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Abstract

Localization Algorithms for GNSS-denied and Challenging
Environments

Chizhao Yang

In this dissertation, theproblemabout localization inGlobalNavigationSatellite System(GNSS)-
denied and challenging environments is addressed. Specifically, the challenging environments dis-
cussed in this dissertation include two different types, environments including only low-resolution
features and environments containing moving objects. To achieve accurate pose estimates, the er-
rors are always bounded through matching observations from sensors with surrounding environ-
ments. These challenging environments, unfortunately, would bring troubles intomatching related
methods, such as ”fingerprint” matching, and Iterative Closest Point (ICP). For instance, in envi-
ronmentswith low-resolution features, theon-board sensormeasurements couldmatch tomultiple
positions on a map, which creates ambiguity; in environments with moving objects included, the
accuracy of the estimated localization is affectedby themovingobjectswhenperformingmatching.
In this dissertation, two sensor fusion based strategies are proposed to solve localization problems
with respect to these two types of challenging environments, respectively.

For environments with only low-resolution features, such as flying over sea or desert, a multi-
agent localization algorithm using pairwise communication with ranging and magnetic anomaly
measurements is proposed in this dissertation. A scalable framework is then presented to extend
the multi-agent localization algorithm to be suitable for a large group of agents (e.g., 128 agents)
through applying Covariance Intersection (CI) algorithm. The simulation results show that the
proposed algorithm is able to deal with large group sizes, achieve 10 meters level localization per-
formance with 180 km traveling distance, while under restrictive communication constraints.

For environments includingmovingobjects, lidar-inertial-based solutions areproposedand tested
in this dissertation. Inspired by the CI algorithm presented above, a potential solution using mul-
tiple features motions estimate and tracking is analyzed. In order to improve the performance and
effectiveness of the potential solution, a lidar-inertial based Simultaneous Localization and Map-
ping (SLAM) algorithm is then proposed. In this method, an efficient tightly-coupled iterated
Kalman filter with a build-in dynamic object filter is designed as the front-end of the SLAM algo-
rithm, and the factor graph strategy using a scan context technology as the loop closure detection is
utilized as the back-end. The performance of the proposed lidar-inertial based SLAM algorithm is
evaluatedwith several data sets collected in environments includingmoving objects, and compared
with the state-of-the-art lidar-inertial based SLAM algorithms.



Acknowledgments

This work would not have been possible without the support from friends, family, and colleagues.
To show my appreciation, I would like to take a brief moment to acknowledge a few of them.

I would first like to thank my advisor Dr. YuGu for leading me to analyze this problem and
instructing me to explore ideas. I really appreciate your supports and mentorships in my
academic researches. Your suggestions always lead my way in both my study and my life. Next, I
would like to thank Dr. JasonGross for your helpful suggestions and ideas in my researches,
especially in the cooperative navigation and the localization system design in the pollination
robot project. Your useful suggestions give me a lot of inspirations. Additionally, I would like to
thank the remaining members of my committee, Dr. Guilherme Pereira , Dr. Powsiri
Klinkhachorn , Dr. Xin Li , and Dr. Mario Perhinschi . Your applied and creative comments
will make the proposed idea come true.

Moreover, I would like to recognize every member of the WVU Interactive Robotics
Laboratory(IRL) . Everyone is so selfless and helpful at any time. I would like especially to thank
Dr. Jared Strader for your assistants on most of my research projects, NickOhi for your
supports in experiments whenever I need your help, JennNguyen for your suggestions in my
coding skills, Dr. Kyle Lassak for your inspirations in my algorithm development, Scott
Harper , Corner Castle , MoBuzzo , Jonas Bredu , Dr. Cagri Kilic , Chris Tatsch , Dylan
Covell , Maria Gonzalez for your supports in hardware design and data collection.

Also, I would like to thank the supports from the US Air Force Research Laboratory (Award
No. FA8651-16-1-0002), the USDA NIFA project (No. 2017-67022-25926), the NASA EPSCoR
Research Cooperative Agreement (WV-80NSSC17M0053), the NASA Innovative Advanced
Concepts (NIAC 80NSSC19K0963), and the West Virginia University Outstanding Merit
Fellowship for Continuing Doctoral Students.

Finally, I would like to thank my dear parents and my dear wife Minghao Liu , without your
support, I cannot finish anything.

iii



Contents

1 Introduction 1
1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7
2.1 Cooperative Localization Based On Scalar Field Measurements . . . . . . . . . 12

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Scalar Field-based Localization with Multiple Agents . . . . . . . . . . 14

2.2 Lidar-Based Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Lidar-based Localization . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 CooperativeUAVLocalizationUsingInter-vehicleRangingandMagnetic
anomaly measurements 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Cooperative Ranging Localization . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Cooperative Magnetic Localization . . . . . . . . . . . . . . . . . . . 35

3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 CooperativeNavigationUsingPairwiseCommunicationwithRangingand
Magnetic Anomaly Measurements 52

iv



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 A scalable Framework for Map Matching Based Cooperative Localiza-
tion 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Problem Statement and Notations . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.2 Subgroup Cooperative Localization . . . . . . . . . . . . . . . . . . . 75
5.3.3 Data Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.1 Magnetic Anomaly Map . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.2 Bathymetric Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Lidar-inertial Based Localization 87
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.2 Lidar-inertial odometry . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.3 Loop Closure Detection and Pose-Graph Optimization . . . . . . . . . 101

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4.1 Data Sets Collected Using A Robot . . . . . . . . . . . . . . . . . . . 102
6.4.2 Data sets collected using a handheld lidar . . . . . . . . . . . . . . . . 105

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Conclusions and Future Work 118
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

v



7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

References 136

vi



List of Acronyms

AERB Advance Engineering Research Building . . . . . . . . . . . . . . . . . . . . . . . 107

CDF Cumulative Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . . 43

CI Covariance Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

CU Covariance Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

DBSCAN Density-Based Spatial Clustering of Applications with Noise . . . . . . . . . . 19

DR dead-reckoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

EKF extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Fast-LIO Fast Lidar-Inertial Odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

FC full communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

GNSS Global Navigation Satellite System . . . . . . . . . . . . . . . . . . . . . . . . . . ii

GPS Global Positioning System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

GTSAM Georgia Tech Smoothing and Mapping . . . . . . . . . . . . . . . . . . . . . . 21

ICP Iterative Closest Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

IEKF iterated extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

IMU inertial measurement unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

INS Inertial Navigation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Lego-LOAM Lightweight and ground optimized lidar odometry and mapping . . . . . . 88

LOAM Lidar Odometry and Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

LIO-SAM Lidar Inertial Odometry via Smoothing and Mapping . . . . . . . . . . . . . 88

NDT Normal Distributions Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

PDF Probability Density Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

vii



RANSAC random sample consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

RMSE Root Mean Square Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

SLAM Simultaneous Localization and Mapping . . . . . . . . . . . . . . . . . . . . . . ii

SVD Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

UAV unmanned aerial vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

UKF unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

WVU West Virginia University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

viii





1
Introduction

1



1.1 Motivation andObjectives

Theability of localization (e.g., to estimate one’s position and orientationwith respect to surround-

ing environments) is necessary for autonomous navigation. Without accurate pose and velocity

estimates, some key functions of autonomous navigation, such as collision avoidance, path plan-

ning, would become difficult. The GNSS assisted by the Inertial Navigation System (INS) has

been adopted as a solution for solving outdoor localization problems for several decades [1, 2].

However, due to reasons such as signal blockages, multipath reflection, and jamming, GNSS is not

always available or reliable [3]. In GNSS-denied environments, in order to achieve accurate pose

estimates using other information sources (e.g., vision, magnetic information, altitude), the lo-

calization errors may be bounded through matching observations from sensors with surrounding

environments. However, localization algorithms dependent on this information may fail in some

challenging environments, such as environments including only low-resolution features, or envi-

ronments containing moving objects. These challenging environments would bring troubles into

matching related methods, such as ”fingerprint” matching [4], and ICP [5]. For instance, in envi-

ronments with low-resolution features, the onboard sensormeasurements couldmatch tomultiple

positions on a map, which creates ambiguity; in environments with moving objects included, the

accuracy of the estimated localization solution is affected by the moving objects when performing

matching. Meanwhile, some applications related to autonomous navigation have to be applied in

these challenging environments, such as unmanned aerial vehicles (UAVs) flying over deserts or

seas, robots navigating in a roomwith crowds of people. Therefore, to develop accurate and robust

localization algorithms for GNSS-denied and challenging environments is a meaningful research

topic and is the focus of this dissertation.

In order to reduce the influences of noisy information from the challenging environments, mea-
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surements or observations from multiple sensors (e.g., internal sensors, such as wheel encoders,

inertial measurement units (IMUs), or external sensors, such as cameras, lidars, magnetometers,

altimeters) are often fused to achieve robust pose estimation. The sensor fusion algorithms, such

as Kalman Filter[6] and its variances (e.g., extended Kalman Filter (EKF)[7], unscented Kalman

Filter (UKF)[8]), CI[9], particle filter[10], factor-graph based optimizations[11], are often cho-

sen to solve these problems depending on applications. Moreover, due to different types of chal-

lenges existing in different environments, localization solutions are not the same based on applica-

tions and sensors applied. In this dissertation, two sensor fusion-based localization algorithms are

designed with respect to two specific applications in different types of challenging environments

(i.e., environments including only low-resolution features and environments containing moving

objects). Specifically, for environments with only low-resolution features, such as flying overseas

or deserts, a multi-agent localization algorithm using inter-agent communication with ranging and

scalar fieldmeasurements is proposed in this dissertation; for environments including a large num-

ber of moving objects, a lidar-inertial-based solution is proposed in this dissertation. To sum up, in

this dissertation, the goal is to develop reliable localization systems for challenging environments,

which are environments including only low-resolution features and environments containingmov-

ing objects). Depending on different types of challenging environments, the details of applications

and solutions are different. Therefore, with respect to those two different types of challenging en-

vironments, the objectives of this dissertation are:

• To develop a cooperative localization algorithmmainly using inter-agent ranging and scalar

field measurements with communication limitations;

• To design a reliable lidar-based localization system for environments including a large num-

ber of dynamic objects.
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1.2 Contributions

This dissertation addresses the reliable localization problem with respect to two applications in

two different types of challenging environments (i.e., environments including only low-resolution

features and environments containing moving objects). Specifically, two sensor fusion based lo-

calization algorithms are presented.

For environments including only low-resolution features, a cooperative localization system us-

ing inter-agent ranging and scalar fieldmeasurementswith limited communication is designed. The

contributions of the presented cooperative localization system are summarized as follows.

• The presented cooperative localization system is able to estimate the global pose with lower

computation requirements due to the significantly less number of states used in the particle

filter compared with the previous approach presented in [12]. This would in turn allow the

application of this cooperative navigation algorithm on a larger group.

• The geometric structure of the group (i.e., the relative position inside the group) are able to

estimate using pairwise ranging information, which means that each agent at one-time step

is able to communicate and perform ranging measurements with only one other agent in

the group. The simulation study also suggests that the pairwise communication approach

is capable of delivering a majority of the cooperative navigation benefit as compared to the

complete communication scenario (i.e., at each time step, each agent can communicate and

perform ranging measurements with all other agents in the group), which is more feasible

with existing ranging devices.

• Through evaluating with different resolution map, the proposed method show more robust

comparedwith a single agent case. Meanwhile, the results from the sensitivity analysis show
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that the presented algorithmcan tolerate large variations of velocity, yaw rate, and scalar field

measurement noises.

• A scalable framework is presented to perform cooperative localization based on scalar field

information, which is performed through fusing the solutions estimated by smaller local

subgroups in a large group. Theproposed framework canbe scaled to large group sizes under

communication constraints (e.g., a group of 128 agents was simulated)with a limitation that

the cooperative localization performance is a function of the subgroup size instead of the full

group size.

For environments including a large number ofmoving objects, a lidar-inertial based SLAMalgo-

rithmwith a dynamic object removal filter is presented to estimate 3Dpose for a long time drive. In

the presented algorithm, an iterated extended Kalman Filter (IEKF) based lidar-inertial odometry

solution using inertial measurements (i.e., 3D acceleration and angular rate) as prediction inputs

and point cloud based matching results as observation updates is proposed. In order to reduce the

influences about the noisy points from moving objects, a dynamic object removal filter through

checkingdistance changes is designed tofilter out thepoints frommovingobjects before expending

the local map with the current scan. A factor graph-based framework is performed as the back-end

of the proposed SLAM algorithm, and the scan context algorithm [13] is applied for loop closure

detection. Thecontributions of the proposed lidar-inertial based SLAMalgorithmare summarized

as follows.

• Compared with existed point cloud matching based SLAM algorithms in a dynamic envi-

ronment, the proposed algorithm is able to effectively detect and removemost of the points

from moving objects.
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• A data set for evaluating the robustness of motion estimation algorithms in a dynamic envi-

ronment is set up. The performance of the proposed algorithm is compared with the state-

of-the-art lidar-inertial SLAMalgorithms in the collected data set. The results show that the

proposed algorithm is able to achieve more robust online localization compared with other

algorithms.

1.3 Organization

The rest of this dissertation is organized in the following manner. The background and related

works about localization systemdesign forGNSS-denied and challenging environments, especially

environments with only low-resolution features and environments including moving objects, are

summarised in Chapter 2. With respect to two different applications, the background and related

works about cooperative localization system design and lidar-inertial based localization algorithm

design are discussed in detail in Chapter 2, respectively. In Chapter 3, a cooperative localization

system is presented, and is evaluated with different communication strategies and simulated mag-

netic anomaly map. The cooperative localization system is then evaluated with magnetic anomaly

map generated from published data set and a designed feedback control-based simulator in Chap-

ter 4. A scalable framework is presented in Chapter 5 to extend the cooperative localization algo-

rithm to suit for groups with large size. A lidar-inertial-based localization algorithm with build-in

dynamic object removal filter is presented in Chapter 6. The dissertation is concluded in Chapter

7.
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2
Background
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In this dissertation, the problem about localization in GNSS-denied and challenging environ-

ments is investigated. As discussed in Chapter 1, the challenging environments analyzed in this

dissertation contain two different types, which are environments with only low-resolution features

and environments including a large number ofmoving objects. Due to different types of challenges

for localization in different environments, the developed localization solutions are not the same

based on applications and the sensors used.

For environmentswithonly low-resolution features, theproblem isdefinedas localizationmainly

relying on scalar field measurements in this dissertation. Scalar fields associate a scalar value with

every point in space, and applications include gravity anomaly [14], magnetic anomaly [15, 4],

topographic [16], and olfaction [17], to name a few. For some types of the scalar field, the data

around the world is published and available, such as magnetic anomaly [4], which is a benefit for

navigation. However, part of these available data is in low-resolution, such as magnetic anomaly

mapwith resolution in about 900-meter [18], bathymetricmapwith resolution in 100-meter [19].

Methodsutilizing scalar fields for localization regulate agents’ dead-reckoningerror growth through

matching the informationmeasured by onboard sensorswith the prior given scalar fieldmaps, such

as terrain aid navigation [20] and magnetic anomaly-based navigation [4]. However, these meth-

ods are sensitive to the characteristic information available in the local area near the agent, the

sensor noises, and the resolution and accuracy of the given maps. For example, for a single agent

localization, the onboard sensor measurements could match multiple positions on a scalar field

map, creating ambiguity. This can be alleviated through matching the past sensor measurements

along the agent’s trajectory to the map [21], but is still often not robust in a real-world application.

Fortunately, compared to a single agent, a group of collaborative agents may provide several navi-

gational benefits, such as tolerance against individual sensor failures. This can be achieved through
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sharing observations across a large spatial area on the scalar field.

Within cooperative localization problems, communication limitation and relative poses esti-

mated inside the group are inevitable issues needed to be solved. Due to communication limita-

tions (e.g., range or number of channels), each agent in the group canonly communicatewith a lim-

ited number of agents inside a certain range. Therefore, a reliable and scalable framework to satisfy

the communication limitations is required to be designed. Moreover, to improve the reliability of

relative observations,many approaches rely onboth inter-agent ranging andbearingmeasurements

[22, 23]. Bearing-only measurements have been tested and proven capable of estimating the pose

of two nearby agents (about 10 meters apart) [24]. However, bearing measurements often have a

limited range, such as measurements from cameras. Rapid and precise distance measurements at

a long-range are available using a coherent laser ranging system presented in [25] or radio-based

systems [26]. With the low-resolution scalar field map, in order to cover a large spatial area to im-

prove the localization performance, the distances among agents inside the group are usually over

the limitation of the bearing sensors. In this case, estimating relative poses inside the group using

ranging information ismore applicable. Therefore, developing a cooperative localization algorithm

mainly using inter-agent ranging and scalar fieldmeasurements with communication limitations is

one part of the problem in this dissertation.

For environments including a large number of moving objects, the accuracy of the estimated lo-

calization is affected by themoving objects when performing visible features basedmatching algo-

rithms, such as direct methods applied with image information [27], Normal Distributions Trans-

form (NDT) applied with point cloud information [28], and ICP [5] applied with both image

and point cloud information. Basically, these matching algorithms are trying to find a transforma-

tion between two input observations (e.g., images, point clouds) to minimize the differences (e.g.,
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distance, intensity, distribution) between each pair of correspondences. The estimated transfor-

mation between two observations could be considered as the motion of the sensor when the sur-

rounding environment ismostly static. In practice, however, the localization systemhas often been

applied in the environment includingmoving objects [29, 30], such as self-driving vehicles passing

through the street with crowded people, autonomous driving robotic guides working in museums

at a busy time. For image-based observations, several algorithms were proposed to solve visual

odometry or visual SLAM problems in dynamic environments [31, 32, 33, 34, 35, 36, 37, 38, 39].

These methods remove dynamic objects through detecting the difference of the intensity [31, 33,

34] or using semantic information [32]. However, these methods cannot be applied directly with

point clouds information. Compared with the images, the point clouds from lidars only present

sparse information (i.e., the information from one point cloud is not dense as from one image).

Moreover, with point cloud data, object detection based on semantic is more difficult than using

images due to less information from one point cloud and less available labeled data set used for

training. In practice, however, the lidars cannot always be replaced with cameras since the cameras

cannot work in dark environments and are not able to measure accurate depth information with

long distances, which are necessary and useful for localization.

In order to reduce the noise from the dynamic objects, a straightforward solution is to pre-

process point clouds before performing registration. In [40, 41], features, such as edges and planar

points, extracted from raw point cloud are used to do an alignment. Even though these methods

are able to reduce the ratio of points in dynamic objects in the processed point cloud, the rest of

the noisy points (i.e., points fromdynamic objects) in the processed point cloud still affect the per-

formance of registration. To detect points from dynamic environment precisely, a random sample

consensus (RANSAC) based outlier detection method is applied in [42] to perform pose estima-
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tion in urban dynamic environments. However, the method presented in [42] only estimates 2D

poses and works in large outdoor environments. Dynamic points removing algorithms presented

in [43, 44, 45, 46] are related on multiple scans (one scan is defined as the point cloud collected

from one full sweep for mechanical lidars or one-shot for solid-state lidars) in sequential time slots

and accurate transformations between each pair of continuing scans. In this case, these algorithms

cannot be applied online to estimate poses in dynamic environments. In [47], semantic informa-

tion learned using the RangeNet++ [48] method is applied to remove dynamic points when gen-

erating point cloud map. Due to the lack of the labeled data set, the types of the dynamic objects

are limited in [47]. Therefore, to design a robust lidar-based localization system for environments

including a large number of dynamic objects is another part of the problem in this dissertation.

To sum up, for environments with only low-resolution features, the problem is defined as coop-

erative localizationmainly relying on scalar field measurements (e.g., magnetic anomaly, altitude);

for environments including a large number of moving objects, lidar-based localization problem is

focused. Although sensor fusionmethods are applied in solutions for both environments, in order

to state more clear, in this chapter, the background and related works related to the cooperative

localization mainly based on scalar field measurements and lidar-based localization are discussed,

respectively.
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2.1 CooperativeLocalizationBasedOnScalar FieldMeasure-

ments

2.1.1 Background

Cooperative multi-agent systems have become increasingly popular due to the wide range of ap-

plications that they support, such as surveillance [49], search and rescue [50], and exploration

[51]. In these applications, high-quality localization, the ability for agents to reliably and accu-

rately estimate their poses (i.e., positions and orientations) with respect to the surrounding envi-

ronment or to a geographic coordinate system, is crucial. One potential solution for localization in

GNSS-denied environments is to utilize map matching techniques, given a prior map represented

as a scalar field. Scalar fields associate a scalar value with every point in space, and applications

include gravity anomaly [14, 52], magnetic anomaly [15, 4, 53], topographic [16, 54], and olfac-

tion [17, 55], to name a few. Some of the scalar field information has been applied in localiza-

tion because of their characterises, such as magnetic anomaly information [56, 4]. The magnetic

anomalies present the high spatial frequency content of the Earth’s magnetic field. Additionally,

the magnetic anomaly information has been measured for most regions in the world [4]. Even in

an indoor environment, the magnetic field can be mapped for supporting vehicles’ navigation sys-

tems [57, 58]. Another reason for usingmagnetic anomaly information in localization is due to the

technologicalmaturity ofmagnetometers. For instance, optically pumped cesiummagnetometers,

which can achieve an accuracy of 0.1 nanoTesla(nT), have been used to create magnetic anomaly

maps in geological surveys [59, 60].

Methodsutilizing scalar fields for localization regulate agents’ dead-reckoningerror growth through

matching the information measured by on-board sensors with the prior given scalar field maps,
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such as terrain-aid navigation [20] and magnetic anomaly–based navigation [4]. However, these

methods are sensitive to the characteristic information available in the local area near the agent,

sensor noises, and the resolution and accuracy of the given maps. For example, for a single agent

localization, the on-board sensormeasurements couldmatch tomultiple positions on a scalar field

map, creating ambiguity. This can be alleviated through matching the past sensor measurements

along the agent’s trajectory to the map [21] but is still often not robust in real-world applications.

Fortunately, compared to a single agent, a group of collaborative agents may provide several navi-

gational benefits, such as tolerance against individual sensor failures. This can be achieved through

sharing observations across a large spatial area on the scalar field. Therefore, cooperative localiza-

tion using scalar field is an active research topic that has been studied over the last decade [61, 62,

12, 63, 64, 65].

The scalar field-based cooperative localization algorithms can be classified into two main ap-

proaches. The first one is to treat the multi-agent group as a unity and to match observations from

all agents with the given map to estimate their poses at each time step, which can be considered

centralizedmethods. The centralizedmethods are able to achieve error growth bounded position-

ing and show robustness to issues such as low resolution of the map [15]. However, due to con-

straints on communication and the on-board computing resources for the agents, the group size

of the centralized cooperative localization is limited in practice. The second approach is to per-

form decentralized cooperative localization, which means that each agent in the group estimates

its ownpose basedon scalar field observations independently at each time step. Then, the estimates

are updated, using the relative information (such as ranging, bearing) between this agent and its

neighbors [61]. Usually, the communication constraints (e.g., range, connectivity, bandwidth)

are considered when designing the decentralized localization approaches. In theory, decentralized
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methods are scalable to the group size and robust to errorsmadeby, or failures of, individual agents.

However, in the existing approaches [66, 61], each individual agent needs to come up with a pose

estimation, using its own scalar field measurement first, which has potential robustness issues in

information poor regions.

2.1.2 Scalar Field-based Localization withMultiple Agents

Scalar field based localization system designs have been researched in applications such as gravity-

aid navigation [21, 67, 68], magnetic anomaly–based navigation [4, 69], and terrain-based navi-

gation [70, 71]. In order to perform robust localization in featureless areas or with low-quality

sensors, cooperativemulti-agent localization systems are proposed to achieve accurate estimations

[72, 73, 74]. Distributed multi-agent localization methods were first formulated based on Kalman

filters [75, 76]. Even though these methods allow to perform an observation update and data ex-

change when agents are within the communication range, each agent in the group is required to

estimate the poses of all agents, which does not scale well to large groups. Meanwhile, the Kalman

filter-based estimation methods assume that the pose estimate can be presented by a unimodal

Gaussian distribution. However, the scalar field-based estimation error distributions are usually

multi-modal and difficult to be approximated by the Gaussian distribution [4, 61].

Canciani et al. formulated the magnetic anomaly-based cooperative navigation problem as a

particle filter [12]. The method does not scale for large groups, due to the use of a centralized

particle filter. The works in [15, 63] broke the localization process into two steps: the relative

poses between agents are estimated using inter-agent ranging measurements through an EKF, and

then each agent estimates its pose using all magnetic anomaly measurements and relative poses of

the group through a particle filter. Although the particle filter in [15, 63] only contains four states,
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the EKF formulation, which includes all agents’ poses, does not scale to large group sizes.

A decentralized cooperative bathymetry based localization method was proposed in [66]. In

[66], each agent is able to estimate its pose throughmatching altimetermeasurementswith a bathy-

metric map, using a marginalized particle filter. Then, the Gaussian belief, estimated based on the

inter-agent ranging measurement and the other agent’s position estimate, is applied to update the

particles in the filter. Although this method is able to achieve scalable cooperative localization, it

ignores the correlation of the information, whichmay lead to over convergence. Rui et al. then pre-

sented an extended information filter to address the issues about the correlation of the information

[77]. However, the method described in [77] is reliable to GPS measurement or highly accurate

bathymetric information-based estimations for the prediction update, which leads this method to

be non-feasible in an underwater environment.

Wiktor et al. presented adecentralizedCIbased collaborativemulti-agent localization algorithm

applied in natural terrain-aid navigation [61]. Similar to [66], each agent is assumed to perform

terrain-aid navigation to estimate its own pose and related covariances. The pose estimates are

updated using inter-agent ranging measurements and agents’ pose and covariances through a CI

filter, which can fuse estimates with unknown correlation. One potential limitation of this method

is the robustness within feature-poor regions due to the singlemeasurement used inmapmatching

for each agent at each time step. Compared with those methods presented in [66, 77, 61], which

only use the information from the immediate neighbors, in the proposed algorithm, a subgroup

strategy, instead of utilizing single measurements, is applied to improve the robustness of the lo-

calization system.

Active multi-agent navigation algorithms [78, 79, 80], which combine localization and active

path planning algorithm, are interesting research directions to improve the robustness of the pose

15



estimation. However, to the best knowledge of the author, there is so far no activemulti-agent nav-

igation algorithms focused on localization based on map matching using scalar field information.

2.2 Lidar-Based Localization

2.2.1 Background

Lidar-based localization in environments including a large number ofmoving objects is a challenge

problem [81]. In order to present a robust solution for this problem, knowledge from several re-

search topics need to be fused, such as point cloud registration, outlier detection, and sensor fusion

(data fusion). The background of these related knowledge are discussed in this section.

RegistrationMethods

Point cloud registration algorithms are designed to estimate the transformation (i.e., translation

and rotation)which aligns two point clouds. The point cloud registration can support a wide range

of applications, such as motion estimation and 3D reconstruction [40, 82], medical imaging [83],

and object recognition [84], to name a few. When the correct correspondences between point

clouds are known, the registration becomes a linear least-squares problem that aims to minimize

the sum of the Euclidean distances between correspondence points. The linear least-squares prob-

lem can be solved robustly using the Singular Value Decomposition (SVD) method [85]. How-

ever, in practice, especially in motion estimation, the correspondences are usually unknown and

difficult to estimate. Besl andMcKay proposed a solution, named ICP, for the problemabout point

cloud registration with unknown correspondences [5]. The ICP iteratively processes finding cor-

respondences, estimating transformations, and evaluating distance errors to disregard outliers and
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get the best transformation estimate. In details, two point clouds are assigned to source and ref-

erence separately, and the transformation from source to reference is the goal needed to be esti-

mated. In every process circle, the source is transformed using the previous estimate of the rotation

and translation parameters. Correspondence points between reference and transformed source are

then selected based on nearest neighbor approaches [86]. Based on the correspondences, the tem-

porary transformation is estimated through linear least-squaresmethods, such as SVD. The tempo-

rary transformation is chosen as the final result if the sumof the distance between correspondences

is less than a threshold.

The original ICP algorithm is also called point-to-point ICP, which often falls into local mini-

mum due to finding wrong correspondences. In order to improve the accuracy and robustness of

the ICP, several variants were proposed. Chen and Medioni presented a point-to-plane variant of

ICP which is taking advantage of surface normal information when calculating the distance error

[87]. Generalized ICP, presented in [88], is extended from [87], which considered surface nor-

mal information from both source and reference. Therefore, the generalized ICP is also called the

plane-to-plane variant of ICP. However, registration using points directly has a number of limi-

tations. For example, noisy points from sensors have an influence on the accuracy of estimation.

Although the surface normal information is utilized, point clouds contain no explicit information

about surface characteristics such as orientation, smoothness, or holes. The NDT algorithm, first

proposed by Biber and Straber, solves point cloud registration by converting the reference point

cloud to normal-distribution map [89]. The NDT algorithm is first to subdivide the space occu-

pied by the point cloud into a grid of cells. A Probability Density Function (PDF) is computed for

each cell based on the point distribution within the cell. Each point in the source point cloud is

assigned to a correspondent cell in a normal-distribution map related to a score defined by a like-
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lihood function, and the gradient vector and the Hessian matrix are updated based on the score.

As a result, the best transformation is computed using the gradient vector and the Hessian matrix.

Magnusson improved the accuracy of the NDT by applying the Gaussian approximation of the

log-likelihood of the mixture model to compute the score [90].

Compared with ICP, NDT is more robust since it applies normal-distribution of cells which is

able to reduce the effectiveness of the noisy points in finding correspondences. However, both ICP

and NDT are difficult to have a precise transformation estimate when a large number of dynamic

objects is included inpoint clouds. Thus, inmotion estimation applications, the existedpoint cloud

registration algorithms cannot be applied in a environment including a large number moving ob-

jects directly. Meanwhile, the motion estimation algorithms designed based on these point cloud

registration methods are not suitable in this type of environment.

Outlier Detection

Outlier detection is an important research topic in data analysis. Dependedondifferent application

domains, many outlier detection algorithms have been specifically developed. In order to figure

out the moving object, outlier detection is a useful technology. The clustering algorithms have

been developed for many decades and can be divided into different categories [91]. Clustering

algorithms based on partitions, such as K-means [92] and K-medoids [93], are to determine the

center of data points of the corresponding cluster. Although these algorithms perform with high

computing efficiency, the results are relatively sensitive to the outliers and the number of clusters

needs to be pre-defined. Hierarchy based clustering algorithms, such as CURE [94] and ROCK

[95], are to cluster data through constructing the hierarchical relationship among data. Compared

with partition-based algorithms, these algorithms are not sensitive to the outliers. The number
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of clusters, however, still needs to be preset. The clustering algorithm based on density, such as

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [96], is to cluster the

data which is in the region with a high density of the data space. The DBSCAN does not force

every data instance to belong to a cluster, whichmeans it is not sensitive to outliers. Moreover, the

parameter about the number of clusters is not required. TheDBSCAN is also suitable for data with

arbitrary shapes.

Thedisadvantage of the originalDBSCANpresented in [96] is that the clustering result is highly

sensitive to theparameters (i.e., theminimumnumberof points in aneighborhoodand the radiusof

the neighborhood). To overcome the drawback of the originalDBSCAN, somemethods extended

from DBSCAN are introduced to select parameters heuristically, such as OPTICS [97], Density

and distance-based clustering [98].

Sensor Fusion

Sensor fusion, also known as data fusion, is the process to producemore consistent and accurate in-

formation through integratingmultiple data sources. Sensor fusion technologies have been applied

in topics about motion estimation and object tracking for many decades.

The Kalman filter [99], a well-known sensor fusing algorithm, is presented to fuse data through

estimating a joint probability distribution. The Kalman filter, however, is designed for linear sys-

tems. In order to solve problems in a nonlinear system, which exist in most engineering projects,

some variants of the Kalman filter are presented. The EKF [100] linearizes the state transition and

observation functions by computing their Jacobians. The IEKF is proposed to reduce the error

causedby the linearization. TheUKF that presented in [8] solves nonlinear problemsby estimating

mean and covariance usingunscented transformation. For a complex nonlinear system, the particle
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filter algorithm [101] was developed based on Monte Carlo methods to predict mean and covari-

ance using a large number of particles. Moreover, factor graph-basedoptimization algorithms, such

as GTSAM [102], g2o [103], are also able to be utilized for fusing information.

These algorithms, however, assume that the given information is independent. In other words,

there is no correlation between the given information. The assumption can not be guaranteed in

many situations, and the correlation between information is oftenunknown. Julier et. al. presented

anon-divergent estimation algorithm, namedCI [8], to solve sensor fusionproblemwithunknown

correlations. Uhlmann then extended the CI algorithm to the Covariance Union (CU) algorithm

[104] for performing fault-tolerant distributed data fusion.

2.2.2 Lidar-based Localization

The lidar-based localization problem is related to research topics about lidar-basedmotion estima-

tion, also known as lidar odometry estimation. The goal about these problems is to estimate the

pose of the lidar using scans (i.e., point clouds from lidar) and velocity estimation from other sen-

sors, such as IMUs, wheel encoders. The straightforward solutions are to compute the transforma-

tion between scans through point cloud registration methods, such as ICP, NDT [105, 106, 107].

These methods, which are always processed with raw scans or randomly sampled point clouds,

however, are too expensive in computation to apply in online applications and not robust in com-

plex environments. To overcome these disadvantages, features, which are extracted from raw point

clouds, are applied in point cloud registration methods. Zhang et al. presented an edge-surface

feature-based lidar odometry algorithm that is able to perform lidar motion estimation at 10Hz

[40]. Shan et al. treated ground points as another feature type when performing lidar motion esti-

mation [41], which is extended from the algorithm presented in [40].
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Because of noises from sensors, the errors from point cloud registrations that are accumulated

at each time step, and then the performance of these lidar odometry algorithms become worse

over time. Meanwhile, the estimationswould diverge quickly in dynamic environments since point

cloud registration methods, such as ICP and NDT, are designed for static environments (i.e., all

objects around the lidar in the environment are static with respect to the environment). Although

the errors generated from lidar odometry can be regulated through back-end optimization frame-

works in SLAM (e.g., factor-graph based optimization algorithms Georgia Tech Smoothing and

Mapping (GTSAM) [102] and g2o [103]), loop closure detection, which is a necessary step in

back-end optimization frameworks, is sensitive with the moving objects in environments. There-

fore, to develop a robust lidar-based motion estimation algorithm to be suitable for dynamic envi-

ronments is important.

In a dynamic environment, solutions of current lidar odometry methods are to detect and dis-

card dynamic objects or to track moving objects [81]. An Expectation-Maximization (EM) based

algorithm is designed to detect static and dynamic objects by updating the probabilistic estimates

related to each measured points using the currently estimated pose and the current map [108].

Wang et al. developed an algorithm, named SLAMwithMovingObjects Tracking (SLAMMOT),

to detect and track dynamic objects using a map built by SLAM [109]. A number of methods are

developed utilizing multiple-layer maps to detect and remove outliers [46, 110, 111]. For these

dynamic object detection algorithms, an assumption is required which is that the pose of the lidar

is estimated and known before detecting dynamic objects. In other words, these algorithms utilize

information from both dynamic and static objects to estimate pose. Although the errors from li-

dar odometry would be regulated in back-end optimization, the pose estimated partially based on

dynamic objects would lead the dynamic objects detection algorithm to fail at some time.
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With the development in Deep Learning, features are able to be detected from point clouds

through algorithms, such as VoxelNet [112], PointCNN [113], PV-RCNN [114], RangeNet++

[48]. Objects are able to be recognized in a point cloud through applying semantic segmentation

algorithms (e.g., PointNet++ [115]). Chen et al. proposed an algorithm, called SUMA++, which

attempted to remove the dynamic objects in the map using semantic information [47]. However,

due to the lack of different types of labeled data (currently, the available labeled data is mainly

focused on cars, pedestrians, and cyclist [116]), the objects in point clouds could not be classified

in many different types.

Meanwhile, the semantic information could not represent the dynamic objects in some cases,

such as a car which is parking off the street cannot be treated as a dynamic objects. Several moving

object segmentation algorithms are presented, such as Lidar-MOS [45], removert [43]. However,

these segmentation algorithms required pose estimates as input, and were only perform offline,

which cannot be used for online odometry estimation. Meanwhile, compared with images, point

clouds only present sparse information about the environment. In other words, it is more difficult

to accurately predict the semantic information of objects from one point cloud.
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3
Cooperative UAV Localization Using

Inter-vehicle Ranging and Magnetic

anomaly measurements
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3.1 Introduction

Thecontent of this chapter has been reproducedbasedon the author’s previousworks [15, 63]. The

challenges about localization inGNSS-denied environments with low-resolution features could be

the mismatching to multiple positions on a map, which creates ambiguity. One of the positioning

applications in environments with only low-resolution features is to do localization mainly relying

on scalar field measurements as discussed in Chapter 1. Scalar fields associate a scalar value with

every point in space, and applications include gravity anomaly [14], magnetic anomaly [15, 4], to-

pographic [16], and olfaction [17], to name a few. In this chapter, localization mainly using mag-

netic anomaly information is discussed. The Earth’s magnetic anomalies present the high spatial

frequency content of the Earth’s magnetic field. Additionally, the magnetic anomaly information

has beenmeasured formost regions in theworld [4]. Even in an indoor environment, themagnetic

field can bemapped for supporting vehicles’ navigation systems [57, 58]. Another reason for using

magnetic anomaly information in localization is due to the technological maturity of magnetome-

ters. For instance, optically pumped cesium magnetometers, which can achieve an accuracy of 0.1

nanoTesla(nT), have been used to create magnetic anomaly maps in geological surveys [59, 60].

Several researchgroupshaveperformed single-vehiclenavigation studiesusingmagnetic anoma-

lies as the primary source of information [4, 117, 118]. For example, Canciani et al. developed

a navigation filter through a fingerprint matching method to successfully estimate a single UAV’s

global pose using the Earth’s magnetic anomaly map and a navigation grade-INS (inertial naviga-

tion system) [4]. However, thesemagnetic anomaly-based navigation approaches were performed

at a low altitude, which means the map is with high-resolution features. As altitude increases, the

spatial frequency content of a magnetic anomaly field decreases [119], which directly affects nav-

igation performance. Meanwhile, for applications like long-distance flying, the altitude of the ve-
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hicle cannot be kept at a low value all the time. Therefore, a localization algorithm needs to be

developed to achieve localization mainly using scalar field information in low-resolution.

Compared to a single agent, a group of cooperative agentsmay provide several navigational ben-

efits, such as reduced dead-reckoning error, tolerance against individual vehicle or sensor failures,

distribution of sensors across a larger spatial area, and shared observations (e.g., landmark). This

Chapter addresses the problem of cooperative localization for a small group of UAVs in a GNSS-

denied environment. The developedmethod has twomain components. First, a cooperative range

localization algorithm is designed to reduce the dead-reckoning error growth for eachUAV’s global

pose estimate and obtain a reliable estimate of relative positions inside the UAV group to be used

as an input to a cooperativemagnetic localization algorithm. TheUAVposes are estimated by shar-

ing inter-vehicle ranging and visual-inertial odometry information. Two communication scenarios

are considered, the first one assumes that eachUAV can communicate with all other UAVs at once,

and the second scenario assumes that each UAV can only communicate with one other UAV at

each point in time. Using the shared measurements, an EKF is running on-board each UAV to

estimate the poses of all UAVs in the group. In the second step, the cooperative magnetic localiza-

tion algorithm bounds the error growth of the UAVs’ global poses using a particle filter to match

magnetic anomaly measurements acquired by each UAV to a prior magnetic anomaly map based

on the estimated UAV group shape. Simulation results show substantial improvements in navi-

gation performance using the cooperative range localization algorithm as compared to the dead-

reckoning performance of each individual UAV. In addition, the developed cooperative magnetic

localization approach shows performance and robustness benefits compared to cooperative mag-

netic localization using only a single UAV. Meanwhile, compared with the approach presented in

[12], the proposed algorithms are able to estimate the global posewith lower computation require-
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ments due to the significantly less number of states used in the particle filter. This would in turn

allow the application of this cooperative navigation algorithm on a larger UAV group.

The remaining sections of the chapter proceed as follows. Section 3.2 provides a problem state-

ment with associated assumptions. In Section 3.3, methods are presented for solving the relative

localization problem in two communication scenarios as well as for performing cooperative mag-

netic navigation. Section 3.4 presents the simulation configurations and parameters used for eval-

uating these developed algorithms. In Section 3.5, simulation results are presented and analyzed.

Section 3.6 concludes the contributions of this chapter and identifies the current limitations and

future research directions.

3.2 Problem Statement

In this chapter, the case is considered where a group of N UAVs (N is assumed to be even num-

ber here due to communication requirements to be discussed later) are entering a GNSS-denied

environment. Themain objective is to achieve accurate relative localization among all UAVs in the

group as well as to estimate their global poses.

During theGNSS-denied period, theUAVs are assumed to not have access tomajor visual land-

marks or ranging beacons, which is the environment with only low-resolution features. Each UAV

is assumed to be able to perform visual-inertial odometry, which provides estimates of vehicle ve-

locity and yaw rate. Each UAV is assumed to be equipped with radios that enable it to exchange

sensor measurements between UAVs, as well as performing inter-vehicle ranging measurements.

Note that the range between UAVs is assumed to bemeasured through the communication signal,

so eachUAV is only able to obtain the range to another UAV at themoment they are communicat-

ing.
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Each UAV also performs point measurements of the local magnetic field anomaly, which can

be exchanged through the communication links. In addition, each UAV is assumed to be loaded

with a known magnetic anomaly map. All UAVs are assumed to be flying at a same altitude, which

means that this studyonly dealswith thenavigationproblem in2D.The initial position in the global

frameof reference for eachUAV is assumed tobe knownwith a small uncertainty upon entering the

GNSS denied environment. No additional information is used for UAV navigation in this study.

3.3 Technical Approach

3.3.1 Communication

Communication is an important component of any cooperative localization strategy. In order for

the group to operate in a cooperative manner, each UAV must have knowledge of the other UAVs

in the group. In this work, each UAV is assumed to have the ability to share information through

ranging links where a ranging link is defined as a connection between a pair of UAVs such that

each UAV exchanges sensor information and measures the inter-vehicle distance. Two cases are

considered for the number of communication links that can be formed by a single UAV at any

point in time. In the first case, each UAV can communicate with each other UAV at any points

in time. This is the best possible scenario in regards to communication and will be referred to as

complete communication. In the second case, each UAV is constrained to having only a single

communication link, so eachUAV is only able to communicate with one otherUAV at any point in

time. This scenario is more practically feasible and will be referred to as pairwise communication.

This sectionprovides anoverviewof the communication strategy and limitations for both complete

and pairwise communication scenarios.
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Complete Communication

In the complete communication scenario, a ranging link is formed between every pair of UAVs.

Therefore, eachUAV exchanges information with each other UAV at every time step. Consider the

graph,GC = (VC , EC), representing the group ofUAVs in the complete communication scenario

whereVC andEC are the sets of vertices andedges inGC respectively. LetVC = {v1, v2, · · · , vN}

such that each vertex corresponds to a single UAV. Since a ranging link exists between each pair of

UAVs,GC is a complete graph onN vertices with the edge set given by

EC = {vivj : vi, vj ∈ VC , vi ̸= vj} (3.1)

where vivj denotes the edge incident to vi and vj , which corresponds to the ranging link between

UAV i and UAV j. The graphs,GC , forN = 4, 8 and 16 are presented in Figure 3.3.1.

1

2

3

4

(a) N = 4

1

2
3

4

5

6
7

8

(b) N = 8

1

2

3
456

7

8

9

10

11
12 13 14

15

16

(c) N = 16

Figure 3.3.1: Graph of the complete communication scenario for N = 4, 8 and 16 UAVs
where each vertex represents a single UAV and each edge represents a ranging link between a
pair of UAVs.
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Pairwise Communication

In the pairwise communication scenario, each UAV forms a ranging link with one other UAV at

each point in time. Therefore, multiple time steps are required in order for each UAV to exchange

information with every other UAV. Consider the graph,GP = (VP , EP ), representing the group

of UAVs in the pairwise communication scenario where VP and EP are the sets of vertices and

edges in GP respectively. Let VP = {v1, v2, · · · , vN} such that each vertex corresponds to a

single UAV. In contrast to complete communication, multiple possibilities exist for EP . Since

each vertex in GP is incident to exactly one edge, the number of possibilities for EP correspond

directly to the number of perfect matchings on a complete graph with N vertices. Note that a

perfect matching in a graph, G, is an edge set, E, such that every vertex in G is incident to ex-

actly one edge in E. Therefore, at least (2L)!
2LL!

possibilities exist for EP where N = 2L (L ∈

Z+) as shown in [120]. To reduce the number of possibilities for EP , only the perfect match-

ings given by E0 = {v1v2, v3v4, · · · , vN−1vN}, E1 = {v2v3, v4v5, · · · , vNv1}, and E2 =

{v1vN
2
+1, v2vN

2
+2, · · · , vN

2
vN} are considered. Note that these edge sets were chosen to pro-

duce the perfectmatchings forN = 4. Therefore, additional possibilities exist for the chosen edge

sets. Now, letEP be defined by

EP = {E0, E1, E2} (3.2)

where only one element of Ep is used at each iteration of the cooperative localization algorithm.

Eachof the edge sets produces isomorphic graphs; however, the isomorphismsarenot label-preserving,

so each edge set provides a different set of measurements. The graphs for N = 4, N = 8, and

N = 16 are presented in Figure 3.3.2.
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E0 E1 E2

N = 4

N = 8

N = 16

Figure 3.3.2: Pairwise communication graphs where the white nodes represent v1 and the
black nodes represent {v2, v3, · · · , vN} in each graph.

Exchange of Information

An important aspect of the communication strategy is the number of steps required to propagate a

pieceof information throughout the entire groupofUAVs. In the caseof complete communication,

only a single time step is needed to propagate a piece of information throughout the group. In

contrast, multiple steps are required to propagate information throughout the group for pairwise

communication. In order to calculate the required number of steps, a graph can be constructed

representing the propagation of information with respect to the first UAV. This is shown in Figure

3.3.3 where the edges represent the connections made at each step and the vertices represent each

source of information. Therefore, after k discrete time steps, the length of the path from vi to v1 is

the number of steps required to propagate a piece of information from vi to v1.

Now, consider the number of vertices added to the graph at each step prior to k − 2. For E0

and E1, exactly 4 vertices are added to the graph. For E2, each edge only provides a connection

to an existing vertex, so the number of vertices remain the same. Thus, vertices are only added to
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Figure 3.3.3: Propagation of information for pairwise communication by cycling between E0

at k, E1 at k − 1, and E3 at k − 2 repeatedly.

the graph for E0 and E1 prior to k − 2. For steps k and k − 1 exactly two vertices are added to

the graph separately, and for steps k − 2 exactly four vertices are added to the graph, as shown in

Figure 3.3.3. Therefore, the number of vertices reached after k discrete time steps is given by

m =


2(k + 1) if k ≤ 1

4k − 4
⌊
k−2
3

⌋
otherwise

(3.3)

where k ∈ {0, 1, 2, · · · } and ⌊ ⌋ is the floor function. Now, the number of steps required for

one UAV to obtain the information of the rest of the group, denoted s, is bounded by s ≥
⌈
3
8
N
⌉

whereN is the number of UAVs in the group and ⌈ ⌉ represents the ceiling function.

3.3.2 Cooperative Ranging Localization

Thegoal of the cooperative ranging localization algorithm is to obtain a reliable estimate of the rela-

tive position of eachUAV in the group for input to the cooperativemagnetic localization algorithm

introduced in Section 3.3.3. The problem is formulated as a state estimation problemwith an EKF.

In general, assuming additive noise, a discrete nonlinear dynamic system can be described by the
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state transition and observation models provided by

xk = f(xk−1, uk) + wk (3.4)

zk = h(xk) + vk (3.5)

where f is the vector-valued discrete state prediction function, h is the vector-valued observation

function, x is the state vector, z is the output vector, u is the measured control vector, w is the

process noise vector, v is the measurement noise vector, and k is the discrete time index. Both

the process and measurement noises are assumed to be multivariate Gaussian white noises with

covariances Q and R, where wk ∼ N (0,Qk) and vk ∼ N (0,Rk), respectively. The state

vector in the EKF is given by

x =
[
π(1), π(2), . . . , π(N)

]T
(3.6)

whereπ(i) =
[
x(i), y(i), θ(i)

]T is the pose ofUAV i in the global frame such that i ∈ 1, 2, · · · , N

wherex and y are theCartesian coordinates for the position and θ is the heading. Thediscrete time

state transition function is given by f =
[
f (1), f (2), . . . , f (N)

]T whereπ(i)
k = f (i)

(
π

(i)
k−1,u

(i)
k

)
is the discrete state transition function for UAV i given by

f (i)(π
(i)
k−1,u

(i)
k ) =


x
(i)
k−1

y
(i)
k−1

θ
(i)
k−1

+ Ts


v
(i)
k cos (θ

(i)
k−1 + Tsω

(i)
k )

v
(i)
k sin(θ

(i)
k−1 + Tsω

(i)
k )

ω
(i)
k

 (3.7)
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wherev(i)k is the velocity forUAV i,ω(i)
k is the yaw rate forUAV i at time stepk, andTs is the change

in time between discrete time steps.

The observation function varies depending on the communication graph at each step. The ob-

servation function for complete communication is given by

hC(x̂k|k−1) = {
√

(x(i) − x(j))2 + (y(i) − y(j))2 : (vi, vj) ∈ EC} (3.8)

where hC is dependent on the the edge set EC . Notice the observation function is identical at

each step, and since eachUAVexchanges informationwith each otherUAV, eachUAVcanperform

an update at each step using all inter-vehicle ranging measurements. In contrast, the observation

function for pairwise communication varies between steps, which is given by

hP (x̂k|k−1) = {
√

(x(i) − x(j))2 + (y(i) − y(j))2 : (vi, vj) ∈ Ek (mod 3)} (3.9)

where hP is dependent on the the edge set forEP . Note that each UAV only communicates with

a single UAV at each step. Therefore, multiple steps are required to propagate the ranging and

odometry information throughout the group of UAVs before each UAV can perform an update.

The number of required steps forN UAVs is given by Eq. 3.3. Therefore, the state estimate at any

point in time is obtained by adding steps of dead-reckoning onto the state estimate obtained from

most recent EKF update. This is given by

x̂k = xk−s +∆x
∣∣k
k−s

(3.10)

where s is the number of steps since the most recent EKF update and∆x
∣∣j
i
is the change in pose
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between time steps i and j from dead-reckoning. Themeasurement vector is given by zk = {dij :

(vi, vj) ∈ EC} for complete communication and zk = {dij : (vi, vj) ∈ Ek (mod 3)} for pairwise

communication, where dij is the distance between UAV i and UAV j as measured by the ranging

sensors.

The standard first-order EKF equations [121] are used for the state prediction and updatewhere

the observation function is dependent on the communication scenario.

Therelativepositionof eachUAVwith respect tootherUAVs in thegroupcanbederived through

x̂(i/j)

ŷ(i/j)

 =

x̂(i)

ŷ(i)

−

x̂(j)

ŷ(j)

 (3.11)

where [x̂(i/j), ŷ(i/j)]T are the relativepositioncoordinates forUAV iwith respect toUAV j, [x̂(i), ŷ(i)]T

and [x̂(j), ŷ(j)]T are the position estimates of UAV i and UAV j from Eq. 3.10, respectively.

Some limitations of the cooperative ranging localization should be mentioned in regard to ob-

servability. First, if the UAVs are traveling at same speed and direction with parallel trajectories,

an infinite number of solutions exist for the relative position of each UAV. This phenomenon is

discussed in detail in [122] and could potentially result in divergence of the EKF. This can be

avoided by varying the velocity of each UAV and is discussed further in Section 3.4. Second, since

ranging-only measurements are used for updating the poses, the EKF is only capable of preserving

the pairwise distances. As a result, only the geometric structure of the group ismaintained through

the EKF. Thus, the geometric structure will rotate in the global frame with an angle γ, which is ex-

actly the rotation error of the group if the geometric structure is known without error. This is a

well-studied property described by Euclidean distance matrices [123, 124]. The method for ap-

proximating γ to reduce the rotation error and recover the global pose of the group is discussed in
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the following section.

3.3.3 CooperativeMagnetic Localization

The goal of the cooperative magnetic localization algorithm is to bound the error growth of the

global pose by matching the magnetic anomaly measurements on-board each UAV in the group

to a prior magnetic anomaly map. This is achieved by leveraging the cooperative ranging localiza-

tion solution to fix the relative position of each UAV (i.e., the group shape). The global position is

maintained with a Bayes filter using a prediction-update framework. Since the magnetic anomaly

map is highly non-linear, a particle filter is selected for solving this problem.

For reducing the rotation error of the group during flight, γ introduced in previous section is

defined as a state. An example of the rotation error of the group is presented in Figure 3.3.4 for the

four-UAV case. In Figure 3.3.4, the gray node is the position of UAV j, the black nodes connected

γ

Figure 3.3.4: Example of rotation error of the group in relative position extracted from EKF
for N = 4.

with dashed lines are estimated relative positions of remaining UAVs with respect to UAV j from

theEKF, and thewhite nodes connectedwith solid lines are the true relative positions of remaining

UAVswith respect toUAV j. The relative position estimates of eachUAVwith respect to the other
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UAVs in the group can be corrected based on γ as,

x̀(i/j)

ỳ(i/j)

 =

cos γ − sin γ

sin γ cos γ


x̂(i/j)

ŷ(i/j)

 (3.12)

where [x̀(i/j), ỳ(i/j)]T are the relative position coordinates for UAV i with respect to UAV j after

applying the update utilizing γ, and [x̂(i/j), ŷ(i/j)]T are the relative position coordinates for UAV

iwith respect to UAV j from the cooperative ranging localization.

An intuitive way to design the filter is to include all UAVs’ pose in the state vector. However,

more states lead to more complexity and greater chance of overfitting. Therefore, the particle filter

introduced in this chapter only involves four states and is independent of group size,

p = [x, y, θ, γ]T (3.13)

where x and y are the Cartesian coordinates for the global position of a UAV, θ is the heading of

a UAV, and γ is the rotation error of the group introduced previously. Note that each UAV runs a

particle filter individually to estimate its ownpose. Thus, the state transitionmodel for eachparticle

is given by

pk = g
(
pk−1, u

P
k

)
+ νk (3.14)

where g is the vector-valued discrete state prediction function, uP
k is the measured control vector

of a UAV, νk is the process noise vector, and k is the discrete time index. Similar to Eq. 3.7, the
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vector-valued discrete state prediction function is given by

g
(
pk−1, u

P
k

)
=



xk−1

yk−1

θk−1

γk−1


+ Ts



vk cos (θk−1 + Tsωk)

vk sin (θk−1 + Tsωk)

ωk

0


(3.15)

where vk is the velocity for the UAV, ωk is the yaw rate for the UAV, and Ts is the change in time

between discrete time steps. The state γ is propagated by randomwalk. The observationmodel for

each particle is given by

yk = hM (pk, rk) + ηk (3.16)

where yk is the observation vector and ηk is the measurement noise vector. The relative position

rk is calculated fromEq. 3.11. Therefore, for eachUAV, the otherUAVs’ predicted global positions

can be extracted by adding the updated relative positions from Eq. 3.12 to the estimate from the

particle filter, shown as

x̀(i)

ỳ(i)

 =

x(j)

y(j)

+

cos γ − sin γ

sin γ cos γ


x̂(i/j)

ŷ(i/j)

 (3.17)

where [x̀(i)ỳ(i)]T is another UAV’s predicted global position, x(j), y(j), and γ are from the UAV’s

state vector p, and [x̂(i/j), ŷ(i/j)]T is the relative position from r. The vector-valued observation

functionhM is used to extract the predictedmagnetic anomalymeasurements from the givenmap

based on each vehicles’ predicted positions.

The goal at each time step is to approximate the posterior distribution p (pk|y1:k) using a set of
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weighted particles. Consider the set of M particles given by

Pk =
[
p
(1)
k ,p

(2)
k , · · · ,p(M)

k

]
(3.18)

where p(i)
k =

[
x
(i)
k , y

(i)
k , θ

(i)
k , γ

(i)
k

]T
is the state vector for the ith particle. The corresponding

weights are given by

Wk =
[
w

(1)
k , w

(2)
k , · · · , w(M)

k

]
(3.19)

where w(i)
k is the weight for the ith particle. According to the observation function described in

Eq. 3.16, for each particle, there are N different predicted observations corresponding to the N

UAVs’ predicted positions. In this study, the magnetic anomaly measurement noise is assumed

as a Gaussian white noise [4], and the likelihood function can be calculated as a Gaussian distri-

bution. Meanwhile, the magnetic anomaly measurements from different UAVs are assumed to be

conditionally independent. Therefore, for each particle, the likelihood function based on all obser-

vations at time k is given by

p (yk|pk) =
N∏
j=1

p
(
y
(j)
k

∣∣∣pk

)
(3.20)

where p
(
y
(j)
k

∣∣∣pk

)
= 1√

2πσ2
m

exp

(
−

[
y
(j)
k −t

(j)
k

]2
2σ2

m

)
such that y(j)k is the predicted observation

on UAV j based on the predicted state vectorpk, t
(j)
k is the magnetic anomaly measurement from

UAV j’s on-board magnetometer, and σm is the standard deviation of the magnetic anomaly mea-

surement.

The ith particle’s weight is given by the likelihood function of the observations at time k and its
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normalizedweight in the previous time step,w(i)
k = p

(
yk

∣∣∣p(i)
k

)
w̃

(i)
k−1 where w̃(i)

k−1 is the normal-

ized weight. The weightsWk are then normalized such that the sum of all weights equal one. The

expectation of the state at time k is given by

E[Pk] ≈
M∑
i=1

w̃
(i)
k P

(i)
k . (3.21)

Also, similar to the cooperative ranging localizationmethoddiscussed earlier, the cooperativemag-

netic localization approach requires additional steps to gather all information in the group for the

pairwise communication.

3.4 Simulation

Thecooperative navigationmethods are evaluated using simulated data sets for groups ofUAVs fly-

ing in a two-dimensional environment. The simulations are performed only for the GNSS-denied

portion of the flight where the initial pose of each UAV is assumed to be known with a small un-

certainty. In the simulation, the odometrymeasurements are obtained at a frequency of 10Hz and

the rangingmeasurements andmagnetic anomalymeasurements are exchanged at a frequency of 5

Hz. The coverage of the ranging links are assumed to be sufficiently large; therefore, the UAVs are

able to form ranging links regardless of their relative positions. Themagnetic anomalymap, shown

in Figure 3.4.1, is generated using an upward continuation function [125] with a Gaussian white

noiseG ∼ N (0, 1000) nanotesla.

The simulation study is broken into two parts. The first part consists of multiple case studies,

which are performed for each of the presented communication scenarios for different group sizes
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Figure 3.4.1: The low fidelity magnetic anomaly map used in the simulation study.

(N = 4, 8, and 16). Each of these case studies are performed where the UAVs are flying along

parallel trajectories as shown in Figure 3.4.2a. In this case, each UAV is traveling along a path that

is parallel to the paths of other UAVs while the speed is slowly varing following a sine function

throughout the duration of the flight. The speed offsets for each UAV are generated randomly so

each UAV is traveling at different speed as shown in Figure 3.4.2b.

For the case studies, the velocity errors are drawn from a zero mean Gaussian distribution with

standard deviation σv = 0.1m/s and a turn on bias, bv ∼ N (0, 0.1σv). The yaw rate errors are

drawn from a zeromeanGaussian distributionwith standard deviationσh = 0.1 deg/swith a turn

on bias, bh ∼ N (0, 0.1σh). The ranging errors are drawn from a zero mean Gaussian distribution

with standard deviation σr = 1m. Finally, the magnetic anomaly measurement errors are drawn

from a zero mean Gaussian distribution with standard deviations σm = 100 nanotesla.

Sensitivity analysis is then performed to evaluate the effect of UAV group geometry and sen-

sor quality on the cooperative range localization algorithm performance, as well as the robustness
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(a) (b)

Figure 3.4.2: UAV trajectories used in the simulation study. Subplot 3.4.2a is an example set
of parallel trajectories. Each UAV is presented with a different color, dots are the positions of
all UAVs and arrows show the headings of UAVs. k present time steps, and n = t/Ts, where
t is the simulation time and Ts is the sampling time; Subplot 3.4.2b shows one example of the
time-varying UAV speeds associated with the parallel trajectories (0 ∼ 1, 000 seconds).

of the cooperative magnetic localization algorithm with respect to the initial position error uncer-

tainty. For both the case studies and the sensitivity analysis, multipleMonte Carlo simulations are

performed consisting of 100 trials each for a flight duration of 1 hour. The number of particles for

the cooperative magnetic localization algorithm is set to 10, 000 in each simulation.

3.5 Results

An example bird’s-eye view of a single representative simulation whereN = 4 is shown in Figure

3.5.1. From the simulations, both the cooperative range localization and cooperative magnetic

localization perform similarly for eachUAV. Therefore, since the algorithms running on eachUAV

are identical, the estimation error is only evaluated for a single UAV in the group in this section.
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Figure 3.5.1: Bird’s-eye view of the estimated and truth trajectories for a simulation with
N = 4 using pairwise communication. Note that the estimated cooperative magnetic local-
ization trajectories and the truth trajectories are nearly overlapping. (DR: dead-reckoning; RL:
cooperative range localization; ML: cooperative magnetic localization.)

3.5.1 Case Studies

An important component of the cooperative magnetic localization algorithm is the relative posi-

tion extracted from the EKF in the cooperative range localization algorithm. However, the relative

position estimates suffer from heading drift resulting in large error over time due to the rotation

error, γ. Since the shape of the group with some unknown rotation, γ, is completely defined given

the inter-vehicle distances, the inter-vehicle distance errors are used to analyze the quality of the

group shape estimated by the EKF. For a set of 100 simulations, the average Root Mean Square

Errors (RMSEs) of the distance between each pair of UAVs are presented in Table 3.5.1.

In Table 3.5.1, the RMSE of the Euclidean distance error decreases as the number of UAVs in-

crease in the complete communication scenario. This is due to the fact that the number of ob-

servations at each time increase exponentially with the number of UAVs, which is used to update
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Table 3.5.1: RMSE of Euclidean distance error from EKF output. (Unit: Meters)

Pairwise Complete
N = 4 0.624 0.450
N = 8 0.738 0.347
N = 16 1.02 0.292

the relative positions. In contrast, the Euclidean distance error increases as the number of UAVs

increase in the pairwise communication scenario. This is most likely due to the fact that the num-

ber of observations increase only linearly with the number of UAVs in the group. This reduces the

overall connectivity of the graph compared to the complete communication scenario resulting in

larger relative position errors.

Figures 3.5.2 shows the Cumulative Distribution Function (CDF) of the heading and position

RMSE of one UAV in the group acquired through the Monte Carlo simulations. It shows that

cooperative range localization provides significant benefit compared to the dead-reckoning of an

individual UAV. Most of the performance gain is shown to be provided by the reduced heading

error, which is regulated in theEKFwith the velocitymeasurements providedby cooperatingUAVs

from large distances. The cooperative localization performance also improves when the number of

UAVs in the group increase. It is interesting to note that the performances between the complete

communication scenario and the pairwise communication scenario are similar. The difference in

distance errors for both communication scenarios are insignificant compared to the actual distance

between UAVs in the simulations. This indicates that most of the navigational benefits may be

achieved with only a single communication link on each UAV, which is practically more feasible.

A cooperative magnetic localization simulation result with four UAVs in the group using pair-

wise communication scenario is shown in Figure 3.5.3 as an example. Unlike the solutions of dead-
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Figure 3.5.2: The CDF of heading (left) and position (right) RMSE for one UAV in the
group with dead-reckoning (black) and cooperative range localization (blue) in both complete
communication (solid lines) and pairwise communication (dashed lines) scenarios. The sizes of
the group are N = 4 (top), N = 8 (middle) and N = 16 (bottom). (DR: dead-reckoning; RL
(cc): cooperative range localization in complete communication; RL (pc): cooperative range
localization in pairwise communication.)

reckoning and cooperative range localization, the cooperativemagnetic localization result does not

grow over time.

The cooperative magnetic localization performance is evaluated by comparing position RMSE

in different group sizes and communication scenarios. The averagemeans and standard deviations

of position RMSE for one UAV in the group in Monte Carlo simulations are shown in Table 3.5.2.

It shows that cooperativemagnetic localization (i.e. N > 1) provides significant performance gain

compared to a singleUAV cooperativemagnetic localization. However, the number ofUAVs in the

group do not seem to have a major effect to the navigation performance. Note that the single UAV

cooperative magnetic localization in this study applies the same particle filter model presented in
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Figure 3.5.3: Position error for one UAV in the group in dead-reckoning (black), cooperative
range localization (blue) and cooperative magnetic localization (red) in one representative
simulation.

Section 3.3.3 with the rotation error, γ, set as zero.

Table 3.5.2: The means and standard deviations of position RMSE for one UAV in the group
in cooperative magnetic localization with 100 times simulations. (Unit: Meters)

Complete Pairwise
Mean Std dev Mean Std dev

N = 1 35.0 37.1 35.0 37.1
N = 4 8.61 8.01 9.26 8.18
N = 8 6.96 7.97 10.2 8.88
N = 16 7.46 8.81 9.12 8.48

3.5.2 Sensitivity Analysis

The sensitivity analysis simulations are first performed with 4 UAVs and the pairwise communica-

tion scenario to evaluate the effect of UAV group geometry on the cooperative range localization

performance. In this case, the velocity, yaw rate, and ranging noise are held constant at σv = 0.1

m/s, σh = 0.1 deg/s, and σr = 1m respectively, while varing each UAV’s speed variation range.

Meanwhile, the distances between each pair of neighboringUAVs’ initial positions are set to 2, 500

m. TheCDF for the position RMSE for oneUAV in the group using cooperative range localization
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algorithmwith four speed variation ranges are presented in Figure 3.5.4a. Similarly, using the same

simulation parameters and a fixed speed variance range of 10m/s, the distances between each pair

of neighboring UAVs’ initial positions are varied. The CDF of position RMSE for one UAV in the

group in cooperative range localization with four different initial distances values are presented in

Figure 3.5.4b.

Figure 3.5.4: (a): The CDF of position RMSE for one UAV in the group in cooperative
range localization with varied amplitudes of each UAV’s speed variation range. (Unit of A:
Meters per second) (b): The CDF of position RMSE for one UAV in the group in cooperative
range localization with varied distances between each pair of neighboring UAVs’ initial posi-
tions. (Unit of D: Meters)

Figure 3.5.4 shows that the cooperative range localization performance improves with increased

speed variations and increased UAV separations. Both error factors may contribute to the creating

ofmore favorable geometries that allow better constraints on theUAVheading growth. The effects

of these factors, however, are nonlinear, which will be investigated in the follow-on studies.

The impact of measurement noises on the cooperative range localization performance is then

evaluated. In this set of simulations, the amplitudes of each UAV’s speed variation are set to 10

m/s and the distances between each pair of neighboring UAVs’ initial positions are set to 2, 500

m. FourUAVs are simulatedwith the pairwise communication scenario. First, the ranging and yaw

rate noises are held constant atσr = 0mandσh = 0 deg/s respectively, while varying the velocity

noise. TheCDF for the position RMSE for oneUAV in the group in cooperative range localization
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with three different velocity noise assumptions are presented in Figure 3.5.5a. Second, the velocity

and ranging noises are held constant at σv = 0m/s and σr = 0m respectively, while varying the

yaw rate noise. The CDF for the position RMSE for one UAV in the group in cooperative range

localization with three different yaw rate noise assumptions are presented in Figure 3.5.5b. Third,

the velocity and yaw rate noises are held constant at σv = 0m/s and σh = 0 deg/s respectively,

while varying the ranging noise. TheCDFs for the position RMSE for oneUAV in the group in co-

operative range localization with four different ranging noise assumptions are presented in Figure

3.5.5c.

Figure 3.5.5: (a): The CDFs of position RMSE for one UAV in the group in cooperative
range localization with varied velocity noises. (Unit of σv: Meters per second) (b): The CDF
of position RMSE for one UAV in the group in cooperative range localization with varied yaw
rate noises. (Unit of σh: Degrees per second) (c): The CDFs of position RMSE for one UAV
in the group in cooperative range localization with varied ranging noises. (Unit of σr: Meters)

Figures 3.5.5 shows that the EKF used in the cooperative range localization algorithm can toler-
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ate large variations of sensor noises, with the exception of cases with poor ranging measurements

(in the case whenσr = 10m). TheUAVposition estimation performance is roughly proportional

to the quality of sensor performance provided.

The impact of magnetic anomaly measurement noise on the cooperative magnetic localization

performance is also evaluated. In this set of simulations, the velocity, yaw rate and ranging noise

are held constant at σv = 0.1m/s, σh = 0.1 deg/s and σr = 1m respectively, while varing the

magnetic anomaly measurement noise. Meanwhile, the amplitude of the speed variation and the

distances between each pair of neighboring UAVs’ initial positions are set to 10m/s and 2, 500m

respectively. The CDFs for the position RMSE for one UAV in the group in cooperative magnetic

localization with four different magnetic anomaly measurement noise assumptions are presented

in Figure 3.5.6. It shows that the cooperative magnetic localization algorithm can tolerate large

variations of magnetic sensor quality.

Figure 3.5.6: The CDFs of position RMSE for one UAV in the group in cooperative magnetic
localization with varied magnetic anomaly measurement noises. (Unit of σm: Nanotesla)

To evaluate the robustness of the cooperative magnetic localization algorithm presented in this

chapter, the UAVs’ assumed initial positions are offset from the truth. In this set of simulations,

the same simulation parameters as the previous simulations and a fixed magnetic anomaly mea-

surement noise σm = 100 nanotesla are used. An offset is added to the assumed initial position

for all the UAVs with a constant distance R and a random direction. The CDF for the position

RMSE in the steady state (i.e. the second half of each simulation run) for one UAV in the group
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using the cooperative magnetic localization algorithm with two different initial position offset as-

sumptions in four different group sizes (N = 1, 4, 8 and 16) are presented in Figure 3.5.7. The

means and standard deviations of position RMSE in the steady state for one UAV in the group, as

well as the percentage of cases that the filter converges are listed in Table 3.5.3. Note that in each

simulation, the particle filter is not aware of this initial position offset and assumes 1 m standard

deviation uncertainty in each UAV’s initial position.

Figure 3.5.7: The CDF of position RMSE in the steady state for one UAV in the group using
the cooperative magnetic localization algorithm with two initial position offset assumptions in
different group sizes. (Unit of R: Meters)

Table 3.5.3: The means and standard deviations of position RMSE in the steady state, as
well as the percentage of cases that the filter converges using the cooperative magnetic local-
ization algorithm with two initial position offset assumptions in different group sizes. (Unit:
Meters)

N = 1 N = 4 N = 8 N = 16
R = 10m R = 100m R = 10m R = 100m R = 10m R = 100m R = 10m R = 100m

Mean 55.3 52.2 13.5 59.9 12.3 47.6 9.06 28.5
Std dev 51.5 44.3 13.8 53.4 11.4 39.0 10.8 30.6

Convergence% 98% 36% 100% 94% 100% 75% 99% 46%

Figure3.5.7 andTable3.5.3 showthat the cooperativemagnetic localizationalgorithmcanmostly

tolerate small initial group position offset, such asR = 10m. In this case, the means and standard

deviations of position RMSE in the steady state are similar with results in Table 3.5.2. When the
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initial group position offset increased to R = 100 m, the cooperative magnetic localization is

shown to be more robust than the single UAV magnetic localization. However, simulation study

shows that the robustness decreases with the increased number of UAVs in the group. This is due

to a reduced probability of matchingmultiple UAV’smagnetic anomalymeasurements to the prior

map. Methods for solving this issue will be developed in future efforts.

3.6 Discussion

In this chapter, a set of algorithms was presented for cooperatively localizing a group of UAVs

in a GNSS-denied environment using shared visual-inertial odometry measurements, magnetic

anomaly measurements, inter-vehicle ranging measurements, and a prior magnetic anomaly map.

The developed approach has two sequential parts: cooperative range localization and cooperative

magnetic localization. Two communication scenarios are considered: complete communication

and pairwise communication.

The results from multiple Monte Carlo simulations demonstrate the performance and robust-

ness benefits of the cooperative magnetic localization algorithm assisted by cooperative range lo-

calizationalgorithmwith respect tonon-cooperative localization approaches. Thesimulation study

also suggests that the pairwise communication approach is capable of delivering a majority of the

cooperative navigation benefit as compared to the complete communication scenario, which is

more feasible with the existing ranging devices.

There are several limitations to the presented algorithms such as UAV group size and trajectory

constraints. Specifically, the algorithms are not directly suited for odd number of UAVs in the

pairwise communication scenario; the EKF will not work if all UAVs fly at the same speed along

the parallel trajectories. These constraints will be partially removed in following work through ex-
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ploring different communication topology and through a tighter coupling between the relative and

magnetic navigation steps.
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4
Cooperative Navigation Using Pairwise

Communication with Ranging and

Magnetic Anomaly Measurements

52



4.1 Introduction

The content of this chapter has been reproduced based on the author’s previous works [15, 63].

In the previous Chapter 3, the previous analysis, which was based on simulated map, was not ade-

quate for understanding the performance in more realistic scenarios. Additionally, the group size

was restricted to an even number of UAVs in Chapter 3. In this chapter, the cooperative localiza-

tion method presented in Chapter 3 is expended to support odd numbers of UAVs in the group

with pairwise communication. The magnetic anomaly map used in this chapter is obtained from

the United States Geological Survey to cover a larger area [18], which is more realistic than the

simulated map in Chapter 3. In this chapter, the simulator is expanded to support the UAV con-

trol, which relies on the estimated poses for feedback. Meanwhile, in this chapter, the performance

and robustness of the presented methods under different sensor noise assumptions and map reso-

lutions are reported.

The remaining sections of the chapter proceed as follows. Section 4.2 provides a problem state-

ment with the associated assumptions. In Section 4.3, methods are presented for solving the rela-

tive localization problem as well as for performing cooperative magnetic localization. Section 4.4

presents the simulator and the simulation configurations. Then, in Section 4.5, simulation results

are presented and analyzed. Section 4.6 concludes the contributions of this chapter and identifies

the current limitations and future research directions.

4.2 Problem Statement

In this study, the case is considered where a group ofN UAVs is entering a GNSS-denied environ-

ment. The size ofN is appropriate for a typical UAV mission (e.g., between 2 and 20). The main
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objective is to achieve accurate and robust global localization for all UAVs in the group.

All UAVs are assumed to be flying at the same altitude, which means that this study only deals

with the navigation problem in 2D. The initial pose in the global frame for each UAV is assumed

to be known with a small uncertainty (e.g., provided by GPS) before entering the GNSS-denied

environment.

Each UAV is assumed to be equipped with radios that enable communication with all other

UAVs to exchange sensor measurements, as well as to perform inter-vehicle ranging. In this chap-

ter, eachUAV is restricted to communicate andperform rangingmeasurementswithonly oneother

UAV at any point in time, which is referred as to pairwise communication. Also, each UAV is as-

sumed to be able to store and exchange information of the other UAVs.

Each UAV also performs point measurements of the magnetic anomaly field at each time step,

which can be exchanged through the communication link. In addition, eachUAV is assumed to be

loaded with the samemagnetic anomalymap. Meanwhile, eachUAV is assumed to be able tomea-

sure or estimate its velocity and yaw rate through some methods, such as using Vehicle Dynamic

Model (VDM) presented in [126] or Visual Odometry presented in [127, 128]. No additional

information is used for UAV navigation in this study.

4.3 Technical Approach

The framework of the cooperative navigation algorithm presented in this chapter is shown in Fig-

ure 4.3.1. The communication block is responsible for storing and parsing the historic data shared

through the communication links with other UAVs and the data measured by sensors onboard

the current UAV. The goal of the cooperative ranging localization step is to obtain a reliable es-
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Figure 4.3.1: The framework of the cooperative navigation algorithm.

timate of the relative position of each UAV in the group. The cooperative magnetic localization

algorithm is able to bound the error growth of the global pose by matching the magnetic anomaly

measurements on-board each UAV in the group to a prior magnetic anomaly map. The details of

the cooperative ranging localization and cooperativemagnetic localization algorithms design were

explained in Sections 3.3.2 and 3.3.3 under Chapter 3, respectively.

4.3.1 Communication

This subsection provides the implementation for odd number of the group size case. Under pair-

wise communication as introduced in Section 4.2,multiple time steps are required in order for each

UAV to exchange information with every other UAV. Initially, in Chapter 3, the communication

strategy required an even number of UAVs. In this chapter, scenarios with an odd number of UAVs

are expended. The details about the pairwise communication and the exchange of information for

even number of the group size were explained in Sections 3.3.1 and 3.3.1 under Chapter 3.

If the group size is an odd number (e.g.,N − 1), the bound for theN − 1UAV case is at most

the same as for theN UAV case. This is straightforward from the previous discussion in Sections

3.3.1 and 3.3.1 under Chapter 3. Consider the communication graph for N UAVs (as depicted

in Figure 3.3.3). Now, delete a vertex and the incident edges to form a group of N − 1 UAVs,
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the resulting graph is still connected, and the number of steps required to propagate information

remains the same. The resulting edge sets for an odd number of UAVs are obtained by deleting

vN and all edges incident to vN . The odd edge sets are then given by Eodd
0 = Eeven

0 \vN−1vN ,

Eodd
1 = Eeven

1 \vNv1, andEodd
3 = Eeven

3 \vN
2
vN .

4.4 Simulator

The cooperative ranging and magnetic localization algorithms are evaluated through a simulator,

illustrated in Figs. 4.4.1 and 4.4.2. Since all UAVs use the same simulation model, the framework

of oneUAV’s simulator is presented in Figure 4.4.1 where the purple blocks are user defined inputs

and yellow blocks are measurements simulated from sensors and information shared from other

UAVs through the communication links. The framework of the proposed algorithms are explained

in Figure 4.4.2 where RGk−s,k−s+1,k−s+2 are pairwise ranging measurements from the group at

time steps k − s, k − s + 1, and k − s + 2,Vk−s,Ωk−s, andMk−s present all UAVs’ velocity,

yaw rate, and magnetic anomaly measurements at time step k − s, respectively, v(i)
k−s and ω

(i)
k−s

are the ith UAV’s velocity and yaw rate measurements at time step k − s, respectively, rk−s is the

relative position estimates inside the group at time step k − s, x̂k−s is the global pose estimate at

time k− s, and∆x
∣∣k
k−s

is the change in global pose between time steps k− s and k, as described

in Eq. 3.10. Note that, in Figure 4.4.2, the communication block is responsible for storing and

parsing the historic data shared through the communication links with other UAVs and the data

measured by sensors onboard the current UAV. In detail, the data is stored in the shared informa-

tion block as a set of packets, and the parse data block interprets the packets for input in the other

parts of the system. Each packet contains the data collected by all UAVs at time step k, denoted as

Dk = {d(1)k , d
(2)
k , ..., d

(N)
k } where d(i)k is the data transferred from the ith UAV at time step k. A
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packet is incomplete (denoted by D̀k) if the packet does not contain the data for all vehicles at time

step k. The parse data block is responsible for adding missing information to incomplete packets

if data is available from packets received from other UAVs at a different time step. Applying the

communication scheme presented in Sections 3.3.1 and 4.3.1, the data transferred by each vehicle

at time step k is the time history given by
−→
P k = {D̀k, D̀k−1, ..., Dk−s} where all the packets are

incomplete except for the packet containing data for time step k−s. The packets for data recorded

prior to time step k − s are dropped as they are not used for localization.

Controller

Vehicle
Model

Pairwise
Ranging
Measure-
ments

Magnetic
Anomaly
Measure-
ments

Shared
Infor-
mation

Magnetic
Anomaly

Map

Proposed
Algorithms
(see Figure

4.4.2)

Reference
Trajectory
Reference
Velocity

Velocity & Yaw Rate
MeasurementsEstimated

Global Pose

Figure 4.4.1: The framework of the simulator for each UAV.

In the simulator, a bicycle model [129] is used as a simplified UAV model in the 2D plane. The

trajectory of each UAV is controlled based on a reference trajectory (including position and veloc-

ity) and the estimated vehicle states. In this chapter, all reference trajectories are set to be parallel

to latitude lines in the geographic coordinate system, and new parallel reference trajectories, at a

1, 000meters distance, are added to the simulation when the UAV group size increases. All UAVs

are assumed to fly from west to east with the same initial longitude and small uncertainties on the

initial positions, which are drawn from Gaussian distributions with zero mean and 1-meter stan-

dard deviation. The reference trajectories are close to the ground truths shown in Figure 3.5.1. Due
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Figure 4.4.2: The overview of the proposed algorithms applied in the ith UAV.

to the observability requirement of the EKF, the reference velocity for each UAV is slowly varying

following a sine function throughout the duration of the flight as shown in Figure 3.4.2b.

A controller steers the UAV based on the global pose estimates from the presented algorithms

as feedback. Note that, in this chapter, the velocity and yaw rate are measured at a frequency of

10 Hz, and the ranging measurements and magnetic anomaly measurements are obtained at a fre-

quency of 5Hz. The noise of the velocitymeasurement and yaw ratemeasurement are drawn from

a Gaussian distribution with zero mean and standard deviation σv for velocity and σg for yaw rate.

A turn-on bias bv for velocity and bg for yaw rate is added separately. Also, the noise of the ranging

measurements and the magnetic anomaly measurements are drawn from a Gaussian distribution

with zero mean and standard deviation σr and σm, respectively. The magnetic anomaly map uti-

lized in this study, shown in Figure 4.4.3, is obtained from the United States Geological Survey

[18] and contains the magnetic anomaly information at 305 meters altitude from the area around

Columbus, Ohio, United States. The left part of the Figure 4.4.3 shows the zoom-in map of the

area, which is marked as a red square on the geographic coordinate map. Note that, the unit in the
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Figure 4.4.3: The magnetic anomaly map of the area around Columbus, Ohio, United States
in geographic coordinate system (right). Left: The zoom-in part of the map.

zoom-in map (left) is converted from degree to meters along the east and north directions, and

the left bottom corner of the geographic coordinate map is set as the original point in the zoom-in

map.

4.5 Results

4.5.1 Case Studies

The simulation case studies are performed for different group sizes (N = 1, 3, 4, 7, 8, 15, and 16).

In each case, multiple Monte Carlo simulations are performed consisting of 200 trials each. The

baseline simulation parameters are listed in Table 4.5.1 and Table 4.5.2. Based on the parameter

setting of the reference velocity and flight duration, the trajectory length of each UAV is about 180

kilometers in each case.

Since the shape of the group is defined given the inter-vehicle distances, the inter-vehicle dis-
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Table 4.5.1: The baseline noise set in case studies.

σr σm σv bv σg bg
1 meter 10 nT 0.3 m/s ∼ N(0, 0.1σv) 0.005 deg/s ∼ N(0, 0.1σg)

Table 4.5.2: The baseline parameter set in case studies.

Each UAV’s reference velocity (sine function of time) Number of particles Filight durationAmplitude Baseline Frequency Phase
10 m/s 50 m/s 0.05 s rand*2*pi 10,000 1 hour

tance errors are used to analyze the quality of the group shape estimated by the cooperative rang-

ing localization algorithm. Meanwhile, due to the limitation of the pairwise communication, the

distances between some pairs of UAVs in the group are not measured by the ranging sensor at any

point in time. The estimated distances are calculated based on the pose estimates from the coop-

erative ranging localization algorithm. The average distance error for each simulation is computed

for measured pairs and not measured pairs separately. Table 4.5.3 shows the means and standard

deviations of these distance error for 200 Monte Carlo simulations.

Table 4.5.3: The means and standard deviations of the average distance error for 200
Monte Carlo simulations.

Group size Estimation with not measured edges Estimation with measured edges
Mean (m) Standard deviation (m) Mean (m) Standard deviation (m)

3 N/A N/A 0.6109 0.0061
4 N/A N/A 0.5715 0.0050
7 0.8585 0.1112 0.6074 0.0034
8 0.7296 0.0299 0.5898 0.0030
15 1.0828 0.2373 0.6035 0.0022
16 0.8902 0.0692 0.5953 0.0021

In Table 4.5.3, most of the means of average distance errors are less than 1 m. The standard

derivation of the ranging measurement noise is also set as 1 m in this case study. In other words,
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the cooperative ranging localization algorithm is able tomaintain an accurate estimate of the inter-

vehicle distances for both the measured and not measured pairs using pairwise communication.

This implies that the geometric structure (i.e., shape) of the group is maintained even in the case of

missing rangemeasurements. Interestingly, the distance errors of odd numbered groups are always

larger than the nearest even numbered groups errors. This is due to the fact that the total number

ofmeasured pairs in odd numbered groups is less than in the nearest even numbered groups as dis-

cussed in Section 4.3.1, even though the nearest even number is larger than the odd number. Note

that, the distance errors are growing as the group size increases, which implies that the presented

method is not scalable to a very large UAV group.

For evaluating the performance on global localization, the global position estimate errors of one

UAV are reported since the algorithms running on each UAV are identical. In other words, the

average position error of one UAV in the group is computed for each simulation. The CDF and

statistic data of average position error of one UAV in the group for 200 Monte Carlo simulations

for different group sizes are shown in Figure 4.5.1 and Table 4.5.4 separately. In Figure 4.5.1, the

dots present the empirical CDF, the continues curves are approximated based on the dots. The fol-

lowingCDFfigures follow the same format as Figure 4.5.1. The average position error is computed

for eachMonte Carlo simulation. The sizes of the group areN = 1, 3, 4, 7, 8, 15 and 16. Note that,

for the N = 1 case, since there is no relative information inside the UAV group, Eq. 3.16 in the

particle filter is replaced by yk = hM (pk) + ηk.

The statistical data in Table 4.5.4 shows substantial improvements in navigation performance

using the presented navigation algorithm as compared to the dead-reckoning performance of each

individual UAV. The reason for only comparing the performance of the presented algorithm with
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(a)

(b)

Figure 4.5.1: The CDF of average position error of one UAV in the group for 200 Monte
Carlo simulations for different group sizes.

Table 4.5.4: The statistical data of each simulation’s average position error of one UAV in
the group for 200 Monte Carlo simulations.

Group size Magnetic localization Dead-reckoning
Mean (m) Standard deviation (m) Mean (m) Standard deviation (m)

1 59.4 35.3

741.3 552.9

3 52.3 28.7
4 47.8 23.6
7 33.9 17.6
8 30.3 15.2
15 22.6 11.5
16 20.2 10.3

the dead-reckoning performance is that other magnetic anomaly-based cooperative localization

algorithms, such asmethods presented in [12], cannot workwith the same number of UAVs under

the same requirements. The results shown in Figure 4.5.1 and Table 4.5.4 present that the means

and standard deviations of position error reduce when the group size increases for the simulated

cases. This may due to increased spatial coverage of the UAV group and the increased number of
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magnetic anomaly measurements used for map matching. Note that, in the simulated cases, the

decrements of the position error are not proportional to the group size. The estimation errors may

also be affected by the resolution of themagnetic anomalymap, the quality of sensors, and the error

of the relative pose estimates.

4.5.2 Sensitivity Analysis

Sensitivity analysis is performed to evaluate the effect of sensor quality as well as the resolution

of the magnetic anomaly map on the presented algorithms. Simulations are first performed with

a UAV group with N = 8 and the baseline simulation parameters shown in Table 4.5.1 and Table

4.5.2. In order to evaluate the impact of sensor noise on the algorithms presented in this chap-

ter, the simulations are performed while varying the velocity noise, yaw rate noise, and magnetic

anomaly measurement noise separately. Similar as the case studies, multiple Monte Carlo simula-

tions consisting of 200 trials each are performed in each case. Figures 4.5.2, 4.5.3, and 4.5.4 present

the CDF of each simulation’s average position error for one UAV in the group with varied velocity

noise, yaw rate noise, and magnetic anomaly measurement noise, respectively. The blue lines are

the baseline case in each figure. The sensitivity analysis results show that the developed coopera-

tive navigation method can tolerate large variations of these sensor noises, with the exception of

the cases with σv = 3m/s and σg = 0.5 deg/s.
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Figure 4.5.2: The CDF of each simulation’s average position error for one UAV in the group
for 200 Monte Carlo simulations with varied velocity noise.

Figure 4.5.3: The CDF of each simulation’s average position error for one UAV in the group
for 200 Monte Carlo simulations with varied yaw rate noise.

Figure 4.5.4: The CDF of each simulation’s average position error for one UAV in the group
for 200 Monte Carlo simulations with varied magnetic anomaly measurement noise.

In order to evaluate the algorithms in different resolutionmaps, anothermagnetic anomalymap

is used in the simulations, which covers the same area as the map presented in Figure 4.4.3 but

from a higher altitude, 3050 meters. As discussed in Section 3.1, when the altitude increase, the

resolution of magnetic anomaly map decreases. In this case, the lower altitude map is called the

high resolution map, and the higher altitude map is called the low resolution map. The algorithms
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are simulated for different group sizes (N = 1, 4, 8, and 16) with different resolution maps. In

each case, multiple Monte Carlo simulations are performed consisting of 200 trials each. Other

parameters are set to be the same as ones shown in Table 4.5.1 and Table 4.5.2. Figure 4.5.5 shows

the boxplots of each simulation’s average position error for one UAV in the group for 200 Monte

Carlo simulations with different group sizes using different resolution maps. In each box, the five

lines, from bottom to top, show the minimum, first quartile, median, third quartile, and maximum

of the data separately.

Figure 4.5.5: The boxplots of each simulation’s average position error for one UAV in the
group with different group sizes using different resolution maps.

4.6 Discussion

In this chapter, a cooperative navigation algorithm was presented to estimate a group of UAVs’

global poses using inter-vehicle ranging and the Earth’s magnetic anomaly measurements. The ap-

proach contains two sequential steps: cooperative ranging localization for relative navigation, for-

mulated as an EKF, and cooperativemagnetic localization utilizing a particle filter to estimate each

UAV’s global pose. Furthermore, the presented algorithm is designed toperformusing thepairwise
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communication, which is compatible with the current communication and ranging technology.

The simulation results show that the developed cooperative ranging localization algorithm is

able to provide reasonable relative pose estimates. Utilizing the cooperative magnetic anomaly

algorithm, each UAV can estimate its global pose with a high accuracy. Compared with a single

UAV case, the cooperative UAV group can provide more accurate global pose estimates, as well

as more robustness when using a lower resolution map. The results from the sensitive analysis

show that the presented algorithm can tolerate large variations of velocity, yaw rate, and magnetic

anomaly measurement noises.

There are several limitations to the presented algorithms such as trajectory constraints. Specifi-

cally, the presented algorithm is not scalable to a very large UAV group, which will be the subject

of the following chapter. Also, in order to analyze the robustness of the presented algorithms for

different cooperative localization applications, various types of application settings will be applied

for evaluation in the following chapter.
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5
A scalable Framework for Map Matching

Based Cooperative Localization
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5.1 Introduction

The content of this chapter has been reproduced based on the author’s previous work [130]. The

scalar field-based cooperative localization algorithms can be classified into two main approaches.

The first one is to treat the multi-agent group as a unity and to match observations from all agents

with the given map to estimate their poses at each time step, which can be considered centralized

methods. The centralizedmethods are able to achieve error growth bounded positioning and show

robustness to issues such as low resolution of the map [15]. However, due to constraints on com-

munication and the on-board computing resources for the agents, the group size of the centralized

cooperative localization is limited in practice. The second approach is to performdecentralized co-

operative localization, which means that each agent in the group estimates its own pose based on

scalar fieldobservations independently at each time step. Then, the estimates are updated, using the

relative information (such as ranging, bearing) between this agent and its neighbors [61]. Usually,

the communication constraints (e.g., range, connectivity, bandwidth) are consideredwhen design-

ing the decentralized localization approaches. In theory, decentralized methods are scalable to the

group size and robust to errors made by, or failures of, individual agents. However, in the existing

approaches [66, 61], each individual agent needs to come up with a pose estimation, using its own

scalar field measurement first, which has potential robustness issues in information poor regions.

Thus, to develop a scalable cooperative localization algorithm that is robust tomapmatching errors

while respecting practical communication constraints is the focus of this work.

In this chapter, a scalable framework is presented to perform cooperative localization based on

scalar field information, which is performed through fusing the solutions estimated by smaller local

subgroups in a large group. The general concept of the proposed approach is illustrated in Figure

5.1.1. The overall group is first organized into several subgroups. A subgroup is defined with one
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agent as the fusion center and a limited number of agents that the fusion center can communicate

with as members, constrained by either the communication range or the number of available com-

munication channels. In this case, the number of subgroups is the same as the number of agents in

the group, and each agent belongs to several different subgroups at the same time. The inter-agent

ranging measurements are assumed to be available within the subgroups. A locally centralized co-

operative localizationmethod is performed for each subgroup at the fusion center agent to estimate

all members’ global pose and error covariance. Since each agent in the group belongs to multiple

subgroups (as the fusion center or a member) at the same time, it can receive multiple global pose

estimates and the corresponding covariances from fusion centers of these subgroups through the

communication links. Eventually, each agentwould gain an improved global pose estimate through

applying a CImethod to fuse these redundant estimates, using information provided by other sub-

groups.

The contributions of this chapter are summarized as follows. First, the proposed algorithm can

be scaled to large group sizes under communication constraints (e.g., a group of 128 agents was

simulated) with a limitation that the cooperative localization performance is a function of the sub-

group size instead of the full group size. Second, the simulation results demonstrate that the pro-

posed algorithm can provide good localization performance for two different types of scalar fields

based applications (i.e., magnetic anomaly matching for aerial vehicles and terrain matching for

underwater vehicles). Third, compared with the works in Chapters 3 and 4 [15, 63], the proposed

algorithm is shown to have improved performance with a similar computation cost for each agent

in the group. Finally, the source code of the proposed algorithm and simulator is shared online

to allow the readers to more easily verify and build on this work. The code is available online:

https://github.com/wvu-irl/Scalable-Framework-Cooperative-Localization.git.
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The rest of this chapter is organized in the following manner. The problem statement and nota-

tions are introduced in Section 5.2. Section 5.3 explains the proposed algorithm design in detail.

The simulation utilized to evaluate the proposed algorithm is introduced in Section 5.4, with results

discussed in Section 5.5. The chapter concludes in Section 5.6.

Fusion of Multiple Estimates

Full Group of Agents Examples of Local Subgroups

Figure 5.1.1: Illustration of the proposed framework for map matching based cooperative
localization. (Left) A large group of agents is divided into subgroups based on communication
constraints where one subgroup is created for each agent. (Upper right) The geometry of
the subgroups (i.e., the relative positions inside the subgroups) are estimated, using range-
only measurements, then the geometry is used to extract measurements of the scalar field to
estimate the pose and associated uncertainty of each member in the subgroup. (Lower right)
An agent, as an example, receives multiple copies of its pose estimate through its membership
in several subgroups and fuses them to reduce pose error.
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5.2 Problem Statement andNotations

In this study, the case is considered where a large group of N agents (e.g., space, aerial, ground,

surface, or underwater vehicles) is entering an environment without GNSS. At the moment en-

tering the GNSS-denied environment, the initial pose in the global frame for each agent is as-

sumed to be known with a small uncertainty (e.g., provided by GNSS). The main objective is to

achieve accurate and robust global localization for all agents in a large group mainly based on lo-

cal communication and inter-agent ranging measurements along with scalar field information. In

this chapter, a one-based numbering system is used for indexing. Let the group ofN agents be de-

noted byΦ = {φ1, φ2, · · · , φN} where φi denotes the ith agent in the group. The pose of each

agent is partially observable; thus, at each time step, the pose is represented as a Gaussian belief

φi[bk] = {φi[x̂k], φi[Pk]} where φi[x̂k] and φi[Pk] are the mean vector and covariance matrix

of the state of the ith agent at the kth time step.

Eachagent is assumed tobeequippedwith radios that enable communicationwithnearby agents

to exchange information, as well as to performundirected inter-agent ranging. Due to communica-

tion limitations (e.g., range or number of channels), each agent can only communicate and perform

ranging with a limited number of agents inside a certain range. Therefore, the agents are divided

into subgroups based on the communication constraints as follows:

Φi = {φj ∈ Φ | ζ(φi, φj) < ϵ} (5.1)

where ζ(φi, φj) is a user defined function indicating if agent i is capable of communicating with

agent j and ϵ is a user defined threshold. For example, ζ(φi, φj)may be based on signal strength,

and ϵ may define a threshold determining whether the signal strength is adequate for agent i to
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communicate with agent j.

Based on this definition, the group has at least N subgroups, each with M members, where

subgroup Φi corresponds to the agents capable of communicating with agent φi. The agent i is

named the fusion center agent of the subgroup i. Furthermore, the subgroups are not disjointed

(i.e.,Φ ̸=
⋃N

i=1Φi), as each agent is included inmultiple subgroups. In other words, the situations

of isolated agents and isolated subgroups are not considered in this study. The beliefs of subgroup

i at time step k are denoted by the following:

Φi[bk] = {φj[bk] | φj ∈ Φi} (5.2)

where Φi[x̂k] and Φi[Pk] are similarly the set of means and covariance matrices of subgroup i at

time step k. Each agent in a subgroupmeasures the distance between other agents in the subgroup.

Let the distance between agent i and agent j be denoted by d[φi, φj], and let the set of distance

measurements between agents in a subgroup be denoted byΦi[d].

Each agent is assumed to be loaded with a prior scalar field map covering the operation area.

Since the types of scalar fields evaluated in this study change very little in a short time frame [4, 16],

the prior loaded scalar field map is assumed to be deterministic. Each agent also performs real-

time measurements of the scalar field at the current location with sensor noises, such as gravity

anomaly,magnetic anomaly, or altimetermeasurements, at each time step, which can be exchanged

through the communication links. In general, scalar fieldsmay varywith altitude depending on the

applications (e.g., magnetic anomaly) and the available data at different altitudes, which may not

be available or dense enough; however, this study only deals with the navigation problem in 2D

(i.e., assuming the agents are moving at a constant altitude). The scalar field measurements of the

ith agent are denoted by φi[I], and the sets of these measurements in a subgroup are denoted by
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Φi[I].

Meanwhile, each agent is assumed to be able tomeasure or estimate its velocity at each time step,

which could be achieved through utilizing the Doppler velocity log [131], wheel odometry [107],

or vehicle dynamic model [126], along with yaw rate measurements, using gyroscopes. Similar to

before, the velocity and yaw rate measurements of the ith agent are denoted by φi[v] and φi[ω],

and the sets of measurements in a subgroup are denoted byΦi[v] andΦi[ω].

5.3 SystemDesign

5.3.1 SystemOverview

The proposed algorithm is developed for estimating each agent’s global pose in a scalable group

with communication constraints. The pipeline of the proposedmulti-subgroup based algorithm is

shown in Figure 5.3.1.

Φ[vk]

Measurements

Φ[ωk]

Φ[Ik] Φ[dk]

subgroup 1

Subgroup
process

…
subgroupN

Multipleφ1[bk]

Data Fusion

MultipleφN [bk]

φ1[x̂k]
…

φN [x̂k]

Figure 5.3.1: The pipeline of the proposed algorithm. The details of the subgroup localiza-
tion process are shown in Figure 5.3.2.

Each agent in the group is assigned to different subgroups based on the communication range or

the number of channels, and these subgroups overlap, as discussed earlier in Section 5.2. Note that

in this study, in order to conveniently evaluate the performance of the proposed algorithm for each
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agent in the group, the subgroups are pre-set at the beginning, whichmeans that the memberships

of each subgroup are assumed to be constant during an operation. Without pre-setting the sub-

groups, each agent in the group cannot be guaranteed to belong to the same subgroups during the

operation, which could lead the performance of each agent to be unequal and difficult to evaluate.

Each subgroup takes each agent’s velocity, yaw rate, scalar field measurements, as well as the rang-

ingmeasurements between the agents in the subgroup as inputs. The outputs of each subgroup are

pose estimates of the agents belonging to this subgroup. As mentioned earlier, each agent could

belong to multiple subgroups. Thus, multiple pose and covariance estimates from different sub-

groups exist for each agent in the group at each time step. For example, each subgroup containsM

agents and each agent is a member ofL subgroups. Therefore,L estimates of the pose and covari-

ance can be communicated to that agent. For each agent, the data fusion algorithm, explained in

Section 5.3.3, is developed for estimating the agent’s pose based on this redundant information.

Measurements

Cooperative
Ranging

Localization

Cooperative
Scalar Field
Localization

Φi[bk]

Φi[vk]
Φi[ωk]
Φi[dk]

Φi[Ik]
φi[vk]
φi[ωk]

Φi[rk]

Figure 5.3.2: The pipeline of the cooperative localization process in a subgroup i. Φi[rk]
means the relative poses between each pair of agents in the subgroup i at time step k.
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5.3.2 SubgroupCooperative Localization

The cooperative localization algorithm that was developed in Chapter 3 is applied to obtain the es-

timated poses and covariances of all agents in a subgroup at each time step. For completeness, the

main approach are explained in this subsection. The pipeline of the subgroup process is described

inFigure 5.3.2. Specifically, two sequential algorithms, named cooperative ranging localization and

cooperative scalar field localization, are included in this process and performed in the fusion cen-

ter agent in each subgroup. The cooperative ranging localization step estimates the relative poses

between each pair of agents in the subgroup. The cooperative scalar field localization step then

estimates the pose and covariances of the fusion center agent in the subgroup through matching

the multiple scalar field measurements with relative pose constraint to the prior scalar field map.

Since the processes in the rest of this subsection are identical for each subgroup, in order to present

equations clearly, all notations listed in the rest of this subsection do not include the index of the

subgroup.

The cooperative ranging localization algorithm is formulated as an EKF as presented in Section

3.3.2 under Chapter 3.

With the estimated relative poses in the subgroup, the scalar fieldmeasurements fromeach agent

can be treated as points on a fix geometric shape to match to the map. The cooperative scalar field

localizationmethod is formulated as a particle filter as introduced in Section 3.3.3 underChapter 3.

Since the particle filter is performed in the fusion center agent, for each particle, the states, shown

in Eq. 3.13, at the next time step are predicted, using the fusion center agent’s velocity and yaw rate

measurements and the state estimate at the current time step.

In the subgroup, the other agents’ predicted global positions can be extracted by adding the

updated relative positions from Eq. 3.17 to the predicted states from the particle filter. The vector-
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valued observation function hM is used to extract the predicted scalar field measurements from

the given map based on each agent’s predicted position.

5.3.3 Data Fusion

The goal of the data fusion step is to estimate an improved pose for each agent. Since the correla-

tion among the pose and covariance estimates is unknown due to information reuse between sub-

groups, theCI algorithm [9] is applied to fuse the estimates of each agent frommultiple subgroups.

In general, the CI algorithm fuses information based on a convex combination of the information

matrices (i.e., the information states and the inverse of corresponding covariancematrices). There-

fore, to apply CI, each agent must have knowledge of the expectations and associated covariance

matrices estimated in the subgroups it belongs to. The procedure for obtaining these values is de-

scribed in detailed in this section.

Covariance Estimates FromParticles

The expectation of the state at time k for the fusion center agent in each subgroup, denoted as p̂k,

can be obtained from the particle filter by computing the weighted average of the particles given

the particle weights. Let lp(i) denote ith state of the lth particle, and let p̂(i) denote the expected

value of the ith state. Now, the covariance matrix of the state denoted byC is calculated from the

particles as follows:

C(l, p) =
n∑

i=1

{iw̃ (ip(l)− p̂(l)) (ip(p)− p̂(p))} (5.3)
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where iw̃ is the weight of the ith particle, n is the total number of particles, and l and p represent

the indices of the elements in the matrix. Then, the covariance matrix of the pose estimate of each

agent at time step k is given by the following:

φi[Pk](l, p) = Ck(l, p) : (l, p = 1, 2, 3) (5.4)

whereφi[Pk](l, p) denotes the element in the lth row and pth column of the covariance matrix of

ith agent. The pose estimates of other agents in the subgroup are able to be derived by utilizing the

fusion center agent’s pose estimate, the relative pose fromEq. 3.17, and the subgroup rotation error

γ. According to [132], the covariance matrix of the pose estimate for each agent in the subgroup

at one time step is the same as the covariance of the fusion center agent.

Covariance Intersection

In order to present the details of CI applied in this problem clearly, (φi[x̂
j
k], φi[P

j
k ]) denotes the

jth estimate of pose and covariance of ith agent at time step k. The implementation of CI in this

situation is presented as follows:

φi[x̂k] = φi[Pk]
L∑

j=1

(αjφi[P
j
k ]

−1
φi[x̂

j
k]) (5.5)

φi[Pk] = [
L∑

j=1

(αjφi[P
j
k ]

−1
)]−1,

L∑
j=1

αj = 1, αj ≥ 0 (5.6)

whereα = [α1, α2, · · · ] are the weighting coefficients, which need to be solved, andL is the total

number of solutions of the ith agent (i.e., the total number of subgroups, including agent i). Based
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on [9],α is assumed to be computed by solving a nonlinear optimization problem, which is to find

α to minimize the determinant or trace of φi[Pk]. However, to solve the nonlinear optimization

problem is computationally expensive, especially, when the ith agent has a large number of solu-

tions. To reduce the computation cost, the fast CI method presented in [133], which is designed

to solve the weighting coefficients quickly, is applied as follows:

αj =
det(S)− det(S − φi[P

j
k ]) + det(φi[P

j
k ])

L det(S) +
∑L

q=1[det(φi[P
q
k ])− det(S − φi[P

q
k ])]

(5.7)

with

S =
L∑

q=1

φi[P
q
k ]. (5.8)

By solving for α from Eq. (5.7), the improved pose of the agent at time step k (i.e.,φi[x̂k]) can

be computed through Eqs. (5.5) and (5.6).

5.4 Simulation

In order to verify that the proposed algorithm is suitable for different types of scalar fields, a mag-

netic anomaly map and a bathymetric map are utilized in the simulation study.

For the ease of simulating a large number of agents, the agents are simulatedwith a bicyclemodel

[129] in the 2D plane. A feedback controller steers an agent to follow a reference trajectory and

reference velocity based on the pose estimates from the proposed algorithm. All reference trajecto-

ries are set to be parallel to latitude lines in a geographic coordinate system. New parallel reference

trajectories are added with a certain distance when the group size increases. Agents are assumed

to be moving fromwest to east with the same initial longitude and small uncertainties (a Gaussian
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white noise with zero mean and 1 m standard deviation) on the initial poses as discussed in Sec-

tion 5.2. The reference trajectories are close to the ground truths shown in Figure 3.5.1. In order to

simulate situations when all agents are moving at different speeds, the reference velocity for each

agent varies slowly, following a sine function with a random offset throughout the duration of the

mission.

In this simulation, the communication among agents is restricted by the limited number of com-

munication channels available for each agent. The fusion center agent and agents it can reach are

assigned as a subgroup at the beginning of the simulation. Meanwhile, different scalar fields are

related to different experimental environments and platforms. For example, magnetic anomaly

maps can be used by the localization system of aerial vehicles on Earth [4], or space probes ex-

ploring other planets, and bathymetric maps are used for underwater vehicles’ localization [61].

Therefore, different parameter settings are introduced corresponding to two map types in the fol-

lowing.

5.4.1 Magnetic AnomalyMap

The Earth’s magnetic anomaly information that presents the variations of the Earth’s magnetic

field is stable and distinctive at different locations in a certain range of altitude [4]. The magnetic

anomaly map utilized in this simulator, shown in Figure 5.4.1, is obtained from the United States

Geological Survey [18] and contains themagnetic anomaly information at 305m altitude from the

area around Columbus, Ohio, United States.

The noise of the velocity measurement and yaw rate measurement are drawn from a Gaussian

distribution with zero mean and standard deviation σv = 0.3 m/s for velocity and σg = 0.005

deg/s for the yaw rate. A turn-on bias bv ∼ N(0, 0.1σv) for velocity and bg ∼ N(0, 0.1σg) for
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Figure 5.4.1: The magnetic anomaly map of the area around Columbus, Ohio, United States
in geographic coordinate system at 305 m altitude.

yaw rate is added separately. According to the references [25, 4], the noise of the ranging mea-

surements and the magnetic anomaly measurements are drawn from a Gaussian distribution with

zero mean and standard deviation σr = 1 m and σm = 10 nT, respectively. The initial distance

between each pair of neighbor agents in latitude is set to 1000 m. The reference velocity for each

agent varies from 40 to 60m/s. Themission duration is 1 h, and the trajectory length of each agent

is about 180 km.

5.4.2 BathymetricMap

The bathymetry, also known as submarine topography, presents the depths of the underwater ter-

rain. The bathymetric map applied in this simulator, shown in Figure 5.4.2, is acquired from the
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Figure 5.4.2: The bathymetric map of the area around the Santa Barbara Channel, United
States, in geographic coordinate system.

United States Geological Survey [19].

According to the descriptions of parameter setting in underwater experiments in [61, 62], the

standard deviation of the velocitymeasurement noise and yaw ratemeasurement noise are selected

as σv = 0.1 m/s and σg = 0.1 deg/s. A turn-on bias bv ∼ N(0, 0.1σv) for velocity and bg ∼

N(0, 0.1σg) for the yaw rate is also added separately. The noise of the altimeter measurements is

drawn from a Gaussian distribution with zero mean and standard deviation σa = 1m. The noise

of the inter-agent ranging measurements are drawn from a Gaussian distribution with zero mean

and standard deviation σr = 1m. The initial distance between each pair of neighboring agents in

latitude is set to be 200 m. The reference velocity for each agent varies from 0.5 to 1.5 m/s. The

mission duration is 1 h and the trajectory length of each agent is about 3600 m.
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5.5 Results

Theproposed algorithm is designed to remove the constraints of the group size inpreviousworks in

performing cooperative localization [15, 63]. Therefore, the algorithms presented inChapter 3 are

utilized as the comparison to evaluate the proposed algorithm. The performance of the proposed

algorithm is comparedwith simulations under the full communication (FC) assumption, where all

agents can communicate with each other agent at each time step. The performances and sensitivity

analysis of FC could be found in Chapter 3. The average position RMSE in each simulation from

bothFCand the proposed algorithmare evaluated. In each case,multipleMonteCarlo simulations

are performed, consisting of 160 trials each.

The proposed algorithm and FC are first evaluated, using a magnetic anomaly map-based simu-

lation environment. Figure 5.5.1 shows the CDF of each simulation’s average position error for all

agents in the group at each time step from theMonte Carlo simulations. The FC is performedwith

different group sizes (i.e., N = 4, 8, 16). Meanwhile, the proposed algorithm is also evaluated

with various group sizes (i.e., N = 8, 16, 32) and subgroup sizes (i.e., the number of agents in

each subgroup), such asM = 4, 8, 16, as shown in Figure 5.5.1. For example,N = 32,M = 16

means that the full group has 32 agents, and each subgroup has 16 agents. Table 5.5.1 shows the sta-

tistical dataof theFigure5.5.1 alongwithperformanceof the simulationwithdead-reckoning (DR)

without using the ranging and magnetic anomaly information. From Figure 5.5.1 and Table 5.5.1,

Table 5.5.1: Mean of Monte Carlo simulations’ position RMSE in each situation, using mag-
netic anomaly map (unit: meters).

N = 4 N = 8 N = 8 N = 16 N = 16 N = 32 DRFC M = 4 FC M = 8 FC M = 16
58.4 35.7 25.3 12.2 12.9 5.2 751.3
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Figure 5.5.1: The CDF of each simulation’s average position error for all agents in the group
for 160 Monte Carlo simulations with different algorithms and group sizes. These simulations
are run with the magnetic anomaly map shown in Figure 5.4.1.

it is clear that the performance of both the proposed algorithm and FC improves as the group size

increases, and both are much better than doing DR alone. Note that since the number of parti-

cles used in different scenarios is the same at the cooperative scalar field localization step, the per-

formance comparison is suitable to be made between FC and the proposed algorithm, when the

group size of FC is equal to the subgroup size of the proposed algorithm. In this case, with the

same number of particles, the particle filter in both situations deals with the same number of scalar

fieldmeasurements at each time step. Meanwhile, the computation of each agent applying the pro-

posed algorithm is similar to the computation of each agent working in FC because of the fast CI

method [133] applied. The performance of the proposal algorithm shows improvement over the

FC in Figure 5.5.1 and Table 5.5.1.

Similar results are acquired using a bathymetric map-based simulation environment. Figure

5.5.2 shows the CDF of each simulation’s average position error for all agents in the group at each
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time step. Due to the smaller bathymetric map, a maximum of up to 16 in group sizes were simu-

lated. Table 5.5.2 shows the statistical data of the Figure 5.5.2 along with performance of the DR.

Figure 5.5.2: The CDF of each simulation’s average position error for all agents in the group
for 160 Monte Carlo simulations with different algorithms and group sizes. These simulations
are run with the bathymetric map shown in Figure 5.4.2.

Table 5.5.2: Mean of the position RMSE in each situation using bathymetric map (unit:
meters).

N = 4 N = 8 N = 8 N = 16 DRFC M = 4 FC M = 8
29.6 14.7 19.6 8.2 293.1

The performance of the proposed algorithm applied with different group sizes and the same

subgroup size using themagnetic anomalymap is shown in Table 5.5.3. It shows that the proposed

algorithm works with large group sizes (e.g., N = 128). The computation of each agent in the
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Table 5.5.3: Mean of Monte Carlo simulations’ position RMSE, using magnetic anomaly
map with different group size and same subgroup size (unit: meters).

N = 16 (M = 8) N = 32 (M = 8) N = 128 (M = 8)
12.2 13.5 15.3

group, which is only spent on locally centralized cooperative localization and data fusion, does not

increase when the group size grows. However, since each agent uses the same amount of informa-

tion in different sizes of groups (i.e., the sizes of the subgroups are the same), the performance of

these simulations are similar.

5.6 Discussion

In this chapter, a scalable cooperative localization framework based on scalar field prior maps and

real-time measurements is presented. In order to satisfy the communication constraints, a large

agent group is separated into several subgroups, where each agent is treated as the fusion center in

each subgroup. A locally centralized cooperative localization is performed to estimate the agents’

poses in each subgroup through matching multiple scalar field measurements constrained by rel-

ative positions to the given map. In order to avoid over-convergence due to using correlated in-

formation, a fast CI algorithm is applied to estimate an improved pose for each agent based on its

multiple pose and covariance estimates from its membership in multiple subgroups.

The simulation results show that the proposed algorithm is able to deal with large groups (e.g.,

N = 128), and to achieve higher performance, even under more restrictive communication con-

straints, compared to the previous works [15, 63]. Additionally, this approach is suitable for mis-

sions with different types of scalar fields.

There are several limitations in this work that need to be addressed in the future, such as extend-
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ing the algorithm to agents distributed in 3D spaces and better integration of the uncertainty in

the group geometry estimates into the map-matching process. A great challenge is to find decen-

tralized localization solutions that can utilize all agents’ measurements in the group in an efficient

and robust manner, under communication constraints. Currently, the performance of the pro-

posed algorithm is limited by the subgroup size, instead of the full group size. The future work

will focus on allowing information to flow beyond the immediate neighbors while maintaining the

stability of the pose estimation algorithm in the agent network. Meanwhile, the idea that using

geometry-based multiple independent measurements to solve matching problem leads a solution

for lidar-based SLAM, which will be introduced in the following chapter.
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6
Lidar-inertial Based Localization
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6.1 Introduction

Lidar-based localization in environments including moving objects, such as self-driving vehicles

passing through the street with crowded people, autonomous driving robotic guides working in

museums at a busy time, is a challenging problem [134]. The points detected frommoving objects

could affect the accuracy of transformation estimation between two point clouds using matching

related methods, such as ICP [5], NDT [28]. Meanwhile, because of the benefits of the lidar sen-

sors, such as accurate ranging detection, working in poorly illuminated environments, the lidar

sensors cannot always be replaced. Therefore, to design a robust lidar-based localization system

for environments including moving objects is a necessary problem.

The current solutions for estimating lidar-based odometry, such as Lidar Odometry and Map-

ping(LOAM)[40], Lightweight andgroundoptimized lidarodometry andmapping(Lego-LOAM)

[41], are not designed to work in dynamic environments. With the assistant from inertial sen-

sors (e.g., IMUs), the lidar-inertial-based odometry solutions, such as Fast Lidar-Inertial Odom-

etry (Fast-LIO) [135], Lidar Inertial Odometry via Smoothing and Mapping (LIO-SAM) [136],

show more robustness compared with the lidar-based odometry in high-speed moving scenarios.

These methods, however, are assumed to be designed for environments with only static objects.

Semantic information extracted based on deep learning technologies, such as PV-RCNN [114],

RangeNet++ [48], is applied to filter out the points from dynamic objects [47]. However, due to

the lack of different types of labeled data (currently, the available labeled data is mainly focused

on cars, pedestrians, and cyclist [116]), the objects in point clouds could not be classified in many

different types. Meanwhile, the semantic information could not represent the dynamic objects in

some cases, such as a car which is parking off the street cannot be treated as a dynamic objects.

Several moving object segmentation algorithms are presented, such as Lidar-MOS [45], removert
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[43]. However, these segmentation algorithms required pose estimates as input, and were only

perform offline, which cannot be used for online odometry estimation.

A potential solution for lidar-based localization algorithm for environments including dynamic

objects was proposed based on independent feature tracking, which is inspired from the scalable

framework presented in the previous chapter. The idea of the potential solution is demonstrated

through using an example shown in Figure 6.1.1.

In Figure 6.1.1, a point cloud and measurements from other sensors are inputted into the de-

signed system. In this example, five features extracted from the point cloud are presented as five

squares with different colors. These features are assumed to be tracked in the previous point cloud

in this example. Therefore, five estimates about the pose of the system are able to be predicted with

respect to each feature. The dots and eclipses in the figure present the estimated pose and covari-

ances separately, and different colors are correspondent with different features. Note that, the dot

and eclipse in black color present the estimated pose and covariances based onmeasurements from

other sensors. In the figure, it is easy to notice that the estimated pose related to feature 5 is far away

from other estimates. In this case, feature 5 may be extracted from a moving object or the pose is

estimatedwithwrong information (such as, thewrong pair of correspondent features between cur-

rent time step and previous time step). As a result, the estimated pose related to feature 5 is then

removed as an outlier. The cluster of pose estimates and covariances which is close to the pose and

covariance estimated based on prediction usingmeasurements from other sensors is kept. Eventu-

ally, the estimated pose and covariance are computed through fusing all remained pose estimates

and covariances. However, the independent feature tracking based lidar odometry algorithm is as-

sumed working with accurate feature detection and tracking, which are not easy problems to solve

without using learning-based algorithms.
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Point Clouds, Measure-
ments from other sensors

(e.g., inertial sensors)

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Feature Extracting and Candidate Motion Predictions w.r.t. Each Feature.

Feature 1

Feature 2

Feature 3

Feature 4

Outlier Detection and Information Fusion (red: fused position and covariance.)

Estimated position and covariance

Figure 6.1.1: One example of the independent feature tracking based lidar odometry algo-
rithm. Colored squares are the features extracted from one point cloud. The colored dots and
ellipses represent the estimated position and covariance using the feature with the same color.
The dot and eclipse in black color present the estimated pose and covariances based on mea-
surements from additional sensors. The red dot and ellipse show the fused position and co-
variance.
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In this chapter, a lidar-inertial based SLAM framework with a dynamic object removal filter is

presented to solve 3D pose (i.e., orientation and position) estimation problem in environments

including a large number of moving objects. The SLAM framework is designed to have a front-

end, which is to perform odometry estimate using a lidar and an inertial sensor, and a back-end,

which is to do optimization for the global map. The front-end of the SLAM framework is built as

an IEKF [135], which preforms tightly-coupled lidar-inertial odometry estimation. In the IEKF,

the states are updated through matching the current scan to a local map, which is generated using

estimated odometry and input point clouds. In order to reduce the influences of the noisy points

from dynamic objects, a dynamic object removal filter is designed to filter out most of points from

dynamic objects inside the input point cloud before adding to the local map. Meanwhile, in order

to provide the capability of mapping large areas and to regulate the error growth (i.e., accumulated

error from the front-end odometry), a pose-graph optimization strategy is applied using iSAM2

[137]. Moreover, the ScanContextmethod presented in [13] is utilized for loop closure detection.

In this chapter, several collected data sets (using wheeled robot as the platform and using hand-

held devices) have been applied to evaluate the performance of the proposed algorithm. The results

show the robustness of the proposed algorithmwith dynamic object removal filter compared with

the casewithout dynamic object removal filter. Theperformance of the proposed algorithm is eval-

uated with indoor and outdoor data sets, and is compared with other state-of-the-art lidar-inertial

based SLAM algorithms. The benefit of the pose-graph optimization strategy is verified through

comparing the localization error using odometry only with using both odometry and pose-graph

optimization. In order to evaluate that the proposed algorithm is versatile (i.e., the proposed al-

gorithm is suitable for different applications, such as wheeled ground robot or handheld devices,

with different types of lidars), different types of data sets collected in different environments are
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applied to solve 3D pose estimate in this chapter.

The rest of this chapter is organized in the following manner. The details of the presented algo-

rithmaredescribed in Section6.3. Theexperiments utilized to evaluate thepresented algorithmare

introduced in Section 6.4. In Section 6.5, the performance of the proposed algorithm is analyzed

based on results from the experiments. The chapter is concluded in Section 6.6.

6.2 Problem Statement

Theobjective of this chapter is to solve the 3D lidar-inertial-based localization problem in environ-

ments including a large number of moving objects. The required sensors applied in this chapter

contain a mechanical lidar, such as Velodyne® HDL-32 channel lidar or Ouster® 64 channel lidar,

and a six-axis IMU (i.e., the measurements from the IMU only include three-axis acceleration and

three-axis angular velocity). During the operation, the transformation between the lidar and the

IMU is rigid, which means there is no relative moving between the lidar and the IMU. However,

the calibration matrix between the lidar and the IMU could be unknown, which is able to be esti-

mated in the proposed algorithm.

In order to state the problemmore clearly, three coordinate systems are used in this chapter. The

IMU frame is denoted as I; the lidar frame is denoted as L; and the world frame (i.e., the global

frame) is denoted asW . Note that, in this chapter, the world frame is defined as the IMU frame at

the first time step (i.e., the start time). The extrinsic from lidar to IMU is defined as TIL, and the

pose of the IMU in world frame is defined as TWI , where T is the transformation matrix.

Note that, since the update rate for the IMU usually is faster than the update rate of the lidar,

and the extrinsic TIL would be estimated at the same time, the problem in this chapter is defined

to achieve online estimation for TWI only using sequential lidar point clouds and measurements
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from a six-axis IMU. Meanwhile, the lidar-inertial-based SLAM framework is designed to work in

environments including a large number of moving objects.

6.3 Methods

6.3.1 SystemOverview

In this chapter, observations and measurements from lidar and an IMU are fused to solve the

problem of localization in environments including a large number of dynamic objects. A SLAM

framework containing lidar-inertial odometry as the front-end and a pose-graph optimization as

the back-end is designed in this chapter. The framework of the designed system is shown in Fig-

ure 6.3.1. The inputs of this system only require the point clouds from a lidar, which could be in

Point
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IMU mea-
surements

Lidar-inertial
Odometry

Pose-Graph
Optimization

Optimized Trajectory

Optimized Map

Odometry Pose

Keyframe Scan

Figure 6.3.1: The overview framework of the proposed system.

different models (e.g., Velodyne 32 channel lidar, Ouster 64 channel lidar), and the acceleration

and angular rate measured from an inertial sensor (e.g., IMU). As introduced before, the frame-

work contains two main components, which are the lidar-inertial odometry and the pose-graph

optimization as shown in Figure 6.3.1.

The lidar-inertial odometry is formulated as an IEKF [135], which usesmeasurements from the

IMU to do forward propagation, and applies the scan-to-mapmatchingmethod using point clouds
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from the lidar to do observation update. A local map, which presents the point clouds in a user-

defined area around the lidar, is generated andmaintained in the lidar-inertial odometry algorithm.

In order to reduce the influence of the noisy points from the dynamic objects, a dynamic object re-

moval filter is designed to filter out these noisy points before adding the current scan (i.e., the point

cloud collected by the lidar after one full shot or swipe) to the local map. An ikd-Tree data struc-

ture presented in [138] is adopted to store points in the local map to improve the computational

efficiency of the presented algorithm. In order to save memory and computation resources for the

pose-graph optimization, a keyframe strategy is applied in the framework. A keyframe scan is de-

fined as the current scan being beyond the user-defined distance from the previous keyframe scan.

Note that, the first scan is set as a keyframe scan. Therefore, the outputs of the lidar-inertial odom-

etry module are the odometry pose and keyframe scan (if available at the current time step). The

details of the lidar-inertial odometry module are explained in Section 6.3.2.

The iSAM2 algorithm presented in [137] is applied in the pose-graph optimization to bound

the error growth from the odometry poses. The pose-graph optimization algorithm takes each

keyframe scan as the vertex and the odometry pose estimates as the edges among these vertices.

A loop-closure algorithm, named scan context [13], is applied to detect the loop-closure (i.e., the

visited places). The details of the pose-graph optimization are introduced in Section 6.3.3.

6.3.2 Lidar-inertial odometry

The lidar-inertial odometry is designed to provide odometry estimates and keyframes for pose-

graph optimization. The framework of the lidar-inertial odometry algorithm is presented in Figure

6.3.2.

In order to achieve online and accurate pose estimation, the problem is formulated as an IEKF,

94



IMU mea-
surements

Point
Clouds

Forward
Propagation

Undistortion
Residual
Compu-
tation

Converged State
Update

Odometry
Pose

Keyframe
Scan

Dynamic
Object

Removal
Filter

Local Map
Update

No

Yes
Undistorted Scan

Updated states

Figure 6.3.2: Lidar-inertial odometry algorithm design.

which uses inertial measurements (i.e., three-axis acceleration and three-axis angular velocity) for

forwarding propagation and applying a scan-to-map matching algorithm to compute the residual

for state update. The IEKF is able to iteratively update the state using observations, which is ben-

eficial for reducing the errors caused by linearization. Meanwhile, a light computation method

presented in [135] is applied to speed up the computing of the Kalman gain K that includes an

observation Jacobian Matrix in large size, which would be explained in detail in Section 6.3.2.

The residual inside the IEKF is computed through matching the undistorted point cloud at the

current time step with the local map, called scan-to-map matching. Since each point in one scan

is not collected at the same time, when the lidar is moving, each raw point cloud collected by the

lidar has the in-scan motion error. During the undistortion step, all points in one scan have been

projected to the scan end-time based on the estimated relative pose from the forward propagation

and the sampling time of each point in the scan. In order to improve the accuracy of the point

cloud matching, a point-to-plane matching algorithm presented in [88] is applied to compute the

residual. The details of the residual computation will be introduced in Section 6.3.2.

95



The local map used for scan-to-map matching contains points around the lidar in the world

frame. Since each point in the downsampled income point cloud has to find five nearest neigh-

bor points in the local map for computing the residual, which will be explained in Section 6.3.2,

in order to improve the efficiency of point searching, the size of the local map is limited in user-

defined area around the lidar. In this case, the local map can be treated as a patch of the global map

with downsampled points. Meanwhile, an effective data structure, named ikd-Tree presented in

[138], is adopted to store points for the local map, which was proved more effective in k-nearest

searching and map managing (i.e., insertion and delete) [138].

As the system is designed for working in environments including a large number of moving ob-

jects, before adding the undistorted scan to the localmap, a distance-baseddynamic object removal

filter is proposed to filter out most of the points from dynamic object removal filter, which would

be explained in detail in Section 6.3.2.

The odometry poses estimated using the IEKF are published at the IMU update rate. Mean-

while, the undistorted scan which is beyond the user-defined distance from the previous keyframe

scan is also published as a new keyframe. Note that, the distance between the current undistorted

scan and the previous keyframe is estimated using the estimations from the lidar-inertial odometry.

State Estimation

The goal of the lidar-inertial-based odometry algorithm is to estimate the pose of the IMU in the

world frame and to estimate the extrinsic between lidar and IMU. The state vector, defined in Eq.

6.1, contains fifteen states of the IMU, the gravity vector, and the rotation matrix and translation

96



from lidar to IMU.

x = [RWI ,pWI ,vWI ,bω,ba,gW ,RIL,pIL]
T (6.1)

where, RWI and pWI are the attitude and position of the IMU in the world frame, vWI is the

velocity vector of the IMU in the world frame, bω and ba are the biases of the gyroscope and the

accelerator, gW is the gravity vector in the world frame,RIL and pIL are the calibration transfor-

mations from lidar to IMU. Note that rotationR is defined as SO(3). The state transition model

using the inertial measurements as inputs could be given by

xi+1 = xi ⊞ (∆tf(xi,ui,wi)) (6.2)

where the encapsulation operator ⊞ establish a bijective mapping from a local neighborhood to

its tangent space, defined in [135], xi is the state vector at time step i, and∆t is the time between

continuing time steps. The ui is the inputs at time step i, defined as:

u = [ωm, am]
T (6.3)

where, ωm and am are the angular velocity and acceleration measurements from IMU. The wi is

the noise at time step i, defined as:

w = [nω,na,nbω,nba]
T (6.4)

where nω and na are the white noise of IMU measurements, nbω and nba are the Gaussian noises

of the IMU biases, which are modeled as the random walk. The transition function f is modelled
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as:

f(x,u,w) =



ωm − bω − nω

vWI

RWI(am − ba − na) + gW

nbω

nba

03×1

03×1

03×1



(6.5)

Residual Computation

Eachmeasuredpoint, denoted aspLj (jth point in one scan in lidar frame), from lidar is considered

to include noise, denoted as nLj . Since the point cloud data from lidar is sparse, instead of finding

a correspondence point in the local map using a point in the current scan, finding a small patch of

correspondence plane is more reliable. A correspondence plane, which is modeled using the five

nearest points in the local map, means the point in the current scan should be in the same plane

after applying the transformation. This could be explained using Eq. 6.6

0 = uWj(TWIkTIL(pLj + nLj)− qWj) (6.6)

where,uWj is the normal vector of the corresponding plane for point j in world frame,TWIk is the

estimated pose of the IMU in world frame at time step k, TIL is the estimated calibration matrix

from the lidar to the IMU, qWj is one corresponding point in world frame for point j, which is

used tomodel the corresponding plane, and the equation (pLj +nLj)means the jth point in lidar
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frame without noise. As shown in Eq. 6.6, without noise, the product between a vector inside a

plane and the normal of the plane should be zero. However, the noise caused by estimation and

measurement always exists. Therefore, during thepoint cloudmatching, for jthpoint in the current

scan, the residual is defined as,

zj = uWj(TWIkTILpLj − qWj) (6.7)

In this case, the size of the residual matrix would bem×1, wherem is the number of the points

used for point cloud matching in the current scan. Meanwhile, the Jacobian of the observation

matrix H, derived based on the residual matrix, should be in size m × 24 (24 is the number of

states introduced in Eq. 6.1). Since the number of points used for point cloud matching is often

huge, the size ofH is large, which is not effective for calculate Kalman gain using Eq. 6.8 [7].

K = PHT (HPHT +R)−1 (6.8)

where, P is the estimated covariance with respect to the state vector, R presents measurement

noises. To invert the matrixHPHT is computation expensive when the size of the matrix is huge.

A new form of Kalman gain proved in [135] is adopted in this method, as shown below:

K = (HTR−1H+P−1)−1HTR−1. (6.9)

SinceR is a diagonal matrix, the Eq. 6.9 only requires to invert twomatrices both with the dimen-

sion of the state. In this case, the computation cost in IEKF could be reduced when a large number

of points is used for matching. The rest of the IEKF process is the same as the equations presented
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in [139].

DynamicObject Removal Filter

The proposed algorithm is designed to work in environments including a large number of moving

objects. With the influences from themoving objects, the transformation estimated based on point

cloudmatchingmay not present the accuratemovement of the sensors. A dynamic object removal

filter is designed to remove most of the points from moving objects in a scan before adding them

to the local map. Since the observation update is performed by matching the current scan to the

local map, the effect of the points frommoving objects is reduced after removing these points from

the local map.

The dynamic object removal filter is designed to check the moving objects by comparing the

distance between the transformed point in the current scan in theworld frame and its nearest point

in the local map, shown as Eq. 6.10.

Dmin ≤ ||TWIkTILpL − pW || ≤ Dmax (6.10)

where,TWIkTILpL presents the transformedpoint in the current scan using estimated transforma-

tion from IEKF, pW is the nearest point in the local map after transformed, Dmin and Dmax are

the user-defined parameters. Equation 6.10 shows that a point would be considered as the point

frommoving objects when the distance between the transformed point and its nearest point in the

local map is in the user-defined distance.

With the assistant of the transformation estimated from the IEKF, which is reliable in a short

time frame, the point in the current scan should be very close to its nearest point after performing

transformation if the point reflects a static object. In this case, the lower boundary of the distance
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Dmin shouldbe set larger than the estimatederror fromthe IEKF in a short time frame. Meanwhile,

the upper boundary of the distanceDmax is set based on the average velocity of themoving objects

in the environment.

6.3.3 LoopClosure Detection and Pose-GraphOptimization

For robust localization in long-term drives, the error growth is always bounded through applying

pose-graph optimization with assistant from a loop closure detection algorithm.

The loop closure detection problem, also known as place recognition, is important in long-term

navigation. In this chapter, the scan context algorithm presented in [13] is adopted to detect loop

closure. Other than learning-based detection algorithms, the scan context algorithm only uses in-

formation from a sensor. Meanwhile, the height value of points stored in a row-column designed

grid map guarantee the accuracy of the place recognition, which is important for pose-graph opti-

mization.

Thepose-graphoptimization framework is refereed from iSAM2presented in [137]. The iSAM2

formulates the factor graph problem as a Bayes tree, which allows easily updating the variance with

respect to each vertex. Meanwhile, when the graph grows large, only part of the Bayes tree, which

is close to the additional edge, needs to be updated using iSAM2. In this case, iSAM2 is more

computationeffectivelywhenperformingpose-graphoptimization. In this chapter, theLevenberg-

Marquardt algorithm [140] is applied to perform non-linear optimization.
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6.4 Experiments

Several data sets, collected using different sets of sensors in different real environments, are applied

to evaluate the performance of the presented algorithm. Specifically, one part of the data sets was

collected using a wheeled ground robotmounted with a Velodyne® HDL-32E 32-channel 3D lidar

and a Novatel® INS system. The other part of the data sets were collected using a handheld device

which included an Ouster® 64-channel 3D lidar and a six-axis IMU. These data were collected

in indoor and outdoor environments. In outdoor environments, the GNSS data collected by the

Novatel® SPANGNSS/INS system is processed as the ground truth of the positioning. The details

of the experiments are introduced as follows.

6.4.1 Data Sets CollectedUsing ARobot

Platform

A wheeled ground robot, named ”BrambleBee”, is utilized to collect data in both indoor and out-

door environments. The BrambleBee, introduced in [141, 142, 143], is designed to perform au-

tonomous pollination for bramble planes (e.g., raspberry). As shown in Figure 6.4.1, the Bramble-

Bee is built primarily on a ClearPath Robotics ® Husky platform, which enable the robot to drive in

both indoor and outdoor environments. The BrambleBee platform is equipped with a Velodyne®

HDL-32E 32-channel 3D lidar, which is able to collect point clouds data at about 10 Hz. A Nova-

tel® SPAN GNSS/INS system is also installed onboard. The INS system is able to provide six-axis

inertial measurements (i.e., three-axis accelerations and angular velocities) at 50 Hz.

The positions solved using carrier-phase DGPS [144, 145] based onmeasurements from a base

station, shown in Figure 6.4.2, and the onborad GNSS system are considered as the ground truth
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Figure 6.4.1: The BrambleBee robotic platform in the West Virginia University (WVU)
greenhouse.

in this experiments.

During data collections, the BrambleBee was remotely controlled by an operator to perform

driving forward, backward, and rotation with speed at about an average of 1 meter per second and

the angular rate at about an average of 20 degrees per second. Note that, the armof the BrambleBee

was removed during the data collections for easy operation.

Environments

The data set collected using BrambleBee covers some places on WVU Evansdale campus in both

indoor and outdoor environments. The data set ”esb” is collected by driving BrambleBee from
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Figure 6.4.2: The GNSS base station receiver.

the Mineral Resources Building to the ground level of the Engineering Research Building through

passing the ground level of the Engineering Sciences Building (i.e., the indoor environments). The

data set ”campus” is collected by driving the BrambleBee from the Advance Engineering Research

Building to the Engineering station through the outdoor environments. The data set ”campus2”

is collected by driving the BrambleBee from the Mineral Resources Building to the entrance of

the Crossing building. The data set ”rec-center” is collected by driving the BrambleBee from the

ground level of the Crossing building to the Rec Center, and then driving back to the ground level

of the Crossing building. Note that, both ”campus2” and ”rec-center” contain indoor and outdoor

environments with one drive.
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Due to the COVID-19, only part of the data set ”esb” is collected in the environment that in-

cludes a large number of the moving objects (e.g., humans in this data set). Therefore, the data

set ”esb” would be used for evaluating the robustness of the proposed algorithm. Other data sets

are utilized to evaluate the localization and mapping performance of the proposed algorithm in

different environments.

6.4.2 Data sets collected using a handheld lidar

In order to evaluate the ability of the proposed algorithm for different types of lidars in different

applications, a data set was collected with a handheld Ouster® 64 channel lidar in a stone mine is

applied in the experiments. Compared with the data collected using a ground robot, the handheld

data contains more rotation motion in roll and pitch, which is close to drone driving. The inertial

measurements are collected with the IMU mounted in the Ouster® lidar.

6.5 Results

In this chapter, a lidar-inertial-based SLAM algorithm with a dynamic object removal filter is de-

signed for solving localization problems in environments including a large number of moving ob-

jects. The robustness of the proposed algorithm is evaluated with the data set ”esb” in this chapter.

Meanwhile, the performance of the proposed algorithm is comparedwith the state-of-the-art lidar-

inertial SLAM algorithmLIO-SAMusing data set ”esb”. To choose the LIO-SAM algorithm as the

comparison for three reasons. The first one is that current dynamic object aware based 3D SLAM

algorithms, such as SUMA++ [47, 146], are performed dynamic detection using Deep learning

methods, which requires enough data for training. In this case, the learning based algorithms can-
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not be used for the comparison due to the limited number of available labeled data in the exper-

imental environments. The second one is that available non-learning related dynamic detection

based SLAM algorithms, such as the method presented in [42], are performed localization for 2D

solutions, which cannot be applied to solve 3D pose estimation problem directly. The third rea-

son is that even though the LIO-SAM algorithm is not developed for environments including a

large number of moving objects, the LIO-SAM algorithm is able to work in some moving objects

included environments due to using measurements from both lidar and IMU.

In order to reduce the influences of the points from moving objects, a dynamic object removal

filter is designed to remove most of the points from moving objects before adding them to the

local map. Figure 6.5.1 shows one example of the local map with and without the dynamic object

removal filter. These local maps shown in Figure 6.5.1 are generated using data set ”esb” at the

time when two people are walking on the left of the BramebleBee. The Figure 6.5.1 shows that the

designeddynamicobject removal filter is able to removemost of points frommovingobjects before

adding the current scan to the local map. In this case, the thresholds in the dynamic object removal

filterDmin andDmax are set to0.08meter and0.2meters, respectively. A sensitivity analysis about

these thresholds, Dmin and Dmax, are performed. The result from the sensitivity analysis shows

that the dynamic object removal filter has a similar performance when settingDmin ≥ 0.05meter

andDmax ≤ 0.28meter in this experiment. Note that, since the update frequency of the lidar is

set to 10 Hz in this experiment, the range of the thresholds is close to the speed of pedestrians.

The global maps generated using the data set ”esb” with the proposed algorithm with and with-

out dynamic object removal filter are presented in Figure 6.5.2. Since the data set is collected in

indoor environment, there is no ground truth for evaluate the accurate performances of the pro-

posed algorithm. The most different place (marked as red circles) in these two generated maps
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(a) With dynamic object removal filter. (b) Without dynamic object removal fil-
ter.

Figure 6.5.1: One example of the local map with and without the dynamic object removal
filter. The axis shows the pose of the IMU (positive x(red) is forward, positive y(green) is left,
and positive z(blue) is up).

shows that the proposed algorithmwith dynamic object removal filter is more accurate than the al-

gorithmwithout dynamic object removal filter in this case through comparing these generatedmap

with the build map. Meanwhile, one scan of the raw point clouds in data set ”esb” around the time

step when the proposed algorithm without dynamic object removal filter has troubles is shown in

Figure 6.5.3. Figure 6.5.3 shows that there are about nine moving objects (i.e., humans) walking

in the hall way. In this case, the environment could be considered as including a large number of

moving objects. Figure 6.5.4 shows that the LIO-SAM [136] also fails with data set ”esb”. The Figs.

6.5.2, 6.5.4, and 6.5.3 demonstrate that the proposed algorithmwith dynamic object removal filter

is more robust than other algorithms in environments including a large number of moving objects.

In order to present the performance of the proposed algorithm, the trajectories estimated using

the proposed algorithm with back-end optimization and without back-end optimization are com-

pared with the ground truth using three data sets collected around Advance Engineering Research
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(a) With dynamic object removal filter.

(b) Without dynamic object removal filter.

Figure 6.5.2: One example of global map with and without dynamic object removal filter in
indoor dynamic environment. The most different place between these two figures are pointed
out with red circles.
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Figure 6.5.3: One scan of the raw point clouds in data set ”esb” around the time step when
the algorithm without dynamic object removal filter has troubles. There are about nine mov-
ing objects (i.e., humans) in this scan.

Figure 6.5.4: The LIO-SAM algorithm [136] failed with data set ”esb” at the place with a
large number of moving objects existed.
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Building (AERB). The experimental environments with ground truth estimated using the DGPS

algorithm are shown in Figures 6.5.5, 6.5.6, and 6.5.7.

The comparisons of the trajectories estimated using the proposed algorithm with back-end op-

timization and without back-end optimization with the ground truths in three experimental en-

vironments are shown in Figures 6.5.8, 6.5.9, and 6.5.10. Meanwhile, the statistic data (RMSE in

East-axis andNorth-axis) corresponded with these trajectories are listed in Tables 6.5.1, 6.5.2, and

6.5.3.

Note that, the trajectories estimated using the proposed algorithm, shown in Figures 6.5.8, 6.5.9,

and 6.5.10, are rotated using the guessed initial heading compared to the North direction in GPS

solutions. Meanwhile, the wrong position estimation in GPS solution shown in Figure 6.5.8 was

removed before calculating the RMSE. The information from the Figures 6.5.8, 6.5.9, and 6.5.10,

and theTables 6.5.1, 6.5.2, and 6.5.3 shows that the proposed algorithm is able to achieve same level

positioning accuracy compared with the DGPS algorithm. Besides that, the proposed algorithm is

able to correct the error from theDGPS algorithm caused by signal issues. Due to the scan-to-map

strategy (i.e., each income scan is matched to the local map to estimate the pose) applied in the

front-end of the proposed algorithm, the performances between with and without the back-end

optimization did not show large differences with data sets collected in environments around the

AERB and the parking lot since the size of the local map is able to cover most of the area of the ex-

perimental environments. However, with the data set collected in environments around the grass-
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Figure 6.5.5: Environments around AERB and the trajectory estimated using the DGPS al-
gorithm. (Note that, one position is estimated in wrong due to signal issue of the Global Posi-
tioning System (GPS).)

Figure 6.5.6: Environments around the parking lot and the trajectory estimated using the
DGPS algorithm.

Table 6.5.1: RMSE in East-axis and North-axis (Data set: Environments around AERB).

East (meters) North (meters)
Odom 0.0724 0.0670

Optimized 0.0694 0.0683
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Figure 6.5.7: Environments around the grassland and the trajectory estimated using the
DGPS algorithm.

Figure 6.5.8: Trajectories estimated using the proposed algorithm with back-end (Optimized)
and without back-end optimization (Odom) and ground truth (GPS) (Data set: Environments
around AERB).
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Figure 6.5.9: Trajectories estimated using the proposed algorithm with back-end (Optimized)
and without back-end optimization (Odom) and ground truth (GPS) (Data set: Environments
around the parking lot).

Table 6.5.2: RMSE in East-axis and North-axis (Data set: Environments around the parking
lot).

East (meters) North (meters)
Odom 0.0082 0.0023

Optimized 0.0084 0.0030

Table 6.5.3: RMSE in East-axis and North-axis (Data set: Environments around the grass-
land).

East (meters) North (meters)
Odom 0.2888 0.1941

Optimized 0.2597 0.1789
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land, which can be considered as featureless environments, the performance with the back-end

optimization shows better than the performance without the back-end optimization. The reason is

that a featureless environment (e.g., the grassland area for the lidar) brings troubles for point cloud

matching, and due to the inaccurate estimation, the error in the local map would be accumulated.

Since the end position of this data set is collected in a feature-rich place (i.e., several buildings close

to the position), the loop-closure detection and factor-graph-based optimization are able to reduce

the accumulated errors that happened in the grassland area.

The point cloudmap generatedwith the handheld data set is shown in Figure 6.5.11. Withmore

motion in roll and pitch when collecting data, Figure 6.5.11 shows that the proposed algorithm is

suitable for different types of sensors in more aggressive movement.

Figures 6.5.12, 6.5.13, and 6.5.14 present the global maps generated using data set ”campus”,

”campus2”, ”rec-center”, respectively. These global maps demonstrate that the proposed algorithm

is able to perform robust and accurate 3D localization in both indoor and outdoor environments.

6.6 Discussion

In this chapter, a lidar-inertial based SLAM framework with a dynamic object removal filter is pre-

sented to solve the 3D localization problem in environments including a large number of moving

objects.

The presented framework has been evaluated with several data sets collected in real environ-

ments with different types of platforms. The results show that the proposed dynamic object re-

moval filter is able to effectively remove most of the points from moving objects. The proposed
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Figure 6.5.10: Trajectories estimated using the proposed algorithm with back-end (Opti-
mized) and without back-end optimization (Odom) and ground truth (GPS) (Data set: Envi-
ronments around the grassland).

Figure 6.5.11: Global map generated with data set collected using handheld devices in a
stone mine.
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Figure 6.5.12: Global map generated using data set ”campus”.

Figure 6.5.13: Global map generated using data set ”campus2”.
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Figure 6.5.14: Global map generated using data set ”rec-center”.

SLAM framework shows more robustness in environments including a large number of moving

objects comparedwith the state-of-the-art lidar-inertial SLAMalgorithm. Moreover, the proposed

algorithm shows the ability about working with different types of applications in both indoor and

outdoor environments. Meanwhile, the results demonstrate that the pose-graph-based optimiza-

tion assisted with the scan context loop closure detection algorithm is able to regular the error

growth from the lidar-inertial odometry.

There are several limitations to the proposed algorithm that need to be addressed in the future. A

more effectivemethod to set up the threshold in the proposed dynamic object removal filter needs

to be designed. So far, the data sets which include a large number of moving objects are collected

in limited situations and environments. More data sets utilized for evaluating the robustness of the

lidar-based SLAM algorithms need to be collected in the future.
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7
Conclusions and Future Work
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7.1 Conclusions

In this dissertation, the problems about localization in GNSS-denied and challenging environ-

ments (i.e., environments with only low-resolution features and environments including a large

number of moving objects) are addressed. To achieve robust and accurate localization, several so-

lutions based on sensor fusionmethods are proposedwith respect to different applications in these

two different types of challenging environments.

For environments with only low-resolution features, a scalable cooperative localization frame-

work mainly using inter-agent ranging and scalar field measurements with communication limi-

tations is presented. Compared with a single-agent case, the proposed cooperative localization

framework shows more robustness in localization with a low-resolution scalar field map. In order

to satisfy the communication constraints (i.e., each agent can only communicate a limited number

of other agents in the group) and to allow scalability, a large agent group is separated into several

subgroups, where each agent is treated as the fusion center in each subgroup. A locally central-

ized cooperative localization algorithm is developed to estimate the agents’ poses in each subgroup

more effectively compared with other scalar field-based centralized cooperative localization algo-

rithms [12]. The locally centralized cooperative localization algorithm contains two sequential

steps: cooperative ranging localization for relative navigation, formulated as an EKF, and coop-

erative scalar filed localization utilizing a particle filter to estimate each agent’s global pose inside

the subgroup. In order to avoid over-convergence due to using correlated information, a fast CI

algorithm is applied to estimate an improved pose for each agent based on its multiple pose and

covariance estimates from its membership in multiple subgroups.

The proposed framework has been evaluated with a feedback control-based simulator using two

different types of scalar field information (i.e., magnetic anomaly measurements and bathymet-
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ric measurements) in two different applications (i.e., UAV navigation and underwater navigation).

Theresults frommultipleMonteCarlo simulationsdemonstrate that theproposedalgorithm is able

to deal with large groups (e.g., 128 agents in a group) under restrictive communication constraints.

The proposed locally centralized cooperative localization algorithm has been shown to provide

more accurate and robust global pose estimates compared with single-agent cases with commu-

nication constraints. Meanwhile, the results from the sensitivity analysis show that the presented

algorithm can tolerate large variations of velocity, yaw rate, and scalar field measurement noises.

For environments including a largenumberofmovingobjects, a lidar-inertial basedSLAMframe-

work with a dynamic object removal filter is presented to solve the 3D pose (i.e., orientation and

position) estimation problem. In order to reduce the influences about the points frommoving ob-

jects, a dynamic object removal filter is designed through checking distance changes to filter out the

points from moving objects. A lidar-inertial odometry algorithm is built on an IEKF, which uses

inertial measurements (i.e., three-axis acceleration and angular rate) as prediction inputs and point

cloud-based scan-to-map matching results as observation updates. To achieve the online process,

the data structure, ikd-Tree [138], is utilized to manage points in the map. In order to satisfy the

requirement for a long-time navigation, a pose-graph-based optimization algorithm is adopted to

regular the error incremented from the lidar-inertial based odometry estimation. The scan context

algorithm is applied to detect loop closure for pose-graph optimization.

The presented lidar-inertial-based SLAM framework has been evaluated with several data sets

collected in real environments with different types of platforms. The results show that the pro-

posed dynamic object removal filter is able to effectively detect and remove most of the points

from moving objects before adding the current scan to the map. With this benefit, the proposed

SLAMalgorithm showsmore robustness in environments including a large number ofmoving ob-
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jects (e.g, about nine moving objects shown in the data set) compared with the state-of-the-art

lidar-inertial SLAM algorithms. Moreover, the proposed algorithm shows the ability about work-

ing with different types of applications in both indoor and outdoor environments by evaluating

with different types of data sets. Meanwhile, the results demonstrate that the pose-graph-based

optimization assisted with the scan context loop closure detection algorithm is able to regular the

error growth from the lidar-inertial odometry.

Another potential solution for solving localization in environments including a large number of

moving objects is proposed and discussed in this dissertation. Different from the currentmethods,

which perform matching algorithms with the full scan, the proposed algorithm treats each small

selected cluster of points as an independent feature. The pose of the lidar is estimated through

tracking each independent feature. Meanwhile, since the tracking process for each feature is inde-

pendent, the features detected from the moving objects could be removed by applying an outlier

detection algorithm. The pose of the lidar at each time step could be estimated by fusing all esti-

mates based on each independent feature after outlier removal. The evaluation with a 2D lidar in a

simulated environment shows the potential of the proposed algorithm towork robustly in dynamic

environments if a reliable feature detection algorithm is available.

7.2 FutureWork

There are several limitations about these proposed algorithms in this dissertation that need to be

addressed in the future.

For the scalable cooperative localization framework working for the environments with only

low-resolution features, the proposed algorithm needs to be extended to agents distributed in 3D

spaces. Meanwhile, better integration of the uncertainty in the group geometry estimates (i.e, rela-
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tive pose estimates inside the group) into themap-matching process needs to be developed. A great

challenge is to find decentralized localization solutions that can utilize all agents’ measurements in

the group in an efficient and robustmanner, under communication constraints. Currently, the per-

formance of the proposed algorithm is limited by the subgroup size, instead of the full group size.

For this issue, an algorithm that allows information to flow beyond the immediate neighbors while

maintaining the stability of the pose estimation needs to be developed in the future. The model of

the agents in the simulator, which is developed to evaluate the proposed algorithm, is considered

as the bicycle model. A More complex model will be designed and applied in the simulator in the

future.

For the lidar-inertial SLAM algorithm working in environments including a large number of

moving objects, a more effective method to set up the threshold in the proposed dynamic object

removal filter needs to be designed. So far, the data sets which include a large number of mov-

ing objects are collected in limited situations and environments (i.e., only collected from Campus

environments and a stonemine). More data sets utilized for evaluating the robustness of the lidar-

based SLAM algorithms need to be collected in the future. Meanwhile, a sensitivity analysis about

the number of dynamic objects need to performed with more data sets in the future.
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