) is a differentiable monster (1.5)

as the choice of t particularly makes sets [h′(x− t) > 0]∩ [h′ = 0] and [h′(x− t) = 0]∩ [h′ > 0] both

dense in R.

1.3 Differentiable monsters and a Jordan-like decomposition

The above construction (1.5) has led us to examine two questions:

(Q1) Is every differentiable monster a difference of two strictly increasing Pompeiu-like functions?

(Q2) If not, is there a nice characterization of differentiable monsters that have such representations?

In Example 1.3.14, we constructed a differentiable monster which is not of bounded variation. In

particular, such a function is not a difference of two monotone functions.10 On the other hand, we

proved that (Q1) has a positive answer on a large subclass of the class of all differentiable monsters:

Theorem 1.3.1. Let f : J → R be a Pompeiu-like function. If f ′ is bounded either from above or

from below, then f is a difference of two (strictly) increasing Pompeiu-like functions.

In spite of Example 1.3.14, Theorem 1.3.1 implies, in Corollary 1.3.10, that (Q1) has an “almost”

positive answer in a sense that for every Pompeiu-like function f and therefore every differentiable

monster, there are many nontrivial intervals I such that f �I is a difference of two increasing

Pompeiu-like functions. Thus, one cannot construct a differentiable monster without having at least

a piece being a difference of two increasing Pompeiu-like functions.

From Theorem 1.3.1, we have also deduced the following characterization that constitutes an

answer to (Q2):

Corollary 1.3.2. Let f : J → R be a Pompeiu-like function. Then f is a difference of two increasing

Pompeiu-like functions if, and only if f is a difference of two increasing differentiable functions.

Finally, Section 1.3 is organized in the following order. In Section 1.3.1, we present several simple

and well-known propositions that are used in Section 1.3.2, which contains all the technical proofs

toward the main results. In Section 1.3.3, we include a remark and three examples that drew a

10See Jordan’s decomposition [46], it gives a negative answer to (Q1).
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picture of the inclusive relations among some subclasses of Pompeiu-like functions. In Section 1.3.4,

we raise some interesting unsolved problems in classical real analysis.

1.3.1 Preliminaries

Certainly, the family of Pompeiu-like functions has some nice properties inherited from the family

of Pompeiu derivatives. The first three propositions constitute simple and/or folklore results on

Pompeiu-like functions.

Proposition 1.3.3. If f is a Pompeiu-like function defined on an interval J and M > 0, then

[f ′ ≥M ] is nowhere-dense in J .

Proof. It is well-known that f ′ is of Baire class one,11 that is, the preimage of any open set under

f ′ is an Fσ set. In other words, [f ′ = 0] and [f ′ ≥ M ] are both Gδ sets in J . With [f ′ = 0] being

dense in J , [f ′ ≥ M ] cannot be dense in any subinterval as, by Baire category theorem, this would

imply [f ′ = 0] ∩ [f ′ ≥M ] 6= ∅, a contradiction.

Proposition 1.3.4. Let J ⊆ R be any nontrivial interval.

(i) The family P(J) of all Pompeiu-like functions on J forms a linear space over R.

(ii) The family Pb(J) of all f ∈ P(J) with

‖f‖C1 := ‖f‖∞ + ‖f ′‖∞ <∞

forms a Banach space over R with the C1-norm ‖ · ‖C1 .

Proof. (i) Clearly, any linear combination af + bg of f, g ∈ P(J) is differentiable. It belongs to P(J)

since [(af + bg)′ = 0] contains a dense Gδ set [f ′ = 0] ∩ [g′ = 0].

(ii) If f, g ∈ Pb(J), then ‖af + bg‖C1 ≤ |a|‖f‖C1 + |b|‖g‖C1 < ∞. So, by (i), af + bg ∈ Pb(J).

If a sequence 〈fn〉n∈N in Pb(J) is Cauchy with respect to ‖ · ‖C1 , then by a well-known result,12 its

limit f is well defined, differentiable, and has a bounded C1-norm. Lastly, f belongs to Pb(J) since

[f ′ = 0] contains a dense Gδ set
⋂
n∈N[f ′n = 0].

In what follows, we often use the following terminology.

11See [26, theorem 2.2].
12See [76, theorem 9.37] or [3, theorem 9.13].

5



Definition 1.3.5. A Pompeiu-like function ξ : [0, 1]→ R is said to be a P-filling provided

‖ξ′‖∞ <∞, ξ′(0) = ξ′(1) = 0 = ξ(0), and ξ(1) = 1.

The following proposition establishes the existence of P-fillings with some additional properties.

Proposition 1.3.6. There exists a pair of strictly increasing P-fillings ϕ and ψ such that both

sets [ϕ′ > 0] ∩ [ψ′ = 0] and [ϕ′ = 0] ∩ [ψ′ > 0] are dense in [0, 1]. In particular, aϕ − bψ is

nowhere-monotone for every a, b > 0, and σ = 2ϕ− ψ is a nowhere-monotone P-filling.

Proof. Take a differentiable monster f(x) := h(x− t)−h(x) from (1.5) where h := G ◦ δ is a strictly

increasing Pompeiu-like function with G : (t′, t′′) → (x′, x′′) being the inverse of F defined in (1.4)

and δ : R→ (t′, t′′) being an increasing diffeomorphism of bounded derivative. Notice also that h has

a bounded derivative as F ′ is bounded away from zero. We write ht(x) := h(x− t) and choose c < d

from a dense Gδ set [h′t = 0] ∩ [h′ = 0] and let L: [0, 1] → [c, d] be an increasing linear surjection.

Then

ϕ(x) :=
(ht ◦ L)(x)− ht(c)
ht(d)− ht(c)

and ψ(x) :=
(h ◦ L)(x)− h(c)

h(d)− h(c)

are a pair of strictly increasing P-fillings such that [ϕ′ > 0]∩ [ψ′ = 0] and [ϕ′ = 0]∩ [ψ′ > 0] are both

dense in [0, 1]. Consequently, aϕ− bψ is nowhere-monotone for every a, b > 0 since [(aϕ− bψ)′ > 0]

and [(aϕ− bψ)′ < 0] are both dense in [0, 1] as they contain [ϕ′ > 0]∩ [ψ′ = 0] and [ϕ′ = 0]∩ [ψ′ > 0]

respectively. Clearly, σ = 2ϕ− ψ is a nowhere-monotone P-filling.

Proposition 1.3.7. Let J ⊆ R be any nontrivial interval, P ⊆ J be closed, and ε > 0.

(i) There exists a smooth map HP : J → R such that

HP = H ′P = 0 on P , HP > 0 on J \ P , and ‖HP ‖∞ ≤ ε.

(ii) If f, g : J → R and f is differentiable, then

|g − f | ≤ HP on J implies g′ exists on P and g′ �P= f ′ �P .

Proof. By [55, proposition 2.25], for every n ∈ N there is a C∞ map gn : R → [0, 1] such that

gn = 1 on {x ∈ R : dist(x, P ) ≥ 1
n+1} and gn = 0 on {x ∈ R : dist(x, P ) ≤ 1

n+2}. Then HP :=

ε
∑
n∈N cngn �J is as needed, provided cng

(i)
n [R] ⊆ [0, 2−n] for all i ≤ n.
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(ii) is an application of the squeeze theorem on the boundary of P . It is enough to show that

limh→0
g(x+h)−g(x)

h = f ′(x) for every x ∈ P . Indeed, if Q(x, h) = g(x+h)−g(x)
h − f(x+h)−f(x)

h , then

limh→0Q(x, h) = 0 since 0 ≤ |Q(x, h)| =
∣∣∣ g(x+h)−f(x+h)

h

∣∣∣ ≤ ∣∣∣HP (x+h)−Hp(x)
h

∣∣∣ h→0−→ H ′P (x) = 0.

Therefore, limh→0
g(x+h)−g(x)

h = limh→0Q(x, h) + limh→0
f(x+h)−f(x)

h = f ′(x), as needed.

1.3.2 A Jordan-like decomposability of Pompeiu-like functions

The techniques for proving the main results of this section are the modifications of the differentiable

functions f : J → R on some dense open subsets of J such that the resulting function is still

differentiable but closer to being Pompeiu-like. We refer to such a procedure as plastic surgery of

f . Proposition 1.3.6, which gives us a replacement piece, and Proposition 1.3.7, which is our actual

plastic surgery kit, are both applied in Lemma 1.3.8. In particular, Lemma 1.3.8 facilitates plastic

surgeries locally on every nontrivial compact interval and implants Pompeiu-likeness on any (dense)

open subset of J .

In Section 1.3.2, we only need (iii) of Lemma 1.3.8, while (ii), (iv) and (v) are used in Section 1.3.3

to create various examples of differentiable monsters, and (i) is especially used in Theorem 1.4.3.

Lemma 1.3.8. Let f : J → R be any differentiable function. For every ε > 0, closed P ⊆ J , and

P-filling ξ : [0, 1]→ R, there exists a differentiable g : J → R that is Pompeiu-like on every connected

component of J \ P such that

‖g − f‖∞ ≤ ε, g �P= f �P , g′ �P= f ′ �P , ‖g′‖∞ ≤ ‖f ′‖∞‖ξ′‖∞, (1.6)

and

(i) if f is nowhere-constant on J \P and ξ is nowhere-monotone, then g is nowhere-monotone on

J \ P .

In addition, when P ⊆ J is required to be nowhere-dense, we have not only g ∈ P(J) but also the

following easy consequences.

(ii) If f is nowhere-constant and ξ is nowhere-monotone, then g is nowhere-monotone on J .

(iii) If f and ξ are (strictly) increasing, then so is g.

(iv) If f has a bounded total variation, then so has g.

(v) If α and β are differentiable and strictly increasing on J , then there exist strictly increasing

ᾱ, β̄ ∈ P(J) satisfying (1.6) such that ᾱ− β̄ is nowhere-monotone.
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Proof. Increasing P slightly, if necessary, we can assume that each connected component of J \P is

an interval (a, b) with a, b ∈ P to start with. Indeed, if 〈ck〉k∈Z is a strictly increasing sequence in J

such that

lim
k→−∞

ck = inf J , and lim
k→∞

ck = sup J ,

and C is the closure of {ck : k ∈ Z} in J , then P̄ := P ∪ C has such a property. Moreover, if g is in

the lemma for P̄ , then it is easy to see that g also satisfies our lemma for P .

Let I be the collection of all nonempty connected components of J \ P . Also, let HP be the

smooth function satisfying (i) in Proposition 1.3.7 with ‖HP ‖∞ ≤ ε. For every I ∈ I, let 〈zIk〉k∈Z

be a strictly increasing sequence in I such that

lim
k→−∞

zIk = inf I, and lim
k→∞

zIk = sup I.

Applying Lebesgue’s number lemma to f �[zIk,z
I
k+1] and ε̂ = 1

2‖ξ‖∞ mint∈[zIk,z
I
k+1]HP (t), we can refine

the sequence 〈zIk〉k∈Z, if necessary, so that for every k ∈ Z, we also have

|f(x)− f(y)| < ε̂ ≤ 1

2‖ξ‖∞
HP (t) for all x, y, t ∈ [zIk, z

I
k+1]. (1.7)

In addition, if f is nowhere-constant, then we can further refine 〈zIk〉k∈Z so that f(zIk) 6= f(zIk+1) for

every k ∈ Z.

For each I ∈ I and k ∈ Z, choose an increasing linear surjection LIk : [zIk, z
I
k+1]→ [0, 1]. Then

g := f �P ∪
⋃
I∈I

⋃
k∈Z

(f(zIk+1)− f(zIk))(ξ ◦ LIk) + f(zIk)

is as needed.

Indeed, g is differentiable on any I ∈ I, since for every k ∈ Z, the values of g and its derivatives

at zIk+1 are equal to f(zIk+1) and 0 respectively. Thus, by (ii) of Proposition 1.3.7, to finish the proof

of the main part of the lemma, it is enough to show |g − f | ≤ HP on every I ∈ I. This is the case,
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since using (1.7) for every x ∈ [zIk, z
I
k+1], we have

|g(x)− f(x)| ≤ |g(x)− f(zIk)|+ |f(zIk)− f(x)|

= |(f(zIk+1)− f(zIk))(ξ ◦ LIk)(x)|+ |f(zIk)− f(x)|

≤ |f(zIk+1)− f(zIk)|‖ξ‖∞ + |f(zIk)− f(x)|‖ξ‖∞

< 2ε̂‖ξ‖∞ ≤ HP (x).

To see ‖g′‖∞ ≤ ‖f ′‖∞‖ξ′‖∞, notice that for every I ∈ I, k ∈ Z, and x ∈ [zIk, z
I
k+1], we have

|g′(x)| = |(f(zIk+1)− f(zIk))(ξ ◦ LIk)′(x)|

= |f(zIk+1)− f(zIk)| · |ξ′(LIk(x))| · 1

zIk+1 − zIk

≤

∣∣∣∣∣f(zIk+1)− f(zIk)

zIk+1 − zIk

∣∣∣∣∣ ‖ξ′‖∞ ≤ ‖f ′‖∞‖ξ′‖∞.

So, since ‖ξ′‖∞ ≥ 1 implies that ‖f ′ �P ‖∞ ≤ ‖f ′‖∞ ≤ ‖f ′‖∞‖ξ′‖∞, we have the last inequality:

‖g′‖∞ = max

{
‖f ′ �P ‖∞, sup

I∈I, k∈Z
‖g′ �[zIk,z

I
k+1] ‖∞

}
≤ ‖f ′‖∞‖ξ′‖∞.

This completes the proof of (1.6).

Part (iii) is clear when we use ξ := ϕ from Proposition 1.3.6 in the above construction. Similarly,

(i) and (ii) hold if we use ξ := σ from Proposition 1.3.6 in the construction. Indeed, our requirement

f(zIk) 6= f(zIk+1) ensures that both sets [g′ > 0] and [g′ < 0] are dense in any interval [zIk, z
I
k+1], so

these sets are dense not only in every connected component of J \ P but also in the entire J when

P is additionally assumed to be nowhere-dense.

To see (iv), let TVg(J) denote the total variation of g on J . First notice that g is obtained from

modifying f on J \ P =
⋃
I∈I

⋃
k∈Z[zIk, z

I
k+1], and thus

TVg(J) ≤ TVf (J) +
∑
I∈I

∑
k∈Z

TVg([z
I
k, z

I
k+1])

= TVf (J) +
∑
I∈I

∑
k∈Z
|f(zIk+1)− f(zIk)|TVξ[0, 1]

≤ TVf (J) + TVf (J) TVξ[0, 1] <∞,

is as needed.
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For (v), we use P-fillings ξα := ϕ and ξβ := ψ from Proposition 1.3.6 to simultaneously modify

functions α and β on J \ P to obtain their counterparts ᾱ, β̄ ∈ P(J) which, by (i), will be (strictly)

increasing. Specifically, for every I ∈ I, we refine the sequence 〈zIk〉k∈Z so that (1.7) is satisfied

with both α and β.13 Using the same partition 〈zIk〉k∈Z of I ∈ I to modify “α with ϕ” and “β with

ψ” means that ᾱ − β̄ is the result of the modification of α − β with a nowhere-monotone P-filling

ξ := ϕ−ψ and the partitions 〈zIk〉k∈Z. So, by (ii), such constructed ᾱ−β̄ is indeed nowhere-monotone

on J .

In Lemma 1.3.9, a sequence of straight lines {Ln}n∈N will be turned into a sequence of increas-

ing Pompeiu-like functions {`n}n∈N. The purpose is to stack up {`n}n∈N to obtain an increasing

Pompeiu-like function with its derivative being sufficiently large on a designated dense subset. De-

tails of this construction are shown in the lemma below.

Lemma 1.3.9. Let f : J → R be any Pompeiu-like function. For every M > 0, there exists a strictly

increasing gM ∈ P(J) such that

g′M ≥ f ′ on [f ′ < M ].

Proof. For every n ∈ N, let Ln be the restriction to J of the straight line through the origin and of

slope M
2n , and let Pn be the closure of [f ′ ≥ M

2n ] in J . By Proposition 1.3.3, each Pn is nowhere-dense

in J . With a fixed strictly increasing P-filling ϕ : [0, 1] → R, which exists by Proposition 1.3.6, for

every n ∈ N, we use (iii) of Lemma 1.3.8 to f := Ln and ε := 1
2n to find an increasing Pompeiu-like

`n : J → R such that

‖`n − Ln‖∞ ≤ 1
2n , `′n �Pn= L′n �Pn , and ‖`′n‖∞ ≤ M

2n ‖ϕ
′‖∞.

We will show gM :=
∑
n∈N `n is as needed.

First, we consider the case when J = [a, b] is compact. Then, for every n ∈ N,

‖`n‖C1 = ‖`n‖∞ + ‖`′n‖∞ ≤ ‖`n − Ln‖∞ + ‖Ln‖∞ + ‖`′n‖∞

≤ 1

2n
+
M max{|a|, |b|}

2n
+
M

2n
‖ϕ′‖∞ =

C

2n
,

where C := 1+M max{|a|, |b|}+M‖ϕ′‖∞ is a constant. So, the partial sums sequence 〈
∑
n≤k `n〉k∈N

is Cauchy, as dominated by a geometric series. In particular, by Proposition 1.3.4, gM is well-defined

and Pompeiu-like, that is, gM ∈ P([a, b]). Clearly, it is also increasing, as a limit of such functions.

It remains to show g′M (x) ≥ f ′(x) whenever x ∈ [f ′ < M ].

13For instance, we can require that |α(x)− α(y)|+ |β(x)− β(y)| < 1
2(‖ϕ‖∞+‖ψ‖∞)

HP (t) for all x, y, t ∈ [zIk, z
I
k+1].

10



Indeed, if x ∈ [f ′ ≤ 0], then we have g′M (x) ≥ 0 ≥ f ′(x). On the other hand, if x ∈ [0 < f ′ < M ],

then there exists a k ∈ N such that x ∈ [ M
2k+1 ≤ f ′ < M

2k
]. Since x ∈

⋃∞
n=k+1 Pn, we get the needed

inequality:

g′M (x) ≥
∞∑

n=k+1

`′n(x) =

∞∑
n=k+1

L′n(x) =

∞∑
n=k+1

M

2n
=
M

2k
> f ′(x).

This finishes the case when J = [a, b].

The general case follows because J can be written as the union of an increasing sequence

〈[an, bn]〉n∈N while g′M �[an,bn] is well defined and as needed for each n.

Theorem 1.3.1 is an easy consequence of Lemma 1.3.9.

Proof of Theorem 1.3.1. Let f : J → R be any Pompeiu-like function such that f ′ is bounded either

from above or from below. We need to represent f as a difference of two increasing Pompeiu-like

functions. Without loss of generality, we assume that f ′ is bounded above, as otherwise we may

replace f with −f . Let M > 0 be a strict upper bound for f ′. By Lemma 1.3.9, there exists a

strictly increasing gM ∈ P(J) such that g′M ≥ f ′ on [f ′ < M ] = J . Clearly, gM − f is an increasing

differentiable function on J as it has a nonnegative derivative and gM−f ∈ P(J) by Proposition 1.3.4.

Thus, the pair gM and gM − f , that gives f = gM − (gM − f), is as needed.

Note that there is no guarantee that gM − f is strictly increasing. If we want to write f as a

difference of two strictly increasing Pompeiu-like functions, we may simply add a strictly increasing

Pompeiu-like function to both gM and gM − f .

Proof of Corollary 1.3.2. Clearly, differentiability is necessary for Pompeiu-likeness. To prove the

other implication, assume that f = g−(g−f), where both g and g−f are increasing and differentiable,

but not necessarily Pompeiu-like. Fix any M > 0 and let PM be the closure of [f ′ ≥M ] in J . We use

(iii) of Lemma 1.3.8 to turn g into an increasing Pompeiu-like g̃ : J → R such that g̃′ �PM= g′ �PM .

Clearly, f − g̃ ∈ P(J). We will show the derivative of f − g̃ is bounded above by M . Indeed,

� If x ∈ [f ′ ≥M ], then f ′(x)− g̃′(x) = f ′(x)− g′(x) ≤ 0 < M .

� If x ∈ [f ′ < M ], then f ′(x)− g̃′(x) ≤ f ′(x) < M .

As f − g̃ satisfies the premise of Theorem 1.3.1, we can write f − g̃ = α−β, where α and β are both

increasing Pompeiu-like. Since α+ g̃ is also an increasing Pompeiu-like function, the pair α+ g̃ and

β, that gives f = (α+ g̃)− β, is as needed.

The last result of this section shows that for every Pompeiu-like function f : J → R, and thus

for every differentiable monster, the family I of all nonempty open intervals I ⊆ J for which f �I
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is a difference of two increasing Pompeiu-like functions has its union
⋃
I being dense in J . Thus,

(Q1) has an “almost” positive answer.

Corollary 1.3.10. For every Pompeiu-like f : J → R and nonempty open U ⊆ J , there exists a

nonempty open interval I ⊆ U such that f �I is a difference of two increasing Pompeiu-like functions

on I.

Proof. Fix any M > 0. By Proposition 1.3.3, the set [f ′ ≥M ] is nowhere-dense in J . So, there exists

a nonempty open interval I ⊆ U\[f ′ ≥M ]. Since f ′ < M on I, the result follows from Theorem 1.3.1.

1.3.3 Examples and discussion

All functions considered in this section are assumed to be defined on a fixed nontrivial compact

interval [a, b] ⊆ R. Let D, P, and M denote, respectively, the collections of all differentiable

functions, Pompeiu-like functions, and differentiable monsters. Clearly, ∅ 6=M ( P ( D, where the

first inclusion is strict since there exists a strictly increasing Pompeiu-like function.

Consider also the following classes of functions from [a, b] to R:

V := {f ∈ D: f is of bounded variation}

N := {f ∈ V : all Dini derivatives of the total variation TVf [a, x] are finite}14

C := {f ∈ D: f = α− β for some increasing α, β ∈ D}

T := {f ∈ V : TVf [a, x] is differentiable}

B := {f ∈ D: f ′ is bounded either from above or below}

Notice that, by Corollary 1.3.2, the class C ∩M equals to the family of all differentiable monsters

that can be represented as a difference of two increasing Pompeiu-like function, that is, precisely

those differentiable monsters for which the answer to our (Q1) is positive. In the remainder of this

section, we will relate this class to the other classes defined above.

We will start with the following remark, which will help us to relate classes C and C ∩M to the

other just defined classes.

Remark 1.3.11. B∪T ( C ⊆ N ( V.

14D+, D-, D+, D- denote the operators that calculates, respectively, the upper-right, upper-left, lower-right, lower-
left Dini derivatives of a function. TVf [a, x] denotes the total variation function of f starting at a. Similarly, PVf [a, x]
and NVf [a, x] denote the positive variation function and the negative variation function respectively.
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Proof. The inclusion N ⊆ V is obvious from the definitions of these classes. To see B∪T ⊆ C, fix

an f ∈ B∪T . We need to show f ∈ C.

Indeed, if f ′ is bounded above by an M > 0 and LM is the restriction to [a, b] of the straight line

through the origin and of the slope M , then functions LM and LM − f are differentiable increasing

and we have f = LM − (LM − f) ∈ C. If f ′ is bounded below, then (−f)′ is bounded above and,

by the above argument −f , so also f , belongs to C. Finally, if f ∈ T , then maps TVf [a, x] and

TVf [a, x] − f(x) are differentiable increasing and f(x) = TVf [a, x] − (TVf [a, x] − f(x)) ∈ C. This

completes the argument for B∪T ⊆ C.

To see C ⊆ N , we will show if f /∈ N , then f /∈ C. Notice that if f is not even in V, then f is

clearly not in C. Thus, we start with an f ∈ V \N and any pair of increasing functions α and β

such that f = α− β. In particular, if one of the four Dini derivative of TVf [a, x] is infinite at some

c ∈ [a, b], we will show that α and β cannot both be differentiable at c. Without loss of generality, we

assume D+ TVf [a, x] = D+ PVf [a, x]+D+ NVf [a, x] is infinite at c. Note that the positive variation

of f +g is never less than the positive variation of f whenever g is increasing. Suppose D+ PVf [a, x]

is infinite at c. For every x > c, we have

PVf [a, x]− PVf [a, c] = PVf [c, x] ≤ PVf+β [c, x] = PVα[c, x] = α(x)− α(c),

and thus,

∞ = lim sup
x→c+

PVf [a, x]− PVf [a, c]

x− c
≤ lim sup

x→c+

α(x)− α(c)

x− c
.

This means α cannot be differentiable at c. Similarly, if D+ NVf [a, x] is infinite at c, then β cannot

be differentiable at c either.

Finally, notice that Examples 1.3.12 and 1.3.13 justify, respectively, that the inclusions B∪T ⊆ C

and N ⊆ V are strict.

The graph presented in Fig. 1.1 summarizes the inclusions M ( P ( D on the bottom row and

those from Remark 1.3.11 in the right column. Note that σ from Proposition 1.3.6 is a function

in B∩M. We do not know whether σ from Proposition 1.3.6 has a differentiable total variation

function or not. Answering Problem 1.3.17 may allow us to have a clearer look at TVσ[0, x]. We do

not know whether N \C is empty or not, either. Perhaps, it may be an approach to Problem 1.3.15.

Example 1.3.12. There is a differentiable monster ĝ : [−1, 1]→ R such that
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(B∪T ) ∩M
Example 1.3.12

��

Proposition 1.3.6// (B∪T ) ∩ P

��

Trivial // B∪T

��
C ∩M

��

// C ∩P

��

// C

��
N ∩M

Example 1.3.13
��

// N ∩P

��

// N

��
V ∩M

Example 1.3.14
��

// V ∩P

��

// V

��
M // P // D

Figure 1.1: The inclusions, indicated by ⇒ when strictness is unknown and by → when they are
known to be strict, between the indicated classes. The indicated Examples justify strictness of all
vertical inclusions between the associated rows. Similarly, the labels above the top horizontal arrows
justify strictness of all horizontal inclusions between the associated columns.

(i) ĝ is a difference of two increasing Pompeiu-like functions;

(ii) ĝ′ is unbounded from both above and below near zero;

(iii) TVĝ[−1, x] is not differentiable at zero.

In particular, ĝ ∈ C ∩M\(B∪T ), so that all indicated inclusions between the first two rows of Fig. 1.1

are strict.

Proof. Let f : [0, 1]→ R be defined as

f(x) :=


x2 cos(π/x) if x ∈ (0, 1]

0 if x = 0.

It is well known and easy to see15 that

� f is differentiable and f ′(0) = 0;

� ‖f ′‖∞ is bounded by 2 + π as f ′(x) = 2x cos(π/x) + π sin(π/x) for x 6= 0.

Notice that if pn = 1
n for n ∈ N, then f(pn) = (−1)n

n2 . Let P := {pn : n ∈ N} ∪ {0}. We use (ii)

of Lemma 1.3.8 to the function f , the set P , and the nowhere-monotone P -filling σ to obtain a

differentiable monster g such that g �P= f �P , g′ �P= f ′ �P , and ‖g′‖∞ ≤ ‖f ′‖∞‖σ′‖∞ := M .

15Compare [47, A5].
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Let τ(x) := TVg[0, x]. We have a lower bound16 and an upper bound17 for the difference quotient

τ(pn)−τ(0)
pn−0 = τ(pn)

pn
:

1

n
+ 2n

∞∑
k=n+1

1

k2
≤ τ(pn)

pn
≤M .

Moreover, by the integral test,18 we have

2 = lim
n→∞

2n

∫ ∞
n+1

1

x2
dx ≤ lim

n→∞

(
1

n
+ 2n

∞∑
k=n+1

1

k2

)
≤ lim sup

n→∞

τ(pn)

pn
≤M .

It means that if τ ′(0) ever exists, then 2 ≤ τ ′(0) ≤M . Define ḡ : [−1, 1]→ R as

ḡ(x) :=


Mg(x) if x ∈ [0, 1]

g(−x) if x ∈ [−1, 0).

Clearly, ḡ is a differentiable monster and has a desired structure so that

(?) If ĝ : [−1, 1]→ R agrees with ḡ on [−1, 0]∪P and τ̂(x) = TVĝ[−1, x], then τ̂ is not differentiable

at 0.

Indeed, otherwise both limits limx→0−
τ̂(x)
x and limx→0+

τ̂(x)
x exist and are equal. So limx→0−

τ̂(x)
x =

τ ′(0) ≤M < 2M ≤Mτ ′(0) = limx→0+
τ̂(x)
x , a contradiction.

The property (?) ensures that ḡ satisfies (iii). Also, since ḡ′ is bounded, by Theorem 1.3.1, there

exists a pair of strictly increasing Pompeiu-like functions α and β such that α−β = ḡ. In particular,

ḡ satisfies (i) and (iii). However, there is no reason for it to satisfy (ii). Thus, to ensure (ii), we need

further modify functions α and β.

For every n ∈ N, let [an, bn] be the middle third subinterval of [pn+1, pn], and let A := {an : n ∈ N}

and B := {bn : n ∈ N}. Notice that there exist increasing differentiable γ, δ : [−1, 1]→ R such that

� γ(x) = 0 = δ(x) for every x ∈ [−1, 0] and γ(pn) = δ(pn) for every n ∈ N;

� γ′ = 0 on P ∪B and limn→∞ γ′(an) =∞;

� δ′ = 0 on P ∪A and limn→∞ δ′(bn) =∞.

For example, if εn = 1
3nn(n+1) and hn(x) = 9n(2n+ 1) dist(x, [an− εn, an + εn]c) (see Fig. 1.2), then

the function γ(x) :=
∫ x
−1

∑∞
n=1 hn(t) dt is as needed.19 Function δ can be defined similarly.

16τ(pn) = TVg [0, pn] ≥
∑∞
k=n |g(pk)− g(pk+1)| = |f(pn)|+ 2

∑∞
k=n+1 |f(pk)|.

17τ(pn) = TVg [0, pn] ≤ ‖g′‖∞(pn − 0) ≤ ‖f ′‖∞‖σ′‖∞pn = Mpn, where the second inequality is justified by
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x

y

pn+1 pnan bn

3n(2n+1)
n(n+1)

εn εn
1

3n(n+1)

hn(x) = 9n(2n+ 1) dist(x, [an − εn, an + εn]c)

Figure 1.2: An illustration of hn on [pn+1, pn] used in the construction of γ in Example 1.3.12.

Apply (v) of Lemma 1.3.8 to the nowhere-dense closed set P ∪ A ∪ B ⊆ [0, 1] and functions

(α+γ) �[0,1] and (β+δ) �[0,1] to find a pair of strictly increasing Pompeiu-like functions ᾱ, β̄ : [0, 1]→

R such that ᾱ− β̄ is a differentiable monster. Define

α̂(x) :=


ᾱ(x) if x ∈ [0, 1]

α(x) if x ∈ [−1, 0)

and β̂(x) :=


β̄(x) if x ∈ [0, 1]

β(x) if x ∈ [−1, 0).

It is easy to see that such extensions are still strictly increasing and Pompeiu-like. We claim that

ĝ := α̂− β̂ is as needed.

Indeed, ĝ is nowhere-monotone, since the choice of ᾱ and β̄ ensures this on [0, 1], while ĝ = ḡ on

[−1, 0] and ḡ is nowhere-monotone. So, ĝ is a differentiable monster satisfying (i). It satisfies (iii)

by (?) as ĝ = ḡ on [−1, 0] ∪ P . Finally, to see that ĝ satisfies (ii), notice that δ′(an) = 0, so

ĝ′(an) = (α+ γ)′(an)− (β + δ)′(an) ≥ −‖ḡ′‖∞ + γ′(an)→n→∞ ∞

and, as γ′(bn) = 0,

ĝ′(bn) = (α+ γ)′(bn)− (β + δ)′(bn) ≤ ‖ḡ′‖∞ − δ′(bn)→n→∞ −∞.

Example 1.3.13. There is a differentiable monster g : [0, 1]→ R such that

Lemma 1.3.8.
18 1
n+1

=
∫∞
n+1

1
x2

dx ≤
∑∞
n+1

1
k2

.
19γ′(an) = 9n(2n+1)εn =

3n(2n+1)
n(n+1)

→n→∞ ∞ is obvious. The bound εn ≤
pn−pn+1

3
ensures γ′(pn) = 0 = γ′(bn).

Also,
∫ pn
pn+1

γ(x) dx = 9n(2n+ 1)ε2n =
9n(2n+1)

9nn2(n+1)2
= 2n+1

n2(n+1)2
= p2n − p2n+1 ensures γ(pn) = p2n. For differentiability

at zero, lim supx→0
γ(x)−γ(0)

x−0
≤ limn→∞

γ(pn)
pn+1

= 0 justifies γ′(0) = 0.
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(i) g is of bounded variation;

(ii) D+ TVg[0, x] =∞ at zero.

In particular, g ∈ V ∩M\N , so that all indicated inclusions between the third and the forth rows

of Fig. 1.1 are strict.

Proof. Let f : [0, 1]→ R be a function defined as

f(x) :=


x3/2 cos(π/x) if x ∈ (0, 1]

0 if x = 0.

It is well known and easy to see20 that

� f is differentiable with f ′(0) = 0;

� f is of bounded variation and, in fact, absolutely continuous.

Notice that if pn = 1
n for n ∈ N, then f(pn) = (−1)n

n3/2 . Let P := {pn : n ∈ N} ∪ {0}. The function

g is obtained by using (ii) of Lemma 1.3.8 to the above defined f , set P , and a nowhere-monotone

P-filling which exists by Proposition 1.3.6. Then parts (ii) and (iv) of Lemma 1.3.8 imply that

g ∈M∩V. Moreover, if τ(x) := TVg[−1, x], then, by g �P= f �P ,

τ(pn) ≥
∞∑
k=n

|f(pk)− f(pk+1)| = |f(pn)|+ 2

∞∑
k=n+1

|f(pk)| = 1

n3/2
+ 2

∞∑
k=n+1

1

k3/2

and, by the integral test,

D+τ(0) ≥ lim sup
n→∞

τ(pn)− τ(0)

pn − 0
≥ lim sup

n→∞

1
n3/2 + 2

∑∞
k=n+1

1
k3/2

1
n

≥ 0 + 2 lim
n→∞

n

∫ ∞
n+1

x−3/2 dx =∞.

So, g is as needed.

Example 1.3.14. There is a differentiable monster g : [0, 1]→ R which is not of bounded variation.

In particular, g ∈ M\V, so that all indicated inclusions between the last two rows of Fig. 1.1 are

strict.

20Compare [47, A14].
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Proof. Let f := [0, 1]→ R be a function defined as

f(x) :=


x2 cos(π/x2) if x ∈ (0, 1]

0 if x = 0.

It is well known and easy to see that f is differentiable but not of bounded variation.21 Notice that

if qn = 1
n1/2 for n ∈ N, then f(qn) = (−1)n

n . Let P := {pn : n ∈ N} ∪ {0} and g be obtained by using

(ii) of Lemma 1.3.8 to the above defined f , set P , and a nowhere-monotone P-filling. Then g ∈M.

To see that g (and also f) is not bounded variation it is enough to notice that

TVg[0, 1] ≥
∞∑
n=1

|g(pk)− g(pk+1)| = 1 + 2

∞∑
n=1

p2
n = 1 + 2

∞∑
n=1

1

n
=∞.

1.3.4 Related open problems

When is a differentiable monster or even a Pompeiu-like function on a nontrivial compact [a, b] ⊆ R a

difference of two increasing Pompeiu-like functions? As a characterization is found in Corollary 1.3.2,

we believe it is worthwhile to state the following classical-looking problems.

Problem 1.3.15. What is a characterization of real-valued differentiable functions of bounded vari-

ation on [a, b] ⊆ R that is a difference of two increasing differentiable functions.

This is, basically, (Q2) when Pompeiu-likeness is replaced with differentiability, and we also

refer to “being a difference of two increasing differentiable functions” as a differentiable Jordan-

like decomposition. See Remark 1.3.11 for one necessary condition N and two strictly sufficient

conditions B and T . Is N also sufficient? Probably not. How far is it away from being sufficient?

We do not know yet. Perhaps, there can be a stronger sufficient condition. Regarding T , our next

problem is about those total variation functions.

Problem 1.3.16. What is a characterization of real-valued differentiable functions of bounded vari-

ation on [a, b] ⊆ R that has a differentiable total variation function?

One might suspect that f and TVf [a, x] would have some connection in differentiability. Unfortu-

nately, the known results said nay. Let f : [a, b]→ R be a function of bounded variation. On the good

side, f and TVf [a, x] do share the same continuity.22 However, differentiability has a different story.

21Compare [34, 6, chapter 3] or [70, problem 10, chapter 5].
22See [3, theorem 6.14] for a proof.
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In fact, Examples 1.3.12 and 1.3.13 have provided differentiable functions with non-differentiable

total variation functions. More generally, see [38, theorem 1] for a differentiable f on [0, 1] that has

a non-differentiable total variation function, and see [38, theorem 2] for a non-differentiable f on

[0, 1] that has a differentiable total variation function.

To introduce our next problem, we must first recall what we had in Proposition 1.3.6. ϕ and

ψ are two strictly increasing Pompeiu-like function from [0, 1] onto [0, 1] such that f := ϕ − ψ is

nowhere-monotone. We also wonder what its total variation function TVf [0, x] looks like. Is it

differentiable? Probably not. We know that TVf [0, x] ≤ (ϕ+ψ)(x) for every x ∈ [0, 1]. How far are

they away from each other? We suspect Problem 1.3.17 might be related to the unknown sufficiency

of N mentioned earlier.

Problem 1.3.17. Let f : [a, b] → R be a differentiable function. If there exists a pair of strictly

increasing differentiable functions α and β such that f = α−β, then is there a method to obtain the

total variation function of f by reducing α+ β?

Notice that the derivative of a nowhere-constant Pompeiu-like function must be discontinuous on

a dense set. Can it be approximately continuous? Definitely. Using [11, theorem 6.5, chapter 2], we

can construct a strictly increasing Pompeiu-like function with a bounded approximately continuous

derivative.23 On the other hand, we know that G : (t′, t′′) → (x′, x′′) defined as the inverse of (1.4)

has a bounded derivative. Is it also approximately continuous? Our last problem is as follows.

Problem 1.3.18. Does the strictly increasing Pompeiu-like function constructed by Pompeiu himself

in [67] have a approximately continuous derivative?

1.4 Monstrous Extentions

So far we have had two paradoxical examples of real functions, the Weierstrass’s monsters and the

differentiable monsters. In addition, we consider another paradoxical example f, first constructed in

a 2016 paper [18] of K. Ciesielski and J. Jasinski.24 This f : X→ X is an auto-diffeomorphism on a

compact perfect subset X of R with f′(x) = 0 for all x ∈ X.25 Thus, f is shrinking at every x ∈ X

and so, one would expect that the diameter of f[X] should be smaller than that of X, which evidently

is not the case. Of course, X must have Lebesgue measure zero, since f ′ ≡ 0 implies that f[X] must

23Let E be an Fσ-inner approximation of R\Q with full measure. There exists an approximately continuous function
f such that 0 < f(x) ≤ 1 for all x ∈ E and f(x) = 0 for all x /∈ R \ E. Note that f is a derivative, and thus its
primitive is a strictly increasing Pompeiu-like function.

24Since then, the construction was further generalized, in [9], and simplified in [17].
25A perfect set is a closed set that has no isolated points. In other words, P ⊆ R is perfect if and only if P = P ′,

where P ′ is the derived set of P , that is, the collection of all accumulation points of P .
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have measure zero.26 The construction of such an f in [17] is simple enough to be described in few

lines. Specifically, it can be defined as

f := h ◦ σ ◦ h−1 (1.8)

from X := h[2ω] onto itself, where σ : 2ω → 2ω is the add-one-and-carry adding machine27 and the

map h : 2ω → 2ω is defined via formula h(s) :=
∑∞
n=0 2sn3−(n+1)N(s�n), where N(s �n) is given by

N(s �n) :=
∑
i<n−1 si2

i + (1 − sn−1)2n−1 + 2n. Notice that X = h[2ω] is a subset of the Cantor

ternary set C in [0, 1].

The goal of Section 1.4 is to pack the three paradoxical examples into two functions. In particular,

Corollary 1.4.4 extends f to a differentiable monster, and Theorem 1.4.5 extends f to a Weierstrass’s

monster. Both proofs rely on a differentiable function f̄ : R → R extending f, which existence is

provided by Jarńık’s extension theorem.

Proposition 1.4.1 (Jarńık). Every differentiable function f : P → R,28 where P ⊆ R is closed,

admits a differentiable extension f̄ : R→ R.

In 1923, V. Jarńık proved that every differentiable function f from a closed subset P of R into

R has a differentiable extension f̄ : R → R. An interesting story of this result being forgotten

and rediscovered is described in details in [15].29 In short, Jarńık’s full paper with this result [42],

written in Czech, and its announcement [43] in French, with a sketch of construction, were published

in rather obscure journals. So, the theorem was unnoticed by the mathematical community until

the mid 1980’s, when it was cited in [5]. In the meantime, the theorem was rediscovered in 1974 by

G. Petruska and M. Laczkovich [66] and further elaborated on in 1984 by J. Mař́ık [57].

In a 2012 paper [51], M. Koc and L. Zaj́ıček proved a version of Jarńık’s extension theorem

showing that an extension f of ϕ can be, on the set R \ P , as good as possible, that is, C∞. In the

opposite direction, K. Ciesielski and C.-H. Pan proved in [21] that this f can also be, on R \ P , as

“bad” as possible, that is, nowhere-monotone.

26See e.g., [32, page 355].
27For s = 〈s0, s1, s2, . . .〉 ∈ 2ω it is defined: σ(s) := 〈0, 0, 0, . . .〉 when si = 1 for all i < ω and, otherwise,

σ(s) := 〈0, 0, . . . , 0, 1, sk+1, sk+2, . . .〉, where sk = 0 and si = 1 for all i < k.
28The differentiability of f : P → R is understood as the existence of its derivative only on P ′, the accumulation

points of P , that is, a function f ′ : P ′ → R such that f ′(p) := limx→p, x∈P
f(x)−f(p)

x−p for every p ∈ P ′.
29Compare also [26, section 3.3].
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1.4.1 Differentiable monsters extending f

Before extending such an f : X→ X, notice that the perfect set X is a subset of the Cantor ternary

set C and thus is nowhere-dense. In the statement of Theorem 1.4.3, we could have additionally

assumed P ⊆ R to be nowhere-dense and use (ii) of Lemma 1.3.8 in its proof. Since the proof with

or without nowhere-denseness is almost identical, we dropped it to align with the premise of Jarńık’s

extension theorem, stated in Proposition 1.4.1, and the proof of Lemma 1.5.3 which shows the space

of “bad” differentiable extensions is not empty.

In order to apply (i) of Lemma 1.3.8 to Jarńık’s differentiable extension, we first need to ensure

its extended part is nowhere-constant, and the next lemma is taking care of it.

Lemma 1.4.2. If O ⊆ R is open, then there exists a differentiable h̃ : R → R such that h̃ �R\O= 0

and h̃ is nowhere-constant on O.

Proof. Lemma 1.4.2 is similar to and much simpler than Lemma 1.3.8. The major difference is that

we start with a zero function f on R and a fixed nowhere-constant differentiable ξ : [0, 1]→ R with

ξ(0) = ξ′(0) = 0 = ξ(1) = ξ′(1) and ‖ξ‖∞ <∞.30

Let I be the collection of all nonempty connected components of O. Also, let HR\O be the

smooth function satisfying (i) in Proposition 1.3.7. For every I ∈ I, let 〈zIk〉k∈Z be a strictly

increasing sequence in I such that

lim
k→−∞

zIk = inf I, and lim
k→∞

zIk = sup I.

For each I ∈ I and k ∈ Z, choose an increasing linear surjection LIk : [zIk, z
I
k+1] → [0, 1] and let

M I
k := ‖HR\O �[zIk,z

I
k+1] ‖∞. Then

h̃ := f �R\O ∪
⋃
I∈I

⋃
k∈Z

M I
k

‖ξ‖∞
(ξ ◦ LIk)

is as needed.

Theorem 1.4.3. If P ⊆ R is closed and f : P → R is differentiable, then there exists a differentiable

g : R→ R extending f such that g is nowhere-monotone on every connected component of R \ P .

Proof. Let f̄ : R → R be a differentiable extension of f , existing by Proposition 1.4.1. Let O be

the intersection of the interior of [f̄ ′ = 0] and R \ P . If O is empty, then we can say that f̄ is

nowhere-constant on R \ P . If not, we may easily make it so by adding a differentiable h̃ : R → R,

30For example, ξ(x) := 1− cos(2πx) on [0, 1] can be it with ‖ξ‖∞ = 2.
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constructed in Lemma 1.4.2, to f̄ . Since P is closed in R, we can modify f̄ on its extended part

R \ P with (i) of Lemma 1.3.8 to obtain a differentiable g : R → R with g �P= f̄ �P= f and g

being nowhere-monotone on R \ P . In other words, g is a differentiable extension of f with g being

nowhere-monotone on R \ P .

To extend f : X → X, note that X ⊆ C is nowhere-dense and closed. It is clear that if the

differentiable extension g is nowhere-monotone on a dense open set R \ P , then it is also nowhere-

monotone on R. Theorem 1.4.3 immediately implies our desired extension.

Corollary 1.4.4. There exists a differentiable monster g : R→ R extending the function f : X→ X

from (1.8).

1.4.2 Weierstrass’s monsters extending f

Theorem 1.4.5. There exists a Weierstrass’s monster g : R→ R extending f : X→ X from (1.8).

The construction is again based on Jarńık’s extension theorem and the following lemma.

Lemma 1.4.6. Let f : [0, 1] → R be non-constant, continuous, with f(0) = 0 = f(1). Let K be the

family of all connected components of [0, 1] \ C. If h : [0, 1]→ R is defined as

h(x) :=


(b− a)f(x−ab−a ) for x ∈ (a, b) ∈ K

0 for x ∈ C,

then h is continuous but not differentiable at any x ∈ C.

Proof. For every n ∈ N let Kn := {(a, b) ∈ K : b− a = 1
3n } and hn : [0, 1]→ R be defined as

hn(x) :=


(b− a)f(x−ab−a ) for x ∈ (a, b) ∈ Kn

0 otherwise.

Then hn is continuous, ‖hn‖∞ = ‖f‖∞
3n , and so h =

∑∞
n=1 hn is continuous by Weierstrass M-test.

Since f is non-constant, we have M := ‖f‖∞ > 0. Now fix an arbitrary x ∈ C. For every n ∈ N,

choose an (an, bn) ∈ Kn closest to x and an xn ∈ (an, bn) with |hn(xn)| = (bn − an)M = |h(xn)|.

Then, by the construction of C, 0 < |xn − x| < 2(bn − an) = 2
3n so that limn→∞ xn = x. Moreover,

∣∣∣∣h(xn)− h(x)

xn − x

∣∣∣∣ =
|h(xn)|
|xn − x|

=
(bn − an)M

|xn − x|
>

(bn − an)M

2(bn − an)
=
M

2
.
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Thus the finite derivative h′(x) indeed does not exist.

Proof of Theorem 1.4.5. Let f be the restriction of the Weierstrass’s monster from (1.1) to [0, 1] and

notice that f(0) = f(1) = 0. We use it to define an h : [0, 1] → R as in Lemma 1.4.6. Then h is a

Weierstrass’s monster with h �C= 0. It is easy to extend h to a Weierstrass’s monster h̃ on R.

To construct g, let f̄ : R → R be a differentiable extension of f. Define g := f̄ + h̃. Clearly, g is

continuous and, since X ⊆ C and h̃ �C= h �C= 0, we also have g �X= f̄ �X +h̃ �X= f. Finally, g

cannot be differentiable at any x ∈ R, since otherwise h̃ = g − f̄ would be.

1.5 Typicality of differentiable extensions in EΦ(R)

Let Φ: P → R be a differentiable function defined on a closed set P ⊆ R. As Theorem 1.4.3 has

ensured, there exists a differentiable extension of Φ on R that is nowhere-monotone on R \ P and

thus it is Pompeiu-like on every connected components of R \ P . In what follows, let EΦ(R) be the

family of all differentiable extensions of Φ which are Pompeiu-like on every connected components

of R \P and consider it with the uniform metric ρ defined in Section 1.5.1. In this section, we show

that EΦ(R), with ρ, is a complete metric space and that a typical function in it is nowhere-monotone

on R \ P .

Here we use the term typical to say that the set of all such functions is residual, that is, contains

a dense Gδ-set. Note that P is not required to be nontrivial, that is, our study of differentiable

extensions in Section 1.5 includes the case of extending an empty function. In such a case, we write

E(R) as the collection of all Pompeiu-like functions on R equipped with the the same metric ρ.

1.5.1 The space of differentiable extensions

Let D(R) be the family of all differentiable functions from R into R and let C1(R) stand for all

f ∈ D(R) with derivative f ′ being continuous. It is well known that the subspace of C1(R), consisting

of all functions f ∈ C1(R) for which their C1-norm

‖f‖C1 := ‖f‖∞ + ‖f ′‖∞

is finite, forms a Banach space.31 Of course, ‖ · ‖∞ is the supremum norm.

31See [39, example 5.4]
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Proposition 1.5.1. If a sequence 〈fn ∈ D(R) : n ∈ N〉 converges uniformly to an f ∈ C(R) and the

sequence 〈f ′n : n ∈ N〉 is Cauchy with respect to the uniform convergence, then f is differentiable and

limn→∞ f ′n = f ′.

Proposition 1.5.1 immediately implies also that:

Proposition 1.5.2. D(R) is a complete metric with respect to metric

ρ(f, g) := min{1, ‖f − g‖C1}.

In what follows, P will always denote a closed subset of R and Φ a differentiable function from

P into R. For f ∈ D(R), we define

DΦ(R) := {f ∈ D(R) : f ⊇ Φ}

EΦ(R) := {f ∈ D(R) : f ⊇ Φ & [f ′ = 0] is dense in R \ P}.

Lemma 1.5.3. EΦ(R) is a nonempty closed subspace of D(R) considered with the metric ρ. In

particular, EΦ(R) is a complete metric space.

Proof. It has been proved in Theorem 1.4.3 that there is an f ∈ DΦ(R) which is nowhere-monotone

on R\P . Such f belongs to EΦ(R) since the derivative f ′ must satisfy (1.3). This shows that EΦ(R)

is nonempty. Clearly, DΦ(R) is closed in D(R). Since EΦ(R) = DΦ(R) ∩ E(R), it remains to show

that E(R) is closed in D(R). Our argument for this comes from a paper [79] of C. Weil.

To see this, assume that a sequence 〈fn ∈ E(R) : n ∈ N〉 converges to an f ∈ D(R) with respect

to ρ. We need to show that f ∈ E(R). Indeed, for every n ∈ N, the set Gn := [f ′n = 0] is dense in

R. It is also Gδ in R since a derivative is of Baire class one.32 Hence f ′ = limn→∞ f ′n has value 0

on the set
⋂
n∈NGn, which is also dense Gδ in R as R is a Baire space.

Notice that we proved also that E(R) is nonempty and closed in D(R).

Remark 1.5.4. If P = dom(Φ) 6= R, then the space EΦ(R), with the metric ρ, has a closed discrete

subset of cardinality continuum. In particular, neither EΦ(R) nor D(R) is separable.

Proof. Let a < b be such that [a, b] ∩ P = ∅ and let f ∈ EΦ(R). Choose a sequence b = b1 >

a1 > b2 > a2 > · · · converging to a such that a is a Lebesgue density point of the complement

of
⋃
n∈N(an, bn). For every n ∈ N, let gn : R → R be a map as in Lemma 1.5.6 with support in

32See [26, theorem 2.2].
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[an, bn] and vertically rescaled so that ‖g′n‖∞ = 1. For every s : N→ {−1, 1}, let hs =
∑
n∈N s(n)g′n.

It is bounded and approximately continuous—this is ensured at x = a by the Lebesgue density

requirement.

This implies that each Hs(x) =
∫ x

0
hs(t) dt is in E(R), since H ′s = hs.

33 In particular, Hs + f ∈

Eϕ(R). Also, for every distinct s, t : N→ {−1, 1}, we have ρ(Hs+f,Ht+f) = min{1, ‖Hs−Ht‖C1} ≥

min{1, ‖H ′s−H ′t‖∞} = 1. That is, we indeed found a closed discrete subset {Hs+f : s : N→ {−1, 1}}

of EΦ(R) of cardinality continuum.

1.5.2 Differentiable extensions that are nowhere-monotone

Theorem 1.5.5. If P ⊆ R is closed and Φ: P → R is differentiable, then a typical function in

EΦ(R) is nowhere-monotone on R.

The key step in the proof of Theorem 1.5.5 is the following lemma, which is based on Proposi-

tion 1.3.6.

Lemma 1.5.6. For every a < b < c < d, there exists a “bump” map g ∈ E(R) strictly increasing

on (a, c), strictly decreasing on (c, d) such that g′(b) > 0, ‖g‖C1 < ∞, and with g(x) = 0 for any

x ∈ R \ (a, d).

Proof. Let ϕ : [0, 1] → [0, 1] a strictly increasing P-filling from Proposition 1.3.6. Pick a t ∈ (0, 1)

such that ϕ′(t) > 0 and let ϕ̃ := ϕ �[0,t]. Let L1 : [a, b]→ [0, t] be an increasing linear surjection, and

L2 : [b, c]→ [0, t] and L3 : [c, d]→ [0, 1] be two decreasing linear surjections. Then

g(x) :=



(ϕ̃ ◦ L1) (x) for x ∈ [a, b]

ϕ̃(t) + c−b
b−a

(
ϕ̃(t)− (ϕ̃ ◦ L2) (x)

)
for x ∈ (b, c)(

ϕ̃(t) + c−b
b−a ϕ̃(t)

)
(ϕ ◦ L3) (x) for x ∈ [c, d]

0 for x ∈ R \ [a, d]

is as needed.

Proof of Theorem 1.5.5. For an open nonempty interval I ⊆ R \ P , let

U+
I := {f ∈ EΦ(R) : (∃x ∈ I)f ′(x) > 0}

33See [12, theorem 7.38].
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and

U−I := {f ∈ EΦ(R) : (∃x ∈ I)f ′(x) < 0}.

We claim that the sets U+
I and U−I are open and dense in EΦ(R).

Indeed, they are open, since for every f ∈ U−I (or f ∈ U+
I ) and x ∈ I for which f ′(x) < 0

(f ′(x) > 0, respectively), the ρ-ball centered at f and of radius |f ′(x)| is contained in U−I (U+
I ,

respectively).

To see that U+
I ∩ U

−
I is dense in EΦ(R), choose an arbitrary f ∈ EΦ(R) and ε ∈ (0, 1). It is

enough to find a g ∈ D(R) with ‖g‖C1 < ε such that f + g ∈ U+
I ∩ U

−
I . To find such a g choose

a0 < b0 < d0 < a1 < b1 < d1 in I with f ′ equal 0 at each of these points. Let g0 and g1 be as in

Lemma 1.5.6 applied to numbers a0 < b0 < d0 and a1 < b1 < d1, respectively. Multiplying these

functions by a sufficiently small constant if necessary, we can further assume that ‖g0‖C1 < ε and

‖g1‖C1 < ε. Then the function g := g0 − g1 is as needed.

Finally, let I be the countable family of all nonempty intervals I ⊆ R\P with rational endpoints.

Then G :=
⋂
I∈I(U+

I ∩U
−
I ) is a dense Gδ set in EΦ(R), and every function in G is nowhere-monotone

on R.

1.5.3 Differentiable extensions that are nowhere nowhere-monotone

We say that a function f : R → R is increasing at a point x ∈ R provided there exists an interval

(a, b) containing x on which f is strictly increasing. Let M
↗

Φ (R) be the family of all f ∈ EΦ(R) for

which the set of points at which f is increasing is dense in R \ P .

Similarly, we say that f : R→ R is monotone (constant or decreasing) at a point x ∈ R provided

there exists an interval (a, b) containing x on which f is monotone, constant, or strictly decreasing,

respectively. With each of these notions we associate their respective families MΦ(R), M
→

Φ (R), and

M
↘

Φ (R), in a way in which M
↗

Φ (R) is associated with the notion of “increasing at a point.”

Clearly, M
↗

Φ (R), M
→

Φ (R), and M
↘

Φ (R) are disjoint and contained in MΦ(R) which, by Theo-

rem 1.5.5, is first category in EΦ(R). The goal of this section is to show that each of these first

category sets is dense in EΦ(R).

Theorem 1.5.7. Each of the sets M
↗

Φ (R), M
→

Φ (R), and M
↘

Φ (R) is dense in EΦ(R).

The main step in the proof of Theorem 1.5.7 is the following Lemma 1.5.8.

Lemma 1.5.8. For every f ∈ EΦ(R), ε ∈ (0, 1), and a nonempty open set U ⊆ R \ P , there exist

f1 ∈ EΦ(R) and p < q < r < s with (p, s) ⊆ U such that f1 = f on R \ (p, s), ρ(f1, f) < ε, f1 �(p,q)
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is strictly increasing, f1 �(q,r) is constant, and f1 �(r,s) is strictly decreasing.

Proof. Let g be as in Lemma 1.5.6 with a = 0, c = 1, and d = 2. Multiplying it by a sufficiently small

constant if necessary, we can further assume that g(c) = 1. Let M := ‖g‖C1 and notice that M ≥ 1.

Notice that for every δ > 0 the set [|f ′| ≥ δ] cannot be dense in U according to Proposition 1.3.3.

Let δ := ε
12M and choose a nonempty interval (p, s) ⊆ U disjoint from [|f ′| ≥ δ] and with

s− p ≤ 1. Decreasing this interval, if necessary, we can also assume that f ′(p) = f ′(s) = 0 and that

|f(x)− f(y)| ≤ ε/4 for every x, y ∈ [p, s]. Let [q, r] be the middle third of [p, s].

For some ξ ∈ (p, s), we have
∣∣∣ f(s)−f(p)

q−p

∣∣∣ = 3
∣∣∣ f(s)−f(p)

s−p

∣∣∣ = 3|f ′(ξ)| < 3δ. Thus, there exists a

v > max{f(s), f(p)} such that v−f(p)
q−p < 3δ and v−f(s)

s−r < 3δ. Consider the following two linear

surjections: increasing L1 : [p, q] → [0, 1] and decreasing L2 : [r, s] → [0, 1]. Notice, that L1 has the

slope m := 1
q−p , while L2 has the slope 1

s−r = −m. Define g1 := (v−f(p)) ·g ◦L1 and notice that we

have g1(p) = 0 and g1(q) = v − f(p). Also, ‖g′1‖∞ = (v − f(p)) 1
q−p‖g

′‖∞ ≤ v−f(p)
q−p M < 3δM = ε/4

and ‖g1‖∞ = (v−f(p))‖g‖∞ ≤ v−f(p)
q−p M < ε/4. Therefore, we have ‖g1‖C1 = ‖g1‖∞+‖g′1‖∞ < ε/2.

Similarly, if g2 := (v − f(s)) · g ◦ L2, then ‖g2‖C1 < ε/2, g2(s) = 0, and g2(r) = v − f(s). Define

f1(x) :=



f(p) + g1(x) for x ∈ [p, q]

v for x ∈ [q, r]

f(s) + g2(x) for x ∈ [r, s]

f(x) for x ∈ R \ (p, s).

and notice that it is as needed.

Indeed, it is easy to see that f1 is a well defined differentiable function with f ′1(p) = f ′1(q) =

f ′1(r) = f ′1(s) = 0. All other requirements for f1 are clearly satisfied, except possibly for ρ(f1, f) < ε.

To see this, it is enough to prove that ‖(f1 − f) �J ‖C1 < ε for J being [p, q], [q, r], and [r, s].

But on J = [p, q] we have

‖f1 − f‖C1 ≤ ‖g1‖C1 + ‖f − f(p)‖C1

< ε/2 + ‖f − f(p)‖∞ + ‖(f − f(p))′‖∞

< ε/2 + ε/4 + δ < ε.
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Similarly, ‖f1 − f‖C1 < ε on J = [r, s]. Finally, on J = [q, r],

‖f1 − f‖C1 ≤ ‖v − f(p)‖C1 + ‖f − f(p)‖C1 ≤ ε/4 + ε/4 + δ < ε

as needed.

Proof of Theorem 1.5.7. We prove only the density of M
↗

Φ (R), the proof for the other two cases

being essentially the same. Fix an f0 ∈ EΦ(R) and an ε ∈ (0, 1). We need to find g ∈ M
↗

Φ (R) with

‖f0 − g‖C1 ≤ ε.

Let {Bn : n ∈ N} be the intervals forming a basis for R \ P . Define J0 = ∅. By induction on

n ∈ N we will construct the sequences 〈Jn ⊆ R \ P : n ∈ N〉 of pairwise disjoint, possibly empty,

open intervals and 〈fn ∈ EΦ(R) : n ∈ N〉 such that the following inductive properties hold for every

n ∈ N.

(i) Bn ∩
⋃
i≤n Ji 6= ∅,

(ii) fn is strictly increasing on each Ji with i ≤ n, fn−1 = fn on R\
⋃
i<n Ji, and ρ(fn−1, fn) < 2−nε.

The inductive step is facilitated by Lemma 1.5.8. Specifically, we let U to be the interior of

Bn \
⋃
i<n Ji. If U = ∅, we let fn = fn−1 and Jn = ∅. Otherwise we choose p < q < r < s

and fn by applying Lemma 1.5.8 to fn−1 ∈ E1
Φ(R), 2−nε > 0, and just chosen U . Let Jn = (p, q).

This choice of fn and Jn ensures properties (i) and (ii).

To finish the proof, notice that the sequence 〈fn ∈ EΦ(R) : n ∈ N〉 is Cauchy with respect to ρ,

so that the limit g = limn→∞ fn exists and belongs to EΦ(R). By (ii), ρ(f0, fn) < (1 − 2−n)ε for

every n ∈ N. Therefore, ρ(f0, g) ≤ ε.

Finally, to see that g ∈ M
↗

Φ (R) notice that, by (i), for every n ∈ N there exists an i ≤ n such

that Bn ∩ Ji 6= ∅. Moreover, by (ii), the restriction g �(Bn∩Ji)= fi �(Bn∩Ji) is strictly increasing. So,

indeed g ∈ M
↗

Φ (R).
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Chapter 2

Paradoxes in Continuity

The content of this chapter comes from a published article [23] which studied the Sierpiński-Zygmund

functions in the classes of Darboux-like functions.1 Seven among the nine examples constructed

below have been unknown before the publication of [23], and they constitute the answers to the

problems posted in the preliminary version of a survey [27, theorem 4.10] of K. Ciesielski and

J. Seoane-Sepúlveda. The existence of these examples has caused some studies in the lineability of

Sierpiński-Zygmund functions in different Darboux-like classes.2

2.1 Introduction

For X ⊆ R, a map f : X → R is a Sierpiński-Zygmund function (or just SZ-function) provided f �S ,

its restriction to S, is discontinuous for any S ⊆ X of cardinality c. Here c stands for the continuum,

that is, the cardinality of R. The first example of such function f : R→ R was constructed in a 1923

paper [72] of Wac law Sierpiński and Antoni Zygmund. The SZ-maps have “as little continuity as

possible.”

On the other hand, an f : R→ R is Darboux provided it satisfies the intermediate value property,

that is, for every a < b and y between f(a) and f(b), there is a c ∈ [a, b] with f(c) = y. This

is equivalent to the fact that f [C] is connected (i.e., an interval) for every connected C ⊆ R.

The name is used in honor of Jean Gaston Darboux who, in a 1875 paper [28], has shown that

all derivatives, including those that are discontinuous, have the intermediate value property. The

1Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Banach Journal
of Mathematical Analysis, Examples of Sierpiński–Zygmund maps in the class of Darboux-like functions, Krzysztof
Chris Ciesielski & Cheng-Han Pan], 2020.

2See e.g., [1]
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classes of Sierpiński-Zygmund and Darboux functions from R to R are denoted, respectively, by the

symbols SZ and D.

By definition, any f ∈ D shares the intermediate value property with the class of all continuous

functions from R to R. As such, D can be considered as a class of generalized continuous functions.

Since SZ contains only extremely discontinuous functions, it is not surprising that SZ contains no

generalized continuous function in the most typical uses of such term, including, but not limited to,

approximately or I-approximately continuous functions and Borel, Baire, or Lebesgue measurable

functions. But this is where the class D stands apart from the other classes of generalized continuous

functions in a 1997 paper [6], M. Balcerzak, K. Ciesielski and T. Natkaniec proved that existence of

Darboux SZ-functions is independent of ZFC, the standard axioms of set theory.3 More precisely,

it has been proven in [6] that SZ∩D = ∅ in the iterated perfect set model and constructed an

f ∈ SZ∩D under the assumption that covM = c, where

covM := {κ : R is not a union of less than κ-many meager sets in R}.

Notice that the property covM = c is consistent with ZFC, as it follows from the Continuum

Hypothesis.4 For more details concerning this discussion, see [27].

All classes of Darboux-like functions we discuss in this paper are contained in D. Therefore, all

our constructions require an additional set-theoretical assumption, which we keep as in [6], that is,

we use the assumption covM = c: R is not a union of less than c-many meager sets. More specifically,

we will use the following well-known and easy-to-see result.

Proposition 2.1.1. If covM = c holds, then no Gδ-subset of R which is dense in some nontrivial

interval is a union of less than c-many meager subsets of R.

Let G = {f ∈ RG : f is continuous and G is a Gδ-subset of R} and note that |G| = c.5 A stan-

dard construction, including the original one from the 1923 paper of Wac law Sierpiński and An-

toni Zygmund, uses the following result of K. Kuratowski.6

Proposition 2.1.2 (Kuratowski). For every continuous function g from S ⊆ R to R, there exists a

Gδ-set G ⊆ R containing S and a continuous extension ḡ : G→ R of g.

3This result settled a problem posed in a 1993 paper [29] by U. Darji, who constructed there, in ZFC, a function
in SZ∩PR and asked about a function in SZ∩D. For more on this subject, see survey [27].

4More generally, from the Martin’s Axiom.
5Since a continuous function is uniquely determined by its values on a dense set and the fact that there are c-many

Gδ subsets of R, a simple cardinality argument gives |G| = c⊗ cω = c.
6See e.g., [49, theorem 3.8, page 16].
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In what follows, we will repeatedly use the following well-known result that follows immediately

from Proposition 2.1.2. In its statement, and in what follows, we identify any function with its

graph.

Proposition 2.1.3. If f is a function from X ⊆ R into R such that |f ∩ g| < c for every g ∈ G,

then f ∈ SZ.

Other simple and well-known properties of Sierpiński-Zygmund functions that we will use are as

follows.

Proposition 2.1.4. (i) Any restriction of a Sierpiński-Zygmund function is Sierpiński-Zygmund.

(ii) If f : R→ R is a union of countably many Sierpiński-Zygmund functions, then f ∈ SZ.

In the standard setting, the collection of Darboux-like classes of functions from R to R encom-

passes, beside of the class D, also seven other classes: PC of peripherally continuous functions, PR

of functions with perfect road, Conn of connectivity functions, AC of almost continuous functions,

Ext of extendable functions, CIVP of functions with Cantor intermediate value property, and SCIVP

of functions with strong Cantor intermediate value property. We will provide their definitions in

the following sections on the as needed basis. The inclusion relations among them are presented in

Fig. 2.1.

AC // Conn // D

""
Ext

$$

::

PC

SCIVP // CIVP // PR

<<

Figure 2.1: All inclusions, indicated by arrows, among the Darboux-like classes of functions from R
to R. The only inclusions among the intersections of these classes are those that follows trivially
from this schema. (See [35], [19], or [27].)

It is worthy to mention that while Fig. 2.1 remains unchanged when we restrict Darboux-like

classes to Baire class two functions, all classes represented there coincide7 when restricted to the class

of Baire one functions.8 Also, directly by the definition (not provided here), any SCIVP function

has continuous restrictions to many perfect sets. Thus, SZ∩SCIVP = ∅ and, by Fig. 2.1, also

SZ∩Ext = ∅. In particular, in what follows we will be interested only in the classes in Fig. 2.2.

7I.e., are equal.
8See the references in [19] or [27].

31



AC // Conn // D

��
CIVP // PR // PC

Figure 2.2: Six Darboux-like classes of functions that consistently contain SZ-functions. Arrows
indicate strict inclusions.

Notice that the algebra of subsets of D generated by the classes in Fig. 2.2 has 9 atoms:

D \(Conn∪PR), D∩PR \(Conn∪CIVP), D∩CIVP \Conn, Conn \(AC∪PR),

Conn∩PR \(AC∪CIVP), Conn∩CIVP \AC, AC \PR, AC∩PR \CIVP, and AC∩CIVP. The

algebra of subsets of PC \D generated by the classes in Fig. 2.2 has only 3 atoms, and it can be

proved in ZFC that they have a non-empty intersections with SZ.9

The main goal of this chapter is to construct, under the additional set-theoretical assumption

that covM = c, the examples of functions belonging to the following nine classes, the intersections

of the above-mentioned atoms with SZ:

(i) SZ∩D \(Conn∪PR);

(ii) SZ∩D∩PR \(Conn∪CIVP);

(iii) SZ∩D∩CIVP \Conn;

(iv) SZ∩Conn \(AC∪PR);

(v) SZ∩Conn∩PR \(AC∪CIVP);

(vi) SZ∩Conn∩CIVP \AC;

(vii) SZ∩AC \PR;

(viii) SZ∩AC∩PR \CIVP;

(ix) SZ∩AC∩CIVP;

Notice that for the first seven of these classes, the existence of such examples was previously unknown,

and their construction solves [27, problems 4.10, 4.13, 4.14]. We also show that the machinery we

construct here allows also easy constructions of the remaining two previously-known examples.

9See e.g., [27].

32



2.2 Examples of Sierpiński-Zygmund functions in the class

of Darboux-like functions

2.2.1 SZ∩AC \PR

Under the Continuum Hypothesis, SZ∩AC 6= ∅ was first noticed in a 1982 paper [50] of K. R. Kellum,

who pointed out that a function in SZ∩Conn constructed by J. Ceder in his 1981 paper [13] is also

AC. An example of a function in SZ∩AC∩PR was constructed, under covM = c, in a 1997 paper [6]

of M. Balcerzak, K. Ciesielski, and T. Natkaniec.

Definition 2.2.1. A function f : R → R has a perfect road at every x ∈ R, denoted as f ∈ PR,

provided for every x ∈ R, there exists a perfect set P ⊆ R having x as a bilateral limit point such

that f �P is continuous at x.

This class was first introduced in a 1936 paper [58] of I. Maximoff, where he proved that a Baire

class one function is Darboux if, and only if, it has a perfect road at each point.

In what follows, we will use the following simple fact.

Proposition 2.2.2. If f : R→ R is unbounded on every perfect subset of R, then f has perfect road

at no point.

Proof. Suppose f has a perfect road at x ∈ R. Then, there exists a perfect P having x as a bilateral

limit point such that f �P is continuous at x. By continuity, there exists an δ > 0 such that f �P is

bounded on P ∩ [x− δ, x+ δ]. However, P ∩ [x− δ, x+ δ] contains a perfect set, a contradiction.

Definition 2.2.3. A function f : R → R is almost continuous, denoted as f ∈ AC, provided every

open set in R2 containing the graph of f contains also the graph of a continuous function from R to

R.

This class was first seriously studied in a 1959 paper [73] of J. Stallings. However it appeared

already in an earlier paper [37] of O. H. Hamilton.

The above definition emphasizes the similarities between continuous and almost continuous func-

tions. However, a more useful characterization of functions in AC relies on the notion of blocking

sets. Specifically, a B ⊆ R2 is a blocking set provided it is closed, meets the graph of every continuous

function, and is disjoint with some arbitrary function h ∈ RR. In what follows, the family of all
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blocking sets will be denoted by B. It is an easy exercise to see that

a function f̄ : R→ R is AC if, and only if, f̄ ∩B 6= ∅ for every B ∈ B.10 (2.1)

More interestingly, every B̂ ∈ B contains another blocking set B such that π[B] is a nontrivial

interval,11 where π[B] is the projection of B onto the first coordinate.12 In particular, if

K := {K ⊆ R2 : K is compact and π[K] = [a, b] for some a < b},

then we have the following easy and well-known result.

Proposition 2.2.4. If f ∈ RR is such that f ∩K 6= ∅ for every K ∈ K, then f ∈ AC.

Proof. By (2.1), it is enough to show that every B ∈ B contains some K ∈ K. But, by the above

discussion, π[B] has a non-empty interior. Since B is a countable union of compact sets Bn, n < ω,

and π[B] is a union of compact sets π[Bn], by Baire category theorem there exists an n < ω such

that π[Bn] has a non-empty interior. Clearly, such Bn contains a K ∈ K.

Our constructions of almost continuous functions will rely on the following result, that implicitly

is already in [6].13

Lemma 2.2.5. For every K ∈ K, the following holds.

(i) There exists a ĝ ∈ G contained in K and with dom(ĝ) dense in π[K].

(ii) If ĝ is as (i) and g ∈ G is such that dom(g ∩ ĝ) is dense in some nontrivial interval J , then

g �J⊆ K.

Proof. (i) is a well known fact. The map h : π[K] → R, h(x) = inf{y : 〈x, y〉 ∈ K}, is of Baire

class one.14 So, the set G of its points of continuity is a dense Gδ-subset of π[K].15 In particular,

ĝ := h �G is as needed.16

To see (ii), first notice that

g �J⊆ cl(ĝ ∩ g �J).

10See e.g., [50, lemma 1].
11See e.g., [62]
12In case when B is a function, π[B] is also denoted as dom(B).
13Compare also [27, lemma 4.6].
14See e.g., [50, lemma 1].
15See e.g., [59, theorem 48.5].
16See also [50, lemma 1] or [24, page 117].
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Indeed, the function γ : J ∩ dom(g) → g �J⊆ R2, given as γ(x) := 〈x, g(x)〉, is continuous and the

set D := dom(ĝ ∩ g) is dense in J . Therefore, we have

g �J= γ[J ∩ dom(g)] ⊆ γ[cl(D)] ⊆ cl(γ[D]) = cl(ĝ ∩ g �J).

Hence, g �J⊆ cl(g �J) ⊆ cl(ĝ ∩ g �J) ⊆ cl(ĝ) ⊆ cl(K) = K, as needed.

The most important component in the construction of every example presented in this chapter

is a result stated as the following lemma.

Lemma 2.2.6. Assume that covM = c holds. Let M be an Fσ meager subset of R. Then there is a

partial function f from R \M to R such that

(a) |f ∩ g| < c for every g ∈ G, that is, f is an SZ-function;

(b) f is unbounded on every perfect P ⊆ R with P ∩M = ∅;

(c) K ∩ f 6= ∅ for every K ∈ K.

Proof. Let {gξ : ξ < c} be an enumeration of G. By induction on ξ < c, define the sequence of

quadruples 〈Cξ, Zξ, Dξ, fξ〉 as follows.

(C) If dom(gξ) \M is uncountable, then Cξ is a countable infinite set, enumerated as {xn : n < ω}

and contained in (dom(gξ) \M) \
⋃
ζ<ξ(Cζ ∪Dζ). Otherwise we put Cξ := ∅.

(Z) Zξ := dom(gξ) \
⋃
ζ<ξ(Cζ ∪Dζ ∪ dom(gζ ∩ gξ)).

(D) Dξ is a dense at most countable subset of Zξ \ (Cξ ∪M).

(F) fξ : Cξ ∪Dξ → R is defined as:

(i) fξ(xn) ∈ (n,∞) \ {gζ(xn) : ζ < ξ} for every xn ∈ Cξ;

(ii) fξ(x) = gξ(x) on Dξ.

The choice of a set Cξ is possible, since an uncountable Gδ-set dom(gξ) \M has cardinality c. It

is also clear that f :=
⋃
ξ<c fξ is a partial function from R \M to R.

To see (a), notice that for every g ∈ G there exists a ζ < c such that g = gζ and that for

every ξ > ζ we have gζ ∩ fξ = ∅: on Cξ it is ensured by (i), while on Dξ by (ii) and the fact that

dom(gζ ∩ gξ) is disjoint with Zξ ⊇ Dξ. Hence, f ∩ g = f ∩ gξ is a subset of
⋃
η≤ξ fη which has

cardinality < c as a union of < c-many countable sets. So, indeed, |f ∩ g| < c. Hence, by a remark

just before Proposition 2.1.4, f is an SZ-function.
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To see (b), notice that for every perfect P ⊆ R with P ∩M = ∅, there exists a ξ < c such that

dom(gξ) = P as every perfect set is a Gδ set. Then, by (C), the set Cξ ⊆ P ∩dom(f) is infinite and,

by (i), f is unbounded on it.

Finally, we will argue for (c) using Lemma 2.2.5. So, fix a K ∈ K, let ĝ ∈ G be contained in K

and with dom(ĝ) dense in π[K], and choose a ξ < c with gξ = ĝ. Define

α := min{ζ ≤ ξ : dom(gζ ∩ gξ) is somewhere dense in R}.

It is well-defined, since ξ is in the minimized set. Let J denote a nontrivial interval in which

dom(gα ∩ gξ) = dom(gα ∩ ĝ) is dense. Then, by (ii) of Lemma 2.2.5, we have gα �J⊆ K. This and

(ii) imply that f �Dα∩J= fα �Dα∩J= gα �Dα∩J⊆ K. Also, Dα ∩M = ∅. Thus, to finish the proof of

(c) it is enough to show that Dα ∩ J 6= ∅.

To see this, first notice that

dom(gβ ∩ gα) ∩ J is nowhere-dense for every β < α. (2.2)

Indeed, otherwise there exists a β < α such that dom(gβ∩gα)∩J is a Gδ-set dense in some nontrivial

interval I ⊆ J . In particular, dom(gβ ∩ gξ) contains the set dom(gβ ∩ gα) ∩ dom(gα ∩ gξ), which is

a Gδ-set dense in I, contradicting the minimality of α.

Now, by (2.2) and Proposition 2.1.1, the set Zα \ (Cα∪M) is dense in J . Therefore, by (D), also

Dα is dense in J , so that Dα ∩ J 6= ∅, as needed.

Theorem 2.2.7. If covM = c holds, then SZ∩AC \PR 6= ∅.

Proof. Let σ ∈ SZ and f be an SZ-function from Lemma 2.2.6 used with M = ∅. We claim that

f̄ = f ∪ σ �R\dom(f) is as needed, that is, in SZ∩AC \PR.

Indeed, f̄ ∈ SZ by Propositions 2.1.3 and 2.1.4. Also, f̄ /∈ PR, since, by (b) of Lemma 2.2.6,

f̄ ⊇ f is unbounded on any perfect P ⊆ R, and so, by Proposition 2.2.2, is perfect-road free. Finally,

by (c) of Lemma 2.2.6, f̄ ⊇ f intersects every K ∈ K. So, by Proposition 2.2.4, f̄ ∈ AC.

2.2.2 SZ∩D \(PR∪Conn)

Definition 2.2.8. A function f : R → R is connectivity, denoted as f ∈ Conn, provided f �S is a

connected subset of R2 whenever S is a connected subset of R.

This concept was first defined in a research problem [60] proposed by J. Nash in 1956. He inquired

if an endomorphic map on a cell, that preserves connectedness of any connected subset of its domain
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to its graph, must have a fixed point or not. This problem was studied and given an affirmative

answer by O. H. Hamilton [37] and J. Stallings [73]. In addition, J. Stallings proved also in [73] that

AC ⊆ Conn. Notice, that the inclusion Conn ⊆ D is obvious. An example, under covM = c, of an

additive function in SZ∩D \Conn can be found in [64].

Definition 2.2.9. A function f : R → R is everywhere surjective, denoted as f ∈ ES, provided

f [(a, b)] = R for all a < b.

Equivalently, f ∈ ES if, and only if, f−1(y) is dense in R for every y ∈ R. This class, under

different names, has been studied by many authors.17 The name everywhere surjective comes from a

2005 paper [4] of R. Aron, V. I. Gurariy, and J. B. Seoane and the consecutive work of these authors.

Clearly ES ⊆ D.

In what follows ∆ will be defined as the diagonal, that is, ∆ := {〈x, x〉 ∈ R2 : x ∈ R}.

Theorem 2.2.10. If covM = c, then SZ∩ES \(PR∪Conn) 6= ∅ and SZ∩D \(PR∪Conn) 6= ∅.

Proof. Let function f̄ be as in the proof of Theorem 2.2.7, that is, defined as f̄ = f ∪ σ �R\dom(f),

where σ ∈ SZ and f is from Lemma 2.2.6 used with M = ∅. Notice that f̄ ∈ ES, since by

(c) of Lemma 2.2.6, f intersects any constant map g defined on any nontrivial interval. Also, by

Propositions 2.1.3 and 2.1.4, f̄ ∈ SZ.

Since ∆ ∈ G, the set D := dom(∆ ∩ f̄) has cardinality < c, as f̄ ∈ SZ. Let f̂ := f̄ + χD, where

χD is the characteristic function of the set D. We claim that f̂ ∈ SZ∩ES \(PR∪Conn).

Indeed, f̂ /∈ PR by Proposition 2.1.4, since for any perfect P ⊆ R the map f̂ is unbounded.18

Also, f̂ ∈ ES since, for every y ∈ R, the set f̄−1(y) is dense in R as f̄ ∈ ES, and so is f̂−1(y), as it

contains

f̄−1(y) \ {x ∈ D : f̂(x) = y} ⊇ f̄−1(y) \ {y}.

We have f̂ /∈ Conn, since f̂ has a graph dense in R2 as f̂ ∈ ES, and its graph does not intersect

∆. Finally, f̂ ∈ SZ by Proposition 2.1.4, as both f̂ �R\D= f̄ �R\D and f̂ �D are SZ.

2.2.3 SZ∩D∩CIVP \Conn

Definition 2.2.11. A function f : R → R has the Cantor intermediate value property, denoted as

f ∈ CIVP, provided for every a, b ∈ R with f(a) 6= f(b) and for every perfect set K between f(a)

and f(b), there exists a perfect set C between a and b such that f [C] ⊆ K.

17See e.g., [36], [61], [20], or [16, section 7.2].
18This is the case, since f̂ := f̄ + χD, where χD is bounded, while f ⊆ f̄ is unbounded on P .

37



Choose a countable family F = {Pp,q ⊆ (p, q) : p < q & p, q ∈ Q} of pairwise disjoint nowhere-

dense perfect sets and define

M̂ :=
⋃
F . (2.3)

Notice that M̂ is a meager and an Fσ-subset of R. Also, for every Pp,q ∈ F let

{Cp,q,ξ : ξ < c} (2.4)

be a partition of Pp,q consisting of perfect sets. It exists, since Pp,q is homeomorphic to C2, where

C is the Cantor set, and the sets {{x} × C : x ∈ C} form its partition. Thus,

{Cp,q,ξ : ξ < c & p < q & p, q ∈ Q}

is a partition of M̂ .

Lemma 2.2.12. Let M̂ be as in (2.3). Then there exists a function h : M̂ → R such that

(a) |h ∩ g| < c for every g ∈ G, that is, h is an SZ-function;

(b) for every perfect K ⊆ R and a < b there exists a perfect P ⊆ M̂ ∩ (a, b) such that h[P ] ⊆ K.

Proof. Let {gξ : ξ < c}, {xζ : ζ < c}, and {Kξ : ξ < c} be the enumerations of G, M̂ , and the family

of all perfect subsets of R, respectively. Let sets Cp,q,ξ be as in (2.4). By induction on ζ < c, define

a function h : M̂ → R such that

h(xζ) ∈ Kξ \ {gη(xζ) : η < ζ & xζ ∈ dom(gη)},

where ξ < c is such that xζ ∈ Cp,q,ξ for some p, q ∈ Q, p < q. This completes the construction.

To see (a), notice that for every g ∈ G, there exists a ξ < c such that g = gξ and h(xζ) 6= gξ(xζ)

for every ζ > ξ. Thus, |h ∩ g| ≤ ξ < c.

To see (b), take a perfect K ⊆ R and a < b. Find p, q ∈ Q with a < p < q < b and a ξ < c

such that K = Kξ. Then P := Cp,q,ξ ⊆ M̂ ∩ (a, b) is perfect and, according to the construction,

h[P ] = h[Cp,q,ξ] ⊆ Kξ = K, as needed.

Theorem 2.2.13. If covM = c, then SZ∩ES∩CIVP \Conn 6= ∅ and SZ∩D∩CIVP \Conn 6= ∅.

Proof. Take the SZ-functions: h : M̂ → R from Lemma 2.2.12, f from Lemma 2.2.6 with M := M̂ ,

and an arbitrary σ ∈ SZ. Let

f̄ = f ∪ h ∪ σ �R\dom(f∪h) .
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Then f̄ ∈ ES, since by (c) of Lemma 2.2.6, f intersects any constant map g defined on any nontrivial

interval. Also, by Proposition 2.1.4, we have f̄ ∈ SZ. So, the set D := dom(∆ ∩ f̄) has cardinality

< c, as ∆ ∈ G. Let

f̂ := f̄ + χD,

where χD is the characteristic function of D. We claim that f̂ is as needed, that is, that f̂ ∈

SZ∩ES∩CIVP \Conn.

Indeed, f̂ ∈ SZ by Proposition 2.1.4, as a union of two SZ-functions: f̂ �D and f̂ �R\D= f̄ �R\D.

Also, f̂ ∈ ES since, for every y ∈ R, the set f̄−1(y) is dense in R as f̄ ∈ ES, and so is f̂−1(y), as it

contains

f̄−1(y) \ {x ∈ D : f̂(x) = y} ⊇ f̄−1(y) \ {y}.

We have f̂ /∈ Conn, since f̂ has a graph dense in R2 (as f̂ ∈ ES) and its graph does not intersect ∆.

To finish the proof, it remains to check that f̂ ∈ CIVP. So, fix a < b with f̂(a) 6= f̂(b) and a

perfect set K between f̂(a) and f̂(b). We need to find a perfect C ⊆ (a, b) with f̂ [C] ⊆ K. By (b) of

Lemma 2.2.12, there exists a perfect P ⊆ M̂ ∩ (a, b) such that h[P ] ⊆ K. Since |D| < c, there exists

a perfect C ⊆ P \D. But f̂ = f̄ = h on P \D. Hence, f̂ [C] = h[C] ⊆ h[P ] ⊆ K, as needed.

2.2.4 SZ∩D∩PR \(Conn∪CIVP)

To construct a map in SZ∩ES∩PR \(Conn∪CIVP), we need yet another lemma, where C denotes

the classic Cantor ternary set in [0, 1].

Lemma 2.2.14. Let M̂ be as in (2.3). Then there exists a function h : M̂ → R such that

(a) |h ∩ g| < c for every g ∈ G, that is, h is an SZ-function;

(b) h[M̂ ] ∩ C = ∅;

(c) for any 〈s, t〉 ∈ R2 there is a perfect set P ⊆ M̂ ∪{s} having s as a bilateral limit point and such

that limx→s, x∈P h(x) = t.

Proof. Let {〈sξ, tξ〉 : ξ < c} be an enumeration of R2 and let sets Cp,q,ξ be as in (2.4). For every

ξ < c, let {pξn}n∈N and {qξn}n∈N be the sequences of rational numbers converging to sξ, the first

strictly increasing, the second strictly decreasing. Define

Pξ =
⋃
n∈N

(Cpn,pn+1,ξ ∪ Cqn+1,qn,ξ).
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Note that {Pξ : ξ < c} is a family of pairwise disjoint subsets of M̂ and that, for every ξ < c, the set

Pξ ∪ {sξ} is perfect with sξ being its bilateral limit point.

Let {xζ : ζ < c} be an enumeration of M̂ . By induction on ζ < c, define a function h : M̂ → R

so that

h(xζ) ∈ (tξ, tξ + |xζ − sξ|) \ (C ∪ {gη(xζ) : η < ζ & xζ ∈ dom(gη)})

when xζ is in some Pξ and

hξ(xζ) ∈ R \ (C ∪ {gη(xζ) : η < ζ & xζ ∈ dom(gη)})

otherwise. Such a choice is possible since (yξ, yξ + |xζ − xξ|) \ C has cardinality c, while the set

{gη(xζ) : η < ζ & xζ ∈ dom(gη)} has a smaller cardinality. This completes the construction.

Clearly, h satisfies (a) and (b). To see (c), fix an 〈s, t〉 ∈ R2 and let ξ < c be such that 〈sξ, tξ〉 =

〈s, t〉. Then P := Pξ ∪ {sξ} is as needed, since our construction ensures that |h(x) − tξ| < |x − sξ|

for every x ∈ Pξ.

Theorem 2.2.15. If covM = c holds, then SZ∩ES∩PR \(Conn∪CIVP) 6= ∅, and so also

SZ∩D∩PR \(Conn∪CIVP) 6= ∅.

Proof. Take the SZ-functions: h : M̂ → R from Lemma 2.2.14, f from Lemma 2.2.6 with M := M̂ ,

and an arbitrary σ ∈ SZ. Let

f̄ = f ∪ h ∪ σ �R\dom(f∪h) .

Then f̄ ∈ ES, since by (c) of Lemma 2.2.6, f intersects any constant map g defined on any nontrivial

interval. Also, by Proposition 2.1.4, we have f̄ ∈ SZ. So, the set D := dom(∆ ∩ f̄) has cardinality

< c, as ∆ ∈ G. Let χ̂ : D → R \ C be one-to-one and such that χ̂ ∩∆ = ∅. Define

f̂ := χ̂ ∪ f̄ �R\D .

We claim that f̂ is as needed, that is, that f̂ ∈ SZ∩ES∩PR \(Conn∪CIVP).

Indeed, f̂ ∈ SZ by Proposition 2.1.4, as a union of two SZ-functions: f̂ �D and f̂ �R\D= f̄ �R\D.

Also, f̂ ∈ ES since, for every y ∈ R, the set f̄−1(y) is dense in R as f̄ ∈ ES, and so is f̂−1(y), as it

contains

f̄−1(y) \ {x ∈ D : f̂(x) = y} ⊇ f̄−1(y) \ χ̂−1(y).

We have f̂ /∈ Conn, since f̂ has a graph dense in R2 as f̂ ∈ ES and its graph does not intersect ∆.
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For f̂ /∈ CIVP, notice that f̂ ∈ ES implies the existence of a < b for which C is between f̄(a) and

f̄(b). Thus, it is enough to show, that f̂ [C] 6⊆ C for every perfect C ⊆ R. So, by way of contradiction,

assume that there is a perfect C ⊆ R with f̂ [C] ⊆ C. Since |D| < c, there is a perfect P ⊆ C \D,

for which of course f̂ [P ] ⊆ C. Then, P ∩ M̂ = ∅, since, by (b) of Lemma 2.2.14, for every x ∈ M̂ \D

we have f̂(x) = h(x) /∈ C. So, f̂ = f on P and, by (b) of Lemma 2.2.6, f̂ [P ] = f [P ] is unbounded,

contradicting f̂ [P ] ⊆ C.

To finish the proof, we need to show that f̂ ∈ PR. To see this, fix an s ∈ R. We need to find

a perfect P ⊆ R having s as a bilateral limit point such that f̂ �P is continuous at s. For this, let

t = f̂(s). By (c) of Lemma 2.2.14, there is a perfect set P ⊆ M̂ ∪ {s} having s as a bilateral limit

point and such that limx→s, x∈P h(x) = t. Since |D| < c, we can decrease P so that P \{s} is disjoint

with D. But then, limx→s, x∈P f̂(x) = limx→s, x∈P h(x) = t = f̂(s), that is, f̂ �P is continuous at s,

as needed.

2.2.5 SZ∩Conn∩CIVP \AC

It is well known,19 that

Proposition 2.2.16. If f ∈ RR intersects every compact connected subset H of R2 with |π[H]| > 1,

then f ∈ Conn.

In fact, this follows easily from a theorem, that if two points of the plane are separated by a

closed set F , then they are separated by a component of F .

On the other hand, J. H. Roberts constructed in [69] a subset Z ⊆ [0, 1]2 homeomorphic to

the Cantor set C which is a zero-dimensional blocking set for functions from [0, 1] to [0, 1], that

is, such that Z ∩ g 6= ∅ for every continuous g : [0, 1] → [0, 1]. This construction was modified by

K. Ciesielski and A. Ros lanowski in [25, lemma 2.1] to obtain a zero-dimensional blocking set Z̄ for

functions from R to R. The following proposition describes the properties of this set that we will

use in what follows.

Proposition 2.2.17. Let X := (−1, 1) ∩ Q and G := (−1, 1) \ Q. There exists an embedding

F = 〈F0, F1〉 : R→ (−1, 1)× R such that F0 is non-decreasing,

(a) B := F [R] is a blocking set;

(b) zero-dimensional Z̄ := F [Z + C] ⊆ B is also a blocking set;

(c) γ := Z̄ ∩ π−1(G) = B ∩ π−1(G) is a continuous function on G; and

19See e.g., [45, theorem 2] or [33].
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(d) for every x ∈ X the vertical section B ∩ π−1({x}) of B is a nontrivial closed interval and

Z̄ ∩ π−1({x}) consists of the two endpoints of that interval.

Using Robert’s set Z is relatively easy to construct a connectivity function f : [0, 1]→ [0, 1] which

is not almost continuous. Below, we will use the set Z̄ to construct the functions in SZ∩Conn \AC

with the additional properties we examine. An example of additive function in SZ∩Conn \AC has

been constructed, under the Continuum Hypothesis, in [64, example 9]. The key result for this

construction is the following lemma.

Lemma 2.2.18. Let H be a compact connected subset of R2 with |π[H]| > 1. If H contains no

vertical section of the set B ∩ π−1(X) from Proposition 2.2.17, then there is a K ∈ K contained in

H \ Z̄.

Proof. If π[H] 6⊆ [−1, 1], then there are a < b with [a, b] ⊆ π[H] \ [−1, 1] and K := H ∩ π−1([a, b]) is

as needed. So, assume that π[H] ⊆ [−1, 1]. Since π[H] has more than one element and is connected,

there is an x ∈ X that belongs to the interior of π[H]. Let c < d be such that B ∩ π−1({x}) =

{x}× [c, d]. See Fig. 2.3. Since H contains no vertical section of the set B, there is a y ∈ (c, d) with

〈x, y〉 /∈ H. Let s, t ∈ R be such that F (s) = 〈x, d〉 and F (t) = 〈x, c〉. We assume that s < t, the

other case being similar.20 Then, F1(s) = d > y > F1(t) and there exist p ∈ (−1, x) ∩ π[H] and

q ∈ (x, 1) ∩ π[H] such that F1(u) > y > F1(v) for every u ∈ [p, x] and v ∈ [x, q]. See Fig. 2.3. Also,

we can assume that [p, q]× {y} is disjoint with H (e.g., by imposing that the length of [p, q] is less

than the distance from 〈x, y〉 to H).

Now, if [p, x) ⊆ π[H ∩ ([p, x) × (−∞, y])], then the set K := H ∩ ([p,m] × [y,∞)), for any

m ∈ (p, x), is as needed. See the left part of Fig. 2.3. Similarly, if (x, q] ⊆ π[H ∩ ((x, q] × [y,∞))],

then the set K := H ∩ ([m′, q]× [y,∞)), for any m′ ∈ (x, q), satisfies the lemma. Therefore, by way

of contradiction, assume that neither of this happens. Then, there are u ∈ [p, x) and v ∈ (x, q] such

that the set

L := ({u} × (−∞, y]) ∪ ([u, v]× {y}) ∪ ({v} × [y,∞))

is disjoint with H, see the right part of Fig. 2.3. But this is impossible, since such L separates

H ∩ ({p} × R) 6= ∅ from H ∩ ({q} × R) 6= ∅, contradicting the connectedness of H.

Theorem 2.2.19. If covM = c holds, then SZ∩Conn∩CIVP \AC 6= ∅.

Proof. Similarly as in the proof of Theorem 2.2.13, take the following SZ-functions: h : M̂ → R from

Lemma 2.2.12, f from Lemma 2.2.6, this time with M := M̂ ∪X where X is from Proposition 2.2.17,

20Actually, the other case cannot happen in the actual construction of the curve from Proposition 2.2.17.
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Figure 2.3: Illustration for the proof of Lemma 2.2.18. Left figure corresponds to the case when
[p, x) ⊆ π[H ∩ ([p, x)× (−∞, y])]. The right figure addresses the case leading to the contradiction

and an arbitrary σ ∈ SZ. Let

f̄ = f ∪ h ∪ σ �R\dom(f∪h) .

Then, by Proposition 2.1.4, we have f̄ ∈ SZ. So, the set D := X ∪ dom(γ ∩ f̄) has cardinality < c,

where γ ∈ G is as in (c) of Proposition 2.2.17. Moreover, dom(Z̄ ∩ f̄) ⊆ D. Let χ̂ : D → R be such

that χ̂ ∩ Z̄ = ∅ and χ̂ �X⊆ B \ Z̄, where Z̄ and B are from Proposition 2.2.17. Define

f̂ := χ̂ ∪ f̄ �R\D .

We claim that f̂ is as needed, that is, that f̂ ∈ SZ∩Conn∩CIVP \AC.

Indeed, f̂ ∈ SZ by Proposition 2.1.4, as a union of two SZ-functions: f̂ �D and f̂ �R\D= f̄ �R\D.

Clearly, f̂ /∈ AC, since f̂ ∩ Z̄ = ∅, while Z̄ is a blocking set.

An argument that f̂ ∈ CIVP is identical to one presented in Theorem 2.2.13.

Finally, to see that f̂ ∈ Conn, fix a compact connected subset H of R2 with |π[H]| > 1. By

Proposition 2.2.16 it is enough to show that f̂ ∩ H 6= ∅. This is clear when H contains a vertical

section of the set Z̄ ∩ π−1(X), since we ensured that χ̂ ⊆ f̂ intersects every such H. But otherwise,

by Lemma 2.2.18, there is a K ∈ K contained in H \ Z̄. Also, by Lemma 2.2.6, there an x ∈ dom(f)

such that 〈x, f(x)〉 ∈ K ⊆ H. So, to finish the proof, it is enough to notice that f̂(x) = f(x). Indeed,

this is the case, since x /∈ D: x /∈ X, as dom(f) is disjoint from M = M̂ ∪X; and x /∈ dom(γ ∩ f̄)
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since K is disjoint from Z̄ ⊇ γ.

2.2.6 SZ∩Conn∩PR \(AC∪CIVP)

The proof of the next theorem is a simple mix of the elements of the proofs of Theorems 2.2.15

and 2.2.19.

Theorem 2.2.20. If covM = c holds, then SZ∩Conn∩PR \(AC∪CIVP) 6= ∅.

Proof. Similarly as in the proof of Theorem 2.2.15, take the following SZ-functions: h : M̂ → R from

Lemma 2.2.14, f from Lemma 2.2.6 with M := M̂ ∪X where set X is from Proposition 2.2.17, and

σ : R→ R. Let

f̄ = f ∪ h ∪ σ �R\dom(f∪h) .

Then f̄ ∈ ES, since by (c) of Lemma 2.2.6, f intersects any constant map g defined on any nontrivial

interval. Also, by Proposition 2.1.4, we have f̄ ∈ SZ. So, the set D := X∪dom(γ∩ f̄) has cardinality

< c, where γ ∈ G is as in (c) of Proposition 2.2.17. Moreover, dom(Z̄ ∩ f̄) ⊆ D. Let χ̂ : D → R such

that χ̂ ∩ Z̄ = ∅ and χ̂ �X⊆ B \ Z̄, where Z̄ and B are from Proposition 2.2.17. Define

f̂ := χ̂ ∪ f̄ �R\D .

We claim that f̂ is as needed, that is, that f̂ ∈ SZ∩Conn∩PR \(AC∪CIVP).

Indeed, f̂ ∈ SZ by Proposition 2.1.4, as being a union of two SZ-functions: χ̂ and f̄ �R\D. Clearly,

f̂ /∈ AC, since f̂ ∩ Z̄ = ∅, while Z̄ is a blocking set.

The arguments for f̂ /∈ CIVP and f̂ ∈ PR are the same with those used in Theorem 2.2.15, while

f̂ ∈ Conn can be argued as in Theorem 2.2.19.

2.2.7 SZ∩Conn \(AC∪PR)

Similarly, the proof of this last theorem in this section is a mix of the elements of proofs of Theo-

rems 2.2.10 and 2.2.19.

Theorem 2.2.21. If covM = c holds, then SZ∩Conn \(AC∪PR) 6= ∅.

Proof. Take the SZ-functions: f from Lemma 2.2.6 with M := X from Proposition 2.2.17, σ ∈ SZ,

and X̂ : X → R such that X̂ ⊆ B \ Z̄. Let

f̄ = f ∪ X̂ ∪ σ �R\dom(f∪X̂) .
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Then, by Proposition 2.1.4, we have f̄ ∈ SZ. So, the set D := dom(γ ∩ f̄) has cardinality < c, where

γ ∈ G is as in (c) of Proposition 2.2.17. Moreover, we have dom(Z̄ ∩ f̄) ⊆ D. Define

f̂ := f̄ + χD,

where χD is the characteristic function of D. We claim that f̂ is as needed, that is, that f̂ ∈

SZ∩Conn∩ \ (AC∪PR).

Indeed, f̂ ∈ SZ by Proposition 2.1.4 as both f̂ �R\D= f̄ �R\D and f̂ �D are SZ. Clearly, f̂ /∈ AC,

since f̂ ∩ Z̄ = ∅, while Z̄ is a blocking set.

To show f̂ /∈ PR, fix any perfect P ⊆ R. By Proposition 2.2.2, it is enough to show that f̂ is

unbounded on P . To see this, choose a perfect C ⊆ P \X. Then, by (b) of Lemma 2.2.6, f̄ ⊇ f is

unbounded on C ⊆ P . Therefore f̂ is unbounded on P as being the sum of an unbounded function

and the other bounded.

The argument for f̂ ∈ Conn is identical to one used for it in Theorem 2.2.19.

2.2.8 SZ∩AC∩PR \CIVP and SZ∩AC∩CIVP

The examples of maps in these classes, being additionally additive, have been constructed under

the same set-theoretical assumption earlier: for the class SZ∩AC∩CIVP in a 1999 paper [7] of

K. Banaszewski and T. Natkaniec while for the class SZ∩AC∩PR \CIVP in a 2004 paper [63] of

T. Natkaniec and H. Rosen. Nevertheless, we have crafted a powerful Lemma 2.2.6 as the core of

all theorems above. In particular, the lemma produces a partial function f such that any extension

of f is almost continuous, and dom(f) avoids an arbitrary Fσ meager subset of R. Along with

Lemmas 2.2.12 and 2.2.14 , the same machinery allows us to easily build the maps in SZ∩AC∩CIVP

and SZ∩AC∩PR \CIVP.

Theorem 2.2.22. If covM = c holds, then SZ∩AC∩CIVP 6= ∅.

Proof. The function f̄ used in the proof of Theorem 2.2.13 is as needed. That is, if

f̄ := f ∪ h ∪ σ �R\dom(f∪h) ,

where h : M̂ → R is from Lemma 2.2.12, f is from Lemma 2.2.6 with M := M̂ and σ ∈ SZ, then

f̄ ∈ SZ∩AC∩CIVP.

Indeed, f̄ ∈ AC by (c) of Lemma 2.2.6. Also, by Proposition 2.1.4, we have f̄ ∈ SZ.
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To see that f̄ ∈ CIVP, fix a < b with f̄(a) 6= f̄(b) and a perfect set K between f̄(a) and f̄(b).

We need to find a perfect P ⊆ (a, b) with f̄ [P ] ⊆ K. But, by (b) of Lemma 2.2.12, there exists a

perfect P ⊆ M̂ ∩ (a, b) such that h[P ] ⊆ K. Since f̄ = h on P , f̄ [P ] = h[P ] ⊆ K, as needed.

Theorem 2.2.23. If covM = c holds, then SZ∩AC∩PR \CIVP 6= ∅.

Proof. The function f̄ used in the proof of Theorem 2.2.15 is as needed. That is, if

f̄ := f ∪ h ∪ σ �R\dom(f∪h) ,

where h : M̂ → R is from Lemma 2.2.14, f is from Lemma 2.2.6 with M := M̂ and σ ∈ SZ, then

f̄ ∈ SZ∩AC∩PR \CIVP.

Indeed, f̄ ∈ AC∩ES by (c) of Lemma 2.2.6. Also, by Proposition 2.1.4, we have f̄ ∈ SZ.

For f̄ /∈ CIVP, notice that f̄ ∈ ES implies the existence of a < b for which C is between f̄(a) and

f̄(b). Thus, it is enough to show that f̄ [P ] 6⊆ C for every perfect P ⊆ R. So, by way of contradiction,

assume that there is a perfect P ⊆ R with f̄ [P ] ⊆ C. Then, P ∩M̂ = ∅ since, by (b) of Lemma 2.2.14,

we have f̄(x) = h(x) /∈ C for every x ∈ M̂ . So, f̄ = f on P and, by (b) of Lemma 2.2.6, f̄ [P ] = f [P ]

is unbounded, contradicting f̂ [P ] ⊆ C.

To see f̄ ∈ PR, fix an s ∈ R and let t = f̄(s). By (c) of Lemma 2.2.14, there is a perfect

set P ⊆ M̂ ∪ {s} having s as a bilateral limit point and such that limx→s, x∈P h(x) = t. Since

limx→s, x∈P f̄(x) = limx→s, x∈P h(x) = t = f̄(s), we conclude that f̄ �P is continuous at s.
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Sierpiński-Zygmund function, 29

strong Cantor intermediate value property, 31

supremum norm, 23

typical, 23

Weierstrass’s monster, 1, 19

53


	On Paradoxical Examples of Real Functions
	Recommended Citation

	Abstract
	Acknowledgments
	List of Figures
	Notations
	Paradoxes in Differentiability
	Introduction
	A simple construction of differentiable monsters
	Differentiable monsters and a Jordan-like decomposition
	Preliminaries
	A Jordan-like decomposability of Pompeiu-like functions
	Examples and discussion
	Related open problems

	Monstrous Extentions
	Differentiable monsters extending f
	Weierstrass's monsters extending f

	Typicality of differentiable extensions in `39`42`"613A``45`47`"603AE(R)
	The space of differentiable extensions
	Differentiable extensions that are nowhere-monotone
	Differentiable extensions that are nowhere nowhere-monotone


	Paradoxes in Continuity
	Introduction
	Examples of Sierpinski-Zygmund functions in the class of Darboux-like functions
	`39`42`"613A``45`47`"603ASZ`39`42`"613A``45`47`"603AAC`39`42`"613A``45`47`"603APR
	`39`42`"613A``45`47`"603ASZ`39`42`"613A``45`47`"603AD(`39`42`"613A``45`47`"603APR`39`42`"613A``45`47`"603AConn)
	`39`42`"613A``45`47`"603ASZ`39`42`"613A``45`47`"603AD`39`42`"613A``45`47`"603ACIVP`39`42`"613A``45`47`"603AConn
	`39`42`"613A``45`47`"603ASZ`39`42`"613A``45`47`"603AD`39`42`"613A``45`47`"603APR(`39`42`"613A``45`47`"603AConn`39`42`"613A``45`47`"603ACIVP)
	`39`42`"613A``45`47`"603ASZ`39`42`"613A``45`47`"603AConn`39`42`"613A``45`47`"603ACIVP`39`42`"613A``45`47`"603AAC
	`39`42`"613A``45`47`"603ASZ`39`42`"613A``45`47`"603AConn`39`42`"613A``45`47`"603APR(`39`42`"613A``45`47`"603AAC`39`42`"613A``45`47`"603ACIVP)
	`39`42`"613A``45`47`"603ASZ`39`42`"613A``45`47`"603AConn(`39`42`"613A``45`47`"603AAC`39`42`"613A``45`47`"603APR)
	`39`42`"613A``45`47`"603ASZ`39`42`"613A``45`47`"603AAC`39`42`"613A``45`47`"603APR`39`42`"613A``45`47`"603ACIVP and `39`42`"613A``45`47`"603ASZ`39`42`"613A``45`47`"603AAC`39`42`"613A``45`47`"603ACIVP


	Bibliography
	Index

