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Abstract 

Comparative Analysis of Different Classes of On-line State Estimators for Aerodynamics 
Angles and True Airspeed Sensors for Applications to the Sensor Failure Problem 

Alexandra A. Augsberger 

 

 Throughout aviation history, there have been numerous incidents due to sensor failure 

that have caused a range of issues from loss of control of the aircraft to crashes resulting in loss 

of human life.  Although there are many hardware-based solutions to this problem, the threat of 

control hardware failure still exists. This work investigates the efficacy of implementing neural 

networks (NN) and Kalman filters (KF) to solve the accommodation portion of the sensor failure 

detection, identification, and accommodation (SFDIA) problem through on-line real-time 

estimation of specific aircraft dynamic parameters. The implementation of on-line estimation 

architectures into the aircraft flight control system provides multiple advantages such as cost 

effectiveness and drastic decrease in weight. The multilayer perceptron (MLP) NN, extended 

minimal resource allocation (neural) network (EMRAN), extended KF (EKF), and unscented KF 

(UKF) have been evaluated in this effort for the purpose of providing analytical redundancy 

(AR) for estimating the parameter of the ‘failed’ sensor in lieu of physical redundancy. Each 

NN-based and KF-based estimator was compared using preset criteria including estimation 

accuracy, time to perform, and complexity of the model. The overall results have shown that the 

NN-based sensor failure accommodation (SFA) schemes outperform the KF-based SFA schemes 

with no undetected faults nor false alarms and significantly smaller estimation errors. More 

specifically, the EMRAN-based neural estimator has the best performance of all four schemes 

followed by the MLP NN, UKF, and EKF, respectively. This research shows the great potential 

of analytical redundancy-based approaches as opposed to physical or hardware redundancy to 

improved aviation safety for preventing future crashes due to sensor failures.  
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Introduction 

a. Motivation 

On-line estimation has been a prominent control failure prevention method proposed for 

sensor failure scenarios in aircraft for many years. Control systems utilize on-line estimation to 

optimize both performance and safety. Neural networks and Kalman filters, two different classes 

of on-line estimators, are explored in this work to solve the sensor failure detection, 

identification, and accommodation (SFDIA) problem for both simulated and real aircraft data. 

The SFDIA problem was one of the first to address sensor failures through on-line estimation in 

works such as Samy et al. [1], Fravolini et al. [2], and Gururajan et al. [3]. SFDIA was a 

problem originally proposed for sensor failures on aircraft but can be applied to any control 

system. This paper will focus on the sensor failure accommodation (SFA) portion of the SFDIA. 

This topic has been researched strenuously as it can prove lifesaving in critical sensor failure 

situations.  

b. Background 

On-line estimation is a branch of on-line machine learning in which data becomes 

available in a sequential order and is used to update the best prediction for future data at each 

step [4]. An advantage of on-line estimation is its ability to accurately predict future data without 

analyzing the entirety of large sets of data. It also allows built-in algorithms to adapt to dynamic 

patterns commonly seen in aircraft data.  Neural networks and Kalman filters provide two very 

different but effective approaches for the design of on-line estimators to accommodate sensor 

failures.  
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A NN is an artificial intelligence scheme composed of neurons organized in multiple 

layers that determines underlying relationships within large datasets. NNs have been used as 

nonlinear dynamic system controllers to address problems for which conventional approaches 

have been proven to be ineffective [5]; however, because the learning process is computationally 

demanding (either through on-line or off-line training), the practical use of NNs for on-line 

control schemes is limited, especially in areas such as flight controls [6, 7]. An additional issue 

that has prevented a much broader application of NN-based schemes (either as controllers or as 

estimators) is the lack of reliable validation tools for the certification process set by a regulating 

agency such as the Federal Aviation Administration. Hence, the problem of designing fast on-

line learning algorithms for practical implementation of neural control schemes remains an active 

research topic [8]. 

KFs are a form of Bayesian on-line estimation first developed by Rudolf E. Kálmán and 

Richard Bucy [9] that utilize linear quadratic estimation (LQE). KFs, like NNs, use a series of 

measurements observed over time to produce estimates of unknown variables. By estimating a 

joint probability distribution over the variables for each timeframe, KFs tend to be more accurate 

than estimations based on a single measurement alone.  Kalman filtering uses a system's dynamic 

model, known control inputs to that system, and multiple sequential measurements (such as 

sensors) to form an estimate of the system's varying states. As such, it is a common sensor 

fusion and data fusion algorithm.  

This research will focus on the sensor failure of three specific variables, that is angle of 

attack (α), sideslip angle (β), and true airspeed (TAS). These specific variables have been selected 

because they are actively measured through sensors (aerodynamic vanes and pitot tubes) located 

outside the aircraft which are more likely to be damaged or interfered with than other sensors 
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(such as gyros and accelerometers) that are installed inside the aircraft. There have been multiple 

works in the past dedicated to the nonlinear estimation of each of these variables using flight 

data. Different on-line estimation schemes including the multilayer perceptron (MLP) NN and 

the unscented Kalman filter (UKF) have proven to be suitable approaches to the SFDIA problem 

[1, 10]. This work investigates and provides a comparative analysis of four different SFDIA 

schemes’ abilities to accurately accommodate sensor failures within simulated and real aircraft.  

c. Research Organization 

The primary goal of this research is to determine the best on-line estimator to be used for 

the accommodation portion of the SFDIA problem. The comparative analysis will be performed 

using ad-hoc defined performance criteria. This thesis is organized as follows.  

Chapter 1 provides an in-depth literature review of the sensor failure problem.  

Chapter 2 discusses the challenges of this research, the selection of performance criteria, 

and expected performance of each on-line estimator.  

Chapters 3 describes the two NNs in focus for this research, that is the multilayer 

perceptron (MLP) NN trained with the back propagation (BP) algorithm and the radial basis 

function (RBF)-based extended minimal resource allocation network (EMRAN). This chapter 

also provides a review of the original NN algorithms and their modifications over recent years. 

Chapter 4 discusses the KFs used in this research, that is the extended Kalman filter 

(EKF) and the unscented Kalman filter (UKF). This chapter provides the history and original 

algorithms of the Kalman filter and how the KF has developed over time to accommodate 

nonlinear systems.  
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Chapter 5 discusses the design of the sensor failure accommodation (SFA) schemes 

within the WVU flight simulator. The results of all four on-line estimators’ analyses and 

accommodations using simulation data is discussed.    

 Chapters 6 and 7 analyze the results of each on-line estimator when tested with real 

flight data from the WVU YF-22 research aircraft and Tecnam P92 aircraft, respectively. These 

chapters provide evidence supporting which of the four on-line estimation schemes performs best 

when accommodating sensor failures for angle of attack, sideslip angle, and true airspeed. 

Finally, Chapter 8 provides the overall conclusions of this comparative study as well as 

recommendations and plans for future work.  

 

Figure I: WVU YF-22 Unmanned Research Aircraft. Photo courtesy of Dr. Marcello Napolitano.  

 

Figure II: Tecnam P92 [11] 
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Chapter #1: Literature Review 

On-line estimators have had multiple applications to real-world issues; specifically, over 

the last two decades, significant research efforts have been directed towards increasing 

operational safety of aircraft through developing fault tolerant flight control schemes. Aircraft 

sensor errors have been found to be the cause of numerous plane crashes over the course of flight 

history [5]. At times, crash investigations that concluded that pilot’s error was the cause of the 

crash were later reversed when evidence proved the occurrence of sensor failures. Issues related 

to sensor failures were typically considered lower priority mainly due to the reliance on physical 

redundancy.  

Physical redundancy defines the category of hardware in aircraft responsible for fault 

tolerance. The physical redundancy of the sensors, along with the implementation of Built-In 

Testing or voting schemes, have shown to be reliable approaches to manage failures for most of 

the flight control system sensors. For this reason, physical redundancy in the sensors to date has 

been the only accepted approach for manned aircraft by the FAA despite the proof provided by 

many research efforts regarding the success of analytical redundancy [3].  According to the 

FAA’s Reliability, Maintainability, and Availability handbook section 7.1.4, the redundancy and 

fault tolerance first determinant must be the hardware architecture [12]. There must also be an 

“adequate number” of hardware elements in the aircraft dedicated to fault tolerance [12]. 

Analytical redundancy, due to these standards, does not currently meet FAA requirements.  

Despite physical redundancy being the only internationally accepted fail-safe for any 

aircraft, it has not been completely risk or accident free. Sensors installed outside the aircraft that 

are dependent on physical redundancy are susceptible to external factors (such as bird) and 

environmental factors (such as the formation of ice on the external sensors). For this reason, 



6 
 

physical redundancy schemes do not allow the same level of robustness to sensor failures for 

external sensors compared to internal sensors.  For example, if one Pitot tube fails due to 

environmental factors, it is statistically likely that the other Pitot tubes will experience the same 

failure; this is known as the “common mode” failure. Analytical redundancy has gained more 

popularity in recent years because it relies solely on the control system inputs and outputs of the 

aircraft, or the software, and is not impacted by external nor environmental factors.   

Plane crashes in the past have proven that physical redundancy is not a completely 

foolproof method when accommodating external sensor failures. Notable crashes due to Air Data 

Systems (ADS) sensor failure include the NASA X-31 research aircraft and the Aeroperu B757 

[3]. According to the aviation safety database, there is technical evidence of over ten ADS 

failures for all Pitot tubes over the past three decades leading to significant damage and/or 

fatalities [3, 13].  Other sensor failure-induced plane crashes in the past include the infamous 

Boeing 737 crashes caused by both inaccurate speed and angle of attack data [6], Korean Air 

Cargo Flight 8509 crashing due to incorrect data from the attitude director indicator [7], and Air 

France Flight 447’s iced Pitot tubes that lead to an inevitable crash [8].  These cases displayed 

the flaws of physical redundancy through common mode failures and environmental factors that 

could have potentially been avoided with the use of analytical redundancy.  

The first models used to accommodate sensor failure originated from state estimation, a 

set of mathematical models that reconstruct the state information of a system [13]. In this 

method, unmeasured state variables, or the unknowns of the problem, are estimated based on 

available model output predictions and noisy measurements. This is a crucial property of SFDIA; 

when a sensor fails, it is necessary to estimate what the actual sensor values must be based the 

sensors’ inputs. Thomas Bayes was the first main contributor to the state estimation problem 
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with the development of Bayesian theory in the 1700’s. This served as the foundation of 

statistical inference methods, which was the basis of on-line estimation schemes [14]. One of the 

more popular sensor failure schemes designed and utilized aside from SFDIA is the Data Stream 

Management Systems (DSMS) method. The DSMS scheme is more prevalent in transportation 

system designs but there have been applications of this method for aviation.  As mentioned 

previously, this research centers around the SFDIA problem, also sometimes referred to as the 

Fault Detection, Isolation, and Reconfiguration (FDIR) problem that has been researched as early 

as the mid-1900’s in works by Kolmogorov [15], Wiener et al. [16], and Kalman [17]. Since 

SFDIA was introduced into the aviation industry, the topic has been studied continuously to 

propose more reliable solutions to the sensor failure problems aircraft can face.  

 1.1 State of the Art of the SFDIA Problem 

SFDIA has been utilized for numerous research applications over the past few decades 

and has proven to be capable of solving faulty sensor problems. The research efforts toward 

SFDIA have seen drastic improvements over time to where the state of the art of SFDIA is today.  

The tasks of SFDIA systems today are to generate residuals when a sensor failure is 

detected, identify the sensor or fault, and accommodate the error based on the type of failure 

using preprogrammed data or recalculating the parameters on-line [2]. These approaches 

typically divide the process into two steps, that is sensor failure detection and identification 

(SFDI) and sensor failure accommodation (SFA). The SFDI will detect and identify the source of 

failure within the control system without physical redundancy. Once the SFDI is triggered, the 

SFA initiates and inputs a new estimate to the control system to replace the failed sensor data.  
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There have been two main approaches toward solving the SFDIA problem: model-based 

and not model-based.  Both the NN and KF have been studied as potential permanent solutions 

to the SFDIA problem in aircraft control systems from the UAVs such as the YF-22 and aircraft 

such as the Tecnam P92. There have been many works focused on this issue in the past that have 

compared both the KF and NN approaches for various estimations of failed sensors.  

At the most basic form, SFDIA models will compute the residual, or difference between 

the model estimate and actual sensor measurement. If the difference surpasses a user-

implemented boundary, a fault is declared that initiates the SFA process. The model-based 

approaches consist of various KFs. Model-based schemes rely on a system of equations, or 

mathematical descriptions, of the system. The main model-based method used for SFDIA 

problems is the observer-based Kalman filter such as extended and unscented [18]. Although the 

KF is efficient in terms of cost and time to develop, there have been many issues observed in 

different works such as Samy et al. [1], Gururajan et al. [3], and Alexander et al. [14] including 

computational complexity, estimation discrepancies within the mathematical model compared to 

actual data, and robustness to nonlinearities. These difficulties associated with the KF have led to 

issues regarding SFDIA including false alarms (FA) that has diminished the probability of this 

analytical redundancy method being implemented into future aircraft control systems. 

In contrast to the Kalman filter and other model-based methods, NNs have gained 

popularity over recent years as they do not rely on a strict mathematical model [18]. NNs have 

been favored in past works due to their reliance on actual data instead of systems of equations. 

By relying on data, the NNs have the capability to recognize input-output relationships within 

the data that are not fully captured by human observation nor mathematical equations. NNs have 

accurately estimated nonlinear functions with just one hidden layer and sufficient training data 
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[19, 20]. Although there have been KF models introduced in the past that have been successfully 

applied to other nonlinear systems like EKFs and UKFs, the NNs have no equal in terms of their 

structural simplicity, computational speed, and nearly unmatched fault tolerance. The NN has 

been implemented into SFDIA problems in recent years as they adaptively reduce modeling 

errors and FAs over time unlike the KF. Although it seems as though the NN is the clear choice 

to resolve SFDIA problems, there are many disadvantages associated with a seemingly reliable 

method. One of these disadvantages includes the amount of data required for training the 

network. A NN is nearly impossible to implement into brand new problems if there is no data 

available to train the network. For this same reason, the NN can be costly if there is a need for 

additional data. The NN can also require days to months to train depending on the amount of 

data whereas the KF can be used immediately after the completion of the design.  

1.2 Related Work 

The SFDIA problem has been researched in numerous works through different NNs, KFs, 

and other parameter estimation techniques to accommodate sensor failure on UAVs, aircraft, and 

spacecraft. Many of the schemes mentioned have also been compared to one another to 

determine the best on-line estimator.  

NNs have been investigated thoroughly for the sensor failure problem in various works 

such as Fravolini et al. [21], Campa et al. [22], and Napolitano et al. [23]. Fravolini et al. 

displayed the competence of nonlinear NNs to characterize the nonlinear response in different 

phases of flight. The NN in this work was able to adapt to the changing data patterns of a 

Tecnam P92 over time. The NN was able to detect failures with low false alarm rates and high 

robustness despite the change in behavior of flights. In works by Campa et al. and Napolitano et 

al., the extended minimal resource allocating NN (EMRAN), was investigated for aircraft 
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SFDIA and compared to the performance of a MLP NN. In this work, both the EMRAN and 

MLP were able to successfully detect, identify, and accommodate failed sensors in a 6 degree of 

freedom aircraft simulation. In this study, the EMRAN NN performed faster and more accurately 

than the MLP.  

The KF has also been implemented into multiple sensor failure related studies including 

notable works by Rhudy et al. [24] and Wan et al. [10]. Modified versions of the KF such as the 

Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were utilized for nonlinear 

flight dynamics systems in these cases. In the work by Rhudy et al., the nonlinear KF was the 

analytical redundancy-based approach of choice to accommodate the true aircraft speed without 

the Pitot probe. This was one of the first works to incorporate aviation data from a manned 

aircraft rather than an UAV. Two different stochastic wind models, the random walk and Gauss-

Markov based on the nonlinear EKF, were successfully implemented and provided satisfactory 

results for airspeed estimation in this work. This work created a solid foundation for on-line 

estimation through an EKF-SFDIA scheme for manned air vehicles and proved it can be used as 

a standard technique within aircraft controls. The work by Wan et al. compared the EKF and 

UKF for the SFDIA problem. This work compared the EKF and UKF using datasets of multiple 

orders. The EKF was sufficient with first order systems but had large errors with higher order 

data. On the other hand, the UKF was capable of computing estimations with higher order data 

through unscented transform (UT). This work displayed the competence of both the EKF and 

UKF in terms of estimation capabilities. As of today, the UKF can compute higher-level order 

accuracy at the same degree of computational complexity as the EKF.   

There are also recent works in which a comparative analysis was conducted between NNs 

and KFs to determine the best on-line estimator specifically for aircraft data. These comparative 
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works include Napolitano et al. [26] and Fravolini et al. [27].  Both studies compared the 

performance of the NN-SFDIA and KF-SFDIA schemes with nonlinear UAVs. The NNs 

outperformed the KFs in terms of estimation accuracy and false alarms in both studies but the 

KFs still performed satisfactorily. 

Based on these past works, on-line estimators today have proven to be reliable 

implementations to control systems of all types but has yet to be installed permanently into any 

aircraft. In general, previous works have shown that although both the NN and KF provide 

satisfactory results and performance, the NN is favorable in terms of computational power and 

estimation accuracy. This research will provide more insight into each online estimator to 

determine which is the optimal scheme for each type of sensor failure in both simulated and real 

aircraft.  
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Chapter #2: Challenges and Criteria of the On-Line Estimators 

This chapter discusses the challenges and the taken into consideration when undergoing 

this research. To increase the chances of successfully developing NNs and KFs for SFDIA, there 

were many potential challenges that needed to be noted before initiating the research. Further on 

in this chapter, the expected performance of each on-line estimator, based on the analysis 

criteria, was discussed.  

2.1 Challenges 

2.1.1 Robustness and Sensitivity 

 Crucial properties of on-line estimation schemes are their robustness and sensitivity to 

changes in behavior of the data. There is a wide variety of flight maneuvers and paths that need 

to be analyzed by each on-line estimator in this work. When the on-line estimator is properly 

sensitized to the training data, it will perform well when tested with new data. Lack of robustness 

or sensitivity can lead to poor estimation of new testing flight data. The SFA schemes were 

expected to handle any type of flight data with a low false alarm rate and low number of 

undetected faults [3]. To guarantee optimal sensitivity, it was critical to correctly characterize 

each scheme’s uncertainty bounds, which presents a new challenge [28].  The testing of 

robustness and sensitivity is a challenge as there is no consistent or reliable algorithm for 

determining the appropriate parameters that will guarantee the capability to both be able to 

handle all data types and to also detect any fault severity. Any parameter within the NN or KF 

can further complicate this process as they each can have a positive or negative impact on both 

factors [21]. Neural architecture search algorithms are a relatively new tool designed for the 

purpose of optimizing robustness; however, these methods are not yet consistent nor reliable. 

Matrices in the NN and KF that are directly associated with robustness and sensitivity, 



13 
 

covariance and uncertainty, are typically defined through trial-and-error, which can be tedious to 

perform and inconsistently effective. 

2.1.2 SFDIA: Sensor Failure Detection 

Another challenge that affects both the NNs and the KFs is detecting minor failures 

within the flight data. The severity of a sensor failure can vary from unnoticeable to catastrophic. 

When considering more subtle sensor failures, although it may seem unimportant at first, it could 

become progressively worse throughout the flight; therefore, it is crucial for the on-line state 

estimators in this work to detect the sensor failure immediately no matter the severity. This could 

prove to be a challenge as the smaller sensor failures may still seem “correct” to the estimator if 

the incorrect values are still within what is considered a safe range of the variable.   

2.1.3 SFDIA: Sensor Failure Identification 

Sensor failure identification proves to be a challenge as many of the variables under 

observation are similar in terms of magnitude. In the case of the flight data, depending on the 

maneuver, for example, some of the angles may appear identical. If one of the identical sensors 

fails, the NN or KF could mistakenly try to accommodate the incorrect sensor. Although this 

research primarily focuses on the accommodation portion of the SFDIA problem, the potential 

issues with sensor identification are noteworthy as this step is still crucial to the overall SFDIA 

process.  

2.1.4 SFDIA: Accommodation 

The accommodation portion of the SFDIA problem is the core of this research. It is 

arguably the most important component of the SFDIA process as it can either completely resolve 

the sensor failure or exacerbate it. The estimation itself will present a challenge as there are 
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multiple variables the on-line estimators will need to consider while simultaneously deciphering 

a pattern within the nonlinear, dynamic flight data.   

 The uncertainty of the NN and KF is a challenging component of the designs as it can 

singlehandedly be the difference between an accurate estimation and a failed accommodation. 

Any parametrically distributed disturbance, such as a Gaussian noise, can result in a non-

standard output measurement if uncertainty is not properly defined [14]. This uncertainty can 

also fluctuate depending on the variable. Uncertainty of the on-line estimator affects how 

accurately it recognizes patterns within a system and predicts future inputs. The main goal for 

quantifying uncertainty is to design a model that accurately represents the real dynamic 

stochastic process or find the state variables and the parameters of the system’s model from 

available measurements [14].  

NNs and KFs each have separate methods for quantifying the uncertainty. Developing 

high-fidelity uncertainty for NNs is not as critical as it is for KFs but is important to recognize 

for the sake of comparison. NNs typically apply various Gaussian processes to determine 

uncertainty. The most successful Gaussian process for the system is determined to be the method 

with the least false positives. A similar approach was used for the NNs in this research. KFs, on 

the other hand, have multiple well-tested methods to accurately quantify uncertainty. Most of 

these methods are stochastic to better suit the nature of the KF. To address the potential 

challenge of encountering parameter uncertainty, the EKF and UKF simultaneously estimate the 

parameters along with the states while augmenting the parameters as pseudo-state variables [13].  

Determining uncertainty for these reasons proves to be a challenge as it is both difficult to define 

and can fluctuate in efficacy if other portions of the NN or KF are modified. 



15 
 

2.1.5 Neural Network Challenges 

NNs are a widely used branch of artificial intelligence due to their ability to analyze large 

datasets compared to other types of AI; however, this also proves to be a disadvantage and 

challenge for a few reasons. The first challenge of the NN is the large amount of diverse data that 

is required for training and testing. Depending on the research, it can be difficult to gather enough 

data for the NN to learn or recognize patterns. The data provided to a NN must also be diverse to 

prevent the NN from ‘memorizing’ a single trend or individual training dataset.  In the opposite 

cases where there is plentiful data, more data can greatly increase the time required to train or test 

the NN. RBF NNs in general can often suffer from what is known as “curse of dimensionality:” 

the more data presented, the more often the NN will require an exponentially increasing number 

of hidden neurons. This issue is addressed in works such as Samy et al. [1] and Li et al. [8]. The 

training will also require more data if there are more variables involved. NNs for these reasons are 

not always favored as they require more time to be designed and more time to analyze data. This 

will be a challenge in this research as there are large amounts of data to analyze multiple times 

over a short period of time. This research considers more than forty variables in each flight dataset 

and more than one hundred flights will be studied and analyzed by each NN.  

The next challenge specific to the NN is the computational power required compared to 

traditional algorithms. The computational power needed for a NN depends not only on the size of 

the data but also on the complexity of the network. For example, a NN with one layer and 50 

neurons will be much faster than a NN with 50 layers and 1000 neurons. More data should lead 

to lower estimation errors, but more data can be extremely time consuming and may not be 

feasible for the average computer to handle.   
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Finally, the main disadvantage of the NN unrelated to data is their “black box” algorithm. 

The “black box” of the NN is the term used to describe activity of the NN in between the input 

and final output [26]. Although there are outlines of the processes and algorithms within the NN, 

if the output is incorrect, there is almost never a way to pinpoint the exact issue as to why the 

output was inaccurate, rendering the system unadaptable. This leaves the main solution to this 

problem to be trial and error of readjusting certain aspects of the NN in hopes that these changes 

will fix the issue. This has been a fundamental reason for the FAA rejecting the use of analytical 

redundancy on aircraft.  

2.1.6 Kalman Filter Challenges 

Although the Kalman filter has plenty of benefits and applications to the real world, there 

are multiple fundamental issues within the KF that specifically affect nonlinear control systems. 

The overall challenge of KF algorithms is their finicky nature;  a simple error in code or practice 

can deteriorate the optimal performance. Also,  the simulation of nonlinear data creates more 

room for error as it was originally designed for linear systems. A similar issue arises if there is 

a mismatch between the state-space and measurement models for which the KF was designed 

and the realistic model, the KF will produce inaccurate results. Lastly, there are potential 

challenges when matching the actual system and measurements to the Kalman filter 

measurement noises.   

Designing a Kalman filter has proven difficult due to the complex methods required to 

calculate covariances [14]. The covariance matrix of the on-line estimator is a square matrix that 

represents the deviations of two or more variables from their respective means. Essentially, this 

matrix numerically explains how the uncertainty of each variable is related to one another. By 

noting the relation between two variables, the on-line estimator can also predict how the two 



17 
 

variables will simultaneously change with respect to each other. Therefore, many state estimation 

techniques, including the techniques used in both NNs and KFs, are reliant upon accurate 

estimates of covariance for both measurements and noise. This matrix presents itself as a 

challenge because there are over forty variables taken into consideration for this research. 

According to Heffes [29], the need for accurate, consistent, and reliable estimation techniques 

has been noted in research as far back as the 1960’s and is still a common modern research topic. 

An inaccurate covariance matrix will lead to higher peak variances, slower convergence, and 

suboptimal estimation performance [14]. Typically, in industry, there are random values selected 

for covariance models despite the clear downsides mentioned of inaccurate covariance; this is 

due to the complexity of quantifying both model and measurement uncertainty in real systems. In 

this research, this presents a challenge as the covariance matrix must essentially be solved 

through strenuous trial-and-error of different methods. The modern methods that best suited the 

SFDIA problems were Bayesian, maximum likelihood, and covariance matching [30, 31].  The 

best method will be determined by the overall performance of the on-line estimator; the better 

method should produce much more accurate results and perform quickly.  

Lastly, a difficult challenge regarding the KF is its foundation of linear algorithms. The KF 

is arguably the best on-line estimator for linear systems but there are multiple modifications 

required to adapt the KF to a nonlinear system. This challenge creates room for error in terms of 

mismatching the realistic linear system and the KF linear system.  

2.2 Criteria  

 The primary criteria by which each on-line estimator was evaluated were the following: 

estimation error (EE),  fault detection time (DT), number of false alarms (FA), number of 

undetected faults (UF), and detectability ratio (DR). Secondary criteria that were taken into 
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consideration for this comparative analysis were computational power, overall complexity of 

design, and time required to train and accommodate the sensor failure.  

 The estimation error of each on-line estimator dictates the accuracy of the model when 

determining the proper values for the sensor failure accommodation. Larger estimation errors of 

the sensor failure could result in further issues with the control system such as providing pilots 

incorrect data or potential loss of control of the aircraft. The estimation error was calculated for 

each flight dataset tested in this research. The difference in actual and accommodated data 

should be minimal for optimal performance.   

 Fault detection time was considered a criterion for this research since it is of utmost 

importance in terms of safety that the failed sensor be accommodated immediately. Any 

extensive delay in accommodation could have serious consequences. If the sensor failure is left 

undetected, the pilot could lose control of the aircraft. The fault detection time was measured in 

this work by taking the difference between the initiation time of the SFA scheme and the actual 

time the sensor failure occurred. Shorter detection times are favorable in this work.  

 The number of false alarms was also considered a performance criterion for this work as 

it is crucial that the SFA schemes do not activate when there is no sensor failure present. If the 

SFA model is too sensitive, it could potentially trigger whenever there is any change in the flight 

data; this could further deteriorate performance for both the control system and the pilot. It is 

ideal to have no false alarms from any of the on-line estimators.  

 The undetected faults were also counted for each set of tests to determine whether the 

SFA schemes were sensitive enough to detect errors of any severity. An undetected fault is very 

clearly a sign of poor performance. If a sensor failure is not detected and accommodated 
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immediately, the severity of the scenario could worsen or become unfixable over time. It is 

preferred to have no undetected faults.  

 The last priority criteria taken into consideration for performance comparison was the 

detectability ratio of each SFA scheme. The DR quantifies the SFA scheme’s residual sensitivity 

to the fault with respect to the residual noise. This value was calculated as the ratio between the 

maximum residual value before the time of the fault and the residual magnitude at the time of the 

fault detection. When there is an occurrence of a FA or UF, the DR provides more information as 

to how the sensitivity of the SFA influenced the incorrect response.  

 The results based on these criteria will determine the best on-line estimator and provide 

further analysis of the capabilities of each with regards to robustness, sensitivity, and efficiency.  
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Chapter #3: Review of Neural Network-Based Approaches 

3.1 Basic Principles of Neural Networks  

NNs are a branch of artificial intelligence that utilize layers of neurons that signal each 

other through connections, similar to a human brain, to analyze a current system with prior 

knowledge. They are used to develop robust algorithms and data structures to model more 

difficult problems that are not easily defined by equations [33].  NNs are implemented into 

multiple real-life aspects such as Google Maps and self-driving automobiles [34]. In this 

research, two different NNs were constructed to recognize a sensor failure by learning patterns 

from various flight datasets: the multilayer perceptron (MLP) NN trained with back propagation 

(BP) and the radial basis function (RBF)-based extended minimal resource allocation network 

(EMRAN).  

The architecture of a NN is based on neurons, or nodes, that serve as connection points 

within the NN architecture. A row of neurons is referred to as a layer and the entire structure of 

neurons is referred to as the network topology [35].  Each neuron is a computational unit that has 

one or more input connections, an activation function that combines all inputs, and an output 

connection.  

 

Figure 3.1: Basic model of neural network [36] 
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Figure 3.1 represents the basic outline of a NN. Each circle is a neuron, and the arrows 

represent the weighted connections between each neuron. As seen in Figure 3.1, each NN 

consists of at least three layers: the input layer, the hidden layer, and the output layer. Each layer 

serves a specific purpose to estimate a future input.  

Initially, the input layer of the NN gathers the inputs and transfers the data to the first, or 

only, hidden layer. For this research, the input layer receives the flight data. The input layer is 

also called the visible layer as it is one of the exposed portions of the network. Often, a NN is 

drawn with a visible layer with one neuron per input value or column in the dataset [33, 35].  

The layers of the NN are crucial to optimizing its prediction capability. Multiple layers 

allow the structure to represent certain features at different scales, resolutions, or weights, or 

combine them into higher-order features. This concept will be observed in this research as the 

NNs accommodate sensor failure through training with various flight data.  

After the input layer is the first set of connections connecting to the hidden layer. The 

connections for the first iteration are all weighted randomly based on the NN’s initial guess of 

the probability that a certain input is relevant when determining the output. For example, if input 

#1 has a greater influence on the final output compared to the other inputs, the connections from 

input #1 will have a greater weight. The weights are defined in every following iteration through 

a weight function. A bias is also added to the inputs by multiplying each input to their associated 

weight. The bias of each neuron is considered a ‘pseudo-input’ that always has the value of 1 and 

must be weighted [36]. For example, a neuron may have four inputs in which case it requires five 

weights: one weight for each input and one weight for the bias. Without the bias, the NN is prone 

to problems associated with an input pattern value of zero. The weight update is controlled by 

the learning rate (η) as well as the optimizer. The weights of each variable can stay constant 
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throughout the simulation, or in other cases, like this research, can change over multiple 

iterations to better estimate future inputs based on prior error.  

The hidden layer of the NN performs most of the calculations that determine the final 

output. These layers are not directly exposed to the user like the input and output layers. Hidden 

layers allow for the function of a NN to be broken down into specific transformations of the data 

[37]. Deep learning AI schemes consist of NNs with more hidden layers; however, in the case of 

this research, there is only one hidden layer per NN. The NNs were limited to one hidden layer 

based on work by Cybenko [19] and Hornik et al. [20] that showed only one hidden layer was 

required in a NN to map any nonlinear function provided there is enough training data. Fewer 

hidden layers result in much quicker estimations and results from the NN.  Each hidden layer 

function is specialized to produce a defined output either to the next hidden layer or to the output 

layer. The weighted sum of that neuron is then transferred to the activation function to produce 

the next output. The final hidden layer is what estimates the actual output through an application 

function. In this work, the single hidden layer performs each of these tasks.  

Next, the output layer itself will then produce the output for the user. The next iteration 

will then initiate by adjusting the weights and transferring the new set of inputs from the output 

layer into the input layer. The weights themselves update based on the training models.  

The final general step necessary for any NN is preparing the data for training and testing. 

The flight data for this research was categorized in a numerical set as to have a configuration 

understood by the network. For example, the first variable in the dataset for the flight simulation 

data, velocity, was labeled as ‘1.’ Each column of flight data was assigned a number from 1 to n, 

depending on the size of the data as seen in Table 3.1.  
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Table 3.1: Number to Variable System used in Flight Simulation Datasets 

1 𝐯 10 𝐱𝐞  19 ̇ 28 ൬
𝐏𝐛

𝟐𝐯
൰ 37 elevators L 

2  11 𝐲𝐞  20 ̇ 29 ቀ
𝐪𝐜

𝐯
ቁ 38 elevators R 

3  12 𝐳𝐞  21 ̇ 30 ൬
𝐫𝐛

𝐯
൰ 39 ailerons L 

4 𝐩 13 𝐯̇ 22 𝐱𝐞 ̇  31 𝐀𝐱 40 ailerons R 

5 𝐪 14 ̇ 23  𝐲𝐞 
̇  32 𝐀𝐲 41 rudder L 

6 𝐫 15 ̇ 24 𝐳𝐞 ̇  33 𝐀𝐳 42 rudder R 

7 Φ 16 𝐩̇ 25 𝐮̇ 34 𝐚𝐱 43 flaps 

8  17 𝐪̇ 26 𝐯̇ 35 𝐚𝐲 44 canard L 

9  18 𝐫̇ 27 𝐰̇ 36 𝐚𝐳 45 canard R 

 

Variables 4 through 45 were selected as the inputs for the NNs to estimate angle of 

attack, sideslip, and true airspeed.   

The same variable numeric system was applied to the output layer. The code for this 

segment reverted said number of the variable back its name for the user facilitation. Not only did 

the names of each variable have to convert to a numerical format, the NNs required all inputs to 

be consistently scaled. For this research, not all flight datasets were the same size, but they had to 

be processed through the same network.  

There were multiple factors taken into consideration when selecting the two NN models 

to be tested for the SFDIA problem. When considering NNs, the qualities considered were the 

following: execution time, structure size, overall complexity, and ability to generalize the data 
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[1]. The MLP NN and EMRAN NN were specifically selected due to their popularity in the 

research community and previous successes in other research efforts mentioned in Chapter 1.  

3.2 Multilayer Perceptron Neural Network 

The first NN designed and tested for this research was the MLP NN. The MLP is a 

completely feedforward supervised learning model that incorporates BP to improve estimation. 

This specific model is named for its multiple layers of perceptrons which are the building blocks 

of each layer of the NN [39].  A perceptron is a single neuron model that was a precursor to 

larger NNs [35]. A perceptron is essentially its own network with two layers: one input layer and 

one output layer. Each perceptron has a set of inputs, weights, bias, net sum, and activation 

function with output.  

 

Figure 3.2: Perceptron Model by Minsky-Papert [40] 

All perceptrons in the MLP work with the same inputs but will have different weights, 

bias, and activation functions.  The NN uses the different information from the perceptrons to 

determine the final output.  
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Figure 3.3: MLP NN Feedforward Structure [41] 

Figure 3.3 displays the basic outline of the multilayer perceptron NN. As seen within the 

hidden layer in the figure, there are three perceptrons. Another detail to note from this figure is 

that all the connections are facing the same direction, resembling a feedforward system. 

Feedforward networks are typically easier to train than a recurrent network.  

To minimize the estimation error of the output sensor, the BP method was implemented 

into the MLP NN. BP was originally developed in 1984 by James McClelland and David 

Rumelhart to train nonlinear NNs [42]. The BP method generalized the original perceptron 

learning algorithm to accommodate NNs with multiple layers. BP is still extensively used today 

and arguably the most general method of supervised training within multilayered NNs [43]. 

There have been many notable extensions to the BP algorithm over recent decades including the 

extended back propagation algorithm (EBPA) [43, 44]. Newer algorithms such as the EBPA 

improved certain drawbacks of the original BP algorithm such as its tendency to stick to the local 

minimum. By implementing BP into the NN, the weights of each connection between the input 

and output are constantly updated internally rather than updated in between intervals.  
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Figure 3.4 Back propagation within MLP NN [43] 

In the case of a NN with three layers, like the example in Figure 3.4, the weights are 

updated internally when the signal reaches the next layer. By adjusting the weight values 

between layers, BP better approximates the nonlinear relationship between the input and output. 

 The MLP NNs accomplish the estimation process in two steps: feedforward and BP. In 

the feedforward step, an input pattern is applied to the input layer. This effect propagates through 

each layer of the network until an output is produced. This also improves the predictive ability of 

the NN; inputs not included in the training data can be further generalized with this method.  The 

network's actual output value is then compared to the expected output, and an error signal is 

computed for each of the output nodes. Since all the hidden nodes have, to some degree, 

contributed to the errors evident in the output layer, the output error signals are transmitted 

backwards from the output layer to each node in the hidden layer that immediately contributed to 

the output layer. This process is then repeated, layer by layer, until each node in the network has 

received an error signal that describes its relative contribution to the overall error.  
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Once the error signal for each node has been determined, the errors are then used by the 

nodes to update the values for each connection weights until the network converges to a state that 

allows all the training patterns to be encoded. The algorithm evaluates the minimum value of 

the error function in weight space using a technique called stochastic gradient descent, or delta 

rule [45]. The error function of the NN is the performance function that calculates the average 

squared error between the network outputs and the target outputs. This is a crucial 

implementation required to further verify the estimation outputs of the system. The stochastic 

gradient descent only considers one row of inputs at a time; as the network processes each input, 

the neurons are simultaneously activating to eventually produce an output.  

Once the error function values are ‘approved’ by the preset threshold standards of the 

NN, this solution to the learning problem, or in the case of this research, the sensor 

accommodation, is set to the weights that minimize the error function. The NN accuracy is tested 

by comparing the output of the NN to the actual results from the training data.  

Possible consequences that may occur due to BP are over-training and under-training. 

Over-training occurs when a network is too complex; the results of these networks will fall 

outside the satisfactory range for the output data. This is caused by a NN containing too many 

nodes [46]. Under-training occurs when the NN is not complex enough to determine an accurate 

trend within the data. This occurs when there are not enough nodes present. It was desired for 

this work to develop an MLP with the optimal number of nodes to incorporate BP that can 

accurately estimate and accommodate the values for a faulty sensor. 
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3.2.1 Training the Multilayer Perceptron Neural Network  

 The performance of the MLP NN depends heavily on the training of the network. During 

the training process, the MLP ‘learns’ patterns of the angle of attack, sideslip angle, and true 

airspeed through both flight simulation data and actual flight data. If these patterns are accurate, 

the MLP can determine when a certain sensor is failing based on the difference between that 

failed sensor value and the MLP estimated value.   

 MATLAB and Simulink were used to train the MLP network. The simulated data and 

real flight data were both processed using these programs to train the MLP to recognize the 

patterns between each variable. In this process, the MLP also determines the number of hidden 

layers and neurons required to accurately accommodate each sensor failure type. The basis of 

this training scheme was inspired by work from Campa [47] seen in Figure 3.5.  

 

Figure 3.5: NN Training Scheme. Courtesy of Dr. Giampiero Campa.  

This design was adjusted for each on-line estimator and sensor failure variable. This is 

discussed more in depth in Chapter 5.  

3.2.2 Back Propagation Algorithm Implemented into the Multilayer Perceptron  

The following explanations of the MLP algorithm trained by BP will focus on nodes i, j, 

and k, where i is the input node, j is the hidden layer node, and k is the output node.  These 

notations were derived from Figure 3.4.  
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To initiate the estimation process, the first set of weights is calculated as soon as the 

training pattern is developed by the NN. The weighted sum of the input to the node j is given by 

the following equation 

 𝑊௡௘௧ೕ
= ෍ 𝑊௜௝ ∗ 𝑥௝ + 𝛩௝  (3.1) 

where 𝛩௝ is the weighted value from the bias node that is set to have a constant output of 1. 

Equation 3.1 calculates the aggregate input to the neuron j. The bias weights are included to 

prevent inputs having zero values; the NN cannot be trained without the biases for this reason 

[48].  

The summed weighted inputs are then passed through an activation function. An 

activation function is a simple mapping of summed weighted input to the output of the neuron. It 

governs the threshold at which the neuron is activated and strength of the output signal. The 

activation function essentially determines whether the neuron should fire. The resulting output 

from the activation function becomes the input of the next layer.  

 There are several options of activation functions from which to select. Simple step 

activation functions were used in most past works. With a step activation function, if the 

summed input was above a preset threshold, for example .50, then the neuron would output a 

value of 1.00. Otherwise, it would output a 0.00. A nonlinear function allows the network to 

combine the inputs in more complex ways that better suits the nature of nonlinear flight 

dynamics equations. Specifically, for NNs with BP, the activation function must also be 

differentiable. One of the most popular nonlinear activation functions used for BP is the Sigmoid 

equation [49]. The equation is represented as 
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𝑦௝ = 𝑥௞ =

1

1 + 𝑒
ିௐ೙೐೟ೕ

 (3.2) 

where y represents the output value. The Sigmoid equation sets the output of node j to the input 

of node k. This activation function works for BP as it is both nonlinear and differentiable with 

respect to the exponential function of the net weight. This function, however, is only effective 

with positive mapping ranging from 0 to 1 which was not favorable for this work. For this 

reason, Eq. 3.2 was modified using the extended back propagation algorithm proposed by 

Napolitano et al. [44].  

 
𝑦௝ = 𝑥௞ =

𝛬௨௣௣௘௥,௝ − 𝛬௟௢௪௘௥,௝

1 + 𝑒
ିௐ೙೐೟ೕ

+ 𝛬௟௢௪௘௥,௝ 
(3.3) 

 The modified Sigmoid function, Eq. 3.3, uses upper and lower bounds (Λ) to expand the 

original mapping of [0, 1] to [-1, 1] to accurately estimate negative values within the dataset such 

as sideslip angles. Other functions that can be taken into consideration for future work is the 

hyperbolic tangent function, inverse tangent function, and rectified linear unit function [50]. 

 The next set of algorithms calculates the estimation errors and weight adjustments for the 

MLP. The error signal for the output of node k is calculated by  

 𝛿௞ = ∆௞ ∗ 𝑂௞(1 − 𝑂௞) (3.4) 

where ∆௞ is the difference between the actual output and expected output and 𝑂௞ is the derivative 

of the activation function. Based on the stochastic gradient descent process, the change in weight 

connecting j and k is proportional to the error at k multiplied by the activation of j [48]. The 

formulas used to update the weights between j and k are the following: 

 𝑤௝,௞ = 𝑤௝,௞ + ∆𝑊௝,௞ (3.5) 
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 ∆𝑊௝,௞ = 𝜂 ∗ 𝛿௞ ∗ 𝑥௞ (3.6) 

The term ∆𝑊௝,௞ is the change in weight between j and k. The learning rate η for this NN is a 

relatively low constant value that indicates the relative change in weights. The value for the 

learning rate selected for this research MLP was .1 for initial intervals and decreased to .01 

gradually for later intervals. The value .01 was selected as a minimum learning rate as it is 

commonly used within related research efforts [48]. Values for the learning rate that are too 

small tend to slow the learning of the NN too much whereas higher values will cause the 

estimations to oscillate around the NN minimum.  

There are many advantages to a changing learning rate such as decreasing the time the 

NN requires to learn and allows the NN to simultaneously converge to a solution with less 

chance of overshooting the optimal value. To implement this concept properly into the weight 

updates, Eq. 3.6 was updated to Eq. 3.7 to incorporate momentum. This allows the weight to 

change even if the error is decreasing over each interval or epoch.  

 ∆𝑊௝,௞
௡ = 𝜂 ∗ 𝛿௞ ∗ 𝑥௞ + ∆𝑊௝,௞

(௡ିଵ) ∗ 𝜇 (3.7) 

By including a momentum term 𝜇 to the weight updates, the learning process is 

accelerated while simultaneously preventing the learning process from settling at a local 

minimum value. Another method similar to momentum that is commonly seen with BP is 

Learning Rate Decay. These formulas can also be applied to other layers, such as the hidden 

layer, if the equations reference the correct nodes, i, j, or k. 

 The last step of developing the MLP NN with BP is minimizing the error of the outputs 

though an error function. The following error function is used primarily for BP and was selected 

for use in this research [51]: 



32 
 

 
𝐸 =

1

2
෍(𝛴∆௞)ଶ (3.8) 

 Once the network topology, weights, and functions are constructed, the MLP is ready for 

training. After the MLP is trained, it can be tested with new, unseen flight data. The simulation 

data, YF-22 data, and Tecnam P92 did not contain the same number of variables in their datasets; 

for this reason, the MLP was designed to adjust its algorithms to accommodate any size of 

dataset. The MLP was trained independently for each test (simulated, YF-22, and Tecnam P92) 

then tested for each of the three sensor failures.  The implementation of the MLP into the SFDIA 

scheme for the flight simulator and real flight data is discussed in Chapters 5-7.  

3.3 EMRAN Neural Network 

The second NN that was constructed and analyzed was the RBF-based EMRAN that is 

commonly used in aviation safety. It is a NN that develops estimates with no prior knowledge of 

the system, like the MLP. The general foundation of this NN is the radial basis function. This 

NN works by considering the distance between a certain point and a defined center. RBF 

networks consist of two layers; the hidden layer, which combines the features with the radial 

basis function, and the output layer, to which information is transferred from the hidden layer. 

The figure below displays a basic RBF NN.  

 

Figure 3.6: RBF NN Basic Structure [51] 
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As shown in Figure 3.6, the RBF NN is comprised of input signals, a hidden layer, and 

output layer. It has a similar general structure to the MLP.  

Since the late 1980’s, there has been considerable interest in RBF NNs due to their global 

generalization ability and simple network structure [52]. For most research efforts, Gaussian 

functions are selected as RBFs [8]. Gaussian functions have two parameters that need to be 

determined: center and width. The NN is trained by a user-selected algorithm to better estimate 

the states. For this work, the training scheme design was inspired by work from Campa et al. 

[22] to facilitate NN training seen in the earlier Figure 3.5.  

When designing the RBF, the main characteristics that need to be taken into 

consideration are the number of hidden neurons, center and width sizes, and weight estimations. 

The number of neurons need to be set at a constant number before the training can be initiated. 

Multiple research efforts use one of the following two methods to determine the number of 

hidden neurons: stochastic gradient descent [53] and trial and error based on the number of 

inputs.  The gradient descent algorithm works similarly to the MLP algorithm; the NN increases 

the number of hidden neurons from zero to the required number based on RBF parameter 

updates [8]. The second approach of trial and error, on the other hand, starts with as many hidden 

units as the number of inputs then reduces them using a clustering algorithm [9]. Once the 

number of hidden neurons is selected, the values of the centers and widths of the neurons are 

calculated based on information and properties of the input data.  

Finally, the weights need to be estimated for the connections between the hidden and 

output layers. There are similar weight update methods that can be implemented into an RBF that 

are used for MLPs. A common approach for the weight calculations for RBFs is deriving values 

from a state space model [3, 8, 14].    
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3.3.1 RBF Algorithm 

The following algorithms will be referencing variables from Figure 3.6 which has nx 

number of inputs x and ny number of outputs y. The hidden layer in the middle consists of N 

number of computing units Φ. These are connected to the output layer through N weight vectors 

w. The estimations of the output y are calculated by the following equation [8] 

 
𝑦ො = 𝑤଴ + ෍ 𝑤௡ ∗ 𝛷௡

ே

௡ୀଵ

 (3.9) 

where y is a function of the input x. Like the MLP, the initial weight w0 is given by the bias. The 

computing unit Φ is calculated by the following Gaussian function: 

 𝛷௡ = 𝑒(ି‖௫ି௖೙‖మ ఙ೙
మ⁄ ) (3.10) 

In this equation, c represents the center value of the neuron n and σ is the width of the Gaussian 

function. The Euclidean norm is represented by the double magnitude value in the numerator. At 

this point, the RBF function is ready to be trained and tested.  

The main issue that prevented RBF NNs being used by itself in this work is they are only 

suitable for batch type learning schemes and not on-line. For this reason, the MRAN RBF was 

considered next for development. 

3.3.2 Development of MRAN from RBF 

In 1991, John Platt proposed a sequential learning algorithm to modify the RBF to be 

compatible with on-line learning, that is the Resource Allocating Network (RAN) RBF [9]. The 

improvement to the RBF with this algorithm was how hidden neurons were added. This method 

used statistical parameters, such as skewness, median, and coefficient of variation, to determine 

the hidden neuron number in comparison to other parameters in the NN like weighted 

connections and output neurons. This was known as the LMS method (lambda, mu, sigma) [8]. 
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The issue that arose from the RAN NN was an occasional excessive number of neurons being 

added to the system which led to overfitting of data. To accommodate this issue, a pruning 

strategy was introduced to remove the neurons that has less influence on the network output. The 

resulting network was the minimal resource allocation network (MRAN) [8]. 

3.3.3 MRAN Algorithm  

The first critical difference within the MRAN algorithm compared to the standard RBF is 

that the hidden neuron count is initially set to n = 0. At this stage, there is only an input and 

output layer present in the NN. The network is developed over the course of receiving 

information or training data in a certain time index. The first step of the MRAN algorithm is 

setting criteria to add hidden neurons where e is the error, y is the output, x is the input, and E is 

the user-set threshold [8, 22]. 

 ‖𝑒௜‖ = ‖𝑦௜ − 𝑦ො௜‖ > 𝐸ଵ (3.11) 

 

𝑒௜௥ெ = ඩ ෍
𝑒௝

ଶ

𝑀

௜

௝ୀ௜ି(ெିଵ)

> 𝐸ଶ (3.12) 

 ‖𝑥௜ − 𝑐௜௥‖ > 𝐸ଷ (3.13) 

In Eq. 3.11 through 3.13, r represents the center of the hidden unit in question of being 

added to the system and M is the number of outputs. Eq. 3.11 determines if the error 

specification made by the user is optimal for the current number of hidden neurons.  Eq. 3.12 

determines if the NN met the required squared error threshold for the past M outputs. Finally, the 

last criterion in Eq. 3.13 guarantees the new neurons will not be too similar in magnitude to the 

remaining existing neurons. If all thresholds E are met, a new hidden neuron is added. The new 

hidden neuron parameters are determined by the following values: 



36 
 

𝑤ேାଵ = 𝑒௜  ,               𝑐ேାଵ = 𝑥௜  ,            𝜎ேାଵ = 𝜉‖𝑥௜ − 𝑐௜௥‖ 

The overlap factor ξ determines the overlap of responses of hidden neurons from the input space. 

These parameters remove the error caused by the prior lack of hidden neurons.  

The last step of the MRAN algorithm is the implementation of the pruning strategy. In 

this step, the neurons that contribute less to the output compared to the average neuron are 

‘pruned;’ in other words, the network is prevented from overgrowing in size. Matrix y in this 

case represents the matrix of outputs from the hidden layer and W is the weight matrix. These 

variables indicate the nth neuron at j number of outputs [54]. 

 
𝑦௡௝ = 𝑊௡௝ ∗ exp (−

1

𝜎௡
ଶ

‖𝑥 − 𝑐௡‖ଶ) (3.14) 

To reduce any potential inconsistency caused by the absolute value of the output, the following 

equation is applied to normalize the distance from the center of the neuron to that of the highest 

output [54]. Here, the new output with respect to the neuron center is represented by Γ.  

 𝛤௡௝ =
𝑦௡௝

𝑚𝑎𝑥 {𝑦ଵ௝, 𝑦ଶ௝ … 𝑦௡௝}
 (3.15) 

Once the output is normalized, it is tested for N consecutive inputs. A neuron is pruned if its 

output y falls below a set threshold value for the set of consecutive inputs. At this point, the 

dimensionality of the matrices is adjusted to fit the new number of hidden neurons.  

 Although the MRAN could suffice for this research, the EMRAN was preferred for a few 

reasons. The first reason was that the EMRAN can recognize more accurate behavioral patterns 

within a more general set of data compared to the MRAN. Another benefit of the EMRAN is that 

the algorithm adopts the MRAN’s pruning strategy which improves overall estimation accuracy. 

This also prevent the EMRAN from overgrowing [1]. With this property, the EMRAN remains a 

powerful tool that requires both less execution time and computer power. The following section 
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will further explain how the EMRAN was designed for this research and modified from the 

MRAN and RBF designs.  

3.3.4 EMRAN Algorithm  

The second NN-based on-line estimation algorithm selected for this work is the EMRAN. 

The EMRAN is preferrable for this work as it is designed for multiple input – multiple output 

(MIMO) nonlinear time invariant systems. Results from works by Campa et al. [22], Napolitano 

et al. [26], and Younis et al. [55] show that EMRAN is well suited for real-time implementation 

of nonlinear system identification, like the SFA problem.  

The primary difference of the EMRAN compared to the MRAN is its adaptation of the 

pruning strategy; the EMRAN only updates the most activated neuron in a “winner takes all” 

type of strategy [22] whereas the MRAN updates the parameters of all neurons accordingly. This 

change in algorithm significantly reduces execution time and computation load with only a 

relatively small decrease in estimation performance estimation [3]. The “winner takes all” 

strategy reduces estimation error in the poorest performing areas of the network topology.  

 Overall, the EMRAN is built identically to the MRAN in terms of structure. There is an 

input layer, output layer, and eventually a hidden layer. Like the MRAN, there are no hidden 

neurons present in the beginning of the training. As the training data increases, the EMRAN adds 

hidden neurons as it sees fit by Eq. 3.11 through 3.13 and the pruning strategy.  

 Building off Eq. 3.9, the EMRAN output was calculated with the following equation [3]: 

 
𝑦ො(𝑥, 𝑎) = ෍ 𝑤௜ ∗ exp ቆ

||𝑥 − 𝑐௜||
ଶ

2 ∗ 𝜎௜
ଶ ቇ

ெ

௜ୀଵ

 (3.16) 

This output expression is a function of the inputs x and parameters a set to be updated by the NN. 

For a new hidden neuron to be added to the system, the same three criteria thresholds E from Eq. 
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3.11 through 3.13 must be met. The parameters of the newly added hidden neuron are the same 

as the MRAN method. If there are no new neurons created, the following stochastic gradient, or 

delta rule, function defines the relationship of the new parameters A at a time instant k [3]: 

 
𝐴(𝑘 + 1) = 𝐴(𝑘) − 𝜂

𝛿𝑦ො(𝑘)

𝛿𝐴(𝑘)
∗ 𝑒(𝑘) (3.17) 

In this equation, η is the learning rate and e is the estimation error.  

 With these algorithms in place within the MATLAB code and Simulink, the EMRAN NN 

is ready for training with the flight data. Similar to the MLP, since each flight dataset varies in 

size, the EMRAN was designed to accommodate the sensor failures based on the other 

information at hand no matter the size of the dataset. The EMRAN was trained for each aircraft 

type with the available data. The implementation of the EMRAN into the SFA scheme and flight 

simulator is discussed in Chapter 5.  
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Chapter #4: Review of Kalman Filter-Based Approaches 

4.1 Basic Principles of a Kalman Filter 

The KF was first proposed by Rudolf E. Kálmán in 1960 [17]. The foundation of a KF is 

a set of linear equations which are designed to produce optimal estimates of a vector of 

parameters by minimizing the mean-squared estimation error at each iteration [14]. The KF 

algorithm uses a series of measurements and dynamic equations over time, such as noise or 

inaccuracies, to produce estimates of unknown variables. KFs make estimations based on an 

implemented mathematical system rather than provided training data like the NNs. In this work, 

the KFs require a state model of the flight dynamics equations for each sensor and important 

flight variable.  

Kalman filtering is divided into two phases, that is prediction and update, as seen in 

Figure 4.1. For the prediction phase, the KF produces estimates of the current state variables and 

their uncertainties. Once the outcome of the next measurement is produced, these estimates are 

updated using a weighted average of the estimated value and actual value. Like the NN, more 

weight is given to estimates with greater certainty. The algorithm is recursive in that it can 

operate in real time using only the present input measurements, the state calculated previously, 

and its uncertainty matrix.  

 

Figure 4.1: Representation of Kalman Filter Process [65] 
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The KF was groundbreaking at the time of its introduction as it was one of the only forms 

of control that could estimate unknowns with more than a single measurement.  Since then, the 

KF has been applied to a broad range of problems such as the global positioning systems and 

controls engineering. KFs have also been widely applied to the fault detection and 

isolation/identification (FDI) field where the state estimations are directly used to generate a 

fault residual [56]. KF-based approaches have been applied to research efforts in the past to 

alleviate the effect of noise on residuals due to their robust nature in terms of residual generation 

techniques [3, 4, 10, 25]. In this work, the KF calculates the difference between sensor 

measurements and estimates for any unexpected deviations caused by sensor failures [57].  

Various factors that limit the efficacy of the KF’s estimation of a given state include 

noisy sensor data, the given dynamic system of equations implemented by the user, and other 

external factors. As mentioned, the KF algorithms that were originally designed for linear 

systems do not adapt to nonlinear systems smoothly. Although noise can diminish the accuracy 

of the KF, the noise is utilized to help handle uncertainty. Uncertainty is also, to some extent, 

maintained with random external factors.  

Crucial components of the KF are the covariance matrices of the system noise and 

measurement noise, respectively Q and 𝑅. The covariance matrices are measurements of the 

estimated system state prediction uncertainty in terms of process noise, 𝑤, and observation noise, 

v, respectively. The process noises v and w are assumed to be zero-mean Gaussian with the 

covariances Q and R. This relationship is defined as the following [17].  

𝑤௞ିଵ~𝒩(0, 𝑄)                   𝑣௞~𝒩(0, 𝑅) 

The assigned covariance to a variable defines the joint variability of two random 

variables. If the greater values of one variable mainly correspond with the greater values of the 
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other variable, and the same relationship holds for the lesser values, the covariance is positive. 

Lower covariance values correlate to less noise in the system.  

When performing the actual calculations for the KF, the state estimate and covariances 

are coded into matrices since there are multiple dimensions involved in a single set of 

calculations. The matrices allow for a representation of linear or nonlinear relationships between 

different state variables in any of the transition models or covariances. A common example of 

this type of relationship is position, velocity, and acceleration.  

The weighted average calculated is a new state estimate that lies between the predicted 

and measured state. This new value has a better estimated uncertainty than either predicted or 

measured values alone. The estimate is updated using a state transition model, F, and prior 

measurements [26]. This process is repeated for every time interval using the new estimate and 

its associated covariance.  

One of the most common methods of assigning weights to measurements is the use of a 

Kalman gain as seen in works by Kalman [17], Napolitano et al. [26], and Stepanov et al. [58]. 

The gain is a weight assigned to both measurements and the current state estimate that can be 

changed at any iteration depending on the overall performance. Similar to any weight function in 

a KF, higher gains are associated with more weight whereas lower gains represent smaller 

weights. When a larger gain is assigned to a value, the KF conforms to the most recent 

measurements more responsively. Lower gains will cause the KF to conform more closely to the 

model predictions. Although each gain value has its own advantages, a gain that is set too high or 

low will have serious consequences on the KF. If the gain value is set too high, the estimations 

will be more ecstatic or emphasized throughout the trajectory of the state. If the gain is set too 
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low, such as a value of zero, the noise will be smoothed out but the KF will have minimal to no 

responsiveness to the system.  

The last step of the KF design process is determining the relationship behavior of the 

errors. To optimize the performance of the system, there is an assumption implemented that errors 

have a normal, or Gaussian, distribution to manage both uncertainty and noise [17]. Physical 

random phenomena can be implemented into the KF as random noise that excites dynamic 

systems. The primary sources of this noise are independent Gaussian random processes with zero 

mean and the dynamic systems being linear [17]. Regardless of Gaussian distribution, if the 

process and measurement covariances are known, the KF is notably one of the best 

possible linear estimators in the minimum mean-square-error sense [59].  

There has been a large variety of nonlinear KF designs proposed over the years. This work 

focuses on two of these extensions, the extended KF and unscented KF, which were both 

developed to analyze nonlinear systems. The foundation of each method is a hidden Markov 

model [60]. In these schemes, the state space of the latent variables is continuous, and all 

variables have Gaussian distributions. Other notable KF designs that were considered for this 

work were the Dempster-Shafer theory [60], "simple" KF [17], the Kalman–Bucy filter [61, 62], 

the information filter [60], and a variety of square-root filters [62]. 

4.2 Methodology of the Kalman Filter 

This section discusses the mathematics of the simple KF and how it was modified for the 

nonlinear flight dynamics equations utilized for the sensor failure accommodations. Both the 

extended and unscented KFs are designed using this model as a foundation. The following 

equations are written in terms of the current timestep k and previous timestep k-1.  
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4.2.1 Flight Dynamics Equations for α, β, and TAS Used in the State Model 

 Each variable that will be analyzed (angle of attack, sideslip angle, and true airspeed) has 

unique input requirements the KF uses to determine whether the sensor has failed. For this 

reason, three separate KFs were designed for each aircraft, one for each sensor failure, that have 

the same foundations, but different inputs, systems of equations, and outputs. The on-line 

estimation code will utilize the inputs and outputs of the specific variable that has failed.  

 For the angle of attack, the KF will analyze the body components of airspeed velocity (u, 

v, w), rotation rates (p, q, r), and the inertial position of the aircraft with respect to the angle of 

attack (𝑥ఈ , 𝑦ఈ, 𝑧ఈ). Similarly, for the sideslip angle, the KF will analyze the body components of 

airspeed velocity, rotation rates, and inertial coordinates with respect to the sideslip angle 

(𝑥ఉ  𝑦ఉ 𝑧ఉ). Lastly, the true air speed will be estimated with the inputs of the body components 

for airspeed and the flight angles for roll, pitch, and yaw (𝜙 𝜃 𝜓). The following formulas were 

used to determine which variables should be selected as inputs. The KF also uses these equations 

to measure the residual between the actual measurement and the estimation [63].  

 
𝛼 = tanିଵ ൬

𝑤 − 𝑞𝑥ఈ + 𝑝𝑦ఈ

𝑢
൰ (4.1) 

 
𝛽 = sinିଵ ൬

𝑣 + 𝑟𝑥ఉ − 𝑝𝑧ఉ

√𝑢ଶ + 𝑣ଶ + 𝑤ଶ
൰ (4.2) 

 𝑇𝐴𝑆 = ඥ𝑢ଶ + 𝑣ଶ + 𝑤ଶ (4.3) 

Each KF required the following matrices to be defined: state-transition model 𝐹௞, 

observation model 𝐻௞, covariance models 𝑄௞ and 𝑅௞, and control input model 𝐵௞. The KF 

calculates its first estimate at k from the previous state k-1 using the following equation [3] 

 𝑥௞ = 𝐹௞ ∗ 𝑥௞ିଵ + 𝐵௞ ∗ 𝑈௞ + 𝑤௞ (4.4) 
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where U is the control vector and w is the process noise. The process noise for these KFs is 

assumed to be derived from a zero mean multivariate normal distribution. Next, the observation z 

of the state x is calculated with the following equation  

 𝑧௞ = 𝐻௞ ∗ 𝑥௞ + 𝑣௞ (4.5) 

where v is the observation noise.  The observation noise is assumed to be zero mean Gaussian 

distribution. Both the initial state and noise vectors in each of the equations are mutually 

independent.  

Eq. 4.4 and 4.5 were modified for the EKF and UKF to accommodate nonlinear data. By 

adjusting these equations, the performance quality will increase since KFs heavily depend on the 

modeled dynamics of the system. Unmodeled or inaccurate dynamics like Eq. 4.4 and 4.5 can 

cause the system in this work to become unstable.  

 As mentioned earlier, the KF is a recursive estimator; the KF only considers the 

estimated states from the previous and current timesteps and current measurements. The first 

phase of the KF process is the prediction phase. In this phase, the state estimate 𝑥ො and estimated 

accuracy of the state estimate P are defined by the following relations where k|k-1 represents 

“from time k-1 to time k:” 

 𝑥ො௞|௞ିଵ = 𝐹௞ ∗ 𝑥ො௞ିଵ|௞ିଵ + 𝐵௞ ∗ 𝑈௞ (4.6) 

 𝑃௞|௞ିଵ = 𝐹௞ ∗ 𝑃௞ିଵ|௞ିଵ ∗ 𝐹௞
் + 𝑄௞ (4.7) 

With equations 4.1 through 4.3, the state vectors for each variable were determined as the 

following.  

𝑥ఈ = [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 𝑥ఈ  𝑦ఈ 𝑧ఈ]் 



45 
 

𝑥ఉ = ൣ𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 𝑥ఉ 𝑦ఉ 𝑧ఉ൧
்

 

𝑥்஺ௌ = [𝑢 𝑣 𝑤 𝜙 𝜃]் 

To aid in the prediction of these states, an input vector containing aircraft body acceleration, 

𝑎௫ 𝑎௬ 𝑎௭, and angular rates, p, q, r, is used: 

𝑈 = ൣ𝑎௫ 𝑎௬ 𝑎௭ 𝑝 𝑞 𝑟 ൧
்

 

Using the above definitions, the state dynamics can be defined using the three 

Conservation of Linear Momentum Equations (CLMEs) from Aircraft Dynamics: From 

Modeling to Simulation [63] and kinematic equations.  

 𝑢̇ = 𝑟𝑣 − 𝑞𝑤 − 𝑔 sin 𝜃 + 𝑎௫ (4.8) 

 𝑣̇ = 𝑝𝑤 − 𝑟𝑢 + 𝑔 cos 𝜃 sin 𝜙 + 𝑎௬ (4.9) 

 𝑤̇ = 𝑞𝑢 − 𝑝𝑣 + 𝑔 cos 𝜃 cos 𝜙 + 𝑎௭ (4.10) 

 𝜙̇ = 𝑝 + 𝑞 𝑠𝑖𝑛 𝜙 𝑡𝑎𝑛 𝜃 +𝑟 𝑐𝑜𝑠 𝜙 𝑡𝑎𝑛 𝜃 (4.11) 

 𝜃̇ = 𝑞 cos 𝜙 − 𝑟 sin 𝜙 (4.12) 

Additionally, the body component accelerations (𝑎௫ , 𝑎௬ , 𝑎௭) were included via the simulated and 

real flight data directly as it was assumed there was no sensor failure in terms of acceleration.  

 Following the prediction phase is the update phase. The update is initiated by calculating 

the pre-fit residual 𝑦෤, the difference between the KF estimated value and true value.  

 𝑦෤௞ = 𝑧௞ − 𝐻௞ ∗ 𝑥ො௞|௞ିଵ (4.13) 

The measurements calculated by the KFs are angle of attack, sideslip angle, true airspeed, 

pitch, and roll.  

𝑦෤ = [𝛼 𝛽 𝑇𝐴𝑆 𝜙 𝜃]் 
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Next, the pre-fit residual covariance S is calculated in terms of the observation model, 

state estimate accuracy, and observation noise covariance.  

 𝑆௞ = 𝐻௞ ∗ 𝑃௞|௞ିଵ ∗ 𝐻௞
் + 𝑅௞ (4.14) 

The optimal Kalman gain K for the timestep k is calculated using the following relation 

from Walrand et al. [64]: 

 𝐾௞ = 𝑃௞|௞ିଵ ∗ 𝐻௞
் ∗ 𝑆௞

ିଵ (4.15) 

At this point, now that the Kalman gain is defined, the final state estimate for the timestep 

k can be updated with the following equation 

 𝑥ො௞|௞ = 𝑥ො௞|௞ିଵ + 𝐾௞ ∗ 𝑦෤௞ (4.16) 

which was derived from [64] 

 𝑥ො௞|௞ = (𝐼 − 𝐾௞ ∗ 𝐻௞) ∗ 𝑥ො௞|௞ିଵ + 𝐾௞ ∗ (𝐻௞ ∗ 𝑧௞ + 𝑣௞) (4.17) 

Similarly, the covariance of the state estimate is updated with the following equation in terms of 

the Kalman gain: 

 𝑃௞|௞ = (𝐼 − 𝐾௞ ∗ 𝐻௞) ∗ 𝑃௞|௞ିଵ (4.18) 

Finally, the process for timestep k concludes with the calculation of the post-fit residual. 

This is solved in terms of the current state estimate to finalize the updated value.  

 𝑦෤௞|௞ = 𝑧௞ − 𝐻௞ ∗ 𝑥ො௞|௞ (4.19) 

The final output was the same structure for each KF. No matter which sensor failure was 

accommodated, the KF output all three variables of interest and the flight angle rates for roll, and 

pitch.  

𝑦 = [𝛼 𝛽 𝑇𝐴𝑆 𝜙 𝜃]் 
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4.2.2 Estimation of the Noise Covariances Qk and Rk 

The last step in the overall design is the noise covariance matrices Q and R updates. The 

There are multiple proposals that studied which method is best in terms of estimating covariance 

matrices but there is no single way that works for every problem type.  In this research, after trial 

and error of various Q and R matrices, the method selected was the autocovariance least-squares 

method used in works by Julier et al. [25], Napolitano et al. [26], Duník et al. [30], and Odelson 

et al. [31]. The values calculated by this method provided the most accurate results when tested 

with simulated flight data. The final Q and R matrices for both the simulated and real flight data 

are shown in Chapters 5-7. 

4.3 Extended Kalman Filter 

The EKF is one of the most popular approaches for nonlinear applications used in SFA 

schemes and, more generally, sensor fusion schemes like navigation systems and GPS [3, 26, 

66]. The EKF was the first nonlinear KF designed shortly after the introduction of the original 

KF. The EKF adapted techniques from multivariate Taylor series to linearize a model about a 

working point [67]. 

  Similar to the linear KF, the EKF initiates by calculating the initial prediction of the state 

estimate and observation estimate. Contrary to the KF, both estimates need to be defined by 

nonlinear relationships derived from the flight equations. The general forms of these estimations 

are written as follows [17]:  

 𝑥௞ = 𝑓(𝑥௞ିଵ, 𝑈௞) + 𝑤௞ (4.20) 

 𝑧௞ = ℎ(𝑥௞) + 𝑣௞ (4.21) 
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In these equations, f and h represent the nonlinear, differentiable functions that define the 

estimated predictions of the states and observation in terms of all other variables x and the 

control input U.  

 

𝑥௞ାଵ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ tanିଵ ൬

𝑤 − 𝑞𝑥ఈ + 𝑝𝑦ఈ

𝑢
൰

sinିଵ ൬
𝑣 + 𝑟𝑥ఉ − 𝑝𝑧ఉ

√𝑢ଶ + 𝑣ଶ + 𝑤ଶ
൰

ඥ𝑢ଶ + 𝑣ଶ + 𝑤ଶ

𝑞 cos 𝜙 − 𝑟 sin 𝜙
𝑝 + 𝑞 𝑠𝑖𝑛 𝜙 𝑡𝑎𝑛 𝜃 +𝑟 𝑐𝑜𝑠 𝜙 𝑡𝑎𝑛 𝜃⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

+ 𝑤௞ 

(4.22) 

 𝑧௞ = 𝑥௞ ∗ 𝑈௞ + 𝑣௞ (4.23) 

In contrast to the linear KF, these equations for states and observation cannot be applied 

directly to the covariance; the solution to this issue is computing a Jacobian matrix of partial 

derivatives [68].  Due to the KF’s linear nature, the Jacobian is required to linearize the nonlinear 

function around the current estimate. At each time step, the Jacobian is computed in MATLAB 

with the current predicted states which are implemented into the prediction and update phases of 

the EKF.  

The EKF design required the following matrices mentioned in the original KF: F, H, Q, 

and R.  The state transition and observation matrices F and H were derived through Jacobian 

partial derivatives. Each equation is defined as [17, 68] 

 𝐹௞ =
∂𝑓 

∂𝑥 
|௫ොೖషభ|ೖషభ,௎ೖ

 (4.24) 

 𝐻௞ =
∂ℎ 

∂𝑥 
|௫ොೖషభ|ೖషభ

 (4.25) 

The remaining process for the prediction and update phases follows Eq. 4.13 through 

4.19 from the simple KF. 
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4.4 Unscented Kalman Filter 

The second KF designed in this work is the UKF proposed by Julier and Uhlman [25]. 

The UKF was originally designed to improve the estimation shortcomings of the EKF. Most 

linearization techniques used in the EKF typically yield the incorrect evaluation of the mean or 

covariance. The UKF introduced a new approach to this issue and the overall design of the 

nonlinear KF.  

In the EKF, the state distribution is approximated by the Gaussian random variable which 

is then propagated analytically through the first-order linearization of the nonlinear system. As 

mentioned, this can introduce large errors which may lead to sub-optimal performance and 

sometimes divergence of the filter. The UKF solution to this problem is implementing a 

deterministic sampling approach. The state distribution is approximated by the Gaussian random 

variable, similar to the EKF, but is now represented using a minimal set of sigma points. These 

sample points accurately determine the true mean and covariance of the Gaussian random 

variable. When these values are propagated through the actual nonlinear system, it captures the 

posterior mean and covariance accurately to the 3rd order using Taylor series expansion [25]. The 

EKF on the other hand can only approximate first-order accuracy. The UKF is a notable 

innovation within KFs as it is not only more powerful than the EKF itself but is no more 

complex [10]. This is achievable by unscented transform (UT).  

 The UT method calculates the statistics of a random variable that is processed through 

nonlinear transformation. This process develops sigma vectors and their corresponding weights. 

By implementing the UT sigma point propagation, both the Jacobian and Hessian are evaluated 

without having to perform any analytic differentiation. The following algorithm originally 
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designed by Wan et al. was adjusted and implemented into the SFA flight data scheme to 

designate the values within the sigma vectors for the UKF in this work [10].  

The UKF was selected for this analysis due to ease of implementation and success in past 

works by Wan et al. [10], Napolitano et al. [23], and Fravolini et al. [27].  Similar to the EKF, 

there are straightforward calculations implemented into the KF to accurately estimate the 

unknown variable. To initiate the UKF process, the state space 𝑥̇ is created as a matrix, or 

function, of the state variables and control inputs.  

 𝑥̇ = 𝑓(𝑥, 𝑈) (4.26) 

 𝑦 = 𝐺(𝑥, 𝑈) (4.27) 

After the initial state space is created, the matrix is discretized through the following 

algorithm.  

 𝑥௞ = 𝑥௞ିଵ𝑇ௌ𝑓(𝑥௞ିଵ, 𝑈௞) = 𝑓(𝑥௞ିଵ, 𝑈௞) (4.28) 

 𝑥௞ = 𝑓(𝑥௞ିଵ, 𝑈௞ + 𝑤௞) (4.29) 

 In the UKF, an augmented version of the matrix is implemented into the KF algorithm 

with the state values and weight values.  

𝑥௔௨௚ = [𝑥்    𝑤்] 

Due to the state augmentation, the state covariance matrix is augmented accordingly to 

include the noise characteristics of the process noise states, as in 

𝑃௞ೌೠ೒
= ൤

𝑃௞ 0
0 𝑄௞

൨ 

The UKF uses the unscented transformation to obtain the estimates of mean and 

covariance. The first step of the UKF implementation is to calculate 2l+1 sigma points based on 
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the square-root of the augmented state covariance matrix where the total dimension of the 

augmented state vector is denoted by l [3]. 

𝑋௞ିଵ௔௨௚
= ൤

𝑋௞ିଵ
௫

𝑋௞ିଵ
௪ ൨

= ቈ𝑋෠௞ିଵ|௞ିଵ௔௨௚
     𝑋෠௞ିଵ|௞ିଵೌೠ೒

+ 𝜂ට𝑃௞ିଵ|௞ିଵ௔௨௚
       𝑋෠௞ିଵ|௞ିଵೌೠ೒

+ 𝜂ට𝑃௞ିଵ|௞ିଵ௔௨௚
቉ 

The χ is a matrix of sigma points, and η is the sigma point spread parameter, given by 

 𝜂 = √1 + 𝜆 (4.30) 

 𝜆 = 𝑙(𝛼ଶ − 1) (4.31) 

where λ is the compound sigma point parameter, and α is the primary sigma point scaling 

parameter, which is suggested to vary between 0.001 and 1 [10, 16].  

 The following algorithm implemented for the remaining processes within the UKF was 

derived from Gururajan et al. [3], Wan et al. [10], and Rhudy et al. [24]. Like the EKF and 

original KF, the overall process of the UKF can be divided into the prediction and update phases.  

 As mentioned, the primary modification to the UKF compared to other KFs is the 

implementation of the sigma points χ. The equations from the original KF (Eq. 4.13 through 

4.19) were adjusted to accommodate the sigma points. The state prediction equation in terms of 

the sigma points initiates the prediction process: 

 𝑋௞|௞ିଵ
௫௜ = 𝑓( 𝜒௞ିଵ

௫ , 𝑈௞ + 𝜒௞ିଵ
௪௜௜ ) (4.32) 
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Eq. 4.30 derives a function for the sigma points in terms of the control input, initial sigma 

states, and the weighted initial sigma states. This equation is used as a foundation to derive the 

actual state and prediction estimates which are calculated in the following equations.  

 𝑥ො௞|௞ିଵ = ෍ 𝑤௜
௠ 𝜒௞|௞ିଵ

௫௜

ଶ௟

௜ୀ଴

 (4.33) 

 𝑃௞|௞ିଵ ෍ 𝑤௜
௖൫ 𝜒௞|௞ିଵ

௫௜ − 𝑥ො௞|௞ିଵ൯൫ 𝜒௞|௞ିଵ
௫௜ − 𝑥ො௞|௞ିଵ൯

்
ଶ௟

௜ୀ଴

 (4.34) 

Both Eq. 4.31 and 4.32 are based on the original KF algorithm. In this case, the 

difference is taken from the sigma matrix and state estimates to calculate a more accurate 

prediction. The next step is the development of the observation function Ψ.  

 𝛹௞|௞ିଵ
௜ = 𝐺൫ 𝜒௞|௞ିଵ

௫௜ , 𝑈௞൯ (4.35) 

           After the sigma matrix is calculated, the remainder of prediction phase initiates. The 

estimated output y is now defined in terms of both weight and the sigma matrix. The output 

covariance and cross-covariance matrices P are also calculated with the estimated sigma 

matrix and y.  

 𝑦ො௞|௞ିଵ = ෍(𝑤௜
௠ ∗ 𝛹௞|௞ିଵ)௜

ଶ௅

௜ୀ଴

 (4.36) 

 𝑃௞
௬௬

= 𝑅௞ + ෍ 𝑤௜
௖( 𝛹௞|௞ିଵ − 𝑦ො௞|௞ିଵ)( 𝛹௞|௞ିଵ − 𝑦ො௞|௞ିଵ)்௜௜

ଶ௅

௜ୀ଴

 (4.37) 

 𝑃௞
௫௬

= ෍ 𝑤௜
௖( 𝜒௞|௞ିଵ − 𝑥ො௞|௞ିଵ)( 𝛹௞|௞ିଵ − 𝑦ො௞|௞ିଵ)்௜௜

ଶ௅

௜ୀ଴

 (4.38) 
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            With the covariance matrices P, the Kalman gain is calculated with the following 

equation.  

 𝐾௞ = 𝑃௞
௫௬

൫𝑃௞
௬௬

൯
ିଵ

 (4.39) 

              After the Kalman gain is calculated, the update phase can initiate. Once the new 

estimated values for the next input states x and the new P are derived, the next time interval of 

the KF can start. This process repeats until the end of the time series.   

 𝑥ො௞ = 𝑥ො௞|௞ିଵ + 𝐾௞൫𝑦௞ − 𝑦ො௞|௞ିଵ൯ (4.40) 

 𝑃௞ = 𝑃௞|௞ିଵ − 𝐾௞𝑃௞
௬௬

𝐾௞
் (4.41) 

 To initiate the UT, a matrix of the sigma vectors χ0  is constructed and set equal to the 

mean 𝑥̅ of the inputs x. The sigma vectors are adjusted and updated in accordance with a set 

scaling parameter λ. This scaling factor is calculated in terms of the dimension L, and secondary 

and tertiary scaling factors a and κ.  

 𝜆 = 𝑎ଶ ∗ (𝐿 + 𝜅) − 𝐿 (4.42) 

The value of a is set to a very small value; this determines the spread of the sigma points around 

the mean. The secondary value κ is set to zero in this research as the UKF did not require further 

scaling in the SFA scheme.  The sigma matrix is updated for each time step i where  

 𝜒௜ = (𝑥̅ + (ඥ(𝐿 + 𝜆) ∗ 𝑃௫)௜                          𝑖 = 1, … , 𝐿 (4.43) 

or  

 𝜒௜ = (𝑥̅ − (ඥ(𝐿 + 𝜆) ∗ 𝑃௫)௜ି௅                          𝑖 = 1, … , 2𝐿 (4.44) 

The weights of each sigma vector are calculated with the following equations: 

 𝑊଴௠
=

𝜆

𝐿 + 𝜆
 (4.45) 
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 𝑊଴௖
=

𝜆

𝐿 + 𝜆
+ (1 − 𝑎ଶ + 𝑏) (4.46) 

 𝑊௜௠
= 𝑊௜௖

=
𝜆

2 ∗ (𝐿 + 𝜆)
 (4.47) 

The subscripts c and m represent the covariance and mean, respectively. The weights are 

evaluated in terms of the dimensions L, scaling parameter a, and scaling parameter b. The value 

b represents the system’s prior knowledge of the distribution of the inputs x. For most Gaussian 

distributions, the optimal number for b is 2, which was also used for this work.  

Once the weight matrices are developed based on the sigma values, the sigma vectors are 

input into the nonlinear flight dynamics equations for angle of attack, sideslip, and true airspeed 

to produce the final output y. The mean and covariance of the sigma values are solved by the 

following equations: 

 𝑦ത = ෍ 𝑊௜௠
∗ 𝑦௜

ଶ௅

௜ୀ଴

 (4.48) 

 𝑃௬ = ෍ 𝑊௜௖
∗ (𝑦௜ − 𝑦ത) ∗ (𝑦௜ − 𝑦ത)்

ଶ௅

௜ୀ଴

 (4.49) 

These equations have shown to be accurate for approximations to the third order for 

Gaussian inputs for all nonlinearities in past works mentioned by Wan et al. [10] and Napolitano 

et al. [23].  Adjustments are made through the values of a and b for non-Gaussian values [69]. 

The UKF in this process has redefined the Gaussian random variable to accommodate for higher 

order nonlinear functions.  

 After designating each initial matrix, the UKF was ready for testing with actual flight 

data. In the case of the KFs compared to the NNs, there was no adjusting needed when testing 

simulated or real flight data; the KFs were designed to use variables that were provided by every 
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flight dataset. The system of equations used by the KFs to calculate estimations and 

accommodate the failed sensor remained the same for the simulated, YF-22, and Tecnam P92 

data. Unlike the NNs, there was no training required for the KF. Depending on the variable of the 

sensor failure, however, the input matrix x changes based on the matrices earlier in the chapter. 
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Chapter #5: Performance Analysis Using Simulation Data 

This project incorporated flight data generated by WVU’s flight simulator to train and 

test the NNs and KFs. The simulated sensor failure data for angle of attack, sideslip angle, and 

true airspeed were used as the first evaluation in this work. The simulator consists of two 

joysticks for the human pilot input and monitors for simulator visualization.  

 

Figure 5.1: West Virginia University High-Performance Military Aircraft Flight Simulator via FlightGear 

[71] 

 Within this simulation, the user or pilot was able to control the aircraft with the provided 

joysticks and observe the behavior of the aircraft in real time through the FlightGear program 

pictured in Figure 5.1. The simulation was designed in Simulink by recreating the flight system 

of a high-performance military aircraft through sets of subsystems seen in Figure 5.2. This 

Simulink scheme combined with MATLAB served as the source of the training and testing data 

for the NNs and KFs in this chapter. 
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Figure 5.2: Simulation Aircraft Dynamics Simulation Block Diagram (Simulink) 

Figure 5.2 displays the original Simulink scheme used to generate fault-free training data 

for the neural networks. This scheme also served as the foundation for the design of the Simulink 

model that produced the testing data, or faulty data. Each simulated flight was limited to 1500 

seconds with a sampling rate of 0.02 seconds to facilitate time-series modeling. For each flight, 

the human pilot would perform random maneuvers at cruise altitude in the given time frame to 

provide a larger variety of data for the NN training. The training data produced for this work 

consisted of twenty simulated fault-free flights, all with random, unique maneuvers. Another ten 

simulated fault-free flights were generated to be used as the testing data. The sensor failure was 

implemented into these ten flights through the sensor failure mechanisms discussed later in this 

section.  

After each flight, the data from the simulator was extracted through Simulink and 

MATLAB. These training and testing datasets were saved as .mat files so they could be accessed 
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at any point during the research process. The NN was trained with the twenty training datasets 

through MATLAB and Simulink.   

The training datasets provided by the simulation were used by the NNs to determine the 

pattern of α, β, and TAS with respect to the other variables. The NNs applied this “knowledge” to 

the testing data to detect the sensor failure and used the acquired patterns to accommodate that 

failed sensor with accurate estimations of that variable. The KFs on the other hand continuously 

calculated α, β, and TAS over time with the implemented system of equations (4.1 through 4.3 

and 4.8 through 4.12) using the test data values and compare its estimation to the actual value to 

determine the residual, or whether a sensor has failed. The KFs used the covariance matrices 

from Chapter 4 to accurately estimate each of the three sensor failures. The angle of attack 

sensor, sideslip angle sensor, and true airspeed sensor were accommodated by the KFs with their 

respective derived Q and R covariance matrices from Chapter 4.  

The simulation provided the data of 45 sensors in real time that were used by the NNs 

and KFs to calculate residuals and estimations for the failed sensor. Table 5.1 displays the 

variables measured in the simulation.  

 

 

 

 

 

 



59 
 

Table 5.1: Variables Measured in Simulated Aircraft 

𝒗 (m/s) 𝒙𝒆  (m) 𝒇𝒊 (rad/s) ൬
𝑷𝒃

𝟐𝒗
൰ (rad) elevators L(rad) 

 (rad) 𝒚𝒆  (m) ̇ (rad/s) ቀ
𝒒𝒄

𝒗
ቁ (rad) elevators R(rad) 

 (rad) 𝒛𝒆  (m) ̇ (rad/s) ൬
𝒓𝒃

𝒗
൰ (rad) ailerons L(rad) 

𝒑 (rad/s) 𝒗̇ (m/s2)  𝒙𝒆 ̇  (m/s) 𝑨𝒙 (g) ailerons R(rad) 

𝒒 (rad/s) ̇ (rad/s)  𝒚𝒆 
̇  (m/s) 𝑨𝒚 (g) rudder L(rad) 

𝒓 (rad/s) ̇ (rad/s) 𝒛𝒆 ̇  (m/s) 𝑨𝒛 (g) rudder R(rad) 

Φ (rad) 𝒑̇ (rad/s2) 𝒖̇ (m/s2) 𝒂𝒙 (g) flaps (rad) 

 (rad) 𝒒̇ (rad/s2) 𝒗̇ (m/s2) 𝒂𝒚 (g) canard L(rad) 

 (rad) 𝒓̇ (rad/s2) 𝒘̇ (m/s2) 𝒂𝒛 (g) canard R(rad) 

   

5.1 Developing and Distinguishing Training and Testing Data 

 Both training and testing datasets were developed in the simulation for the first 

evaluation of the NNs and KFs. Each dataset developed within the flight simulator was labeled 

SIMT or SIM with a respective number. Flight datasets labeled SIMT are datasets created 

specifically for training. Flight datasets labeled SIM were generated solely for testing.  

This chapter will discuss the results for four flight simulations used for testing in this 

work, respectively SIM 001, SIM 002, SIM 003, and SIM 004. These four simulations were 

selected to be displayed out of the ten potential testing datasets as they are completely different 

from each other in terms of flight maneuvers. The results from the four selected testing 
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simulations provide sufficient performance results of each of the on-line estimators. The flight 

maneuvers of each SIM selected are shown below, specifically the roll, pitch, and yaw data.  

 

Figure 5.3: Testing Simulation 001 Flight Maneuver Data 

 

Figure 5.4 Testing Simulation 002 Flight Maneuver Data 
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Figure 5.5: Testing Simulation 003 Flight Maneuver Data 

 

Figure 5.6: Testing Simulation 004 Flight Maneuver Data 

This work also displays the training results of the NNs using four selected training 

datasets, SIMT 001, SIMT 002, SIMT 003, and SIMT 004. These training datasets provided the 

best results in training for both the MLP and EMRAN when tested against the four SIM flights.   

The flight maneuvers of each training flight (SIMT 001 through SIMT 004) selected are shown 

below, specifically the the roll, pitch, and yaw data. 
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Figure 5.7: Training Simulation 001 Flight Maneuver Data 

 

Figure 5.8: Training Simulation 002 Flight Maneuver Data 
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Figure 5.9: Training Simulation 003 Flight Maneuver Data 

 

Figure 5.10: Training Simulation 004 Flight Maneuver Data 

5.2 Implementing the Sensor Failure into Testing Flight Data 

The ten simulated flight datasets developed for testing in the original simulation required 

additional processing through a sensor failure-inducing scheme to implement the sensor failure 

of angle of attack, sideslip angle, or true airspeed. The subsystem Sensor Failures from the 

original Simulink model as seen below was implemented into the second Simulink model for this 

purpose. 
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Figure 5.11: Original Sensor Failure Block without SFA 

Various changes were made to this design not only to simulate multiple types of failures 

but also to incorporate an SFA scheme to test the NNs and KFs against the testing data.  

 The Sensor Failures block skews the true measurements from the testing simulation 

datasets to create faulty data for a specific sensor selected by the user. The testing flight datasets 

developed in the original scheme in Figure 5.1 were processed a second time through this sensor 

failure block to implement the sensor failure that the on-line estimators needed to accommodate. 

The user defined the sensor failure and severity of the failure for each test flight through this 

subblock.  

 

Figure 5.12: Inner Mechanics of Sensor Failure Block 
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 Figure 5.12 displays the mechanics of the sensor failure subsystem. As seen in the figure, 

the sensor that will fail in the simulation can be designated by the user prior to reprocessing the 

testing data. This allowed the user to implement a sensor failure at a specific user-indicated time.  

For this specific simulation, the port number corresponding to each of the relevant variables (α, 

β, TAS) were 2, 3, and 1, respectively.   The figure below shows the system channeling port 1, so 

the sensor that was designed to fail in this specific case was the true airspeed. 

 

Figure 5.13: Port Number of Sensor Selected to Fail in Simulation 

 Since the true airspeed is the sensor selected to fail in this case, the channel 

“fail_sens_TAS” is input into the sensor failure block scheme seen in Figure 5.4. As seen in 

Figure 5.13 toward the left, the sensor failure type (small bias or large bias) is selected and input 

through MATLAB. The severity of the failure is determined by the switch mechanisms and fault 

inputs; essentially, the user or code can dictate which inputs or failure factors are considered 

when the testing data is processed.   
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Figure 5.14: Zero-Order Holds, Saturations, Sensor Biases as Faulty Inputs for Switches 

 Figure 5.14 shows the variety of input selections used to determine fault severity in the 

simulation. The inputs are constructed as series of holds, saturations, and sensor biases to 

influence the type of sensor failure. The system defaults to the first input switch option of 0, or 

fault-free. These mechanisms were applied to each sensor failure type in this research. The levels 

of severity were divided into two categories: large bias and small bias errors. The magnitudes of 

each error, no matter the type of error, were varied within the flight datasets to determine the 

robustness of each on-line estimator. Large errors were greater than 5% difference in value while 

small errors were lower than 5%. Tables at the end of Chapters 5-7 display the results of each of 

the two error categories.  

 

Figure 5.17: Voting Scheme and Its Inner Mechanics 
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 Lastly, voting schemes were implemented into this subblock to simulate a more realistic 

output of a faulty sensor. For each input (angle of attack, sideslip, or true airspeed), the newly 

calculated faulty data was averaged with the original data to generate the final faulted output.  

 Each SIM dataset was processed through this sensor failure scheme to implement small 

and large sensor failures for angle of attack, sideslip angle, and true airspeed. All SIM flights had 

a failure of each type and severity implemented. For example, the first testing dataset, SIM 001, 

was processed through this simulation six separate times to generate six different failure 

scenarios for testing: large angle of attack error, small angle of attack error, large sideslip angle 

error, small sideslip angle error, large true airspeed error, and small true airspeed error. This 

allowed the user to test the same flight dataset for multiple scenarios. This method was also used 

in Chapters 6 and 7 with the YF-22 and Tecnam P92 data.  

5.3 Designing and Implementing SFA Schemes 

 The following SFA schemes were initially designed for the flight simulator and later used 

for the YF-22 and Tecnam P92 testing datasets. As mentioned, the SFA scheme will 

accommodate sensor failure data when the residual calculated surpasses the input limits. To 

successfully input this mechanism within the simulator scheme, the SFA and on-line estimator 

was placed in a position to intake the failed flight data. The overall concept of the SFA for this 

work was inspired by work originally done by Napolitano et al. [70] shown in the following 

image.  
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Figure 5.16 General SFDIA Scheme [70] 

 In this work, rather than implementing the scheme directly into a real aircraft, the SFA 

scheme was implemented into the flight simulator. In the cases of the YF-22 and Tecnam P92, 

the preexisting flight datasets were processed through the sensor failure block and SFA to mimic 

a realistic analytical redundancy scenario. The figure below displays the generic outline used for 

this work within Simulink.  

 

Figure 5.17: Logic and Approximation Subblocks  

 As seen in Figure 5.17, the flight data from the simulator (the red line on the right) is 

input through a filter to calculate residual. The data is then processed through the SFA scheme. If 

the residual exceeds the designated threshold, the fault alarm is triggered, initiating the 

accommodation process; the on-line estimator in place will begin estimating the new data at this 

point. Figures 5.18 and 5.19 below display residual graphs from flight datasets that triggered 

false alarms.  

 The Logic block follows the flowchart in Figure 5.18.  
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Figure 5.18: Sensor Failure Accommodation Logic Box Flowchart 

 The SFA Logic block initiates its cycle with the input of the flight data. Both the flight 

control system values and the NN or KF estimation values are input to the Logic block for 

comparison purposes. The residual from both datasets is calculated and compared to the user-

implemented threshold. If the threshold is exceeded, a fault alarm is triggered and the switch in 

the next step initiates the usage of the accommodated data instead of the actual flight data. This 

accommodated data is then input back to the flight control system for the next timestep. 

Examples of the residual generated in this scheme is seen in the following figures.  
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Figure 5.19: Fault-Free vs. Faulty MLP Residual for Angle of Attack for SIM 001 

 

Figure 5.20: Fault-Free vs. Faulty MLP Residual for Angle of Attack on SIM 002 

 

 

Figure 5.21: General Outline of SFA Scheme within Flight Simulator 
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 Figure 5.21 shows the SFA schematic within the flight simulator. This setup allowed the 

SFA scheme to work and accommodate failure data in real time with the simulator. This was a 

similar case to the preexisting flight data; the other flight datasets for the YF-22 and Tecnam P92 

were input into the SFA scheme as a loop in time series to allow the SFA scheme to be tested 

and work in real time.   

The NNs and KFs were tested with both the faulted testing data and fault-free training 

data to better determine the legitimacy of each on-line estimator; in other words, fault-free data 

was tested to observe whether any of the NN or KF schemes would fire a false alarm for a failure 

that was not present. The testing data also determined whether present failures were detected.  

 The following results show a visual comparison of the actual fault-free data to the failure 

accommodated data. Each SIM used for testing had a fault implemented at a certain point for the 

SFA to detect and accommodate. With these two sets of values, actual and accommodated, the 

estimation error, mean, and standard deviations of the values were calculated to numerically 

represent the results. Additional tables were provided for the NNs to display training information 

and statistics from the SIMT datasets. It was expected for the accommodated data to have a low 

mean and standard deviation; in other words, the accommodated data should be almost identical 

to the original fault-free data.  

The display format for the results was inspired from works by Samy et al. [1] and 

Gururajan et al. [3]. The overall results at the end of this chapter provide the numerical values 

for each criterion from Chapter 2 based on all the simulated data.  

The MLP and EMRAN were trained by each SIMT dataset and tested against the SIM 

datasets to determine the best training data for this work with the simulated data. The NN was 
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tested against each SIM dataset 100 times. Tables 5.2 through 5.13 in this section provide the 

result averages for each SIMT training flight dataset selected. Based on these values for the 20 

simulated datasets, the optimal dataset designated as SIMT 001 was selected as the training data 

for each sensor due to having the lowest estimation mean for all the sensor failure possibilities: 

angle of attack, sideslip angle, and true airspeed. The following sections display the MLP-SFA 

accommodation data and EMRAN-SFA accommodation data compared to the fault-free data for 

each of the four SIM datasets.  

5.4 MLP Results 

5.4.1 Angle of Attack 

 Tables 5.2 and 5.3 display the numerical reasoning behind selecting SIMT 001 as the 

training dataset for angle of attack in the simulation data. SIMT 001 provided the lowest mean 

from the actual value. It also required fewer neurons to train the NN.  

Table 5.2: MLP Angle of Attack Estimation Error Statistics for Each Simulation Flight Dataset – Training 
and Testing 

 SIM 001 SIM 002 
Training FDS Mean (m/s) SD (m/s) Mean (m/s) SD (m/s) 
SIMT 001 𝟐. 𝟑𝟗𝟒𝒆ି𝟑 .2896 . 𝟗𝟖𝟑𝟒𝒆ି𝟐 .2965 
SIMT 002 .7928 .5620 .8654 .3532 
SIMT 003 .6025 .9862 .0625 .9635 
SIMT 004 .3965 .8621 .5259 .5954 
 SIM 003 SIM 004 
SIMT 001 .2759 .1865 .8024 .1593 
SIMT 002 .3865 .9465 .0875 .6492 
SIMT 003 𝟐. 𝟒𝟔𝟐𝒆ି𝟐 .0956 .2865 .0164 
SIMT 004 .2747 .6492 𝟖. 𝟏𝟔𝟓𝒆ି𝟐 .0252 
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Table 5.3: Angle of Attack Error Statistics from MLP Training for Simulated Flight Data 

 SIMT 001 SIMT 002 SIMT 003 SIMT 004 
Number of active neurons 75 82 92 101 
Number of training epochs 1000 1000 1000 1000 
Mean of training error -.0204 .0163 .0749 -.0198 
Standard deviation of training error .3845 .2836 .4721 .2689 

 

 

Figure 5.22: MLP Angle of Attack Accommodation vs. Fault Free Data (SIMT 001 Training) 

 

Figure 5.23: MLP Angle of Attack Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 002 
Testing) 
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Figure 5.24: MLP Angle of Attack Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 003 
Testing) 

 

Figure 5.25: MLP Angle of Attack Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 004 
Testing) 

 

5.4.2 Sideslip Angle 

 Tables 5.4 and 5.5 display the numerical reasoning behind selecting SIMT 001 as the 

training dataset for sideslip angle in the simulation data. SIMT 001 provided the lowest mean 

from the actual value. It also required fewer neurons to train the NN.  
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Table 5.4: MLP Sideslip Angle Estimation Error Statistics for Each Simulation Flight Data Set – Training 
and Testing 

 SIM 001 SIM 002 
Training FDS Mean (m/s) SD (m/s) Mean (m/s) SD (m/s) 
SIMT 001 𝟏. 𝟕𝟒𝟐𝒆ି𝟒 .1426 .8452 .1974 
SIMT 002 .1632 .1246 𝟑. 𝟒𝟔𝟐𝒆ି𝟐 .1046 
SIMT 003 .7592 .8275 .0275 .2559 
SIMT 004 .3759 .2946 .2682 .6843 
 SIM 003 SIM 004 
SIMT 001 𝟕. 𝟒𝟕𝟐𝒆ି𝟐 .4927 .9207 .1496 
SIMT 002 .3865 .9465 .3753 .2349 
SIMT 003 .2546 .4768 .5839 .2846 
SIMT 004 .3776 .9863 𝟒. 𝟒𝟓𝟐𝒆ି𝟑 .1846 

 

Table 5.5: Sideslip Error Statistics from MLP Training for Simulated Flight Data 

 SIMT 001 SIMT 002 SIMT 003 SIMT 004 
Number of active neurons 63 65 90 98 
Number of training epochs 1000 1000 1000 1000 
Mean of training error -.0384 -.0274 -.0187 .0539 
Standard deviation of training error .7402 .4720 .3856 .2974 

 

 

Figure 5.26: MLP Sideslip Accommodation vs. Fault Free Data (SIMT 001 Training) 
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Figure 5.27: MLP Sideslip Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 002 Testing) 

 

Figure 5.28: MLP Sideslip Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 003 Testing) 

 

Figure 5.29: MLP Sideslip Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 004 Testing) 
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5.4.3 True Airspeed 

 Similar to the angle of attack and sideslip, the SIMT 001 training dataset was used as the 

training data for the NNs.  

Table 5.6: MLP True Airspeed Estimation Error Statistics for Each Simulated Flight Data Set – Training 
and Testing 

 SIM 001  SIM 002 
Training FDS Mean (m/s) SD (m/s) Mean (m/s) SD (m/s) 
SIMT 001 𝟑. 𝟖𝟐𝟗𝒆ି𝟔 .1192 .3721 .7402 
SIMT 002 .3382 .2974 𝟏. 𝟑𝟕𝟎𝒆ି𝟑 .2721 
SIMT 003 .2847 .0972 .4928 .9773 
SIMT 004 .4742 .4907 .2974 .4997 
 SIM 003 SIM 004 
SIMT 001 .4972 .9621 .9372 .3445 
SIMT 002 .3335 .5921 .4171 .7638 
SIMT 003 𝟏. 𝟐𝟏𝟏𝒆ି𝟒 .3613 .3186 .3962 
SIMT 004 .1737 .4943 𝟐. 𝟔𝟔𝟕𝒆ି𝟒 .4917 

 

Table 5.7: True Airspeed Error Statistics from MLP Training for Simulated Data 

 SIMT 001 SIMT 002 SIMT 003 SIMT 004 
Number of active neurons 79 112 97 109 
Number of training epochs 1000 1000 1000 1000 
Mean of training error -.0184 .0926 .09352 -.0364 
Standard deviation of training error .5962 .4388 .3443 .4256 

 

 

Figure 5.30: MLP True Airspeed Accommodation vs. Fault Free Data (SIMT 001 Training) 
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Figure 5.31: MLP True Airspeed Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 002 Testing) 

 

Figure 5.32: MLP True Airspeed Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 003 Testing) 

 

Figure 5.33: MLP True Airspeed Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 004 Testing) 
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5.5 EMRAN Results 

The EMRAN was trained with the SIMT 001 data like the MLP. The training provided 

similar results of SIMT 001 producing the lowest estimation means and tended to require fewer 

active neurons.  SIMT 001 was used for angle of attack, sideslip, and true airspeed.  

5.5.1 Angle of Attack 

Table 5.8: EMRAN Angle of Attack Estimation Error Statistics for Each Simulated Flight Data Set – 
Training and Testing 

 SIM 001 SIM 002 
Training FDS Mean (m/s) SD (m/s) Mean (m/s) SD (m/s) 
SIMT 001 . 𝟎𝟑𝟗𝟒 .5733 . 𝟎𝟒𝟕𝟐 .3275 
SIMT 002 .8333 .4662 .5678 .8947 
SIMT 003 .2456 .1174 .3356 .9864 
SIMT 004 .3728 .3614 .3352 .8855 
 SIM 003 SIM 004 
SIMT 001 .8532 .1368 . 𝟎𝟏𝟏𝟖 .3883 
SIMT 002 .3468 .4657 .0875 .4967 
SIMT 003 . 𝟎𝟗𝟔𝟐 .0797 .2164 .4443 
SIMT 004 .8643 .6747 .4738 .7839 

 

Table 5.9: Angle of Attack Error Statistics from EMRAN Training for Simulated Data 

 SIMT 001 SIMT 002 SIMT 003 SIMT 004 
Number of active neurons 67 101 89 72 
Number of training epochs 1000 1000 1000 1000 
Mean of training error .0164 .0112 .0136 .0271 
Standard deviation of training error .3529 .1640 .2737 .3622 
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Figure 5.34: EMRAN Angle of Attack Accommodation vs. Fault Free Data (SIMT 001 Training) 

 

Figure 5.35: EMRAN Angle of Attack Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 002 
Testing) 

 

Figure 5.36: EMRAN Angle of Attack Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 003 
Testing) 
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Figure 5.37: EMRAN Angle of Attack Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 004 
Testing) 

 

5.5.2 Sideslip Angle 

Table 5.10: EMRAN Sideslip Angle Estimation Error Statistics for Each Simulated Flight Data Set – 
Training and Testing 

 SIM 001 SIM 002 
Training FDS Mean (m/s) SD (m/s) Mean (m/s) SD (m/s) 
SIMT 001 .0482 .2975 .0759 .1986 
SIMT 002 .3852 .3642 .8833 .7654 
SIMT 003 .5839 .4774 .9626 .9746 
SIMT 004 .5756 .3947 .3740 .2740 
 SIM 003 SIM 004 
SIMT 001 .0233 .5026 .2865 .7402 
SIMT 002 .4224 .4335 .4926 .9264 
SIMT 003 .4658 .7859 .8644 .8575 
SIMT 004 .3725 .5447 .0187 .2542 

 

Table 5.11: Sideslip Error Statistics from EMRAN Training for Simulated Data 

 SIMT 001 SIMT 002 SIMT 003 SIMT 004 
Number of active neurons 89 96 92 112 
Number of training epochs 1000 1000 1000 1000 
Mean of training error .0174 -.0233 -.0455 .0927 
Standard deviation of training error .1272 .1462 .1749 .1255 
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Figure 5.38: EMRAN Sideslip Accommodation vs. Fault Free Data (SIMT 001 Training) 

 

Figure 5.39: EMRAN Sideslip Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 002 Testing) 

 

Figure 5.40: EMRAN Sideslip Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 003 Testing) 
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Figure 5.41:  EMRAN Sideslip Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 004 Testing) 

 

5.5.3 True Airspeed 

Table 5.12: EMRAN True Airspeed Estimation Error Statistics for Each Simulated Flight Data Set – 
Training and Testing 

 SIM 001 SIM 002  
Training FDS Mean (m/s) SD (m/s) Mean (m/s) SD (m/s) 
SIMT 001 .0262 .0926 .4597 .7573 
SIMT 002 .4377 .6748 . 𝟎𝟑𝟓𝟓 .3335 
SIMT 003 .3659 .5583 .2975 .3975 
SIMT 004 .9597 .9483 .4972 .3077 
 SIM 003 SIM 004  
SIMT 002 .3855 .5112 .0563 .1242 
SIMT 003 .4995 .5972 .1145 .4475 
SIMT 004 .0422 .3840 .3722 .2888 
SIMT 005 .4989 .5362 .2100 .7533 

 

Table 5.13: True Airspeed Error Statistics from EMRAN Training for Simulated Data 

 SIMT 001 SIMT 002 SIMT 003 SIMT 004 
Number of active neurons 86 108 103 114 
Number of training epochs 1000 1000 1000 1000 
Mean of training error .0373 -.0277 -.0394 -.0119 
Standard deviation of training error .1836 .1242 .1974 .2929 
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Figure 5.42: EMRAN True Airspeed Accommodation vs. Fault Free Data (SIMT 001 Training) 

 

Figure 5.43: EMRAN True Airspeed Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 002 
Testing) 

 

Figure 5.44: EMRAN True Airspeed Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 003 
Testing) 
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Figure 5.45: EMRAN True Airspeed Accommodation vs. Fault Free Data (SIMT 001 Training, SIM 004 
Testing) 

 

5.6 EKF Results 

 The following graphs display the performance of the EKF when exposed to the simulated 

data. The EKF used the covariance matrix values designated below.  

𝑄௞,ఈ

= 𝑑𝑖𝑎𝑔[5.01 ∗ 10ିସ 0.99 ∗ 10ିଷ 7.88 ∗ 10ିସ 2.02 ∗ 10ି଻ 2.74 ∗ 10ି଻ 4.67 ∗ 10ି଻ ⋯] 

[⋯ 3.53 ∗ 10ି଺ 3.53 ∗ 10ି଺ 3.53 ∗ 10ି଺] 

𝑅௞,ఈ = 𝑑𝑖𝑎𝑔[1.84 ∗ 10ିହ 1.96 ∗ 10ିହ 9.93 ∗ 10ି଺ 5.77 ∗ 10ି଺ . 48 ∗ 10ିହ] 

𝑄௞,ఉ

=  𝑑𝑖𝑎𝑔 [4.56 ∗ 10ିସ 1.83 ∗ 10ିଷ 1.24 ∗ 10ିସ 2.34 ∗ 10ି଻ 1.87 ∗ 10ି଻ 7.92 ∗ 10ି଻ ⋯] 

 [⋯ 1.99 ∗ 10ି଺ 8.16 ∗ 10ି଺ 4.11 ∗ 10ି଺] 

𝑅௞,ఉ = 𝑑𝑖𝑎𝑔[1.19 ∗ 10ିହ 2.11 ∗ 10ିହ 2.66 ∗ 10ି଺ 5.75 ∗ 10ି଺ 6.98 ∗ 10ି଺] 

𝑄௞,்஺ௌ

= 𝑑𝑖𝑎𝑔[5.01 ∗ 10ିସ 0.99 ∗ 10ିଷ 7.88 ∗ 10ିସ 2.02 ∗ 10ି଻ 2.74 ∗ 10ି଻ 4.67 ∗ 10ି଻ 5.33 ∗ 10ି଺] 

𝑅௞,்஺ௌ = 𝑑𝑖𝑎𝑔[1.08 ∗ 10ିହ 1.09 ∗ 10ିହ 9.39 ∗ 10ି଺ 5.10 ∗ 10ି଺ 7.12 ∗ 10ିହ] 
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The units within the Q and R matrices are of 𝑚/𝑠ଶ for accelerations, deg/s for angular rates, 

and deg for angles.  

As mentioned, the KFs did not require training like the NNs so they were tested directly 

with the simulation flight datasets.  

5.6.1 Angle of Attack 

 

Figure 5.46: EKF Angle of Attack Accommodation vs. Fault Free Data (SIM 001 Testing) 

 

Figure 5.47: EKF Angle of Attack Accommodation vs. Fault Free Data (SIM 002 Testing) 
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Figure 5.48: EKF Angle of Attack Accommodation vs. Fault Free Data (SIM 003 Testing) 

 

Figure 5.49: EKF Angle of Attack Accommodation vs. Fault Free Data (SIM 004 Testing) 

 

5.6.2 Sideslip Angle 
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Figure 5.50: EKF Sideslip Accommodation vs. Fault Free Data (SIM 001 Testing) 

 

Figure 5.51: EKF Sideslip Accommodation vs. Fault Free Data (SIM 002 Testing) 

 

 Figure 5.52: EKF Sideslip Accommodation vs. Fault Free Data (SIM 003 Testing) 

 

Figure 5.53: EKF Sideslip Accommodation vs. Fault Free Data (SIM 004 Testing) 

 



89 
 

5.6.3 True Airspeed 

 

Figure 5.54: EKF True Airspeed Accommodation vs. Fault Free Data (SIM 001 Testing) 

 

Figure 5.55: EKF True Airspeed Accommodation vs. Fault Free Data (SIM 002 Testing) 

 

Figure 5.56: EKF True Airspeed Accommodation vs. Fault Free Data (SIM 003 Testing) 
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Figure 5.57: EKF True Airspeed Accommodation vs. Fault Free Data (SIM 004 Testing) 

 

5.7 UKF Results 

 The UKF used the same covariance matrices as the EKF that were denoted Section 5.6 to 

accurately estimate and accommodate the sensor failure. The following graphs display the 

resulting performance of the UKF when exposed to the simulation data.  

5.7.1 Angle of Attack 

 

Figure 5.58: UKF Angle of Attack Accommodation vs. Fault Free Data (SIM 001 Testing) 
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Figure 5.59: UKF Angle of Attack Accommodation vs. Fault Free Data (SIM 002 Testing) 

 

Figure 5.60: UKF Angle of Attack Accommodation vs. Fault Free Data (SIM 003 Testing) 

 

Figure 5.61: UKF Angle of Attack Accommodation vs. Fault Free Data (SIM 004 Testing) 
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5.7.2 Sideslip Angle 

 

Figure 5.62: UKF Sideslip Accommodation vs. Fault Free Data (SIM 001 Testing) 

 

Figure 5.63: UKF Sideslip Accommodation vs. Fault Free Data (SIM 002 Testing) 

 

Figure 5.64: UKF Sideslip Accommodation vs. Fault Free Data (SIM 003 Testing) 
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Figure 5.65: UKF Sideslip Accommodation vs. Fault Free Data (SIM 004 Testing) 

 

5.7.3 True Airspeed 

 

Figure 5.66: UKF True Airspeed Accommodation vs. Fault Free Data (SIM 001 Testing) 

 

Figure 5.67: UKF True Airspeed Accommodation vs. Fault Free Data (SIM 002 Testing) 
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Figure 5.68: UKF True Airspeed Accommodation vs. Fault Free Data (SIM 003 Testing) 

 

Figure 5.69: UKF True Airspeed Accommodation vs. Fault Free Data (SIM 004 Testing) 

 

5.8 Summary of Simulation Results 

 The following tables display the numerical averages for mean and standard deviation of 

the accommodation data for each of the SFA schemes when tested with the selected four 

simulated datasets. Means closer to zero with lower standard deviations were correlated to more 

accurate accommodations.  
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Table 5.14: Comparison of All SFA Approaches for Angle of Attack Simulation Data 

SIM MLP EMRAN EKF UKF 
 Mean SD Mean SD Mean SD Mean SD 

001 .0284 .2075 .0147 .1984 .4942 .4729 .3746 .2842 
002 .0372 .2173 .0107 .1992 .2085 .2564 .2857 .5222 
003 -.0363 .4937 -.0285 .1876 .1964 .2483 .2740 .8462 
004 -.0236 .2344 .0229 .2001 .1642 .8372 .4830 .3795 

 

Table 5.15: Comparison of All SFA Approaches for Sideslip Angle Simulation Data 

SIM MLP EMRAN EKF UKF 
 Mean SD Mean SD Mean SD Mean SD 

001 .0382 .2974 -.0272 .1344 .3373 .4729 .1175 .3792 
002 .0221 .4792 -.0742 .1111 .3829 .5887 .2862 .3375 
003 -.0283 .2247 .0266 .2482 .2742 .5729 .2114 .4722 
004 .0422 .4483 .0138 .2811 .1964 .2974 .1864 .4282 

 

Table 5.16: Comparison of All SFA Approaches for True Airspeed Simulation Data 

SIM MLP EMRAN EKF UKF 
 Mean SD Mean SD Mean SD Mean SD 

001 .0765 .7492 -.0244 .6534 .7305 .3573 .3387 .2543 
002 .0365 .3463 .0264 .3865 .6264 .7593 .2642 .7425 
003 .0975 .8645 .0265 .3543 .6775 .9765 .3629 .8543 
004 .0355 .7736 .0554 .4739 .8463 .7503 .4325 .1253 

 

The following tables provide a numerical summary of the performance from each SFA 

scheme for all 20 simulated flights.  
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Table 5.17: Results of Simulated Data with Large Errors 

 α β TAS 
Estimation Error    
MLP .3291  .1214 .7723 
EMRAN .0182 .0338 .4979 
EKF .7498 .2976 .9754 
UKF .4825 .2118 .8979 
Fault Detection 
Time 

   

MLP .2897 .2939 .3825 
EMRAN .1973 .2844 .2976 
EKF .5722 .9874 .6935 
UKF .4791 .5727 .5580 
False Alarms    
MLP 0 0 0 
EMRAN 0 0 0 
EKF 1 0 1 
UKF 0 0 0 
Undetected Faults    
MLP 0 0 0 
EMRAN 0 0 0 
EKF 0 0 0 
UKF 0 0 0 
Detectability Ratio    
MLP 120.65 117.59 165.33 
EMRAN 198.53 186.96 195.99 
EKF .04 34.68 .05 
UKF 443.53 203.87 267.12 

 

 

Figure 5.70: Visual Representation of Large Estimation Error Comparison over Time for True Airspeed SIM 
002 
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Table 5.18: Results of Simulated Data with Small Errors 

 α (deg) β (deg) TAS (m/s) 
Estimation Error    
MLP .3291  .1212 .8723 
EMRAN .2934 .0285 .6835 
EKF .4920 .8768 .3971 
UKF .3740 .2883 .3755 
Fault Detection 
Time 

   

MLP .374 .344 .432 
EMRAN .281 .317 .332 
EKF .638 1.02 .873 
UKF .621 .614 .722 
False Alarms    
MLP 0 0 0 
EMRAN 0 0 0 
EKF 2 1 0 
UKF 0 0 0 
Undetected Faults    
MLP 0 0 0 
EMRAN 0 0 0 
EKF 0 1 1 
UKF 0 0 1 
Detectability Ratio    
MLP 146.38 173.93 164.27 
EMRAN 189.48 133.85 190.02 
EKF .011 .026 306.96 
UKF 402.11 379.32 327.08 

 

 The results in this chapter show that each SFA scheme implemented into the flight 

simulator performed well to an extent. The EMRAN NN provided the most accurate 

accommodation data with the lowest estimation error, no false alarms nor undetected faults, and 

very low standard deviation from the actual values of the angle of attack, sideslip, and true 

airspeed. The MLP also performed well but was not as accurate as the EMRAN in terms of 

estimation error. The UKF was sufficient in terms of a KF; the system of equations and 

covariance matrices implemented into the system were able to help provide accurate estimations 
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with lower estimation error than the EKF. The KFs had an advantage over the NNs in terms of 

the DR; the KFs were keener to detecting the failures but had more false alarms as a result.  
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Chapter #6: Performance Analysis Using YF-22 Flight Data 

There was a total of four flight datasets for the YF-22 analyzed in this chapter. The NNs 

and KFs were adjusted to accommodate data specifically from the YF-22 as mentioned in 

Chapter 5. This case was unique as there was no sensor for true airspeed provided. The values of 

the true airspeed were calculated within the MATLAB code using the other provided variables to 

calculate a set of values that can be compared to the SFA accommodations. The datasets were 

provided as .m files so they could be processed immediately in MATLAB.  

The angle of attack flight data from the YF-22 was not considered due to a malfunction 

of the potentiometer of the angle of attack vane for several flights. The sideslip angle and true 

airspeed provided sufficient data for analysis in this chapter. 

The MLP and EMRAN were trained by each dataset and tested against the remaining 

datasets to determine the best training data for this work. The NN was tested against each dataset 

100 times. The YF-22 only had four flights recorded so there were less training trials to perform 

compared to the simulator trials in Chapter 5. The YF-22 flights were designated FDS 002, FDS 

003, FDS 004, and FDS 005. The optimal datasets for sideslip angle and true airspeed were FDS 

004 and FDS 002, respectively. The following figures display the MLP-SFA accommodation 

data and EMRAN-SFA accommodation data compared to the fault-free data for each of the four 

flight datasets. Both KFs were tested against every dataset to determine their estimation 

capabilities.  
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6.1 MLP Results 

6.1.1 Sideslip Angle 

 The dataset selected to train the NNs for sideslip of the YF-22 was FDS 004. FDS 004 

provided the lowest mean values compared to the other flight datasets. This is shown in the 

following tables.  

Table 6.1: MLP Sideslip Angle Estimation Error Statistics for Each YF-22 Flight Data Set – Training and 
Testing 

 FDS 002 (test) FDS 003 (test) 
Training FDS Mean (deg) SD (deg) Mean (deg) SD (deg) 
FDS 002 . 𝟑𝟑𝟒𝟕𝒆ି𝟑 .1345 .8147 .9058 
FDS 003 .9246 .8624 𝟏. 𝟓𝟒𝟑𝒆ି𝟒 .2456 
FDS 004 .3408 .3456 .1270 .8472 
FDS 005 .2075 .4762 .6365 .2347 
 FDS 004 (test) FDS 005 (test) 
FDS 002 .9134 .6324 .9274 .7255 
FDS 003 .2785 .5469 .9836 .2750 
FDS 004 𝟑. 𝟓𝟐𝟓𝒆ି𝟓 .3516 .1486 .1284 
FDS 005 .9575 .7194 . 𝟎𝟗𝟕𝟐𝒆ି𝟒 .1197 

 

Table 6.2: Sideslip Error Statistics from MLP Training for YF-22 

 FDS 002 FDS 003 FDS 004 FDS 005 
Number of active neurons 68 70 74 82 
Number of training epochs 1000 1000 1000 1000 
Mean of training error .0479 .0395 .0375 .0885 
Standard deviation of training error .9257 .2076 .2133 .1753 
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Figure 6.1: MLP Sideslip Accommodation vs. Fault Free Data (FDS 004 Training) 

 

Figure 6.2:  MLP Sideslip Accommodation vs. Fault Free Data (FDS 004 Training, FDS 002 Testing) 

 

Figure 6.3:  MLP Sideslip Accommodation vs. Fault Free Data (FDS 004 Training, FDS 003 Testing) 
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6.1.2 True Airspeed 

 The training dataset selected for true airspeed of the YF-22 was FDS 002. This dataset 

resulted in the optimal training of the NNs for the true airspeed. The mean values upon which 

this conclusion was based can be seen in the following tables 6.5 and 6.6. 

Table 6.3: MLP True Airspeed Estimation Error Statistics for Each YF-22 Flight Data Set – Training and 
Testing 

 FDS 002 (test) FDS 003 (test) 
Training FDS Mean (m/s) SD (m/s) Mean (m/s) SD (m/s) 
FDS 002 . 𝟑𝟑𝟒𝟕𝒆ି𝟔 .5314 .9264 .1469 
FDS 003 .6566 .7232 𝟏. 𝟓𝟒𝟑𝒆ି𝟒 .1037 
FDS 004 .2745 .4775 .2764 .7253 
FDS 005 .4819 .4629 .8203 .8016 
 FDS 004 (test) FDS 005 (test) 
FDS 002 .2046 .6104 .7896 .2748 
FDS 003 .5026 .6072 .8265 .1946 
FDS 004 𝟑. 𝟏𝟎𝟔𝒆ି𝟓 .3343 .9362 .4973 
FDS 005 .3856 .7194 . 𝟎𝟗𝟕𝟐𝒆ି𝟓 .2975 

 

Table 6.4: True Airspeed Error Statistics from MLP Training for YF-22 

 FDS 002 FDS 003 FDS 004 FDS 005 
Number of active neurons 101 82 104 115 
Number of training epochs 1000 1000 1000 1000 
Mean of training error .0124 .0749 .0264 .0962 
Standard deviation of training error .2562 .2566 .3472 .3752 
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Figure 6.4:  MLP True Airspeed Accommodation vs. Fault Free Data (FDS 002 Training) 

 

Figure 6.5:  MLP True Airspeed Accommodation vs. Fault Free Data (FDS 002 Training, FDS 003) 

 

Figure 6.6:  MLP True Airspeed Accommodation vs. Fault Free Data (FDS 002 Training, FDS 004) 
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6.2 EMRAN Results 

The EMRAN was trained with the same training datasets selected for the MLP due to the 

lower mean values and fewer active neurons. As seen in tables 6.7 through 6.12, FDS 005 

provided the lowest means for the YF-22 angle of attack, FDS 004 was the optimal training data 

for sideslip angle, and FDS 002 was selected as the best training data for true airspeed.  

6.2.1 Sideslip Angle 

Table 6.5: EMRAN Sideslip Angle Estimation Error Statistics for Each YF-22 Flight Data Set – Training and 
Testing 

 FDS 002 (test) FDS 003 (test) 
Training FDS Mean (deg) SD (deg) Mean (deg) SD (deg) 
FDS 002 .0163 .1535 .2754 .5567 
FDS 003 .3785 .2553 .0522 .2754 
FDS 004 .3554 .6322 .2776 .2219 
FDS 005 .2255 .7642 .2654 .4463 
 FDS 004 (test) FDS 005 (test) 
FDS 002 .2654 .4435 .5489 .2906 
FDS 003 .2557 .4282 .2699 .3997 
FDS 004 .0133 .2545 .2667 .7472 
FDS 005 .2461 .3527 .0345 .2648 

 

Table 6.6: Sideslip Error Statistics from EMRAN Training for YF-22 Data 

 FDS 002 FDS 003 FDS 004 FDS 005 
Number of active neurons 96 77 107 91 
Number of training epochs 1000 1000 1000 1000 
Mean of training error .0183 -.0345 -.0147 -.0537 
Standard deviation of training error .1764 .3628 .2542 .2018 
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Figure 6.7:  EMRAN Sideslip Accommodation vs. Fault Free Data (FDS 004 Training) 

 

Figure 6.8:  EMRAN Sideslip Accommodation vs. Fault Free Data (FDS 004 Training, FDS 003 Testing) 

 

 

Figure 6.9:  EMRAN Sideslip Accommodation vs. Fault Free Data (FDS 004 Training, FDS 005 Testing) 
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6.2.2 True Airspeed 

Table 6.7: EMRAN True Airspeed Estimation Error Statistics for Each YF-22 Flight Data Set – Training and 
Testing 

 FDS 002 (test) FDS 003 (test) 
Training FDS Mean (m/s) SD (m/s) Mean (m/s) SD (m/s) 
FDS 002 . 𝟎𝟏𝟗𝟗 .2924 .4987 .9274 
FDS 003 .3770 .2975 .0275 .2975 
FDS 004 .2745 .4775 .9725 .5732 
FDS 005 .4907 .5310 .2075 .1975 
 FDS 004 (test) FDS 005 (test) 
FDS 002 .9865 .2749 2975 .6482 
FDS 003 .4739 .8563 .2474 .7462 
FDS 004 .0244 .2841 .1974 .3972 
FDS 005 .4829 .2740 .0937 .4792 

 

Table 6.8: True Airspeed Error Statistics from EMRAN Training for YF-22 Data 

 FDS 002 FDS 003 FDS 004 FDS 005 
Number of active neurons 72 78 88 90 
Number of training epochs 1000 1000 1000 1000 
Mean of training error .0173 .0749 .0183 .0971 
Standard deviation of training error .9173 .2864 .8621 .4672 

 

 

Figure 6.10:  EMRAN True Airspeed Accommodation vs. Fault Free Data (FDS 002 Training) 
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Figure 6.11: EMRAN True Airspeed Accommodation vs. Fault Free Data (FDS 002 Training, FDS 003 
Testing) 

 

Figure 6.12:  EMRAN True Airspeed Accommodation vs. Fault Free Data (FDS 002 Training, FDS 004 
Testing) 

 

6.3 EKF Results 

Unlike the NN, the KFs did not require initial training. The initial matrices designated 

below for Q and R were applied to the EKF and UKF for each test. The following results display 

the accommodation of the EKF when tested with each YF-22 FDS.  
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𝑄௞,ఉ

=  𝑑𝑖𝑎𝑔 [2.41 ∗ 10ିଶ 0.367 ∗ 10ିଵ 4.45 ∗ 10ିଷ . 616 ∗ 10ିହ 4.27 ∗ 10ିଶ 8.57 ∗ 10ିହ ⋯] 

[⋯ 6.49 ∗ 10ିସ 2.35 ∗ 10ିଷ 3.03 ∗ 10ିଷ] 

𝑅௞,ఉ = 𝑑𝑖𝑎𝑔[1.55 ∗ 10ିହ 1.62 ∗ 10ିସ 5.22 ∗ 10ିସ 8.71 ∗ 10ିହ 7.19 ∗ 10ିସ] 

𝑄௞,்஺ௌ

= 𝑑𝑖𝑎𝑔[5.21 ∗ 10ିଶ 9.13 ∗ 10ିସ 8.77 ∗ 10ିହ 3.14 ∗ 10ିଵ 5.98 ∗ 10ିହ 2.26 ∗ 10ିଷ 4.32 ∗ 10ିହ] 

𝑅௞,்஺ௌ = 𝑑𝑖𝑎𝑔[9.33 ∗ 10ିସ 5.11 ∗ 10ିହ 1.49 ∗ 10ି଺ 2.43 ∗ 10ିହ 0.916 ∗ 10ିଵ] 

The units within the Q and R matrices are of 𝑚/𝑠ଶ for accelerations, deg/s for angular rates, 

and deg for angles.  

6.3.1 Sideslip Angle 

 

Figure 6.13: EKF Sideslip Accommodation vs. Fault Free Data (FDS 002 Testing) 
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Figure 6.14: EKF Sideslip Accommodation vs. Fault Free Data (FDS 003 Testing) 

 

Figure 6.15: EKF Sideslip Accommodation vs. Fault Free Data (FDS 004 Testing) 

6.3.2 True Airspeed 

 

Figure 6.16: EKF True Airspeed Accommodation vs. Fault Free Data (FDS 002 Testing) 
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Figure 6.17: EKF True Airspeed Accommodation vs. Fault Free Data (FDS 003 Testing) 

 

Figure 6.18: EKF True Airspeed Accommodation vs. Fault Free Data (FDS 004 Testing) 

 

6.4 UKF Results 

As with the EKF, the UKF was tested with each YF-22 flight dataset using the Q and R 

matrices from Section 6.3. The results are shown below.  
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6.4.1 Sideslip Angle 

 

Figure 6.19: UKF Sideslip Accommodation vs. Fault Free Data (FDS 002 Testing) 

 

Figure 6.20: UKF Sideslip Accommodation vs. Fault Free Data (FDS 003 Testing) 

 

Figure 6.21: UKF Sideslip Accommodation vs. Fault Free Data (FDS 004 Testing) 
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6.4.2 True Airspeed 

 
Figure 6.22: UKF True Airspeed Accommodation vs. Fault Free Data (FDS 002 Testing) 

 
Figure 6.23: UKF True Airspeed Accommodation vs. Fault Free Data (FDS 003 Testing) 

 

Figure 6.24: UKF True Airspeed Accommodation vs. Fault Free Data (FDS 004 Testing) 
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6.5 Summary of YF-22 Results 

The following tables display the numerical averages for mean and standard deviation of 

the accommodation data for each of the SFA schemes when tested with the selected four YF-22 

datasets. Means closer to zero with lower standard deviations were correlated to more accurate 

accommodations. 

Table 6.9: Comparison of All SFA Approaches for Sideslip Angle YF-22 Data 

FDS MLP EMRAN EKF UKF 
 Mean SD Mean SD Mean SD Mean SD 

002 -.2754 .7635 .2177 .1896 .3554 .1624 .1390 .3618 
003 .2872 .0888 .2773 .2778 .2367 .3347 .6432 .8462 
004 .2765 .2756 .1545 .3354 .7643 .7732 .2466 .2662 
005 .4738 .3673 .4421 .3764 .7832 .6688 .4678 .6633 

 

Table 6.10: Comparison of All SFA Approaches for True Airspeed YF-22 Data 

FDS MLP EMRAN EKF UKF 
 Mean SD Mean SD Mean SD Mean SD 

002 .1778 .4579 .1554 .6638 .6999 .2664 .3554 .4563 
003 .3478 .5552 .2664 .3648 .3727 .5577 .3527 .6672 
004 .2143 .2668 .4625 .3557 .3884 .2466 .3322 .6322 
005 .2277 .3628 .2779 .2442 .4662 .5789 .2999 .9466 
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Table 6.11: Results of YF-22 Data with Large Errors 

 β TAS 
Estimation Error deg m/s 
MLP .1215 .3234 
EMRAN .3326 .2291 
EKF .6569 2.001 
UKF .5577 1.256 
Fault Detection 
Time (s) 

  

MLP .6593 .8692 
EMRAN .4928 .5879 
EKF 1.479 1.374 
UKF .9764 .9924 
False Alarms   
MLP 0 0 
EMRAN 0 0 
EKF 0 0 
UKF 0 0 
Undetected Faults   
MLP 0 0 
EMRAN 0 0 
EKF 0 0 
UKF 0 0 
Detectability Ratio   
MLP 103.28 123.81 
EMRAN 112.95 124.46 
EKF 325.99 378.13 
UKF 409.65 447.97 

 

 

Figure 6.25: Average Estimation Error Comparison for Sideslip Angle in YF-22 FDS 002  
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Table 6.12: Results of YF-22 Data with Small Errors 

 β TAS 
Estimation Error deg m/s 
MLP .3685 .8462 
EMRAN .3728 .5673 
EKF .9763 1.790 
UKF .4628 .8872 
Fault Detection 
Time 

  

MLP .6721 .6987 
EMRAN .5231 .7112 
EKF 1.564 1.238 
UKF 1.273 1.652 
False Alarms   
MLP 0 0 
EMRAN 0 0 
EKF 1 0 
UKF 0 0 
Undetected Faults   
MLP 0 0 
EMRAN 0 0 
EKF 0 0 
UKF 0 0 
Detectability Ratio   
MLP 109.47 117.65 
EMRAN 174.62 158.92 
EKF .009 381.09 
UKF 457.12 432.77 

 

The overall results of the YF-22 accommodation were similar to the outcome from the 

simulated data. All SFA schemes performed slightly better than in the simulated environment. 

This is most likely due to the training exposure to actual data instead of simulated data. The 

EMRAN again performed the best in terms of estimation. The accommodation data was nearly 

identical to the actual data values for every sensor failure case. The MLP, UKF, and EKF 

followed the EMRAN in that order, respectively. The EKF was the only SFA scheme that 
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produced a false alarm with the YF-22 data but the KFs in this case had much better detectability 

ratios when there was no false alarm.  
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Chapter #7: Performance Analysis Using Tecnam P92 Flight Data  

The same training process of the NNs for the YF-22 was used for the Tecnam P92.  Due 

to the higher number of flights and to maintain brevity, only 4 of the 25 flights were highlighted 

in these results. These four flights provide a satisfactory overview of the range of performances 

and different training results from the entire data collection. Flight 020 was the best flight to use 

overall for training followed closely by Flight 003. Flight 011 was the worst flight for training, 

and Flight 017 was average compared to the other 25 flights for training.  

7.1 MLP Results 

 As seen in the following tables, SIM 020 provided the best results from the training 

process for angle of attack of the Tecnam P92.  

7.1.1 Angle of Attack 

Table 7.1: MLP Angle of Attack Estimation Error Statistics for P92 Flight Data Sets – Training and Testing 

 FDS 020 (Best test) FDS 003 (2nd Best test) 
Training FDS Mean (m/s) SD (m/s) Mean (m/s) SD (m/s) 
FDS 020 . 𝟏𝟕𝟔𝟑𝒆ି𝟐 .2974 .3322 .6355 
FDS 003 .2211 .3288 𝟐. 𝟑𝟕𝟐𝒆ି𝟐 .3552 
FDS 017 .2262 .3622 .3782 .2274 
FDS 011 .4322 .2551 .3329 .2998 
 FDS 017 (Average test) FDS 011 (Worst test) 
FDS 020 .3374 .3662 .5521 .2536 
FDS 003 .4425 .4566 .2718 .3547 
FDS 017 . 𝟗𝟕𝟕𝟖𝒆ି𝟐 .5421 .3445 .6452 
FDS 011 .1535 .7255 𝟐. 𝟒𝟕𝟐𝒆ି𝟑 .2553 

 

Table 7.2: Angle of Attack Error Statistics from MLP Training for Tecnam P92 

 FDS 020 FDS 003 FDS 017 FDS 011 
Number of active neurons 78 64 68 73 
Number of training epochs 1000 1000 1000 1000 
Mean of training error -.0131 .0981 .7381 .1271 
Standard deviation of training error .2635 .4673 .3627 .3488 
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Figure 7.1: MLP Angle of Attack Accommodation vs. Fault Free Data (FDS 020 Training) 

 

Figure 7.2: MLP Angle of Attack Accommodation vs. Fault Free Data (FDS 020 Training, FDS 017 Testing) 

 

Figure 7.3: MLP Angle of Attack Accommodation vs. Fault Free Data (FDS 020 Training, FDS 003 Testing) 
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7.1.2 Sideslip Angle 

 The FDS 020 provided optimal sideslip angle training for the NNs in the Tecnam P92. 

There are lower means for each estimation and fewer active neurons required.  

Table 7.3: MLP Sideslip Angle Estimation Error Statistics for Each P92 Flight Data Sets – Training and 
Testing 

 FDS 020 (Best test) FDS 003 (2nd Best test) 
Training FDS Mean (m/s) SD (m/s) Mean (m/s) SD (m/s) 
FDS 020 𝟏. 𝟐𝟒𝟐𝒆ି𝟐 .3749 .4872 .2974 
FDS 003 .1739 .3729 𝟏. 𝟐𝟕𝟒𝒆ି𝟐 .3526 
FDS 017 .2367 .3728 .2188 .3772 
FDS 011 .2137 .3526 .1728 .3718 
 FDS 017 (Average test) FDS 011 (Worst test) 
FDS 020 .2647 .3791 .4722 .1636 
FDS 003 .3288 .4658 .8262 .1772 
FDS 017 𝟏. 𝟗𝟗𝟖𝒆ି𝟐 .1277 .2743 .2217 
FDS 011 .5266 .3551 . 𝟖𝟖𝟕𝟗𝒆ି𝟑 .1122 

 

Table 7.4: Sideslip Error Statistics from MLP Training for Tecnam P92 

 FDS 020 FDS 003 FDS 017 FDS 011 
Number of active neurons 71 80 93 98 
Number of training epochs 1000 1000 1000 1000 
Mean of training error .2612 .3628 .4352 .2717 
Standard deviation of training error .3692 .2794 .1846 .3740 
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Figure 7.4: MLP Sideslip Accommodation vs. Fault Free Data (FDS 020 Training) 

 

Figure 7.5: MLP Sideslip Accommodation vs. Fault Free Data (FDS 020 Training, FDS 003 Testing) 

 

Figure 7.6: MLP Sideslip Accommodation vs. Fault Free Data (FDS 020 Training, FDS 011 Testing) 
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7.1.3 True Airspeed 

Lastly, the FDS 020 was used as training for true airspeed for its low mean and standard 

deviation values.  

Table 7.5: MLP True Airspeed Estimation Error Statistics for Each P92 Flight Data Set – Training and 
Testing 

 FDS 020 (Best test) FDS 003 (2nd Best test) 
Training FDS Mean (m/s) SD (m/s) Mean (m/s) SD (m/s) 
FDS 020 . 𝟐𝟕𝟔𝒆ି𝟑 .2466 .2633 .2778 
FDS 003 .2271 .3740 𝟐. 𝟑𝟕𝟑𝒆ି𝟐 .2647 
FDS 017 .4772 .3889 .9927 .2743 
FDS 011 .2738 .2664 .3772 .4738 
 FDS 017 (Average test) FDS 011 (Worst test) 
FDS 020 .2477 .3622 .2744 .3772 
FDS 003 .1779 .2883 .4632 .2839 
FDS 017 𝟏. 𝟕𝟕𝟖𝒆ି𝟑 .2861 .2773 .4665 
FDS 011 .2747 .3739 𝟒. 𝟑𝟕𝟕𝒆ି𝟑 .2864 

 

 

Table 7.6: True Airspeed Error Statistics from MLP Training for Tecnam P92 

 FDS 020 FDS 003 FDS 017 FDS 011 
Number of active neurons 76 87 66 100 
Number of training epochs 1000 1000 1000 1000 
Mean of training error -.0228 .0182 .0283 .0338 
Standard deviation of training error .1828 .2974 .2858 .2283 

 

 

Figure 7.7: MLP True Airspeed Accommodation vs. Fault Free Data (FDS 020 Training) 
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Figure 7.8: MLP True Airspeed Accommodation vs. Fault Free Data (FDS 020 Training, FDS 017 Testing) 

 

Figure 7.9: MLP True Airspeed Accommodation vs. Fault Free Data (FDS 020 Training, FDS 011 Testing) 

 

7.2 EMRAN Results 

 The EMRAN NN used the same flight dataset FDS 020 for angle of attack, sideslip 

angle, and true airspeed. The following tables and figures display the efficacy of utilizing FDS 

020 as the Tecnam P92 training data for the EMRAN.  
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7.2.1 Angle of Attack 

Table 7.7: EMRAN Angle of Attack Estimation Error Statistics for Each P92 Flight Data Sets – Training and 
Testing 

 FDS 020 (Best test) FDS 003 (2nd Best test) 
Training FDS Mean (m/s) SD (m/s) Mean (m/s) SD (m/s) 
FDS 020 .0193 .3974 .2898 .8361 
FDS 003 .1836 .2746 .0264 .2746 
FDS 017 .2866 .4775 .9277 .2748 
FDS 011 .2332 .2974 .2976 .2299 
 FDS 017 (Average test) FDS 011 (Worst test) 
FDS 020 .2973 .3888 .4665 .3874 
FDS 003 .2974 .2249 .2018 .2973 
FDS 017 .0329 .2884 .2081 .2974 
FDS 011 .3792 .2947 .0281 .2974 

 

Table 7.8: Angle of Attack Error Statistics from EMRAN Training for Tecnam P92 

 FDS 020 FDS 003 FDS 017 FDS 011 
Number of active neurons 83 84 99 75 
Number of training epochs 1000 1000 1000 1000 
Mean of training error .0143 -.0196 .0263 .0366 
Standard deviation of training error .1964 .2874 .2844 .1747 

 

 

Figure 7.10: EMRAN Angle of Attack Accommodation vs. Fault Free Data (FDS 020 Training) 
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Figure 7.11: EMRAN Angle of Attack Accommodation vs. Fault Free Data (FDS 020 Training, FDS 003 
Testing) 

 

Figure 7.12: EMRAN Angle of Attack Accommodation vs. Fault Free Data (FDS 020 Training, FDS 011 
Testing) 
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7.2.2 Sideslip Angle 

Table 7.9: EMRAN Sideslip Angle Estimation Error Statistics for Each P92 Flight Data Sets – Training and 
Testing 

 FDS 020 (Best test) FDS 003 (2nd Best test) 
Training FDS Mean (m/s) SD (m/s) Mean (m/s) SD (m/s) 
FDS 020 -.0186 .1232 .9733 .2933 
FDS 003 .3872 .3244 .0274 .2874 
FDS 017 .2873 .0373 .2732 .2864 
FDS 011 .2983 .7392 .2974 .9272 
 FDS 017 (Average test) FDS 011 (Worst test) 
FDS 020 .3732 .3748 .2863 .4637 
FDS 003 .2973 .2747 .3746 .2748 
FDS 017 .0221 .2974 .2634 .2747 
FDS 011 .3777 .2986 -.0488 .1033 

 

Table 7.10: Sideslip Error Statistics from EMRAN Training for Tecnam P92 

 FDS 020 FDS 003 FDS 017 FDS 011 
Number of active neurons 103 84 90 87 
Number of training epochs 1000 1000 1000 1000 
Mean of training error -.0237 .0583 .0374 -.0336 
Standard deviation of training error .1228 .1473 .1863 .2862 

 

 

Figure 7.13: EMRAN Sideslip Accommodation vs. Fault Free Data (FDS 020 Training) 
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Figure 7.14: EMRAN Sideslip Accommodation vs. Fault Free Data (FDS 020 Training, FDS 003 Testing) 

 

Figure 7.15: EMRAN Sideslip Accommodation vs. Fault Free Data (FDS 020 Training, FDS 011 Testing) 

 

7.2.3 True Airspeed 

Table 7.11: EMRAN True Airspeed Estimation Error Statistics for Each P92 Flight Data Sets – Training and 
Testing 

 FDS 020 (Best test) FDS 003 (2nd Best test) 
Training FDS Mean (m/s) SD (m/s) Mean (m/s) SD (m/s) 
FDS 020 .0371 .2801 .4972 .1397 
FDS 003 .5221 .4786 .0711 .4961 
FDS 017 .2343 .9889 .2864 .2974 
FDS 011 .2683 .3590 .2975 .2335 
 FDS 017 (Average test) FDS 011 (Worst test) 
FDS 020 .9735 .3975 .3477 .7717 
FDS 003 .4442 .6904 .4623 .9623 
FDS 017 . 𝟎𝟗𝟗𝟕 .2578 .3722 .1226 
FDS 011 .2835 .0749 .0516 .1064 
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Table 7.12: True Airspeed Error Statistics from EMRAN Training for Tecnam P92 

 FDS 020 FDS 003 FDS 017 FDS 011 
Number of active neurons 67 69 73 87 
Number of training epochs 1000 1000 1000 1000 
Mean of training error -.0231 -.0345 -.0776 -.0655 
Standard deviation of training error .1749 .1863 .2719 .2962 

 

 

Figure 7.16: EMRAN True Airspeed Accommodation vs. Fault Free Data (FDS 020 Training) 

 

Figure 7.17: EMRAN True Airspeed Accommodation vs. Fault Free Data (FDS 020 Training, FDS 003 
Testing) 
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Figure 7.18: EMRAN True Airspeed Accommodation vs. Fault Free Data (FDS 020 Training, FDS 017 
Testing) 

 

7.3 EKF Results 

 The KFs were tested in the same way as for the simulated flight datasets and the YF-22 

datasets. Since the KFs did not require training, they were each tested directly with each dataset 

for all sensor failure types.  

 The Q and R matrices used for the Tecnam P92 data with the EKF and UKF are as 

follows.  

𝑄௞,ఈ

= 𝑑𝑖𝑎𝑔[1.34 ∗ 10ିଷ 9.09 ∗ 10ିସ 5.43 ∗ 10ିହ 7.78 ∗ 10ିଷ 4.73 ∗ 10ିହ 7.64 ∗ 10ିହ ⋯] 

[⋯ 3.55 ∗ 10ିସ 6.80 ∗ 10ିସ 4.40 ∗ 10ିଶ] 

𝑅௞,ఈ = 𝑑𝑖𝑎𝑔[4.81 ∗ 10ିସ 6.91 ∗ 10ିଶ 7.55 ∗ 10ିସ 4.55 ∗ 10ିଷ 5.69 ∗ 10ିଶ] 

𝑄௞,ఉ

=  𝑑𝑖𝑎𝑔 [8.22 ∗ 10ିଶ 3.18 ∗ 10ିସ 4.21 ∗ 10ିଶ 4.09 ∗ 10ି଺ 7.13 ∗ 10ିଶ 2.97 ∗ 10ିଷ ⋯] 

 [⋯ 6.96 ∗ 10ିସ 6.18 ∗ 10ିଶ 1.11 ∗ 10ିଷ] 
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𝑅௞,ఉ = 𝑑𝑖𝑎𝑔[1.16 ∗ 10ିଷ 1.87 ∗ 10ିଷ 6.71 ∗ 10ିଷ 8.96 ∗ 10ିଷ 3.17 ∗ 10ିସ] 

𝑄௞,்஺ௌ

= 𝑑𝑖𝑎𝑔[9.41 ∗ 10ିହ 5.65 ∗ 10ିସ 8.56 ∗ 10ିସ 5.02 ∗ 10ି଺ 3.98 ∗ 10ିସ 4.53 ∗ 10ିଷ 3.88 ∗ 10ିସ] 

𝑅௞,்஺ௌ = 𝑑𝑖𝑎𝑔[3.75 ∗ 10ିଷ 1.86 ∗ 10ିଷ 4.10 ∗ 10ିସ 2.15 ∗ 10ିସ 6.78 ∗ 10ିଶ] 

 The units within the Q and R matrices are of 𝑚/𝑠ଶ for accelerations, deg/s for angular rates, 

and deg for angles.  

7.3.1 Angle of Attack 

 

Figure 7.19: EKF Angle of Attack Accommodation vs. Fault Free Data (FDS 020 Testing) 

 

Figure 7.20: EKF Angle of Attack Accommodation vs. Fault Free Data (FDS 003 Testing) 
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Figure 7.21: EKF Angle of Attack Accommodation vs. Fault Free Data (FDS 011 Testing) 

 

7.3.2 Sideslip Angle 

 

Figure 7.22: EKF Sideslip Accommodation vs. Fault Free Data (FDS 020 Testing) 

 

Figure 7.23: EKF Sideslip Accommodation vs. Fault Free Data (FDS 017 Testing) 
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Figure 7.24: EKF Sideslip Accommodation vs. Fault Free Data (FDS 011 Testing) 

 

7.3.3 True Airspeed 

 

Figure 7.25: EKF True Airspeed Accommodation vs. Fault Free Data (FDS 020 Testing) 

 

Figure 7.26: EKF True Airspeed Accommodation vs. Fault Free Data (FDS 017 Testing) 
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Figure 7.27: EKF True Airspeed Accommodation vs. Fault Free Data (FDS 011 Testing) 

 

7.4 UKF Results 

 The UKF was tested with each FDS like the EKF. No training was required so the UKF 

was tested as soon as the system of equations and covariance matrices from Chapter 4 were 

implemented.  

7.4.1 Angle of Attack 

 

Figure 7.28: UKF Angle of Attack Accommodation vs. Fault Free Data (FDS 020 Testing) 
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Figure 7.29: UKF Angle of Attack Accommodation vs. Fault Free Data (FDS 003 Testing) 

 

Figure 7.30: UKF Angle of Attack Accommodation vs. Fault Free Data (FDS 011 Testing) 

 

7.4.2 Sideslip Angle 

 

Figure 7.31: UKF Sideslip Accommodation vs. Fault Free Data (FDS 020 Testing) 
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Figure 7.32: UKF Sideslip Accommodation vs. Fault Free Data (FDS 003 Testing) 

 

Figure 7.33: UKF Sideslip Accommodation vs. Fault Free Data (FDS 011 Testing) 

7.4.3 True Airspeed 

 

Figure 7.34: UKF True Airspeed Accommodation vs. Fault Free Data (FDS 020 Testing) 
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Figure 7.35: UKF True Airspeed Accommodation vs. Fault Free Data (FDS 011 Testing) 

 

Figure 7.36: UKF True Airspeed Accommodation vs. Fault Free Data (FDS 017 Testing) 

 

7.5 Summary of Tecnam P92 Results 

Table 7.13: Comparison of All SFA Approaches for Angle of Attack P92 Data 

FDS MLP EMRAN EKF UKF 
 Mean SD Mean SD Mean SD Mean SD 

020 .0274 .2793 .0197 .3864 .2498 .7423 .1836 .2896 
003 .0399 .2497 -.0244 .3975 .3728 .8338 .3628 .4728 
017 .0548 .2757 .0381 .4729 .8374 .4783 .1264 .6482 
011 -.0638 .4628 -.0183 .5638 .6388 .4649 .2378 .2864 
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Table 7.14: Comparison of All SFA Approaches for Sideslip Angle P92 Data 

FDS MLP EMRAN EKF UKF 
 Mean SD Mean SD Mean SD Mean SD 

020 -.0343 .1336 .0135 .3432 .6532 .4363 .3532 .3499 
003 .0357 .3628 .0272 .3648 .5672 .8352 .2836 .4566 
017 -.0233 .3378 -.0245 .1273 .3627 .5372 .2718 .4332 
011 .0372 .3622 .0199 .1375 .5632 .3722 .3625 .4632 

 

Table 7.15: Comparison of All SFA Approaches for Sideslip Angle P92 Data 

FDS MLP EMRAN EKF UKF 
 Mean SD Mean SD Mean SD Mean SD 

020 .0367 .2754 .0272 .2763 .3648 .2874 .1863 .2355 
003 .0285 .2874 -.0114 .1737 .2648 .4763 .2637 .4334 
017 -.0437 .3695 .0174 .1564 .3784 .3762 .2833 .5546 
011 .0324 .3645 .0193 .2837 .4373 .2864 .2846 .5738 

 

The following tables provide a numerical summary of the performance from each SFA 

scheme for all 25 Tecnam P92 flight datasets. 
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Table 7.16: Results of P92 Data with Large Errors 

 α β TAS 
Estimation Error deg deg m/s 
MLP .2297 .1214  .8722 
EMRAN .1073 .2225  .7829 
EKF .7290 1.027  1.758 
UKF .6356 .8720 1.284 
Fault Detection 
Time (s) 

   

MLP .286 .372 .286 
EMRAN .197 .297 .174 
EKF .370 .450 .445 
UKF .302 .411 .392 
False Alarms    
MLP 0 0 0 
EMRAN 0 0 0 
EKF 1 0 0 
UKF 1 0 0 
Undetected Faults    
MLP 0 0 0 
EMRAN 0 0 0 
EKF 0 0 0 
UKF 0 0 0 
Detectability Ratio    
MLP 122.65 194.27 177.27 
EMRAN 209.85 239.27 256.83 
EKF .19 271.92 287.92 
UKF .72 298.56 366.23 

 

 

Figure 7.37: Estimation Error Comparison for Tecnam P92 True Airspeed 
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Table 7.17: Results of P92 Data with Small Errors 

 α β TAS 
Estimation Error deg deg m/s 
MLP .3629 .2341 .5875 
EMRAN .3528 .2618 .7830 
EKF .6492 .3749 1.479 
UKF .5803 .3556 1.003 
Fault Detection 
Time (s) 

   

MLP .382 .332 .462 
EMRAN .352 .322 .401 
EKF .472 .649 .538 
UKF .468 .566 .578 
False Alarms    
MLP 0 0 0 
EMRAN 0 0 0 
EKF 0 0 1 
UKF 0 0 0 
Undetected Faults    
MLP 0 0 0 
EMRAN 0 0 0 
EKF 0 0 2 
UKF 0 1 0 
Detectability Ratio    
MLP 286.12 253.18 267.77 
EMRAN 375.48 471.46 401.26 
EKF 362.44 376.35 .20 
UKF 476.22 415.91 389.63 

 

 In the case of the Tecnam P92 testing, the MLP performed slightly better than the rest of 

the SFA schemes. The EMRAN was able to accommodate the angle of attack more accurately but 

the MLP provided more accurate accommodations for sideslip angle and true airspeed. The UKF 

performed best with the Tecnam P92 data compared to its performance with the simulated and YF-

22 data testing; however, the UKF still did not perform as well as the NN. The UKF had one 

undetected fault within the failed Tecnam P92 datasets. The EKF again performed the worst of all 
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SFA schemes in terms of estimation error and false alarms but there was a high detectability ratio 

which is beneficial for SFA.  
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Chapter #8: Conclusions, Recommendations, and Future Work 

After testing each SFA scheme on simulated data and real aircraft data from the YF-22 

and Tecnam P92, it was observed that all four on-line estimation techniques provided 

satisfactory results in terms of accurate estimations, low number of false alarms, and 

performance. Overall, the NNs performed more accurately and faster than the KFs with fewer 

false alarms.  

The evidence from Chapters 5-7 show that the best on-line estimator in this work was the 

EMRAN NN. There were multiple criteria taken into consideration to determine the best 

performance of all the SFA schemes. The EMRAN in most of the cases provided the most 

accurate accommodation data for the sensor failure. Not only was the data more accurate, but the 

EMRAN was able to detect failures more quickly compared to the other SFA schemes. Based on 

the figures within the results, the analytical redundancy method for the sensor failure problem is 

more than sufficient in terms of detecting and accommodating failed data. The MLP NN was a 

close second in performance after the EMRAN. The MLP did not detect faults as quickly as the 

EMRAN but provided other benefits outside of the criteria such as requiring fewer active hidden 

neurons in some cases. Compared to the EMRAN, the MLP required more time to train and 

develop the appropriate number of hidden layers and neurons.  Neither the MLP nor EMRAN 

NN triggered false alarms nor failed to detect a sensor failure.  

The UKF performed well considering its limitations such as not having training and 

complete dependency on a system of equations provided by the user. The UKF was able to detect 

over 97% of the failures, both large and small, within the given datasets. Although it did not 

perform as well as the NNs, the UKF could be implemented in an analytical redundancy scheme 

as a more cost-effective option for sensor failure problems lacking preexisting data. The UKF 
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also provides the benefit to users who may not have powerful computers to process large 

amounts of data. The EKF performed the most poorly out of all the SFA schemes.  The EKF 

would be a much stronger contender for linear control systems. It can adapt decently to nonlinear 

systems but there are still improvements that can be made to the algorithm. The EKF was 

notably very sensitive to incorrect or inaccurate initial inputs; any incorrect or inaccurate initial 

estimate of the state caused the system to diverge quickly due to its linearization, resulting in a 

failed accommodation.  On the other hand, both the EKF and UKF were more likely to detect 

faults as this sensitivity improved their detectability ratio.  

It should be noted that although the NNs performed better overall, there were multiple 

limitations in the work that decreased the performance of the KFs. The KFs were heavily 

dependent on the tuning and tuning processes implemented by the user whereas the NNs were 

able to train themselves. The KFs were also not exposed to the entire dataset like the NNs which 

limits the accuracy the KF can estimate the unknown value. Methods to improve the bias within 

comparative analysis between the NNs and KFs should be explored in future work.  

8.1 Recommendations 

 It is recommended to investigate more types of AI for SFA problems. Although the four 

schemes tested in this work are sufficient for the SFA problem, AI schemes are improved each 

day; there are potentially many more untested models that could be better suited for the SFA 

problem. It would also be recommended to have or gain access to more flight datasets. Providing 

more training opportunities to the NNs can drastically improve performance in terms of 

estimation and further reducing risk of false alarms and undetected failures.  
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8.2 Future Work 

 There are many directions this research can take regarding future work. An interesting topic 

to research would be testing the same sensor failures but on a wider variety of aircraft. Each aircraft 

is unique in the sense of what range of values are acceptable for certain variables. This work should 

also evolve to detect and accommodate multiple failures at once within the same dataset. It would 

also be beneficial to develop a form of AI-SFA scheme that can accommodate different sensors 

without any adjustment or input from a user. It is hopeful that analytical redundancy can be tested 

in flight in real time, but it is unlikely this will be permitted in the near future.  
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