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Abstract

Planning Algorithms Under Uncertainty for a Team of a UAV and a
UGV for Underground Exploration

Matteo De Petrillo

Robots’ autonomy has been studied for decades in different environments, but only recently,
thanks to the advance in technology and interests, robots for undergroundexploration gainedmore
attention. Due to the many challenges that any robot must face in such harsh environments, this
remains an challenging and complex problem to solve.

As technology became cheaper and more accessible, the use of robots for underground ex-
ploration increased. One of the main challenges is concerned with robot localization, which is
not easily provided by any Global Navigation Services System (GNSS). Many developments have
been achieved for indoormobile ground robots,making them the easiest fit for subterranean explo-
ration. With the commercializationof small drones, thepotentials andbenefits of aerial exploration
increased along with challenges connected to their dynamics.

This dissertation presents two path planning algorithms for a team of robots composed of an
Unmanned Ground Vehicle (UGV) and an Unmanned Aerial Vehicle (UAV) with the task of ex-
ploring a subterranean environment. First, the UAV’s localization problem is addressed by fusing
different sensors present on both robots in a centralized manner. Second, a path planning algo-
rithm that minimizes the UAV’s localization error is proposed. The algorithm propagates the UAV
motion model in the Belief Space, evaluating for potential exploration routes that optimize the
sensors’ observations. Third, a new algorithm is presented, which results to be more robust to dif-
ferent environmental conditions that could affect the sensor’s measurements. This last planning
algorithm leverages the use ofmachine learning, in particular theGaussian Process, to improve the
algorithm’s knowledge of the surrounding environment pointing out when sensors provide poor
observations. The algorithm utilizes real sensor measurements to learn and predict the UAV’s lo-
calization error.

Extensive results are presented for the first two parts regarding the UAV’s localization and the
path planning algorithm in the belief space. The localization algorithm is supportedwith real-world
scenario experimental results, while the belief space planning algorithmhas been extensively tested
in a simulated environment. Finally, the last approach has also been tested in a simulated environ-
ment and showed its benefits compared to the first planning algorithm.
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1
Introduction

1.1 ProblemOverview

Nowadays, the use of robots in everyday life is becomingmore usual for a variety of scenarios. The

most commonly proposed applications include: maintenance services [1] [2], industrial facility

inspection [3], and search and rescue [4]. For search and rescue scenarios in hazardous environ-

ments, there is a clear need to replace some of the first responders with mobile robots. In this
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scenario, mobile robots, not only can save lives but could also perform better due to the variety

of sensors available and the fact that they are less susceptible to conditions like dust or poor light-

ing conditions. However, many challenges must be addressed to have a fully autonomous robot or

team of robots in these environments. Of the many challenges, an important difficulty arises from

attempting to navigate in these environments due to no access to the Global Navigation Satellite

System (GNSS) signals and unknown obstacles.

Extensive research has been done on the use of robots in subterranean environments as is dis-

cussed in [5]. With a specific focus on underground mines, Thrun at al. [6] presented a ground

rover designed to explore and map these harsh environments. Nowadays, technology and the

miniaturization of electronic components has allowed for the reduction of the size ofUAVs, such as

commercial drones,making it possible to leverage their ability to traverse a variety of environments

and complete a large number of tasks. For example, Azhari et al. [7] used a UAV for underground

mine mapping, taking advantage of its six degrees of freedom. To autonomously navigate in sub-

terranean tunnels or mines, Papachristos et al. [8] provided an unmanned aerial system capable

of performing Simultaneous Localization and Mapping (SLAM) fusing different sensors to pro-

vide valuable information in dark conditions, presence of dust, etc. The authors also provided an

uncertainty-aware path planning strategy for autonomous micro UAV to balance exploration and

mapping in real-time [9].

Due to the limited capability of a single UAV to carry a considerable amount of sensors, the

use of multiple robots to achieve a common task is also well studied in the literature. One of the

many benefits of using multiple robots consists of reducing the time to perform the task, such as

exploration. In these cases, the planning algorithm is optimized to reduce the time to collect infor-

mation [10] choosing different waypoints [11], especially if the same kind of robot and sensors are
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used. For example, to diversify information and to performboth autonomous search and rescue, in

previous works, we presented aUAV andUGV team for subterranean exploration [12]. The coop-

eration ofmultiple robots increases the ability to perform awider variety of tasks. Li et al. [13] use

a UAV to provide a higher point of view to improve the environmentmap for the UGV navigation.

When teaming robots for exploration, it is most common to assume that each agent is capable

of estimating their pose, such that the team is primarily used to improve the efficiency of environ-

ment mapping and exploration. This is the approach adopted in [14]. Similarly, Steude et al. [15]

used a UAV, capable of self-localization, to improve and expand the map exploration for a ground

robot and to optimize the mission time. However, having the UAVs in the teammaintaining accu-

rate self-localization presents challenges. For example, as discussed in Baldini F. et al. [16], using

Visual-Inertial Odometry (VIO) solutions on UAVs is prone to solution drift, and the level of drift

is heavily affected by the light condition in which the UAV operates. For these reasons, [16] used

a learning approach to reduce this drift. Employing SLAM directly on a UAV can also reduce the

drift as it has been demonstrated in [17]. However, some operating environments (e.g., a long

corridor or tunnel), may affect the reliability of loop-closures, crucial for SLAM.

In the last few years, theDefenceAdvancedResearch Projects Agency (DARPA) subterranean

(SubT) challenge received attentiondue to the unique problemand challenging environment. This

represents the closest researchdone and sponsored fromadifferent government agency to thework

presented in this dissertation. As mentioned in the previous paragraph, these environments char-

acterized by long and featureless tunnels are challenging themain localization technique (SLAM).

To mitigate this issue LiDAR-only based SLAM has been developed [18]. Agha et al. [19] pre-

sented an uncertainty-aware framework in the planning algorithm to perform reasoning and deci-

sion making in the belief space. The DARPA subT challenge also pushed to a decentralized multi-
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agent robots for the environment exploration and Hudson et al. [20] developed a similar team

(ground and aerial robot) to produce a decentralized SLAM solution on each platform.

To address someof these challenges, the approachpresented in thisworkproposes to use active

sensors on the UGV to localize the UAV in a manner that is not prone to drift and with modalities

that will work in a variety of lighting conditions. With this UAV/UGV teaming configuration, the

UGV has the advantage of additional load capacity and longer endurance for easily carrying many

perception sensors alongwith the significant computational power needed to use them innear real-

time. In this scenario, the UGV is used to map the environment as well as for estimating the state

of the UAV within the map, while the UAV’s mobility is leveraged to perform the search task.

However, when adopting this approach, due to the nature of the UGV’s perception sensors’

uncertainty as well as the potential for non over-lapping sensor fields-of-view, the localization un-

certainty of the UAV is affected by the chosen flight path. As such, part of this dissertation on de-

veloping a path planning algorithm for the UAV that takes into consideration both the exploration

needs and the localization uncertainty of the UAV.

Considering the position uncertainty in the planning algorithm consists of finding a path in

the belief space (Section 2.6) such that motion increases information from sensing to reduce pose

uncertainty of the robot with respect to the environment [21]. Planning under uncertainty lends

to the use of a dual-layer architecture; where the first layer predicts all the possible outcomes and

the second layer determines the best action to take [22]. For mobile robot path planning, Pren-

tice et al. [23] presented a revised Probabilistic Road Map (PRM) [24], called Belief Road Map,

where they fuse the predicted estimated position uncertainty into the planning process. In this

work, the trajectory was designed with respect to the location of pre-deployed ranging radio bea-

cons in order to reduce the position uncertainty while traversing from a start to a goal location. A
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belief space planning problem is often formulated as a Partially Observable Markov Decision Pro-

cess (POMDP) [25], which is characterized by a high computational cost. Agha-mohammadi et

al. proposed a feedback-based information road map (FIRM) [26] that generalizes the PRM to

take into account motion and sensing uncertainties. Similarly to [26] the approach presented in

this dissertation, used an ExtendedKalman Filter (EKF) to approximate the robot belief dynamics

and propagate the belief space b ≡ (x̂+, P). The same authors also leveraged the low computa-

tional FIRMalgorithm to copewith a dynamically changing environment including the kidnapped

robot problem [27]. Differently, this dissertation focuses more on robust localization subject to

environment understanding. This choice has been made due to the fact that a subterranean search

and rescue scenario is not often subject to dynamic changes.

1.2 ResearchObjectives

It is clear, that robot localization in an unknown environment is crucial for any task or achievement

the robot needs to perform. Planning in the belief space helps, from a decision-making standpoint,

to pick the path with more information gathering, but it is still subject to a certain degree of un-

certainty due to sensor model errors, noisy measurements, and a non-perfect model of the UAV

kinematics. For this reason, this research focuses on the following objectives:

• develop a full autonomous system composed by a UGV and UAV for underground explo-

ration

• develop a simulator for path planning and localization testing before they are deployed on

the real system

• develop a path planning algorithm that propagates the belief state of theUAV to incorporate
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uncertainties in the decision making process

• develop a machine learning based planning algorithm that is capable to predict how the en-

vironment conditions affects the sensor measurements

At the beginning of the project, the focus was on building a belief space planning algorithm

using mainly the UGV resources and sensors. Since this dissertation aims to investigates how the

algorithmcanbe affectedby sensor’smodels and environment condition, a later additionof a stereo

camera, for VIO purposes is considered and described in Section 3.4. As VIO guarantees a more

consistent and available UAV full pose measurement update for a more robust localization, it can

also bemore affected by the environment condition since it travels with theUAV.The introduction

of VIO substantially improves the UAV localization and as in [28], where they used a variation

of an extended Kalman filter characterized by a sliding window of poses and fused probabilistic

constraints throughnewobservations. On theother hand theydidnot conduct any study regarding

how environment conditions could affect the VIO.

1.3 Literature Review

Extensive research in visually degraded environments (dark) has been conducted by Alexis et al.

using a perception system that included a near–infrared stereo camera system, flashing LEDs, iner-

tial sensors, and a 3D depth sensor to compute visual–inertial odometry and dense mapping [8].

The same authors also adopted a Long Wave Infrared thermal vision which is unaffected by dark-

ness and can penetrate most obstructions such as smoke, dust, fog [29, 30]. They opted to use

the full radiometric information instead of the rescaled thermal camera data to improve the UAV’s

VIO.

6



On the other hand, when the environment is amix of dark, dusty, or lighted areas, the previous

approachesmight not result in the best choice. This dissertation investigates howmachine learning

can help a path planning algorithm to recognize areas that affect the UAV’s localization and at the

same time to better estimate the sensors and dynamic models. As it is easy to understand when a

visual camera could be affected by dark or dusty areas, a Light Detection And Ranging (LiDAR)

sensor depends more on the wavelengths at which it operates. Since dust particles are normally

characterizedby a larger dimension than theLiDARwavelength they couldheavily affect the sensor

from capturing its surroundings [31].

For the mentioned reasons, it is important to consider how the belief space planning could

be affected by the sensor models and the environment. Most of the studies concerning the belief

space often take into consideration the uncertainties related to the observations provided by sen-

sors. To make the planning algorithm more robust, it is important to understand how the sensor

measurements are affected by the environment conditions. For this reason, the proposed approach

consists of investigating how a supervised learning, such as the Gaussian Process (GP) regression,

can learn the input-outputmappings from the empirical data [32]. AsGP regression is assumed to

use noise-free input, McHutchon et al. proposed a GP framework that can be trained with input

and output measurements corrupted by noise [33]. They affirmed that corrupted input measure-

mentswill affectmore a processwith a rapidly variable output [33]. Similarly, thisworkwill use the

UAV’s position error to estimate its relationship with the UAV’s position in space. As mentioned,

the UAV model approximation does not consider all the non-linearities in its dynamics and a lo-

cal Gaussian process regression could help in learning these variable as presented in [34]. A more

specific example, which could affect the localization, concerns theUAVdetection by theUGV sen-

sors (when the UAV exits their field of view) resulting in faulty results from the navigation filter.
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For instance, the ultra wide-band ranging radio is a good localization tool that drastically degrades

its performance when the UAV is not in the Line of Sight (LOS). As Yang at al. showed, a sparse

pseudo-input Gaussian process can mitigate the bias of non-line-of-sight condition [35].

Specifically, thisGP-based algorithmdoes not use approximation of sensors’model, which can

often fail and lead to estimation inconsistency, instead it relies on learning the errormodels directly

from sensor measurements, including the occurrence of outliers as well as missed expected mea-

surement updates.

This supervised learning technique is used to improve the path planning robustness, providing a

prediction of the UAV’s localization error along predetermined paths. Adding this information

to the algorithm helps to decide the path the minimize the UAV’s position error. This technique,

based on training data, provides a more accurate sensor model and its degradation due to envi-

ronment but also mitigates false sensors readings that could easily drive the algorithm decision.

This is possible thanks to the ability of GP to estimate sensor models [36]. Different from a Belief

Space Planning (BSP) approach, which lacks in modeling the stochastic dynamics of the sensor’s

observations [37], this approach offers the contribution of directly learning environmental factors

including measurement outliers and missing measurements that are not accounted for in the BSP.

A downside of this approach results in the necessity to provide enough training data in the envi-

ronment such that the GP is capable to estimate the error model. For this reason, a contribution

of this work consists of demonstrating of how a subset of more reliable sensors are uses to train the

error models of the remaining sensors to expand the potential of this approach.

1.4 DissertationContributions

Themain contributions of this dissertation are as follows:
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Contribution 1: Thedesign and development of several localization filters to provide relative lo-

calization between the specific set-up system of a UAV and a UGV that cooperatively share

information in a centralized manner. Also, the filters where tested and tuned to provide a

position estimate of the UAV for close loop feedback for the flight controller. The exper-

imental assessment allowed the realization of the hardware stack (UAV and UGV) as the

test-bed of the selected localization filter.

Contribution 2: Thedevelopment of a high fidelity simulation environment that was used to de-

sign, develop and test planning algorithms.

Contribution 3: Design and implementation of a Belief Space Planning (Belief Space Planning

(BSP)) algorithm to introduce uncertainty information during the decisionmaking process

of the UGV in providing a path to follow to the UAV.

Contribution 4: Designof amachine learningplanning algorithm, basedon theGaussianProcess

regression problem, to create a robust decision in case of sensor failure or degradation due

to the environment.

1.5 DissertationOutline

This dissertation has been organized as follows: Chapter 2 presents a brief overview of the meth-

ods and basic tools that are used to develop the UAV planning algorithm; Chapter 3 describes the

different versions of the localization filter that was developed for the UAV pose estimation with
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field testing results; Chapter 5 presents the autonomous flight using the localization filter solution.

Chapter 4 shows the Belief Space path planning algorithm with simulation results and Chapter 6

will present the newGP based path planning algorithm. The last chapter summarize and proposes

new ideas to extend the work presented in this dissertation.
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2
Background

This chapter presents some basic tools andmethods that are used in this dissertation. Starting from

simpleUAVdynamic equations to a generic explanationof theGaussianprocess andKalmanfilters.

It also describes the hardware used for field testing and the simulation environment developed for

the algorithm testing.
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2.1 Quadrotor Kinematics Equations

A quadrotor is generally considered an underactuated system, described with highly non-linear

equations of motion. Most of the time it can be approximated using the motion of a six Degree of

Freedom (DOF) rigid body that moves in space.

This work mainly focuses on localization and path planning, relying on the low-level control built

inside the flight controller. For simplicity the Earth rotation and the Coriolis effect are neglected,

therefore two coordinate systems are used to define the space where the Quadrotor will operate:

• Ob, or Body Frame, describes the coordinate system centered in the center of mass of the

Quadrotor (linked with the body).

• On, or Navigation Frame, represents the absolute fixed coordinate system with the origin

centered in an arbitrary place. This frame is oriented as Forward, Left and Up.

To describe theQuadrotor motion in space the kinematic equations take into account the velocity

and position of the body. The state vector is defined as

xNED(k) = [vN(k), vE(k), vD(k), rN(k), rE(k), rD(k)]T (2.1)

where the subscript stands for North East Down (NED), which is a common way to describe air-

frames in space. The linearized drone kinematics in the discrete time is shown in eq. 2.2 whereΔT
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is the system’s sampling time.

xNED =



vN(k+ 1)

vE(k+ 1)

vD(k+ 1)

rN(k+ 1)

rE(k+ 1)

rD(k+ 1)


=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

ΔT 0 0 1 0 0

0 ΔT 0 0 1 0

0 0 ΔT 0 0 1





vN(k)

vE(k)

vD(k)

rN(k)

rE(k)

rD(k)


(2.2)

To fully describe the state in theOn coordinate system, a static rotation is required. Most im-

portant, to transform the state fromOb toOn a transformationmatrix, known as Direction Cosine

Matrix (DCM), is needed

DCM =


cos θ cos ψ − cos φ sin ψ + sin φ sin θ cos ψ sin φ sin ψ + cos φ sin θ cos ψ

cos θ sin ψ cos φ cos ψ + sin φ sin θ sin ψ − sin φ cos ψ + cos φ sin θ sin ψ

− sin θ sin φ cos θ cos φ cos θ

 (2.3)

where φ,θ and ψ are the measured angle of roll pitch and yaw respectively. In this work, the DCM

will often be referred to asCn
b to determine the rotation from the body to the navigation frame.

2.2 Kalman Filter

One of the most used and well-known state observers is the Kalman Filter (KF) [38]. Being an

optimal observer it is a very powerful tool able to estimate past, present and future states of a non-

precisely known model [39]. Considering a linear discrete-time system subject to the differential
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equation

xk+1 = Akxk + Buk + wk (2.4)

where wk describes the process noise and x ∈ Rn is the state of the model, which is subject to a

measurement z ∈ Rm of the form

zk = Hkxk + vk (2.5)

with vk being the measurement noise. These noise variables, to guarantee optimality, are assumed

to be white noises, independent and with normal probability distribution [39]

p(w) ∼ N (0,Q), (2.6)

p(v) ∼ N (0,R). (2.7)

The state estimation process uses two fundamental steps, a prediction where the filter propagates

the current state and the error covariance in the next time-step creating a so called a priori estimate,

and ameasurement updatewhere information from ameasurement is used to refine the prediction,

having the a posteriori estimate. The first step or prediction is described by the following equation,

where the state is propagated to the next step using the only knowledge of the system’s model

{
x̂k+1|k = Akx̂k|k + Buk + wk

ŷk = Hkx̂k|k
(2.8)

Pk+1|k = AkPk|kAT
k + Qk (2.9)
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The second step uses the measurement update to re-evaluate the a priori estimate and to produce

the a posteriori and more precise state estimate.

Kk = Pk+1|kHT
k (HkPk+1|kHT

k + Rk)
−1 (2.10)

x̂k+1|k+1 = x̂k+1|k + Kk(zk − ŷk) (2.11)

Pk+1|k+1 = (I− KkHk)Pk+1|k (2.12)

During the a posteriori step, the Kk represent the optimal Kalman Gain, the x̂k+1|k+1 is the a pos-

teriori estimation and Pk+1|k+1 is the updated error covariance.

2.3 Extended Kalman Filter

A vast majority of the dynamic systems are described by non-linear differential equations and to

achieve state estimation the Kalman filter needs to be modified to guarantee similar results than

with linear systems. The EKF is a Kalman filter that linearizes around the currentmean and covari-

ance [39]. A non-linear system is described as

{
xk+1 = f(xk, uk,wk)

yk = h(xk, vk)
(2.13)

and a measurement zk ∈ Rm.

As shown in the previous section the EKF, similarly to the KF, consists in two steps. The first, or
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prediction {
x̂k+1|k = f(x̂k|k, uk)

ŷk = h(x̂k|k)
(2.14)

Pk+1|k = FkPk|kFTk + Qk (2.15)

where Fk being the linearization around the equilibrium point of the system 2.13 described as

Fk =
∂f
∂x

∣∣∣∣∣
x̂k|k,uk

(2.16)

The second step, or update is similar to the KF

Kk = Pk+1|kHT
k (HkPk+1|kHT

k + Rk)
−1 (2.17)

x̂k+1|k+1 = x̂k+1|k + Kk(zk − ŷk) (2.18)

Pk+1|k+1 = (I− KkHk)Pk+1|k (2.19)

whereHk is the linearization of the system’s output function

Hk =
∂h
∂x

∣∣∣∣∣
x̂k|k

(2.20)

The extendedKalman filter will be extensively used int the following chapters for theUAVposition

localization.
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2.4 RealWorld Scenario System Set-Up

As previously mentioned, the UGV is entitled to carry most of the heavy sensors and computing

power therefore, the drive chassis Husky by Clearpath Robotics was chosen [40]. The main sen-

sors, carried by the UGV for cooperative localization, consist of a Velodyne VLS-128 channels

3D LiDAR with a Field of View (FOV) of -25 +15 degree and a range of 300 meters. The 3D Li-

DAR, which is needed to provide a map of the environment and for SLAM purposes, is tilted 15

degrees up to increase theUAVdetection zone. Tomeasure theUGV-UAVdistance anUltraWide-

Band (UWB) (DWM-1001) ranging radio is used, which provides a measurement at 10 Hz. Fi-

nally, a FLIR camera with a fisheye lens ismounted upward to detect theUAV.TheUGV, equipped

with heavier sensors and higher capacity batteries, has the task of fusing the sensor data, including

the one sent by the UAV, and provide the drone pose along with the planning algorithm. Figure

2.4.1 shows the Husky chassis with a list of the onboard sensors.

TheUAV is built using a custom frame and it is equippedwith theHolybro PixHawk4 (PX4) flight

controller and amodified version of the PX4Firmware [41] that supported additional sensors such

as a higher quality IMU and a laser altimeter. This open-source firmware allows a wide range of im-

plementation and testing. The flight controller is linkedwith anNvidia JetsonTX1 as a companion

computer, which has the task of running the Ubuntu 16.04 operating system and the Robot Oper-

ating System (ROS) [42] to send and receive data from the UGV through the Mavlink protocol.

The UAV’s IMU has been improved with the addition of an Analog Devices ADIS 16495-2 IMU.

The UAV is also capable of a reliable altitude measurement thanks to a LidarLite laser altimeter

mounted on its bottom. To conclude an Intel RealSense T265 depth camera is positioned in front
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Figure 2.4.1: Description of the UGV onboard sensors

of the UAV for VIO purposes as shown in Figure 2.4.2. Developing and assembling the hardware

always results a slow process. The many components and factors that need to work together make

this process challenging. A key factor for the team of robots consisted of developing the network

and communication protocol that guaranteed the exchangeof informationbetween the two agents.

Also, when dealing with a multi-agent setup, it is important to make sure that all the machine are

time synchronized. Regarding the assembling of a custom UAV, the weight and the balance of the

system heavily impacts the flight performance.
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Figure 2.4.2: Description of the UAV’s onboard sensors

2.5 Simulation Scenario System Set-Up

Experimental setup for research purposes quite often requires to use of new and not certified al-

gorithms or actions that do not always behave how expected. To reduce failures a simulation en-

vironment is the best option to perform preliminary tests. Also, the flexibility of a simulated envi-

ronment, not only reduces risks and costs but allows changes in the scenario (e.g. light conditions,

visibility, obstacles, etc.) in a very easymanner. Using thePX4 stack [41] andROS[42] in both the

real world scenario and the simulator, allows an easy transition of any software developed from the
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simulator to the hardware. This is possible thanks to the PX4 Firmware which includes a Software

in the Loop (SITL) version that “mirrors” the real flight controller.

The simulated scenario is developed in Gazebo [43] and it similarly replicates the real test envi-

Figure 2.5.1: Simulation environment developed in the Gazebo software.

ronmentwhere the teamUGV-UAVwill be deployed, shown in Figure 2.5.1. Following a list of the

main packages used in the simulator:

• MAVROS: translate theMavlink communication protocol in ROS language [44]

• PX4 Firmware: simulate a quadrotor using the same firmware on board of the real flight

controller

• Velodyne simulator: a package that simulates the Velodyne Lidar products in Gazebo and
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ROS giving access to their point cloud

• Husky simulator: allows to simulate the Husky stack in a Gazebo world

• Octomap: creates an occupancy map, of the environment using voxels [45].

• VIO package: performs visual inertial odometry using a sequence of stereo images.

These “off the shelf ” packages have been modified to match the research needs, specifically the

Velodyne simulator was updated to provide 128 channels and it was connected to the husky sim-

ulator to resemble the hardware configuration. Specific packages, such us the graph generator that

provides the possible paths were also developed for planning algorithm and it will be presented in

the next chapters.

Figure 2.5.2: Point cloud visualization provided by the Velodyne simulator
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Figure 2.5.3: Octomap of the environment with the 3D voxels for the occupied space

Figure 2.5.2 represents the point cloudgeneratedby theVelodyneLiDAR,which is the input to

the ROSOctomap [45] package. This generates a 3D occupancy volume (i.e., an octree) of the en-

vironment as shown in Figure 2.5.3. To better represent how the simulation and the software share

the data the diagram in Figure 2.5.4 show how each part of the simulation provides and accesses

data.

2.6 Belief Space

In this section, a general ideaof belief space is described. Toallowa robot tonavigate autonomously,

it has to deal with uncertainties coming from an unknown or changing environment, unmodeled

dynamics, unpredicted external forces, and especially noisy sensor measurements which are the

key tools to understand the surroundings [46]. Since information gathering for an autonomous

robot is crucial for its autonomy, the act of considering uncertainties during the planning process

means to reduce, at best, the loss of that information exploring the state spacewhere it ismaximized

[46]. For the robot to optimize its information loss, it has to estimate its state over a set of possible

states, called belief states, that lies inside the Belief Space [46]. The belief space considers noisy
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Figure 2.5.4: Diagram representation of the information flow within the simulation. Each block provides
data through the green arrows and access information from the red arrows.

observations of the non-linear system at the time t of the form

zt = g(xt) + ω (2.21)

where xt is the system state and ω is the zero-mean Gaussian noise with state covarianceWt.

The belief state results as the Probability Density Function (PDF) over the robot’s state P(x) and
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it is generally updated using Bayesian filtering as

P(xt+1) = P(zt+1|xt+1)

∫
x
P(xt+1|x, ut)P(x)dx. (2.22)

For Gaussian belief state [37] an ‘EKF is used for the belief update with the covariance matrix Σt

update as

Σt+1 = Γ− ΓCT
t (CtΓCT

t +Wt)
−1CtΓ (2.23)

where Γt = AtΣtAT
t and At, Ct being the Jacobian matrices of the system dynamics linearized

around the mean x̄t updated as

x̄t+1 = f(x̄t, ut) + ΓtCT
t (CtΓCT

t +Wt)
−1(ẑt − zt) (2.24)

An advantage of this approach consists of better options for decision making and planning, while

the disadvantage concerns the computation complexity of the algorithm.

2.7 Gaussian Process Regression Problem

For this research work, a supervised learning regression problem will be formulated. Differently

from a classification problem, a regression concerns the prediction of continuous quantities [32].

A Gaussian Process can be described as a distribution over functions [32].

Definition 1 AGaussian process is a collection of random variables, any finite number of which have a

joint Gaussian distribution [32].
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AGP is fully described by a mean and a covariance function.

m(x) = E [f(x)] (2.25)

k(x, x′) = E [(f(x)− m(x)) (f(x′)− m(x′))] (2.26)

wherem(x) represents themean function and k(x, x′) the covariance function of a real process f(x)

[32]. The Gaussian Process is described as

f(x) ∼ GP (m(x), k(x, x′)) (2.27)

A training setD of n observations is defined asD = {(xi, yi)|i = 1, . . . , n}, where x is the

input vector and y denotes a scalar output. In the regression problem the outputs are real values

and the goal is to make inference about the input-output relationship given the setD.

Definition 1 implies that for any given set of inputs {x1, . . . , xn}, the corresponding random vari-

ables {f(x1), . . . , f(xn)} have a n-dimensional normal distribution

p(f(x1), . . . , f(xn)|x1, . . . , xn) = N (m, k) (2.28)

where m and k are expressed in eq. 2.25 and in eq. 2.26 respectively [47]. More details about

Gaussian Process regression can be found in [32].
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2.8 Concluding Remarks

This chapter introduced some of the tools used to develop the localization filter and the planning

algorithm presented in the next chapters. This general introduction is the foundation to better

understand the process and the ideas involved in this dissertation.
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3
UAV-UGV Coopertative Localization

This chapter is based on the cooperative localization algorithm described in “Field-Testing of a

UAV-UGV Team for GNSS-Denied Navigation in Subterranean Environments” [12] which will

be addressed as of version 1.0. Also two more modifications of it will be presented in this chapter.
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3.1 ChapterMotivation

Robot localization is fundamental for its autonomy. A robot needs to know its locationwith respect

to its surroundings to be able to take actions to reach its goal, accomplish tasks, avoid obstacles, etc.

As pointed in chapter 1whendealingwith challenging environments like an underground tunnel, a

GNSS-denied approach need to be taken into consideration. For this reason, the teamUGV-UAV

described in Section 2.4 cooperates to determine the UAV position with respect to the still UGV,

and actuate the planning algorithm presented in the next chapter.

3.2 Localization AlgorithmVersion 1.0

3.2.1 Filter description

The main task of the UGV is to produce a preliminary map of the environment and to contribute

to the drone localization once it is deployed. For simplicity, this first step is assumed to be already

performed and the UAV has a full environment map available for autonomous flight. In this first

step, where the environment is fully explored, the UAV contribution consists in offering an “eye

in the sky” prospective for search and rescue purposes [12]. This localization filter design of used

for estimating the UAV’s position, relative to the UGV, is available for the entire desired flight with

the goal of using it as position feedback for the flight controller. Therefore, to ensure a reliable

localization, a navigation planner is required and it needs to take into account sensor uncertainties

and sensor fields of view. Figure 3.2.1 shows an overview of theGNSS-denied navigation approach

adopted.
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Figure 3.2.1: Localization filter logic diagram

Error-state Extended Kalman Filter

In this first version, all the sensor measurements are fused using an error-state EKF. Among the

six sensors, the UAV’s onboard inertial navigation is used to predict the navigation state with a 50

Hz update rate. The other five sensors, which are asynchronous, provide updates when they are

available and at different rates. For instance, the LiDAR and the upward-facing camera’s field of

views are almost complementary with a small intersection between the two, and for this reason

the two sensors do not always provide a measurement at the same time. As such, the EKF must

be able to process any sub-set of measurement updates as they are available [12]. The UAV state

vector consists of its attitude, position, and velocity in the navigation frame (NED), whose origin
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is centered at the UGV and it is described in eq. 3.1.

x̂ = [φnb, θ
n
b, ψ

n
b, vN, vE, vD, rN, rE, rD]

T (3.1)

However, because the inertial navigation is used as the navigationmodel the error-state EKF needs

to estimate also the small deviations (δ) of theUAV IMUsensor accelerometer biases (ba) and rate

gyroscope biases (bg), as listed in eq. 3.2,

δx̂ = [γ(1)nb, γ(2)
n
b, γ(3)

n
b, δvN, δvE, δvD, δrN, δrE, δrD, bax, bay, baz, bgx, bgy, bgz]

T (3.2)

where γnb represents the small-angle attitude error. The sensors that are not constrained by FOV

and “always” provides updates according to their frequencies are

• UWB ranging measurement between the UAV and UGV at 10 Hz

• laser altimeter onboard the UAV at 10 Hz

and the ones that depend on the UAV being in the respective field of view

• LiDARmeasurement at 5 Hz

• Fish-eye camera at 10 Hz

One more constraint on the UAV motion is added to the EKF when it is believed to be hovering

triggering a zero-velocity update.

Details of the EKF

The inertial navigation is based upon the error-state formulationwithin theNorth-East-Down nav-

igation frame that is outlined in Groves [48], but for simplicity the contributions of the Earth’s
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rotation and craft-rate terms within the Inertial Navigation Systems (INS) mechanization were ig-

nored. Therefore, the attitude update is given as

Ĉn
b,k+1|k = Ĉn

b,k|k(I3×3 +Ωb
i δt) + w3×1,att (3.3)

where Cb
n is the rotation matrix between the navigation frame and body frame, Ωb

i is the skew-

symmetric matrix with terms defined by the IMU rate gyros (p - roll rate, q -pitch rate, and r - yaw

rate) as shown in Eq. 3.4 [48], w3×1,att is attitude integration process noise, and δt is the IMU

sampling rate.

Ωb
i =


0 −r q

r 0 −p

−q p 0

 (3.4)

As previously mentioned in 2.1 the Coriolis terms were neglected and the velocity update trans-

forms the IMU’s specific force measurements from the body-frame to the navigation frame, ac-

counts for the acceleration due to gravity, and integrates over time, as shown in Eq. 3.5,


v̂N

v̂E

v̂D


k+1|k

=


v̂N

v̂E

v̂D


k|k

+

[
Ĉn
b,k+1|k


ax

ay

az

+


0

0

g


]
δt+ w3×1,vel (3.5)
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wherew3×1,vel is the velocity integration process noise. The position estimates are updated by sim-

ply integrating the velocity estimates using trapezoidal integration [12],


r̂N

r̂E

r̂D


k+1|k

=


r̂N

r̂E

r̂D


k|k

+

[
v̂N

v̂E

v̂D


k|k

+


v̂N

v̂E

v̂D


k+1|k

]
δt
2
+ w3×1,pos (3.6)

where w3×1,pos is the assumed position integration process noise. Finally, all of the IMU sensor

biases, are updated assuming random-walk as in equation 3.7.

bk+1|k = bk|k + w3×1,bias (3.7)

The linearized error-state dynamics are given by Eq. 3.8,

FINS =



03×3 03×3 03×3 03×3 Ĉn
bk+1|k

03×3

∧ − Ĉn
b


ax

ay

az


 03×3 Ĉn

bk+1|k 03×3

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3



(3.8)
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where ∧ indicates the skew-symmetric matrix of a vector. The error-state transition matrix, ex-

panded to first order, is given in Eq. 3.9.

ΦINS = I15×15 + FINSδt (3.9)

The laser altimeter transmits the altitude measurement to the UGV through UDP protocol and it

is assumed tomeasure with respect to a flat ground. Because the UAV is meant to slowly patrol the

environment, small angles of pitch and roll are also assumed, therefore this measurement, taking

into consideration the UAV’s orientation, is shown in Eq. 3.21 whose observation model is given

in Eq. 3.11.

ẑAlt =
−r̂D

cos(θ)cos(φ)
+ valt (3.10)

Halt =

[
01×8 − 1

cos(θ)cos(φ) 01×6

]
(3.11)

Themeasurement error-covariance of the altimeter measurement was assumed to be

valt ∼ N (0, 10cm), given the an error of±10cm [12].

The 3D LiDAR produces a point cloud that represents all the surfaces hit by a beam of light,

and each point corresponds to the position in space, with respect to the sensor, of the surface’s

part hit. With this same process the relative position of the UAV can be determined by the cluster

of points that reflects its frame. To determine this cluster a technique developed by Bogoslavsyi

and Stanchness [49, 50] is adopted, and when the UAV is found its position corresponds to the
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cluster’s centroid. This is used as a measurement updated in the error-state EKF (Eq. 3.35) with

the linearized observation sensitivity matrix as given in Eq. 3.13.

ẑLiDAR =


r̂N

r̂E

r̂D

+ v3×1,LiDAR (3.12)

HLiDAR =

[
03×6 −I3×3 03×6

]
(3.13)

The assumed measurement error-covariance for the LiDAR position updates is

vLiDAR ∼ N (03×3, I3×310cm) [12].

The fish-eye camera tracks the UAV using the OpenCV library [51, 52] and the center of the

bounding box is considered to be theUAV’s position estimate in the image pixel frame as shown in

Figure 3.2.2.

From the pixel frame, the UAV location is transform in a LOS unit vector according to the Scara-

muzza fish-eye camera calibration model [53]. The error-state EKF is then updated with the unit

vector observation model described in Eq. 3.14,

ẑcam =



r̂N
ρ̂UAV
UGV

r̂E
ρ̂UAV
UGV

r̂D
ρ̂UAV
UGV


+ v3×1,cam (3.14)
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(a)Raw camera image (b) Image after background subtraction.

(c) Image after binary threshold is applied.

(d) Image with perceived UAV (red box), UAV
prediction (purple box), and edge segmentation
(red ring).

Figure 3.2.2: Sample of the UAV camera tracking process.

where ρ̂UAV
UGV

=
√

r̂N2 + r̂E2 + r̂D is the estimated range of the UAV from the frame origin centered
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at the UGV [12]. The LOS vector’s observation sensitivity matrix,Hcam, is given by Eq. 3.15.

Hcam =



01×6
−(r2E+r2D)

(ρ̂UAVUGV)
3

rNrE
(ρ̂UAVUGV)

3
rNrD

(ρ̂UAVUGV)
3

01×6

01×6
(rNrE)
(ρ̂UAVUGV)

3

−(r2N+r2D)

(ρ̂UAVUGV)
3

rErD
(ρ̂UAVUGV)

3
01×6

01×6
(rDrN)
(ρ̂UAVUGV)

3
rDrE

(ρ̂UAVUGV)
3

−(r2E+r2N)

(ρ̂UAVUGV)
3

01×6


(3.15)

The measurement error-covariance for the LOS unit vector reported by the camera tracking algo-

rithm was vcam ∼ N (03×3, I3×30.1) [12].

The distance between the UGV and the UAV is available through the UWB.This rangingmea-

surement it is also used in the LiDAR cluster algorithm to reduce the possible candidate cluster for

the UAV localization. Being the range measurement also an observation for the error-state EKF, it

is modeled as in Eq. 3.25,

ẑUWB = ρ̂UAVUGV + vuwb (3.16)

and the observation sensitivity matrix is given as in Eq. 3.17.

HUWB =

[
01×6 − 1

ρ̂UAVUGV
− 1

ρ̂UAVUGV
− 1

ρ̂UAVUGV
01×6

]
(3.17)

Themeasurement error-covarianceof theUWBmeasurementwas assumed tobe vuwb ∼ N (0, 10cm).

3.2.2 Version 1.0 results

The localization algorithm described in section 3.2 has been experimentally tested off-line while

theUAVwas remotely piloted. This test was conducted inside a wind tunnel facility approximately
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5-m x 5-m square and a length of 36 meters, with a motion capture system (VICON) mounted

close to the ceiling that was used as ground truth to compare the results. A visual example of the

LiDAR clustering result compared with the full error-state EKF output is shown in Figure 3.2.3.

Figure 3.2.3: Example UAV position estimate at a single epoch (blue bounding box, LiDAR estimate, red
bounding box EKF estimate) shown alongside the LiDAR pointcloud in a wind-tunnel facility of dimen-
sions 5 m wide, 5 meter height and 36 m long.
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Multiple flights have been conducted and Figure 3.2.4 shows the navigation filter performances of

Flight 2 compared with the ground truth solution.
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Figure 3.2.4: Example UAV position estimation performance against VICON reference solution for
Flight 2.
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Thepositionerrorwas estimated for eachflightbetween the localizationfilter results and theground

truth according to the Eq. 3.18,

error3D =
√

(̂rE − rE,Vicon)2 + (̂rN − rN,Vicon)2 + (̂rD − rD,Vicon)2 (3.18)

Table 3.2.1 shows the navigation filter performance for each flight which have similar duration and

Table 3.2.1: EKF 3D positioning error statistics for the 3 flight tests.

Duration (s) RMS (m) μ (m) σ (m) Median (m) Max. (m)
# LiDAR
Upd.

# Camera
Upd.

Flight 1 158.65 2.60 1.59 2.05 0.91 15.83 250 144
Flight 2 139.86 2.16 1.37 1.67 0.65 10.75 251 201
Flight 3 159.9 2.35 1.20 2.02 0.61 17.77 122 182

kind of maneuvers. Given the size of the testing facility, the results obtained with this first version

are too large to be considered as a position feedback solution for the flight controller.

3.3 Localization AlgorithmVersion 2.0

3.3.1 Filter description

The first version of the localization filter laid the basis for a more reliable and accurate version that

is referred to as version 2.0. As the structure of the EKF is mainly unchanged from version 1.0, the

UAV state vector is reduced to the drone kinematic. The state vector consists of the UAV velocity

and position in a local North-East-Down, navigation frame, whose origin is centered at the UGV
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position.

x̂ = [vN, vE, vD, rN, rE, rD]T (3.19)

Theerror-state of theExtendedKalmanFilter, estimates small perturbations (δ) fromtheunknown

true state vector (3.19) as listed in equation (3.20),

δ̂x = [δvN, δvE, δvD, δrN, δrE, δrD]T (3.20)

For the altimeter, an absolute distance to the ground is measured from a sensor that is mounted in

a fixed orientation on the UAV’s body. This yields a measurement model that depends upon the

UAV’s altitude.

ẑalt =
−r̂D

cos(θ)cos(φ)
+ valt, (3.21)

For this measurement, the covariance matrix is assumed to be Ralt = σ2alt = 0.01 [m2] and the

Jacobian of the observation model is given as:

Halt =
[
01,5 − 1

cos(θ)cos(φ) .
]

(3.22)

Inequation (3.22) theUAV’spitchφ and rollθ are estimated fromtheUAV’s IMUduring thebelief-

state propagation process. The resulting altimeter error covariance matrix update Pk|k is given as

Pk|k = (I6 − KHalt)P−1
k|k−1 (I6 − KHalt)

T + KRaltKT (3.23)
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where K =
(
Pk|k−1H

)T (Ralt + HaltPk|k−1HT
alt

)−1 is the Kalman gain and I6 is the identity matrix

with the subscript dimension. Consequently the error-state update is

δ̂xk|k = δ̂xk|k−1 + K(ẑalt − r̂D). (3.24)

TheUWB ranging radio measurement is modeled as

ẑUWB = d̂+ vuwb (3.25)

with the following observation model

Huwb =
[
01,3 − r̂Nk|k−1

d̂
− r̂Ek|k−1

d̂
− r̂Dk|k−1

d̂

]
(3.26)

where d is the estimated distance between the UAV and UGV.

d̂ =
∥∥∥[̂rNk|k−1 r̂Ek|k−1 r̂Dk|k−1

]∥∥∥
2

(3.27)

This yields the following error-covariance update.

Pk|k = (I6 − KHuwb)P−1
k|k−1 (I6 − KHuwb)

T + KRuwbKT (3.28)
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For the state transitionmodel, under the assumptions of constant velocity dynamics, the state tran-

sition matrixΦ is modeled, using simple kinematics, as

Φ =

[
I3 03,3

I3 · Ts I3

]
(3.29)

and the error covariance matrix update as

Pk|k = ΦPk|k−1ΦT + Q (3.30)

where Q is the assumed covariance matrix for process noise and Ts is the update rate (sampling

time) of 50Hz.

Q =



0.01 0 0 0 0 0

0 0.01 0 0 0 0

0 0 0.01 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(3.31)

Theprevious updates are considered to always occur to the exact update rate. As wementioned be-

fore, for the LiDAR and the fish-eye camera updates will occur only if theUAV is in their FOV. The

measurement update provides an estimate of the unit vector that points to the UAV with respect

to the UGV

ẑcam =


r̂N
d
r̂E
d
r̂D
d

+ v3×1,cam (3.32)

42



and the camera update’s observation model is given as,

Hcam =


01,3

−(̂r2E+r̂2D)
d̂3

r̂N r̂E
d̂3

r̂N r̂D
d̂3

01,3 r̂N r̂E
d̂3

−(̂r2N+r̂2D)
d̂3

r̂E r̂D
d̂3

01,3 r̂N r̂D
d̂3

r̂E r̂D
d̂3

−(̂r2N+r̂2E)
d̂3

 (3.33)

where d is as equation (3.27) and the covariance matrix update of the form

Pk|k = (I6 − KHcam) P−1
k|k−1 (I6 − KHcam)

T + K(δRcam)KT (3.34)

with the scale factor δ = 1/sin(α), where α = tan−1(− z
||z||).

The LiDAR measurement update provides a position in the 3D space, and as in the version 1.0

results

ẑLiDAR =


r̂N
r̂E
r̂D

+ v3×1,LiDAR (3.35)

This yields an observation model matrix of

HLiDAR =
[
03,3 −I3

]
, (3.36)

and covariance matrix update of

Pk|k = (I6 − KHLiDAR) P
−1
k|k−1 (I6 − KHLiDAR)

T + K(γRLiDAR)K
T (3.37)

where γ is a scale factor that is based up to the number of LiDAR points that are within the de-

termined UAV bounding box. This version also updated the clustering algorithm for the LiDAR
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measurement updates. As the measurements are provided at a lower frequency than its previous

version, not the Point Cloud Library (PCL) [54] provides a more reliable result.

This localization filter resulted to be more accurate, in simulation, in providing the UAV position

estimate as it is shown in the result section.

3.3.2 Version 2.0 results

This version of the localization filter has been tested in simulation and also on the hardware setup

with the VICON system as ground truth for comparisons. Different form version 1.0, version 2.0

was providing the UAV localization estimate in real time. Also, the UAV was flying autonomously

a set of waypoints using the Viconmeasurements as the position feedback for the flight controller,

while in version 1.0 each flight was manned.

The addition of autonomous flight and online localization capabilities allowed amore precise test-

ing and future development described in Chapter 4.1. A sample of the performances this version

of the localization filter provided, are shown in Figure 5.4.3.
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Figure 3.3.1: Localization filter version 2.0 results during field testing. In red the ground truth, also sent
to the flight controller as the feedback position (yellow). In blue the localization solution with different
outliers due to the camera and lidar clustering algorithm.

Table 3.3.1: EKF 3D positioning error statistics for the localization filter version 2.0 during flight tests.

Duration (s) RMS (m) μ (m) σ (m) Median (m) Max. (m)

Xerr 82.89 0.4 0.17 0.36 0.06 1.71
Yerr 82.89 1.08 0.30 1.041 0.01 4.04
Zerr 82.89 0.48 0.12 0.47 0.04 4.09
3Derr 82.89 1.25 0.68 1.05 0.24 4.10

As shown in Table 3.3.1, the localization filter version 2.0 perform better than its predecessor.

It can be noticed that the Y axis is heavily affected by the outliers measurements but the overall

solution was improved compared to the version 1.0. During field testing with the real-world setup,

itwasnoticed that theupward facing camera cluster algorithmwouldmostly fail andprovide several
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false positive detection of the drone and for this reason it was removed in the versrion 3.0.

3.4 Localization AlgorithmVersion 3.0

3.4.1 Filter description

The version 3.0 of the localization filter was developed to address some limitations of the Belief

Space Planning algorithm that will be addressed in the next chapter. This version only differs from

its predecessor for the introduction of a stereo camera on board of the drone for VIO purposes and

the removal of the upward facing fish-eye camera. This upgrade was made either in simulation and

in real-world scenario to improve the overall UAV localization performances [55]. The UAV has

been equippedwith an “Intel® RealSense™ Tracking Camera T265”, which is characterized by fisheye

stereo vision and internal IMU.This tool provides a continuous velocity update of the UAV to the

navigation filter described in Chapter 5 resulting in a more accurate and precise localization. For

simulation purposes, the VIO is performed using [56], while in the real-world scenario the “Intel®

RealSense™ T265 provides a full pose and velocity of the camera.

As thenavigationfilter operates the sameas in theprevious chapter, a newmeasurement update

function is added. VIOmeasurement estimate results as in Eq. 3.38

ẑvio = Cn
b


vviox

vvioy

vvioz

 (3.38)

whereCn
b is the rotation matrix of the form of eq. 2.3 and vvio is the velocity vector provided by the
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VIO.The observation model matrix is of the form

Hvio =


−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

 (3.39)

and the measurement noise σ = 0.12.

3.4.2 Version 3.0 results

In Figure 3.4.1 is shown the results of the navigation filter version 3.0 in a simulation environment

and the benefits of the VIO addition. VIO capabilities are adopted for mainly two reasons: first, as
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Figure 3.4.1: Localization filter version 3.0 solution in a simulation environment. In red the filter solution
compared with the ground truth in blue.
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discussed, it provides a more reliable UAV localization, and second, a sensor that is affected by the

environmental conditions, such as lighting sources, is added. This addition provides the basis and

reasons for the algorithm presented in chapter 6.

It needs to be considered that in simulation some sensor measurements are derived from the abso-

luteUAVposition. This helps the localization filter to provide very goodperformances. On the real

hardware and during field testing, results were proved to be less precise as shown in Figure 3.4.2.

Table 3.4.1: EKF 3D positioning error statistics for the localization filter version 3.0 during flight tests.

Duration (s) RMS (m) μ (m) σ (m) Median (m) Max. (m)

Xerr 109.86 0.71 0.43 0.57 0.37 2.03
Yerr 109.86 0.42 0.17 0.38 0.04 1.15
Zerr 109.86 0.35 0.11 0.33 0.09 2.25
3Derr 109.86 0.9 0.73 0.52 0.69 2.40

This discrepancy is mostly due to missed updates or outliers measurements during the field tests.

For example, it was noticed that the LiDAR clustering algorithm provided false positive picking

the operators. The results shown in Table 3.4.1 highlight the better performance of version 3.0

from the previous two. The results for the 3D position error of the three versions of the localiza-

tion filter are summarized in Table 3.4.2. The previous table shows how each localization filter

Table 3.4.2: 3D positioning error statistics for the three versions of the localization filter.

Duration (s) RMS (m) μ (m) σ (m) Median (m) Max. (m)

v1.0 - 3Derr 139.86 2.16 1.37 1.67 0.65 10.75
v2.0 - 3Derr 82.89 1.25 0.68 1.05 0.24 4.10
v3.0 - 3Derr 109.86 0.35 0.11 0.33 0.09 2.25
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Figure 3.4.2: Localizaion filter version 3.0 results field testing. In red the ground truth result form the
Vicon system, in yellow the position estimate used as the feedback for the flight controller, and in blue the
localization filter position estimate.

was improved at each version iteration. As the overall results are promising, the maximum error is

still high enough to consider these results to be used as a feedback solution for the flight controller.

Since the environment is to be considered cluttered with obstacle, the overall error must reduce in

order to have a safe flight using the localization filter solution.
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3.5 Concluding Remarks

This chapter presented the evolution of the localization filter with its three versions. This is the

foundationof thiswork and anecessary step for the implementationof the twoplanning algorithms

with uncertainty discussed in the next chapters.
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4
Autonomous flight

This chapter presents how the localization filter version 3.0 was used to provide the UAV’s pose

estimate to send as feedback to the flight controller such that complete autonomous flight could be

achieved.
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4.1 Localization Solution as a Feedback in the Loop for the UAV Posi-

tionControl

As described in chapter 2.2, part of this research focused on having an autonomous UAV-UGV

team to be able to test the planning algorithms on a real-world scenario. To achieve this high level

of autonomy the UAVmust have reliable pose feedback to send to the flight controller to perform

waypoint navigation. Since the UAV flies in a GNSS-denied environment, the position feedback,

first, is provided by a VICON motion capture system. This was helpful to test and tune all three

versions of the localization filter. Most of the results discussed in this work assume the UGV to be

still in its position.

TheUAV/UGV team is considered amulti-agent subset where theUGV acts as the ground station

providing the UAV the position feedback. Later the precise VICON solution was substituted by

the localization filter version 3.0. Figure 4.1.1 shows how the navigation filter is used in feedback in

the loop for the PX4 flight controller to perform waypoints navigation. Tests were conducted in a

Waypoints 
Reference

+
- PX4 Autopilot

Navigation
Filter UGV inputs

Figure 4.1.1: Control diagram concept with the localization filter in the feedback loop for the flight con-
troller to perform waypoints navigation
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WVUowned facility in ReedsvilleWV,which is characterized by awind tunnel equippedwith 40+

Vicon tracking cameras. This setup was used first to test the navigation filter, and second as ground

truth for performance comparisons. Figure ?? shows the full system in its testing environment.

Asmentioned, first the UAV uses a perfect pose from the Vicon system to performwaypoint navi-

Figure 4.1.2: UAV and UGV during the field testing in theWVUwind tunnel facility
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gation and it is compared with the navigation filter solution in Figure 4.1.3. After extensive tuning,

Figure 4.1.3: Localizaion filter version 3.0 results field testing. In red the ground truth result form the
Vicon system, in yellow the position estimate used as the feedback for the flight controller, and in blue the
localization filter position estimate.

the Vicon system is used as ground truth, while the UAV flight controller receives the navigation

filter solution as a pose feedback. The results of this test are shown in Figure 4.1.4.

It is easy to address that the solution provided by the localization filter is not robust enough to have

precise waypoints navigation. The nature of the testing environment allowed the experimentation

of the localization filter as a source of position feedback with a successful and safe flight laying the

basis for future tests and improvements. Also, the lack of obstacles and features in the environment

heavily affected the localization filter estimation.
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Figure 4.1.4: Localization filter solution used as a position feedback for the PX4 flight controller. In red
the ground truth solution, in blue the localization filter version 3.0 solution and in yellow the position sent
to the flight controller as the position feedback.

4.2 Concluding Remarks

This short chapter gave context to the development of the planning algorithm explained in chapter

6, and completed the full autonomy of the system for waypoint navigation. This milestone was a

necessary step to be able to test the different planning algorithms in a real-world scenario.
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5
Belief Space Planning Algorithm for space

exploration

This chapter is focused on the autonomous navigation planning algorithm for the UAV to accom-

plish search and rescue tasks. The algorithm fuses sensor data from the UGV and the UAV and
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consider their measurement uncertainty to decide which path provides better localization of the

UAV.The work presented in this chapter is mainly based on [57].

5.1 ChapterMotivation

As it was explained in section 1.2 and with the use of the navigation filter version 2.0 described in

section 3.3 the UAV’s mobility is leveraged to perform the search task. Different from prior belief

space planning research, the approach presented in this chapter has a required exploration goal and

theUAV’s localization uncertaintymust bemaintained to an acceptable level during the operation.

Thecontributionof this chapter consists in anewpathplanning algorithm that fuses the capabilities

of two robots (UAV/UGV) to balance between environment exploration tasks while reducing the

localization error for the UAV along the selected trajectory.

5.2 Assumptions andConstraints

It is reasonable to assume that theUAVmust be deployed from theUGV and returned to theUGV

after a search, therefore, the planning algorithm is designed to provide a path that starts and ends at

the UGV’s location after exploring the map. Further, while the UAV performs its search mission,

the UGV is assumed to be static to provide the UAV’s localization estimate.

To support the belief state propagation during the planning, the algorithm simulates the sensor

updates by assuming that the UAV moves with zero acceleration and at a constant velocity v =

0.5m/s with pitch and roll of nearly zero. This simplification allowed to simplify the process of

determining observation models considering the UAV flying in straight lines between waypoints.

During the belief state propagation process, the algorithm takes into account an image degradation,
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for the fish-eye camera, discarding any update whenever the UAV is further than 6meters along

either coordinate axes. This thresholdwasdetermined via testing the camera trackingperformance.

The number of waypoints generated by the planning algorithm is constrained, such that the

UAV’s flight time is limited

Tflight < ρ (5.1)

where ρ is a specific threshold in seconds determined by the Quad-rotor characteristics and pay-

load. At the same time, to enlarge the covered area a random sampling-based algorithm is chosen

to define waypoints. Tomake sure the maximum coverage all the connections between waypoints

needs to be traveled guaranteeing that each path has the same entropy value.

While theUAV flight controller is set to follow the waypoint trajectory, the plannermust alsomin-

imize the localization uncertainty

pe = min

(
n∑
i

Pposi

)
(5.2)

with Pposi being the covariance matrix P relative to the UAV’s position at each time step.

5.3 Path Planning Algorithm

The algorithm must provide a path for the UAV to follow that meets the requirements and con-

straints described in the previous section 5.2. As mentioned in the assumptions, the planning al-

gorithm can access a full map of the environment, that was provided by the UGV through SLAM,

and offline produces the selected path for theUAV to fly. The algorithm consists of two phases and

decouples the exploration task from the criterion to reduce the localization uncertainty [57]. First,

using the PRM algorithm [24], a graph is built on 12 randomly generated nodes lying in the UAV
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collision-free space favoring themap in front of theUGVwhere its LiDARhasmaximumcoverage.

The number of nodes is heuristically selected as a trade off between exploration and computation.

The algorithm connects each node using a 5-Nearest Neighbor (NN) approach that leads to a total

of 32 edges in the free space, G(N,E) = G(12,32). Then, with the edges of this graph, the Route

Inspection Problem (or Chinese Postman Problem (CPP)) [58] is solved. Since CPP requires the

graph to be eulerian, in case a node has an odd number of edges, a new one will be created making

sure it lies in the free space.

In the second phase, for each of the possible trajectories, the belief-state is propagated and used

to select a path that has suitable position error uncertainty. The overall approach is shown in Fig.

5.3.1.

Belief Space Planning

UGV maps 
the 

environment 

BSP algorithm phase 1:
Connected graph in 

free space

BSP algorithm phase 2:
CPP generates random 
paths, algorithm returns 

the best

Start mission End mission

UAV follow waypoints 
and perfroms SAR

UAV deployemnt 

UAV lands
UGV performs localization and 
send as feedback to the UAV

Figure 5.3.1: System block diagram for an hypothetical mission of the UAV/UGV team
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5.3.1 Graph construction phase

The connected graph, generated by the algorithm in its first stage, is composed of nodes and edges

that lie in the free space andwithout intersecting anyobstacle as shown inFigure 5.3.2. This graph is

used to generate a path starting at the sourcenode and ending back to the same source. The sequence

of edges that the UAV will follow is generated using the CPP [58]. It guarantees that each edge

of the graph is traveled only once which is necessary for the UAV to explore more space without

overlaps.

Figure 5.3.2: Octomap environment representation with the randomly selected nodes and edges pro-
vided by the first phase of the planning algorithm

A downside of having the source and the goal of the path being the same, along with with the goal

of exploring the environment, consists in a single set of waypoints and edges that can be traversed
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in different orders. To increase the variety of the solutions while keeping the same nodes, the CPP

solver is run 80 times so that for each run all edges are always visited once but in a different order.

This will change the belief propagation penalizing the paths that tend to be far from the camera and

LiDAR field of view for a longer period of time. Also the order of waypoints followed by the UAV

affects its localization uncertainty.

5.3.2 Belief state propagation

The belief state is propagated using the version 2.0 of the localization filter and the equations de-

scribed in section 3.3. In this section, the EKF’s error covariance updates are used to propagate

the belief state for planning and the EKF implementation is used to evaluate the estimation per-

formance. For each path generated by the first phase of the algorithm, the UAV’s estimated error

covariance is predicted taking into account all the sensors and their associated update rates along

the path. As mentioned in Chapter 3.3 the main modification from version 1.0 consists of using a

kinematicmodel of theUAV to propagate its error covariance betweenmeasurements update. The

second phase of the algorithm selects the path with the lowestL2 norm of the sum of the position

error covariance estimates after the belief state of each path is being processed.

5.3.3 Trajectory generation

The first phase of the planning algorithm selects waypoints and paths between them that do not

collide with obstacles, generating a graph that lies in the free workspace of the 3D occupancy vol-

ume of the environment that was previously created by the UGV (Figure 2.5.3). In the second

phase, the planning algorithm evaluates the 80 different trajectories, chosen heuristically to in-

crease variability, to find the one that reduces the UAV localization uncertainty. Therefore the 3D
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error covariance is calculated at each time step i as

PECi = ||Pipos||. (5.3)

Next, the sum of this value was computed over the entire path in order to provide an indication of

the quality of the error covariance of the flight j

PECflightj =
t∑

i=1

PECi (5.4)

where t is the number of time steps in the flight j. Finally, the best and worst trajectories were

selected by finding the minimum andmaximum of these values respectively among all propagated

paths.

BESTpath = min
j=1,2,...,80

(PECflightj), (5.5)

WORSTpath = max
j=1,2,...,80

(PECflightj). (5.6)

5.4 Belief Space Planning AlgorithmResults

This section compares several tests designed to evaluate the performance of Beliefe space planning

algorithm.

5.4.1 BSP performances

Figure 5.4.1 shows the value of each flight as in eq. 5.4 and in red the worst, green the best, black

the second-worst, and yellow the second-best paths selected by the planning algorithm.
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Figure 5.4.1: Sum of theL2 norm of the Position Error Covariance for each trajectory, in red the one with
the maximum sum position error covariance and in green the one with the minimum. Also in black the
path with the second maximum sum position error covariance and in yellow the respective second minum.

A side-by-side of the estimated uncertainty of the four trajectories selected are also shown for com-

parison in Table 5.4.1.

Table 5.4.1: Belief Space Planning algorithm results for the best and worst solutions.

Best
Path

Worst
Path

2nd Best
Path

2nd Worst
Path

3D RMS
Pos. Err. Cov. (m2) 120.97 2527 121.1 2518.1

3DMax.
Pos. Err. Cov. (m2) 5796.4 1.03e+5 6026.8 96947

σ (m2) 120.9 2526.7 121.1 2518

μ (m2) 4.55 80.7 4.7 76.1

Median (m2) 1.0006 1.0005 1.0005 1.0005
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After the planning algorithm selected the best andworst trajectories, theywere evaluated in the

simulation environment described in Chapter 2.2 and compared to show the benefits of the pro-

posed approach. For these experiments, all trajectories, picked by the algorithm and flown by the

UAV, were simulated using the ground truth as pose feedback for the flight controller. The error-

state EKF solution was not used as position feedback to facilitate the evaluation of the planner’s

ability to determine a trajectory without having to consider the implications of poor localization

feedback in the execution of the path.

An error-state EKF was run “online” to estimate the UAV’s position with respect to the UGV. Ten

simulations of each set of waypoints were executed to better understand the trends of the planning

algorithm. During the evaluation of the algorithm, it was determined that the simulation always

returned different solutions even when the same list of waypoints was provided. This was due to

the flight controller using an internal estimator to provide theUAV’s local position during the way-

points navigation. For example, to show the differences between each simulation thatwas provided

the same set of waypoints, theUAV’s ground truth of each run is represented in Fig. 5.4.2. Because

the planning algorithmwas themain focus of this study, nomajor changes have been conducted to

the UAV’s autopilot estimator. For this reason, the average trends of multiple simulations, of the

same set of waypoints, were considered.

Figure 5.4.3 shows the UAV’s EKF estimated position compared to the ground truth when execut-

ing the best trajectory. In addition, the results of the UAV position estimation for the worst trajec-

tory arepresented inFigure5.4.4, where it is evidenthow theEKFperformsworsewhencomparing

the two cases. Table 5.4.2 summarises the best andworst trajectory results. The standard deviation
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Figure 5.4.2: 3D representation of the ground truth for each run. This is meant to show how the simula-
tor affected the results
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Figure 5.4.3: In red the EKF position estimation of the best trajectory, while in blue the ground truth.
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Figure 5.4.4: In red the EKF position estimation of theworst trajectory, while in blue the ground truth
which is also the solution provided to the flight controller.

σ and themean μ of the 3D positioning error are also reported in the abovementioned table. It can

be shown that there is almost a 0.3 meters 3D RMS improvement between the two paths.

The results in Table 5.4.2 shows how the 3D RMS position error is generally smaller for the best

trajectory as compared to the worst but mostly, how the maximum position error is reduced by

almost a half. The results just presented did not provide a clear benefit of the algorithm. This is due

to issues related to outliers andmissing observations that are notmodeled in the belief propagation.

5.4.2 Algorithm validation results

Due to the non readability of the realizedpaths, as shown inFig. 5.4.2, the need to conductmultiple

tests to present consistent results by the planning algorithm is essential [57]. Table 5.4.3 shows the
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Table 5.4.2: BSP algorithm solution. Best and worst path compared.

Best Path Worst Path

Flight time (s) 158.70 158.52

XRMS (m) 0.25 0.54

YRMS (m) 1.38 1.68

ZRMS (m) 0.15 0.19

RMS 3D Pos. Err. (m) 1.46 1.77

σ (m) 1.1 1.42

μ (m) 0.95 1.07

Median (m) 0.46 0.47

Max Pos. (m) 5.24 9.24

# LiDARUpdates 91 97

# Camera Updates 162 161

results of ten runs of each best and worst trajectories.

To summarize the data in the previous tables, Table 5.4.4 shows the mean and median for the

set of ten flights of the best and the worst trajectories. As shown in Table 5.4.3, the use of the best

trajectory does not always guarantee a better UAV localization in absolute value, but multiple runs

demonstrate that the planning approach is beneficial for reducing UAV position error. The same

study, discussed in the last section, is conductedonwhat the planning algorithmconsiders to be the

“second” best and “second” worst trajectories to guarantee repeatability performances. As before,

Table 5.4.5 andTable 5.4.6 show the results for this second set of trajectories. Compared to the first

set of simulations (Best vs. Worst) the second set does not quite behave as expected. This shows

that the proposed algorithm could fail when there is a consistent presence of outliermeasurements

that are not taken into consideration by the planning algorithm. Also, some missed measurement
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Table 5.4.3: Comparison of the best and worst path after being executed ten times to test repeatability.

Path Run Mean Median
RMS

(Pos. Err.) MPE

Best
Path

1 1.19 0.55 1.76 9.53
2 1.02 0.80 1.38 5.03
3 1.15 0.52 1.90 10.09
4 0.99 0.46 1.51 5.52
5 1.03 0.49 1.61 7.81
6 0.97 0.46 1.57 7.91
7 0.95 0.46 1.46 5.24
8 1.05 0.49 1.58 5.28
9 1.01 0.40 1.66 6.71
10 1.01 0.50 1.54 7.36

Worst
Path

1 1.16 0.43 2.16 15.68
2 1.54 0.54 3.56 24.63
3 1.22 0.53 2.08 8.19
4 0.92 0.49 1.37 5.33
5 1.07 0.47 1.77 9.24
6 2.12 0.56 4.55 26.23
7 0.98 0.44 1.60 8.21
8 0.98 0.43 1.58 6.62
9 0.90 0.40 1.42 6.39
10 1.86 0.70 3.64 25.12

Table 5.4.4: Mean andMedian of multiple runs for best and worst trajectories.

Path Mean Median
RMS

(Pos. Err.) MPE

Best
Path

Mean 1.04 0.52 1.60 7.05

Median 1.02 0.49 1.57 7.03

Worst
Path

Mean 1.27 0.50 2.37 13.56

Median 1.11 0.48 1.93 8.73
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Table 5.4.5: Comparison of the second best and second worst path after being executed ten times to test
repeatability.

Path Run Mean Median
RMS

(Pos. Err.) MPE

2nd

Best
Path

1 1.02 0.50 1.57 6.29
2 1.12 0.49 1.76 6.48
3 1.48 0.61 3.12 26.96
4 1.05 0.45 1.68 6.47
5 1.27 0.58 2.03 8.20
6 1.05 0.49 1.67 7.47
7 1.20 0.52 1.84 6.87
8 1.11 0.61 1.68 7.44
9 0.98 0.46 1.55 6.83
10 1.09 0.51 1.66 7.74

2nd

Worst
Path

1 1.32 0.47 2.32 9.56
2 0.97 0.42 1.52 6.53
3 1.00 0.43 1.68 8.09
4 1.13 0.54 1.75 8.43
5 0.90 0.42 1.44 6.08
6 1.01 0.53 1.47 5.61
7 1.07 0.53 1.59 5.79
8 0.98 0.41 1.62 7.19
9 1.08 0.47 1.67 6.19
10 2.75 0.59 5.89 25.06

Table 5.4.6: Mean andMedian of multiple runs of the second best and second worst trajectories.

Path Median Mean
RMS

(Pos. Err.) MPE

2nd

Best Path
Mean 1.14 0.52 1.86 9.08

Median 1.10 0.50 1.68 7.16

2nd

Worst Path
Mean 1.22 0.48 2.09 8.85

Median 1.04 0.47 1.65 6.86
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might occur even if the UAV is in the sensors’ FOV and it affects algorithm decision process since

it does not consider the back-end algorithms used to provide information from the sensors’ raw

data. These reasons are the foundation of chapter 6 and this work, to investigate a new solution to

reduce the discrepancy between the planning algorithm decision and the result obtained, making

it more robust to outliers measurements and missing sensor observations.

5.5 Concluding Remarks

This chapter described an offline planning algorithm that finds a path that minimize the UAV’s po-

sition uncertainty between the ones that maximize the covered area. In a simulation environment,

the approach was shown to offer promise for selecting the waypoints’ order to reduce the UAV’s

position uncertainty. In particular, the planning algorithm showed to be able to choose the path

where the UAV is more favorable to be localized by the discussed EKF estimator.
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6
Gaussian Process Based Navigation

Algorithm for a UGV-UAV Team

This chapter describes new developments on both sides, hardware, and software, to improve the

UAV’s localization. Also, a new approach intended to improve the algorithm discussed in Chapter
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5 is presented. In this chapter, the effort is focused on how the environment can affect the planning

algorithmand its use of the belief. InChapter 5 the planning algorithmwas focusedondetermining

the path that minimized the UAV’s localization error taking into account only the sensors’ model.

Now instead, a new approach is proposed to also take into account the surrounding environment

and the way it can affect the path planning algorithm using machine learning techniques trained

on real sensor data. Because a subterranean environment could easily be affected by different light

conditions, dust, or smoke, each sensor would perform differently, most likely compromising the

path planning algorithm in its decision. The proposed idea is to usemachine learning, in particular

supervised learning, to improve the path planning algorithm in recognizing sensors’ faults due to

environmental conditions. The supervised learning considered in this chapter is the GP and some

preliminary investigations are conducted to make sure that this tool can improve the planning al-

gorithm in considering also the environment condition and not only the sensormodels. As shown

throughout this dissertation, “building blocks” have been assembled to proceed in the further in-

vestigation to solve a well-defined problem that affects robots’ autonomy. Since the UGV/UAV

team in underground navigation is a fairly new research field, which hadmany successes among the

science community, the problem of robust localization and navigation is still a wide-open topic.

6.1 Gaussian Process for theUAV Position Estimate

6.1.1 Effects of the environment on the planning algorithm

The algorithm described in Chapter 5 assumes perfect environmental conditions. As it is reason-

able to assume that a search and rescue scenario does not have moving obstacles, it is a simplifica-

tion not to consider how the environment is affected by different lighting conditions, areas with
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heavy smoke, dust rose by the UAV or even some Radio Frequency (RF) interference. These non-

perfect conditions could affect directly the localization filter and consequently the planning algo-

rithm. As the first effect is clear, since each sensor could provide faulty observations if the environ-

mental conditions are not ideal, the second regards the fact that the planning algorithm does not

consider possible sensor failure during the belief space planning.

6.1.2 Paths generation

As mentioned at the beginning of this chapter, the GP regression problem is used to improve the

planning algorithm in its decision making. In this case, GP is able to predict the UAV’s position

error taking into account the sensors’ models and the environmental conditions.

Similar to the BSP algorithm described in chapter 5, this approach also uses paths that are gen-

erated from randomly selected waypoints. Each path is a set of waypoints chosen within the free

space after an accuratemap of the environment is provided by theUGV. A heuristic number of ran-

domwaypointsN are chosen to explore the environment from an elevated point of view. Similarly

to the BSP algorithm described in chapter 5, the map is transformed into a 3D occupancy map to

guarantee that each waypoint and its connections do not lay or cross any obstacle respectively.

The path planning algorithm interprets the waypoints as nodes of the graph and connects them

with edges to create a fully connected graph where it is possible unless any of the edges cross ob-

stacles, where in that case they must be eliminated. To increase the map exploration the UAV flies

each edge at least once, however, the graph createdG(N, E) is not guaranteed to be fully connected

and Eulerian and for this reason, the UAVmay navigate some edges multiple times.

As in the BSP algorithm, theUAV is required to take off and land from the same location, therefore

each path must start and end from the same node. To generate the sequence of edges of the graph
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G, that the UAV has to fly, the algorithm randomly selects an edge that is connected to the node

according to the adjacent matrix. Next, that selected edge is removed from the matrix of “available

edges” and recursively all edges are selected until each edge is visited at least once. The algorithm

for the path generation is described in 1, where it is highlighted when it is necessary for the UAV

to fly over already visited segments. An overview of the information flow is shown in Figure 6.1.1.

Algorithm 
generates 

different Graphs  

Map of the 
environmen 

Algorithm selects a 
possible path per 

each Graph 

Alrithm 
generates one 

Graph  
Algorithm selects 10 

random paths   

Gaussian 
Process

Optimal 
solution

Prediction 
input

Training 
data

Figure 6.1.1: Concept diagram and information flow of the GP planning algorithm. On the top row the
graph generator provides the training data for the GP algorithm to approximate the function that describes
the relationship between inputs and output. The bottom row the graph generator provides the different
sequences of waypoints for the GP algorithm to use to predict the localization error of the UAV.
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Algorithm 1: Path generation algorithm

Result: Graph generation
while number of nodes do

generate random node in space;
if node is on obstacle then

generate new;
else

node list = new node;
end

end
while node list size do

Adjunct matrix(node list(i), node list(i+1)) = distance between nodes;
i = i+1;
if Adjunct matrix(i,j) intersect obstacle then

Adjunct matrix(i,j) = 0;
end

end
Result: Path selection
Adj = Adjunct matrix;
while !path completed do

for the number of nodes do
if element of the raw of Adj are != 0 then

create list of available nodes L;
end

end
from L select random node to add to the path;
switch to 0 the correspondent element of Adj;
if Adj raw is 0 then

find all available nodes from current node using Adjunct matrix;
add the node that has more not yet travelled connection to path;
if sum of Adj == 0 && path(last) == first node then

path is completed
end
if sum of Adj == 0 && path(last) != first node then

if Adj(last,1)!= 0 then
path(last + 1)=first node;
path is completed;

end
end

end
end
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6.1.3 Path selection

Given the fixed set of waypoints, multiple paths are generated according to the algorithm 1. As

edges are selected randomly, these paths will mainly differ in the order the waypoints are reached.

This differentiationwants to address how the order of waypoints affects theUAVerror localization.

The best path, within this fixed number of options, is the result of an evaluation of the Gaussian

Process prediction for which order of waypoints will reduce the error position estimate of theUAV.

To leverage the GP, first a set of four random different paths are used to explore different parts of

the map and they compose the training set of the GP regression problem. The number of paths

used for the GP training phase was chosen empirically as a trade off between computing time and

data representation. For this study, a multi-input and single output GP has been chosen to predict

the UAV’s position error in each axis. TheGP is used to predict the relationship between the UAV

position estimate (inputs) in theCartesian coordinates and each axis position error (outputs). This

relationship is meant to map a 3D position in the environment and the UAV’s localization error

associated with it. Equations 6.1 and 6.2 show the GP inputs and outputs respectively.

Inputs:

Xin =

[
x̂ ŷ ẑ

] (6.1)

Outputs:

Yxerr = |x − x̂|

Yyerr = |y − ŷ|

Yzerr = |z − ẑ|

(6.2)
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A different set of waypoints from the training ones is chosen to determine which order of nodes

reduces the UAV position error estimate. After the GP is trained, the new set of inputs are used to

predict the estimatedUAVposition error in the 3D space. TheGPwill determine the function that

best approximate the input-output relationship

Yxerr ∼ f(Xin)

Yyerr ∼ f(Xin)

Yzerr ∼ f(Xin)

(6.3)

where the function f(·) is approximated by the GP as in eq. 2.27.

For thepredictionphase, the samewaypoints are used to randomly generate tendifferent paths.

Due to the small experimental environment, also in this case, the number of paths was chosen as a

trade off between variability and computational time for the GP to predict the one that minimizes

the UAV position error. This way the algorithm returns information on how each sensor provides

updates according to the UAV’s current position in the map.

TheGPy library [59] is used to train theGP regression problem and to predict the output using the

validation data. A combination of two Kernels is chosen to better approximate the input-output

relationship. Given the input 6.1 and the output 6.2 the sum of the radial basis function kernel (eq.

6.4), which is the most common, and the Matern3/2 Kernel (eq. 6.5), that instead helps to better

represent some of the sparse data, is used to optimize the GP.

kRBF(x, x′) = σ2 exp
(
−(x − x′)2

2l2

)
(6.4)
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where σ2 and l are the variance and length-scale respectively. The second kernel function consid-

ered is the Matern 3/2 described as

kMat32(r) =σ2(1+
√
3

√√√√in−dim∑
i=1

(xi − x′i)2

l2i
)

exp(−
√
3

√√√√in−dim∑
i=1

(xi − x′i)2

l2i
)

(6.5)

Consequently, the GP uses the new set of waypoints and their ten randomly selected paths, gen-

erated as described in subsection 6.1, to predict the UAV’s position error. Similar to the BSP, the

GP algorithm chooses the path that minimizes the UAV’s position error prediction. Figure 6.1.2

represents the GP results and the prediction for one of the ten candidate paths. The blue solid line

represents the function f(·), with its confidence (lighter blue shade), that describes the relation-

ship expressed in eq. 6.3. Figure 6.1.2 shows every single output affected by the three-dimensional

input composed of the 3D position of the drone. For visual purposes, each subplot is a “slice” of

the output compared to one input assuming the other two fixed.
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Figure 6.1.2: GP results with the black× representing training data, the red ⋆ the validation data, the
blue line being the GPmean with its confidence and the yellow ⋆ representing the GP prediction.

To choose the best path, theGP algorithmevaluates the sumof the 3Dpredicted error distance

of the UAV and it weights it according to the length of the path as in eq. 6.6.

Lj
3Derr =

∑n
i=1

√
e2xi + e2yi + e2zi
n

(6.6)

Each path j is represented by the result of eq. 6.6 where n represents the number of measurements.

This is necessary since each path could be different in length if some edges of the graph were re-

moved because of obstacles intersection. To select the best, the GP algorithm simply picks the

minimum 3DUAV’s predicted position error between the ten flights as in eq. 6.7.

BESTpath = min
j=1,...,10

Lj
3Derr (6.7)
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The result section 6.2 describes in details the differences between the BSP and the GP algorithm

and shows how the latter better predicts the UAV’s position error, using a more accurate represen-

tation of the sensors’ model and the environment description.

6.2 Gaussian Process Based AlgorithmResults

To show the validity of themethod described in the previous section, different tests have been con-

ducted in a simulated environment with different scenarios, or“toy examples” that were designed

to address a limitation of the BSP approach that was implemented and described in chapter 5. The

GP algorithm is compared to the BSP to show the benefits and improvements of this new contri-

bution.

The first test (subsection 6.2.1) is conducted in a simulated room with artificial light and the GP-

based planning approach is compared to BSP.The second test (subsection 6.2.2), instead, will use

the same environment but some areas are poorly lit such that the vision systemmeasurements and

performances are degraded. In this case, differently from the GP, the BSP has no knowledge of

the dark areas of the environment. The third (subsection 6.2.3) and fourth (subsection 6.2.4) ex-

periments are similar to the previous with the addition of an unmodeled obstacle, which will be a

source ofmissing information for both algorithms. In these situations, the BSP algorithm is unable

to consider the obstacle since it was not present in the prior map. On the other hand, the GP algo-

rithm leverages the training data to predict themissed information due to the obstacle obstruction.
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6.2.1 Gaussian Process planning algorithm vs Belief Space Planning in a well-lit

environment

To determine which order of waypoints better reduce the UAV’s localization error in the simula-

tion environment theGP algorithm is comparedwith the results obtained using the BSP approach.

The GP training data set consists of four different random sets of waypoints that explore different

areas of the environment. As previously mentioned, the number of paths for the GP training was

chosen heuristically as a trade-off between computation and acceptable prediction results. Each

set is composed of ten randomly placed nodes connected at most with the 6-nearest neighbors af-

ter checking that none of them collides or lays on obstacles.

These different sets of waypoints are flown by the UAV in the simulator and the collected data is

used to train theGP. A different set of nodes and edges, which are not used during the training pro-

cess, are randomly explored by the UAV. The algorithm guarantees that each waypoint is reached

minimizing the number of times the edges of the graph are visited multiple times. Within these

paths, the algorithm will be able to differentiate which area of the map provides worse position

measurements update, therefore it will choose the one that flies those degraded areas as last to re-

duce the position error propagation.

The simulated environment is shown in Figure 6.2.4 and it is fully lighted to compare the perfor-

mances between the GP prediction planning algorithm and the Belief space algorithm. Since the

BSPdoes not take into consideration environmental conditions that could lead to a sensors’missed

or faulty measurements, it would return always the same result for the bast path and its results are

shown in Figure 6.2.1 and Table 6.2.1.

The GP-based planning algorithm predicts the UAV’s localization error on the same ten paths
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Figure 6.2.1: Belief Space Planning algorithm results for the well-lit environment. In green the best path
that minimize the UAV’s localization error.

Table 6.2.1: BSP results of the best path compared to the worst path.

Path Median Mean
RMS

(Pos. Err.) MPE

Best Path 0.227 0.227 0.227 3661.6

Worst Path 0.241 0.241 0.241 3885.3

and pick the one that minimizes it. The results are shown in Table 6.2.2 and in Figure 6.2.2.

As shown in Figure 6.2.2, the GP-based planning algorithm predicts that path number 7 pro-

vides a better UAV’s localization than the number 6 selected by the BSP algorithm. The two best

choices are compared and the results are shown in Table 6.2.3.
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Figure 6.2.2: Gaussian Process prediction results in the well-lit environment. In green the best path that
minimize the UAV’s localization error.

Table 6.2.3: Comparison between the simulation of the best path according to the GP-based planner and
the best according to BSP for a well lit environment.

GP Best Path BSP Best Path

Flight time (s) 163.6 170.2

RMS 3D Pos. Err. (m) 0.43 0.79

σ (m) 0.28 0.60

μ (m) 0.32 0.50

Median (m) 0.25 0.32

Max Pos. (m) 2.24 3.94

Fig. 6.2.3 shows the BSP solution compared to the EKF estimation error along with the more
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Table 6.2.2: GP planning algorithm results in a well lit environment for the prediction of the 10 paths. In
red the one that performs worse compared with the one in green that which minimizes the localization
error.

Path Median Mean
RMS

(Pos. Err.) Sum. Err

1 0.26 0.46 0.81 0.46

2 0.25 0.42 0.77 0.42

3 0.29 0.45 0.76 0.45

4 0.29 0.46 0.83 0.46

5 0.28 0.44 0.77 0.44

6 0.29 0.43 0.71 0.43

7 0.22 0.28 0.34 0.28

8 0.25 0.42 0.72 0.42

9 0.29 0.43 0.73 0.43

10 0.29 0.48 0.89 0.48

accurate and GP planned solution. Previous results show how the GP-based prediction is more

accurate in selecting the correct best path. This is due to the fact that the GP algorithm has access

to actual sensors measurements and truth data for the training and the prediction can take into

account outliers or missing updates.

6.2.2 Gaussian Process planning algorithm vs Belief Space Planning in a dark en-

vironment

The comparison discussed in the previous part it is now repeated simulating an unevenly lit envi-

ronment with dark areas that can affect VIO as shown in Figure 6.2.4. Since BSP does not take into

consideration the light change its result will be the same. TheGP-based planner, on the other hand,
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Figure 6.2.3: TheBSP sum of the norm of the position error covariance matrix, related to the localization
filter position error estimate, are compared with the GP planning algorithm sum of the prediction error
related to the EKF position error estimate for a well-lit environment test.

uses training data collected in the dark environment. In Table 6.2.4 are shown the GP predicted
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Figure 6.2.4: Test environment with different lit or dark areas.

performance for a dark environment, while instead, Table 6.2.4 shows how a dark environment

increase the overall localization error and how theGP-based planner is able to find the one the path

that significantly reduces it compared to the others.

Figure 6.2.5 shows how in a dark environment the GP-based planning algorithm is capable to pre-

dict the path that will minimize the UAV’s localization error compared to the BSP algorithm. that
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Table 6.2.4: GP algorithm results in a dark environment for the prediction of the 10 paths. In red the one
that performs worse compared with the one in green that which minimizes the localization error.

Path Median Mean
RMS

(Pos. Err.) Sum. Err

1 0.40 0.74 1.15 0.74

2 0.35 0.64 0.98 0.64

3 0.39 0.71 1.19 0.71

4 0.34 0.47 0.63 0.47

5 0.38 0.64 0.98 0.64

6 0.40 0.65 0.92 0.65

7 0.37 0.63 0.98 0.63

8 0.35 0.61 0.95 0.61

9 0.37 0.62 0.99 0.62

10 0.36 0.64 1.02 0.64

Table 6.2.5: Comparison between the simulation of the best path according to GP and the best according
to BSP in a dark environment.

GP Best Path BSP Best Path

Flight time (s) 159.2 170.9

RMS 3D Pos. Err. (m) 0.43 0.73

σ (m) 0.25 0.57

μ (m) 0.35 0.46

Median (m) 0.29 0.28

Max Pos. (m) 2.26 3.89

performs worse as shown in Table 6.2.5.
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Figure 6.2.5: TheBSP sum of the norm of the position error covariance matrix, related to the localization
filter position error estimate, are compared with the GP planning algorithm sum of the prediction error
related to the EKF position error estimate for the dark environment test.
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6.2.3 Gaussian Process planning algorithm vs Belief Space Planningwith unmod-

eled obstacles in a well-lit environment

One downside factor of the BSP is the possibility of wrong or not precisemodeling of the environ-

ment or sensors. The GP, instead, uses data to be trained and then predicts the UAV’s localization

error. For this reason, a similar study is conducted with the addition of an obstacle in the environ-

ment. While GP is able to include the occlusion provided by the added obstacle, the BSPwill have

no knowledge of it making it generate the same results as in the previous subsection. Figure 6.2.6

shows the updated environment with the newly added obstacle.

Figure 6.2.6: Environment with the addition of a column as obstacle.
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Asmentioned in the previous paragraph the BSP solution will not change due to its lack of knowl-

edgeof thenewobstacles, while theGP-basedplanner leads to the following results shown inFigure

6.2.7 and Table 6.2.6.

1 2 3 4 5 6 7 8 9 10

Paths

0

0.1

0.2

0.3

0.4

Figure 6.2.7: GP-based planning algorithm choice of the best path, compared to the worst for a well-lit
environment and an unmodeled obstacle.

To understand how the GP-based planning algorithm performs compared to the BSP, their results

are plotted with the UAV’s EKF estimated position error in Figure 6.2.8.

As shown theGP is able to predict themissingmeasurements due to the obstacle occlusion and still

choose the path that results in the lowest localization error of the UAV. The comparison between

the two algorithms is summarized in Table 6.2.7.
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Table 6.2.6: GP-based planning algorithm results in a lit environment for the prediction of the 10 paths
with the addition of an obstacle. In red the one that performs worse compared with the one in green that
which minimizes the localization error.

Path Median Mean
RMS

(Pos. Err.) Sum. Err

1 0.25 0.44 0.75 0.44

2 0.24 0.31 0.43 0.31

3 0.25 0.28 0.32 0.28

4 0.24 0.40 0.67 0.40

5 0.25 0.42 0.74 0.42

6 0.25 0.39 0.61 0.39

7 0.24 0.40 0.70 0.40

8 0.24 0.40 0.71 0.40

9 0.25 0.42 0.76 0.42

10 0.25 0.42 0.71 0.42

Table 6.2.7: Comparison between the simulation of the best path according to the GP-based planner and
the best according to BSP in a lit environment and unmodeled obstacle.

GP Best Path BSP Best Path

Flight time (s) 163.1 171.6

RMS 3D Pos. Err. (m) 0.52 0.70

σ (m) 0.41 0.54

μ (m) 0.32 0.45

Median (m) 0.24 0.28

Max Pos. (m) 7.10 3.76

6.2.4 Gaussian Process planning algorithm vs Belief Space Planningwith unmod-

eled obstacles in a dark environment

In this last scenario, both algorithms face a degraded scene with dark areas where sensors’ perfor-

mances are affected. Also, the presence of an unmodeled obstacle will guarantee some missing91
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Figure 6.2.8: TheBSP sum of the norm of the position error covariance matrix, related to the localization
filter position error estimate, are compared with the GP planning algorithm sum of the prediction error
related to the EKF position error estimate for the well-lit environment test and the added non-mapped
obstacle.
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measurements from some sensors. This will help to show the difference between the two algo-

rithms in handlingmissing information. The following results show that the prediction better han-

dles the dark areas and the added obstacle compared to the BSP.The algorithm’s best path is shown

in Figure 6.2.9 and results are described in Table 6.2.8.
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Figure 6.2.9: GP best and worst path for the dark environment with the unmodeled obstacle.

Figure 6.2.10, along with Table 6.2.9, show the comparison between the BSP and the GP related

to the EKF localization error. In this case, the GP prediction does not return the best path, but the

second-best being both very close to each other with less than one cm in RMS difference.
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Table 6.2.8: GP algorithm results in lit environment for the prediction of the 10 paths with the addition of
an obstacle. In red the one that performs worse compared with the one in green that which minimizes the
localization error.

Path Median Mean
RMS

(Pos. Err.) Sum. Err

1 0.24 0.44 0.93 0.44

2 0.25 0.47 0.83 0.47

3 0.24 0.40 0.72 0.40

4 0.24 0.50 0.97 0.50

5 0.24 0.32 0.46 0.32

6 0.24 0.28 0.35 0.27

7 0.24 0.27 0.34 0.27

8 0.23 0.26 0.33 0.26

9 0.24 0.28 0.36 0.28

10 0.22 0.27 0.37 0.27

Table 6.2.9: Comparison between the simulation of the best path according to GP-based planner and the
best according to BSP in a dark environment and unmodeled obstacle.

GP Best Path BSP Best Path

Flight time (s) 164.4 169.4

RMS 3D Pos. Err. (m) 0.42 0.58

σ (m) 0.25 0.40

μ (m) 0.34 0.41

Median (m) 0.27 0.31

Max Pos. (m) 1.43 2.35

6.3 GP TrainingUsing LiDAR Solution

The previous section showed the potential of the GP algorithm in choosing the path that best lo-

calizes the UAV when given a true source to train the models. Because it was using the absolute
94



0.4 0.5 0.6 0.7 0.8 0.9 1
2.6

2.8

3

3.2

3.4

3.6

3.8

1

2

3 4
5

6
7

8

9
10

BSP

best BSP

worst BSP

0.4 0.5 0.6 0.7 0.8 0.9 1

EKF rms (pose err)

2.6

2.7

2.8

2.9

3
1

2

3

4

5
6

7 8

9
10

GP

best GP

worst GP

Figure 6.2.10: TheBSP sum of the norm of the position error covariance matrix, related to the localiza-
tion filter position error estimate, are compared with the GP planning algorithm sum of the prediction
error related to the EKF position error estimate for the dark environment test and the added non-mapped
obstacle.
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ground truth (e.g. a motion capture system) as one of the data for the GP training process, the

practicality of applying this approach in any kind of environment is reduced.

The previous results were conducted as an illustrative example to show the potential of the GP al-

gorithm. This section shows how this kind of approach can be implemented in any environment

with some grade of accuracy without being linked to a motion capture system. Such an environ-

ment could be represented by an underground scenario (or a warehouse) where the ground robot

is used to provide enough data for the UAV to be able to better localize itself in future missions.

The main goal is to use the reliable position measurement from the LIDAR as the reference to

compare the EKF position estimation which is driven by sensors that are prone to environmental

degradation (e.g., VIOdue to lighting). This could be realistically implemented by having theUAV

manually flown in the environment to collect data, to then be used for the GP training, before the

optimal path is chosen by the planning algorithm.

During this test, the EKF does not fuse the LIDAR measurements during the UAV position esti-

mation and the results are shown in Table 6.3.1 and Figure 6.3.1.
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Table 6.3.1: GP algorithm results in dark environment for the prediction of the 10 paths using LIDAR
solution as ground truth. In red the one that performs worse compared with the one in green that which
minimizes the localization error.

Path Median Mean
RMS

(Pos. Err.) Sum. Err

1 3.32 3.40 3.77 3.40

2 7.22 7.94 8.27 7.94

3 2.46 2.82 3.32 2.82

a 4 7.23 8.09 8.53 8.09

5 7.59 8.14 8.59 8.14

6 6.85 7.32 7.64 7.32

7 2.46 2.69 2.95 2.69

8 6.63 7.04 7.52 7.04

9 6.81 7.57 8.16 7.57

10 3.46 3.67 3.98 3.67

As show in the previous table, the overall UAV’s position error increases but the GP-based

planning algorithm is capable to pick the path that minimizes it.

6.4 Concluding Remarks

This chapter introduced a different and more robust path planning algorithm that leverages real

sensors data to discard those pre-selected paths that could poorly affect the UAV’s localization.

Compared to the BSP algorithm, this algorithm better perform overall in choosing the path that

minimize the UAV’s localization error, but especially in those scenarios where sensors would pro-

vide less reliable measurements.
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Figure 6.3.1: GP planning algorithm sum of the prediction error when the LiDAR solution is used as
“ground truth” during the training process. It is related to the EKF position error estimate for the dark
environment test.
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7
Concluding Remarks

7.1 Discussion

This work presented the problem of cooperative navigation between two robots in a harsh envi-

ronment. Different tools have been developed to improve the robot’s autonomy and a complete

stack was assembled to collect extensive data for the development of the navigation filter described

in Chapters 3 and 4. This process delivered a team of two robots cooperating, where the main
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computing power is processed on the ground rover and it also provides the UAV pose feedback

necessary for the flight controller to perform waypoints navigation. Among many challenges, the

main lesson learned consists in how important is the interpretation of the sensor measurements,

their processing, and consequently their communication such that the UAV is able to benefit from

them.

Both a hardware realization and a simulator were developed to test the UAV behavior in the real

world scenario and especially to test the new algorithms described in chapters 5 and 6. This simu-

lator was also extensively used to improve the navigation filter to perform waypoint navigation.

With theBSP algorithm, eachpath is associatedwith the total uncertainty that the dronewould

face flaying that specific order of waypoints. Since the waypoints are randomly chosen, the order

they are traveled can substantially impact the drone localization error. As mentioned in chapter 5,

some of the sensors, used to localize the UAV, provide less reliable measurements than others. For

this reason, when the drone starts the path flying in the field of view of a less reliable sensor, the

estimated position is affected by the propagation of a larger error. As this algorithm is able to recog-

nize which is the order of waypoints that minimize the localization error of the UAV, it is also fully

dependent on how accurate each sensor model is for the calculation of the error propagation. This

being the major downside of this algorithm, there are a few others that are important to mention.

First, the algorithm is developed to work offline, and second even a very accurate sensor model

would not consider the environment condition. For this reason, the GP algorithm was developed

to incorporate the sensor behavior, in a specific environment, in the decision-making process.

TheGPplanning algorithm results to bemore robust than the BSP since it uses the real sensors

data to predict their model. This allows the algorithm to associate a more realistic error prediction
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to each position of the pre-selected paths. This way the algorithm can predict the sensor perfor-

mances, and its degradation due to the environment. Like the previous algorithm, this also has

some downsides that are important to mention. The main issue consists in the collection of the

data necessary to train the GP. Also, at this moment the algorithm is dependent on the same en-

vironment where the training data are collected. However, the LiDAR training version shows the

potential of using a subset of sensors to train the error model of others.

7.2 Futurework

Like in any research work, the one presented in this dissertation can be extended and further im-

proved. Future work can focus on two main fronts, first, improving the presented planning algo-

rithms to be more generic and applicable in different scenarios, second improving the motion of

the ground rover to better assist the UAV.

Since the presented algorithms are designed to work offline, a major improvement consists in

making them capable of re-planning the route online or even adding more waypoints to the route.

If a sub-optimal solution is accepted, each algorithm could predict the best solution on a shorter

horizon before moving to the next.

More specifically for the GP algorithm, instead, the training process could be performed on a

smaller set of data, such that the prediction would involve just a subset of the waypoints. This

approach could transform the presented algorithm into an “almost online” version.

Further improvements consist of adjusting thenavigationfilter to take into accountUGVmove-

ments while providing the UAV localization. This way the UGVmovement could improve the en-

vironment map or it could position itself to keep the UAV always in the sensor’s field of view.

These are just a few of the multiple routes that the work in this dissertation could be the base of.
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