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Abstract: This paper presents a new iterative algorithm for approximating the fixed points of multivalued
generalized α-nonexpansive mappings. We study the stability result of our new iterative algorithm for a larger
concept of stability known as weak w2–stability. Weak and strong convergence results of the proposed iterative
algorithm are also established. Furthermore, we show numerically that our new iterative algorithm outperforms
several known iterative algorithms for multivalued generalized α-nonexpansive mappings. Again, as an applica-
tion, we use our proposed iterative algorithm to find the solution of nonlinear Volterra delay integro-differential
equations. Finally, we provide an illustrative example to validate the mild conditions used in the result of the
application part of this study. Our results improve, generalize and unify several results in the existing literature.
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1. Introduction

A mapping g on a nonempty subset K of a Banach G is called nonexpansive if

‖g(x) − g(y)‖ ≤ ‖x− y‖, for all x, y ∈ K.

A point x in K is said to be a fixed point of g if g(x) = x. We denote the set of all fixed points of g
by

F(g) = {x ∈ K : x = g(x)}.

Let R denote the set of all real numbers and N be the set of all natural numbers.
In 1965, Browder [7], Göhde [10] and Kirk [17] independently studied the existence of fixed

points of nonexpansive mappings in Banach spaces. The authors showed that every nonexpansive
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mapping defined on a bounded closed convex subset of a uniformly convex Banach space always has
a fixed point. Recently, many authors have introduced and studied some new classes of mappings
which are considered to be larger than the single-valued nonexpansive mappings.

One of the first extensions and generalizations of single-valued nonexpansive mapping which
has fascinated many authors was introduced by Suzuki [33] in 2008. Such mappings are generally
known as mappings satisfying condition (C). The author proved some existence and convergence
results for such mapping.

Definition 1. A mapping g : K → K is said to be Suzuki generalized nonexpansive mapping
or mapping satisfying condition (C) if for all x, y ∈ K we have

1

2
‖x− gx‖ ≤ ‖x− y‖ implies ‖gx− gy‖ ≤ ‖x− y‖.

In 2011, Aoyama and Kohshaka [5] introduced a new class of single-valued mappings known as
α-nonexpansive mappings and obtained some fixed point theorems for such mappings.

Definition 2. A mapping g : K → K is said to be an α-nonexpansive with α ∈ [0, 1) if

‖gx− gy‖2 ≤ α‖gx − y‖2 + α‖gy − x‖2 + (1− 2α)‖x − y‖2,

for all x, y ∈ K.

Obviously, every nonexpansive mapping is an α-nonexpansive with α = 0 (i.e., 0-nonexpansive
mapping).

In 2017, Pant and Shukla [29] introduced a new type of single-valued nonexpansive mappings
known as generalized α-nonexpansive mappings and obtained some existence and convergence the-
orems.

Definition 3. A mapping g : K → K is said to be generalized α-nonexpansive with α ∈ [0, 1) if

1

2
‖x− gx‖ ≤ ‖x− y‖ implies

‖gx− gy‖ ≤ α‖gx − y‖+ α‖gy − x‖+ (1− 2α)‖x − y‖,

for all x, y ∈ K.

This class of mappings properly includes nonexpansive and Suzuki generalized nonexpansive map-
pings [29].

Fixed point theory for multivalued mappings has useful applications in control theory, convex
optimization, differential equations and economics. The fixed points of multivalued mappings were
first studied by Markin [20] and Nadler [21].

A set K is said to be proximinal if for each x ∈ G , there exists an element y ∈ K such that
‖x− y‖ = d(x,K), where

d(x,K) = inf{‖x− ℓ‖ : ℓ ∈ K}.

We denote by CB(K), C(K) and P(K) the families of nonempty closed and bounded subsets,
nonempty compact subsets and nonempty proximinal subsets of K, respectively. Let H be the
Hausdorff metric induced by d of G which is defined as:

H (U ,V ) = max
{

sup
x∈U

(x,V ), sup
y∈V

(y,U )
}

, for all U ,V ∈ CB(K).

An element x ∈ K is said to be a fixed point of a multivalued mapping T : K → P(K) if x ∈ Tx.
Let F (T) = {x ∈ K : x ∈ Tx} denote the set of all fixed points of T.
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A multivalued mapping T : K → P(K) is said to be a contraction if there exists a constant
δ ∈ [0, 1) such that for all x, y ∈ K,

H (Tx,Ty) ≤ δ‖x− y‖, (1.1)

and nonexpansive if

H (Tx,Ty) ≤ ‖x− y‖,

for all x, y ∈ K. The study of fixed points for multivalued contraction and nonexpansive mappings
using the Hausdorff metric was initiated by Markin [20].

In 2011, Abkar and Eslamian [2] gave the multivalued version of Suzuki generalized nonexpan-
sive mappings.

Definition 4. A multivalued mapping T : K → CB(K) is said to be Suzuki generalized nonex-
pansive mappings or said to satisfy condition (C) if for all x, y ∈ K, we have

1

2
d(x,Tx) ≤ ‖x− y‖ implies H (Tx,Ty) ≤ ‖x− y‖.

Recently, Iqbal et al. [15] introduced a multivalued generalized α-nonexpansive mapping and
obtained some fixed points results in uniformly convex Banach spaces.

Definition 5. A mapping T : K → CB(K) is said to be a multivalued generalized α-
nonexpansive if there exists α ∈ [0, 1) such that

1

2
d(x,Tx) ≤ ‖x− y‖ implies

H (Tx,Ty) ≤ αd(x,Ty) + αd(y,Tx) + (1− 2α)‖x − y‖,

for all x, y ∈ K.

It is not hard to see that every multivalued mapping satisfying condition (C) is multivalued gener-
alized α-nonexpansive mapping with α = 0 and also, every multivalued generalized α-nonexpansive
mapping with a nonempty fixed point set is multivalued quasi-nonexpansive.

The fixed point theory of the classes of multivalued nonexpansive mappings is more cumbersome
than the corresponding theory for the classes of single valued nonexpansive mappings. But the
numerous applications of the former have caused several researchers to study not only the existence
and uniqueness of fixed points of different classes of multivalued nonexpansive mappings, but also
approximated the fixed points of different classes of multivalued nonexpansive mappings.

In the course of approximating the fixed points of the classes of nonexpansive mappings, several
iterative algorithms have be introduced and studied. Some of the well known iterative algorithms
in existing literature are given in Mann [19], Ishikawa [16], Noor [22], S [3], Abbas and Nazir [1],
Tharkur [34] and many more.

In 2009, Shahzad and Zegeye [11] studied convergence of the Mann and Ishikawa iterative algo-
rithms for multivalued nonexpansive mappings in a nonempty closed convex subset of a uniformly
convex Banach space. The authors defined

PT(x) = {y ∈ Tx : ‖x− y‖ = d(x,Tx)}

for a multivalued mapping T : K → P(K) to make it well defined.
The famous Mann iterative algorithms is defined as:

{

x0 = x ∈ K,
xn+1 = (1− un)xn + unℓn,

∀n ≥ 1, (1.2)
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where {un} is a sequence in (0,1) and ℓn ∈ PT(xn).
The Ishikawa iterative algorithms is defined as:







x0 = x ∈ K,
yn = (1− vn)xn + vnℓn,
xn+1 = (1− un)xn + unζn,

∀n ≥ 1, (1.3)

where {un} and {vn} are sequences in (0,1), ζn ∈ PT(yn) and ℓn ∈ PT(xn).
The following iterative algorithm which was introduced by Argawal et al. [3], is known as

S-iterative algorithm:






x0 = x ∈ K,
yn = (1− vn)xn + vnℓn,
xn+1 = (1− un)ℓn + unζn,

∀n ≥ 1, (1.4)

where {un} and {vn} are sequences in (0,1), ζn ∈ PT(yn) and ℓn ∈ PT(xn). The authors proved
that (1.4) converges at the same rate of the Picard iteration and faster than the Ishikawa iteration
for contractions mappings.

In 2018, Gunduz et al. [11] introduced the multivalued version of Thakur iteration process as
follows:















x0 = x ∈ K,
zn = (1− tn)xn + tnℓn,
yn = (1− vn)xn + vnωn,
xn+1 = (1− un)ωn + unζn,

∀n ≥ 1, (1.5)

where {un}, {tn} and {vn} are sequences in (0,1), ζn ∈ PT(yn), ωn ∈ PT(zn) and ℓn ∈ PT(xn). The
authors proved numerically that (1.5) convergence is faster than each of Mann, Ishikawa, Noor, S,
Abass iteration processes.

Recently, Okeke et al. [28] introduced the multivalued version of Picard-Ishikawa hybrid itera-
tive algorithm which was considered in [26] as follows:















x0 = x ∈ K,
zn = (1− vn)xn + vnℓn,
yn = (1− un)xn + unωn,
xn+1 = ζn,

∀n ≥ 1, (1.6)

where {un} and {vn} are sequences in (0,1), ζn ∈ PT(yn), ωn ∈ PT(zn) and ℓn ∈ PT(xn). The
authors proved analytically and numerally that (1.6) converges faster than a number of existing
iterative algorithms for quasi-nonexpansive mapping.

On the other hand, a fixed point iteration procedure is said to be stable numerically if small
errors or modifications in the data or procedure has small control on the computed value of the
fixed point.

The concept of stability of fixed point iteration process was rigorously studied by Harder in her
Ph.D thesis which was published in [13, 14].

Definition 6 [13, 14]. Let T : K → P(K). Define a fixed point iteration algorithm by
xn+1 = f(T, xn) such that {xn} converges to a fixed point q ∈ T. Let {tn} be an arbitrary se-
quence in G . Define

ǫn = ‖tn − f(T, tn)‖, ∀n ≥ 1.

A fixed point iterative algorithm is said to be T-stable if the following condition is fulfilled:

lim
n→∞

ǫn = 0 if and only if lim
n→∞

tn = q.
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The notion of stability in Definition 6 has been studied by several authors for both single and
multivalued mappings (see [15, 24, 28] and the references in them).

In [6], Berinde showed that the concept of stability in Definition 6 is not precise because of the
sequence {tn} which is arbitrary taken. To overcome this limitation, Berinde [6] observed that it
would be more natural that {tn} be an approximate sequence of {xn}. Therefore, any iteration
algorithm which is stable will also be weakly stable but the converse is generally not true.

Definition 7 [6]. Let {xn} ⊂ G be a given sequence. Then a sequence {tn} ⊂ G is an approx-
imate sequence of {xn} if, for any k ∈ N, there exists η = η(k) such that

‖xn − tn‖ ≤ η, ∀n ≥ k.

Definition 8 [6]. Let T : K → P(K). Let {xn} be a sequence defined by an iterative algorithm
with x0 ∈ G and

xn+1 = f(T, xn), n ≥ 0. (1.7)

Let {xn} converge to a fixed point q of T. Suppose for any approximate sequence {tn} ⊂ G of {xn}

lim
n→∞

ǫn = lim
n→∞

‖tn+1 − f(T, tn)‖ = 0

implies

lim
n→∞

tn = q,

then we say that (1.7) is weakly T-stable or weakly stable with respect to T.

In 2010, Timis [35] studied a new concept of weak stability which is obtained from Definition 8
by replacing of the approximate sequence with the notion of the equivalent sequence which is more
general.

Definition 9 [8]. Let {xn} and {tn} be two sequences. We say that these sequences are equiv-
alent if

lim
n→∞

‖xn − tn‖ = 0.

Definition 10 [35]. Let T : K → P(K). Let {xn} be an iterative algorithm defined for x0 ∈ G

and

xn+1 = f(T, xn), n ≥ 0. (1.8)

Let {xn} converge to a fixed point q of T. Suppose for any equivalent sequence {tn} ⊂ G of {xn}

lim
n→∞

ǫn = lim
n→∞

‖tn+1 − f(T, tn)‖ = 0

implies

lim
n→∞

tn = q,

then we shall say that (1.8) is weak w2–stable with respect to T.
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Interestingly, the concept of w2–stability has not been consumed by many authors for multivalued
mappings.

Motivated by the above results, firstly, we construct a new four step iterative algorithm for
approximating the fixed points of multivalued generalized α-nonexpansive mappings as follows:























x0 = x ∈ K,
sn = (1− vn)xn + vnℓn,
zn = (1− un)ℓn + unhn,
yn ∈ PT(zn),
xn+1 = ζn,

∀n ≥ 1, (1.9)

where {un} and {vn} are sequences in (0,1), ζn ∈ PT(yn), hn ∈ PT(sn) and ℓn ∈ PT(xn).

Secondly, we will show that our new iterative algorithm (1.9) is w2–stable with respect to T.
The stability results are supported with some illustrative examples.

Thirdly, we prove the weak and strong convergence results of the iterative algorithms (1.9) for
multivalued generalized α-nonexpansive mappings in Banach spaces. Furthermore, a numerical
experiment is performed to show that the iterative algorithm (1.9) enjoys a better speed of con-
vergence than all of the iterative processes (1.2)–(1.6) for multivalued generalized α-nonexpansive
mappings.

Finally, as an application, we will utilize the new iterative method (1.9) to find the solutions
of nonlinear Volterra delay integro-differential equations in Banach spaces. An example is also
provided to show that our results are applicable.

2. Preliminaries

The following definitions, propositions and lemmas will be useful in proving our main results.

Definition 11. A Banach space G is said to be uniformly convex if for each ǫ ∈ (0, 2], there
exists δ > 0 such that for x, y ∈ G satisfying ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ > ǫ, we have

∥

∥

∥

∥

x+ y

2

∥

∥

∥

∥

< 1− δ.

Definition 12. A Banach space G is said to satisfy Opial’s condition if for any sequence {xn}
in G which converges weakly to x ∈ G implies

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖, ∀ y ∈ G with y 6= x.

Definition 13. Let G be a Banach space and K a nonempty closed convex subset of G .
Let {xn} be a bounded sequence in G . For x ∈ G , we put

r(x, {xn}) = lim sup
n→∞

‖xn − x‖.

The asymptotic radius of r({xn}) relative to {xn} is defined by

r(K, {xn}) = inf{r(x, {xn}) : x ∈ K}.

The asymptotic center of A({xn}) relative to {xn} is given as:

A(K, {xn}) =
{

x ∈ K : r(x, {xn}) = r(K, {xn})
}

.
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In a uniformly convex Banach space, it is well known that A(K, {xn}) consists of exactly one point.

Definition 14. A multivalued mapping T : K → P(K) is said to be demiclosed at y ∈ K if
for any sequence {xn} ∈ K weakly convergent to x and yn ∈ Txn strongly convergent to y, we
have y ∈ Tx.

Definition 15 [31]. A multivalued mapping T : K → CB(K) is said to satisfy condition (I) if
a nondecreasing function f : [0,∞) → [0,∞) exists with f(0) = 0 and for all r > 0 then f(r) > 0
such that d(x,Tx) ≥ f(d(x, F (T)))), for all x ∈ K, where

d(x, F (T)) = inf
z∈F (T)

‖x− z‖.

Lemma 1 [15]. Let K be a nonempty subset of a Banach space G and T : K → CB(K) be a
multivalued mapping. If T is a generalized α-nonexpansive mapping, then the following inequality
holds:

d(x,Ty) ≤

(

3 + α

1− α

)

d(x,Tx) + ‖x− y‖, ∀ x, y ∈ K.

Lemma 2 [37]. Let {θn} be a nonnegative real sequence satisfying the following inequality :

θn+1 ≤ (1− σn)θn,

where σn ∈ (0, 1) for all n ∈ N and
∞
∑

n=0

σn = ∞,

then
lim
n→∞

θn = 0.

Lemma 3 [30]. Suppose G is a uniformly convex Banach space and {ιn} is any sequence
satisfying 0 < p ≤ ιn ≤ q < 1 for all n ≥ 1. Suppose {xn} and {yn} are any sequences of G

such that
lim sup
n→∞

‖xn‖ ≤ b, lim sup
n→∞

‖yn‖ ≤ b

and
lim sup
n→∞

‖ιnxn + (1− ιn)yn‖ = b

hold for some b ≥ 0. Then lim
n→∞

‖xn − yn‖ = 0.

Lemma 4 [32]. Let T : K → P(K) and

PT(x) =
{

y ∈ Tx : ‖x− y‖ = d(x,Tx)
}

.

Then the following are equivalent

(a) x ∈ F (T);

(b) PT(x) = {x};

(c) x ∈ F (PT).

Moreover, F (T) = F (PT).
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3. Stability result

In this section, we will show that the iterative algorithm (1.9) is w2–stable with respect to T.

Theorem 1. Let K be a nonempty closed convex subset of a Banach space G . Let
T : K → P(K) be a multivalued mapping and PT is a multivalued contraction mapping with [0, 1).
Let {xn} be the iterative algorithm defined by (1.9), then {xn} converges to a fixed point of T.

P r o o f. In [21], the existence of the fixed point of PT is guaranteed. Now, we show that {xn}
converges to some fixed point q. Using (1.9), we have

‖sn − q‖ = ‖(1 − vn)xn + vnℓn − q‖

≤ (1− vn)‖xn − q‖+ vn‖ℓn − q‖

≤ (1− vn)‖xn − q‖+ vnd(ℓn,PT(q))

≤ (1− vn)‖xn − q‖+ vnH (PT(xn),PT(q))

≤ (1− vn)‖xn − q‖+ vnδ‖xn − q‖

= (1− vn(1− δ))‖xn − q‖,

‖zn − q‖ = ‖(1 − un)ℓn + unhn − q‖

≤ (1− un)‖ℓn − q‖+ un‖hn − q‖

≤ (1− un)d(ℓn,PT(q)) + und(hn,PT(q))

≤ (1− un)H (PT(xn),PT(q)) + unH (PT(sn),PT(q))

≤ (1− un)δ‖xn − q‖+ unδ‖sn − q‖

≤ δ(1 − unvn(1− δ))‖xn − q‖,

‖yn − q‖ ≤ H (PT(zn),PT(q))

≤ δ‖zn − q‖

≤ δ2(1− unvn(1 − δ))‖xn − q‖,

‖xn+1 − q‖ = ‖ζn − q‖

≤ H (PT(yn),PT(q))

≤ δ‖yn − q‖

≤ δ3(1− unvn(1− δ))‖xn − q‖. (3.1)

Since {un}, {vn} ∈ (0, 1) and δ ∈ [0, 1), it implies that

(1− unvn(1− δ)) < 1.

Thus, (3.1) yields

‖xn+1 − q‖ ≤ δ3‖xn − q‖

...

≤ γ3n‖x1 − q‖. (3.2)

Taking limit on both sides of the above inequality (3.2), we get lim
n→∞

‖xn−q‖ = 0. Indeed, δ ∈ [0, 1)

and so lim
n→∞

γ3n = 0. �



A Robust Iterative Approach for Solving Nonlinear Volterra Delay 67

We provide the following example to support our analytical proof in Theorem 1.

Example 1. Let K = [0, 1] ⊂ G = R be endowed with the usual norm. Define an operator
T : K → P(K) by

Tx =
[

0,
x

4

]

. (3.3)

Clearly, q = 0 ∈ Tx. Next we show that PT is a multivalued contraction mapping with δ = 1/4.
Now

PT =
{

y ∈ Tx : |x− y| = d
(

x,
[

0,
x

4

])}

=
{

y ∈ Tx : |x− y| =
∣

∣

∣
x−

x

4

∣

∣

∣

}

=
{

y ∈ Tx : x− y = x−
x

4

}

=
{

y ∈ Tx : y =
x

4

}

,

so that

H (Tx,Ty) ≤
1

4
‖x− y‖,

for all x, y ∈ T.
The iteration algorithm (1.9) associated with the mapping in (3.3) is as follows:







































x1 ∈ K,

sn = (1− vn)xn + vn
xn
4
,

zn = (1− un)
xn
4

+ un
sn
4
,

yn =
sn
4
,

xn+1 =
yn
4
,

∀n ≥ 1. (3.4)

The following Table 1 and Fig. 1 show that lim
n→∞

= 0 = q ∈ Tx for different choices of real sequences

{un} and {vn} in (0, 1).

Table 1. Convergence behavior of iteration algorithm (3.3) for different choices of real
sequences{un} and {vn} in (0,1).

Step (3.3) with a (3.3) with b (3.3) with c

1 0.9000000000 0.9000000000 0.9000000000

2 0.0114257812 0.0128906250 0.0123046875

3 0.0001450539 0.0001846313 0.0001682281

4 0.0000018415 0.0000026445 0.0000023000

5 0.0000000234 0.0000000379 0.0000000314

6 0.0000000003 0.0000000005 0.0000000004

7 0.0000000000 0.0000000000 0.0000000000

where a, b and c stand for the cases

un = vn =
1

n+ 1
, un = vn =

1

2n+ 1
, un =

n+ 1

2n+ 1
, vn =

n

n2 + 1
,
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respectively.
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Figure 1. Graph corresponding to Table 1.

Theorem 2. Suppose that all the conditions of Theorem 1 are satisfied. Then the iteration
algorithm (1.9) is w2-stable with respect to T.

P r o o f. Let {tn} ∈ K be an equivalent sequence of {xn}. Define a sequence {ǫn} in R
+ by















ǫn = ‖tn+1 −mn‖,
kn ∈ PT(gn),
gn = (1− un)rn + undn,
cn = (1− vn)tn + vnrn,

∀n ∈ N, (3.5)

where {un} and {vn} are sequences in (0,1), mn ∈ PT(kn), kn ∈ PT(gn), rn ∈ PT(xn) and
dn ∈ PT(cn). Let lim

n→∞
ǫn = 0, then from (1.1), (1.9) and (3.5), we have

‖tn+1 − q‖ ≤ ‖tn+1 − xn+1‖+ ‖xn+1 − q‖

≤ ‖tn+1 −mn‖+ ‖mn − xn+1‖+ ‖xn+1 − q‖

= ǫn + ‖mn − ζn‖+ ‖xn+1 − q‖

≤ ǫn + H (PT(kn),PT(yn)) + ‖xn+1 − q‖

≤ ǫn + δ‖kn − yn‖+ ‖xn+1 − q‖

≤ ǫn + δH (PT(gn),PT(zn)) + ‖xn+1 − q‖

≤ ǫn + δ2‖gn − zn‖+ ‖xn+1 − q‖, (3.6)

‖gn − zn‖ ≤ (1− un)‖rn − ℓn‖+ un‖dn − hn‖

≤ (1− un)H (PT(tn),PT(xn)) + unH (PT(cn),PT(sn))

≤ (1− un)δ‖tn − xn‖+ unδ‖cn − sn‖, (3.7)

‖cn − sn‖ ≤ (1− vn)‖tn − xn‖+ un‖rn − ln‖

≤ (1− vn)‖tn − xn‖+ unH (PT(tn),PT(xn))

≤ (1− vn)‖tn − xn‖+ vnδ‖tn − xn‖

= (1− vn(1− δ))‖tn − xn‖. (3.8)
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Using (3.6), (3.7) and (3.8), we get

‖tn+1 − q‖ ≤ ǫn + δ3(1− unvn(1− δ))‖tn − xn‖+ ‖xn+1 − q‖. (3.9)

Since {tn} ∈ K and its equivalence to {xn} yields lim
n→∞

‖xn− tn‖ = 0. We have shown in Theorem 1

that lim
n→∞

‖xn − q‖ = 0, consequently lim
n→∞

‖xn+1 − q‖ = 0.

Thus, taking the limit on both sides of (3.9), we get

lim
n→∞

‖tn − q‖ = 0.

Hence, {xn} is w2–stable with respect to T. �

We again support the analytical proof in Theorem 2 with the following example.

Example 2. Let K, G = R and T be same as in Example 1. Let
{

x
(1)
n

}∞

n=0
,
{

x
(2)
n

}∞

n=0
and

{

x
(3)
n

}∞

n=0
be iterative algorithms corresponding to (3.4) with control parameters

(

un = vn =
1

n+ 1

)

,
(

un = vn =
1

2n+ 1

)

,
(

un =
n+ 1

2n+ 1
, vn =

n

n2 + 1

)

for all n ∈ N, respectively.

It is shown in Example 1 that
{

x
(i)
n

}∞

n=0
converges to q = 0 ∈ Tx for each i ∈ {1, 2, 3}. Clearly,

lim
n→∞

‖x(i)‖ =
∥

∥ lim
n→∞

x(i)
∥

∥ = 0

for each i ∈ {1, 2, 3}. Taking the sequence {tn}
∞
n=0 to be tn = 1/(n + 4) for all n ∈ N, then we get

0 ≤ lim
n→∞

‖x(i) − tn‖ ≤ lim
n→∞

‖x(i)‖+ lim
n→∞

‖tn‖ = 0, for each i ∈ {1, 2, 3},

which shows that lim
n→∞

‖x(i) − tn‖ = 0 for each i ∈ {1, 2, 3}, in other words, each of
{

x
(i)
n

}∞

n=0
,

i ∈ {1, 2, 3} and

{tn}
∞
n=0 =

{ 1

n+ 4

}∞

n=0

are equivalent sequences.

Let ǫ
(1)
n , ǫ

(2)
n and ǫ

(3)
n be corresponding sequences to the iterative algorithms

{

x
(1)
n

}∞

n=0
,

{

x
(2)
n

}∞

n=0
and

{

x
(3)
n

}∞

n=0
, respectively. Then we have

ǫ(1)n =

∣

∣

∣

∣

1

n+ 5
−

1

4

(

1

4

(

n

n+ 1
·
1

4
·

1

n+ 4
+

1

n+ 1
·
1

4

(

n

n+ 1
·

1

n+ 4
+

1

n+ 1
·
1

4
·

1

n+ 4

)))
∣

∣

∣

∣

,

ǫ(2)n =

∣

∣

∣

∣

1

n+ 5
−
1

4

(

1

4

(

2n

2n + 1
·
1

4
·

1

n+ 4
+

1

2n + 1
·
1

4

(

2n

2n+ 1
·

1

n+ 4
+

1

2n+ 1
·
1

4
·

1

n+ 4

))) ∣

∣

∣

∣

,

and

ǫ(3)n =

∣

∣

∣

∣

1

n+ 5
−
1

4

(

1

4

(

n2−n+1

n2 + 1
·
1

4
·

1

n+ 4
+

n

n2 + 1
·
1

4

(

n

2n+ 1
·

1

n+4
+
n+ 1

2n + 1
·
1

4
·

1

n+4

)))
∣

∣

∣

∣

.

Obviously, lim
n→∞

ǫ
(i)
n = 0 for each i ∈ {1, 2, 3}. Hence, all the iterative algorithms

{

x
(i)
n

}∞

n=0
,

i ∈ {1, 2, 3} are w2-stable with respect to T.

Remark 1. Since the notion of w2–stability is more general the concept of simple stability
considered in [15, 24, 28], hence, our result improves and generalizes the corresponding in [15, 24, 28]
and several others.
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4. Convergence results

In this section, we will prove the weak and strong convergence results of our new iterative
algorithm (1.9) for multivalued generalized α-nonexpansive mappings in uniformly convex Banach
spaces.

Lemma 5. Let K be a nonempty closed convex subset of a real Banach space G . Let
T : K → P(K) be a multivalued mapping such that F (T) 6= ∅ and PT is a generalized α-nonexpansive
mapping. Let {xn} be the iterative algorithm defined by (1.9), then lim

n→∞
‖xn − q‖ exists for all

q ∈ F (T).

P r o o f. Taking q ∈ F (T), then from Lemma 4, we have PT(q) = {q} and P(T) = F (PT).
Since PT is a generalized α-nonexpansive mapping, we get

1

2
d(q,PT(q)) = 0 = ‖xn − q‖.

On the other hand,

H (PT(xn),PT(q)) ≤ αd(xn,PT(q)) + αd(q,PT(xn)) + (1− 2α)‖xn − q‖

≤ α‖xn − q‖+ αH (PT(q),PT(xn)) + (1− 2α)‖xn − q‖

≤ ‖xn − q‖.

Similarly, for any q ∈ F (T), we obtain














H (PT(yn),PT(q)) ≤ ‖yn − q‖,
H (PT(zn),PT(q)) ≤ ‖zn − q‖,
H (PT(sn),PT(q)) ≤ ‖sn − q‖,
H (PT(ζn),PT(q)) ≤ ‖ζn − q‖.

Now from (1.9), we have

‖sn − q‖ = ‖(1 − vn)xn + vnℓn − q‖

≤ (1− vn)‖xn − q‖+ vn‖ℓn − q‖

≤ (1− vn)‖xn − q‖+ vnd(ℓn,PT(q))

≤ (1− vn)‖xn − q‖+ vnH (PT(xn),PT(q))

≤ (1− vn)‖xn − q‖+ vn‖xn − q‖

= ‖xn − q‖. (4.1)

Also,

‖zn − q‖ = ‖(1 − un)ℓn + unhn − q‖

≤ (1− un)‖ℓn − q‖+ un‖hn − q‖

≤ (1− un)d(ℓn,PT(q)) + und(hn,PT(q))

≤ (1− un)H (PT(xn),PT(q)) + unH (PT(sn),PT(q))

≤ (1− un)‖xn − q‖+ un‖sn − q‖

≤ ‖xn − q‖. (4.2)

Again,

‖yn − q‖ ≤ H (PT(zn),PT(q))

≤ ‖zn − q‖

≤ ‖xn − q‖. (4.3)
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Finally,

‖xn+1 − q‖ = ‖ζn − q‖

≤ H (PT(yn),PT(q))

≤ ‖yn − q‖

≤ ‖xn − q‖.

Thus, {‖xn − q‖} is bounded and non-increasing, which implies that lim
n→∞

‖xn − q‖ exists for all

q ∈ F (T). �

Lemma 6. Let K be a nonempty subset of a uniformly convex Banach space G . Let
T : K → P(K) be a multivalued mapping such that F (T) 6= ∅ and PT is a generalized α-nonexpansive
mapping. Let {xn} be the iterative algorithm defined by (1.9), then lim

n→∞
d(xn,Txn) = 0.

P r o o f. From Lemma 5, we have that lim
n→∞

‖xn− q‖ exists for all q ∈ F (T). We suppose that

lim
n→∞

‖xn − q‖ = b for some b ≥ 0. (4.4)

Now from (4.1), (4.2), (4.3) and (4.4), we have

lim sup
n→∞

‖sn − q‖ ≤ b, (4.5)

lim sup
n→∞

‖zn − q‖ ≤ b, (4.6)

lim sup
n→∞

‖yn − q‖ ≤ b (4.7)

and

lim
n→∞

‖ζn − q‖ ≤ b. (4.8)

Now, we have the following inequalities

lim sup
n→∞

‖ℓn − q‖ ≤ lim sup
n→∞

H (PT(xn),PT(q))

≤ lim sup
n→∞

‖xn − q‖ = b, (4.9)

lim sup
n→∞

‖hn − q‖ ≤ lim sup
n→∞

H (PT(sn),PT(q))

≤ lim sup
n→∞

‖sn − q‖ ≤ b

and

lim sup
n→∞

‖ζn − q‖ ≤ lim sup
n→∞

H (PT(yn),PT(q))

≤ lim sup
n→∞

‖yn − q‖ ≤ b.

Using (1.9) and (4.4), we have

b = lim
n→∞

‖xn+1 − q‖ = lim
n→∞

‖ζn − q‖

≤ lim
n→∞

H (PT(yn),PT(q))

≤ lim
n→∞

‖yn − q‖

≤ lim
n→∞

H (PT(zn),PT(q))

≤ lim
n→∞

‖zn − q‖

= lim
n→∞

‖(1 − un)ℓn + unhn − q‖.
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By Lemma 3, we have

lim
n→∞

‖ℓn − hn‖ = 0. (4.10)

Again, from (1.9) we have

‖xn+1 − q‖ = ‖ζn − q‖

≤ H (PT(yn),PT(q))

≤ ‖yn − q‖,

which gives

b ≤ lim inf
n→∞

‖yn − q‖. (4.11)

From (4.7) and (4.11), we obtain

lim
n→∞

‖yn − q‖ = b.

Again from (1.9), we have

‖yn − q‖ ≤ H (PT(zn),PT(q))

≤ ‖zn − q‖,

which yields

b ≤ lim inf
n→∞

‖zn − q‖. (4.12)

From (4.6) and (4.12), we have

lim
n→∞

‖zn − q‖ = b.

By (1.9) and (4.10), we get

‖zn − q‖ = ‖(1− un)ℓn + unhn − q‖

≤ ‖ℓn − q‖+ un‖hn − ℓn‖,

which gives

b ≤ lim inf
n→∞

‖ℓn − q‖. (4.13)

Using (4.9) and (4.13), we have

lim
n→∞

‖ℓn − q‖ = b.

Also,

‖ℓn − q‖ ≤ ‖ℓn − hn‖+ ‖hn − q‖

≤ ‖ℓn − hn‖+ H (PT(sn),PT(q))

≤ ‖ℓn − hn‖+ ‖hn − q‖

gives

b ≤ lim inf
n→∞

‖sn − q‖. (4.14)
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From (4.5) and (4.14), we obtain

lim
n→∞

‖sn − q‖ = b.

Finally, from (1.9), we have

lim
n→∞

‖sn − q‖ = lim
n→∞

‖(1 − vn)(xn − q) + vn(ℓn − q)‖ = b. (4.15)

Now, due to (4.4), (4.9), (4.15) and Lemma 3 we obtain

lim
n→∞

‖xn − ℓn‖ = 0. (4.16)

Since d(xn,Txn) ≤ ‖xn − ℓn‖, we get

lim
n→∞

d(xn,Txn) = 0.

�

Next we prove weak convergence of the iterative algorithm (1.9) to the fixed point of multivalued
generalized α-nonexpansive mapping.

Theorem 3. Let K be a nonempty subset of a uniformly convex Banach space G which satisfies
Opial’s condition. Let T : K → P(K) be a multivalued mapping such that F (T) 6= ∅ and PT is a
generalized α-nonexpansive mapping. Let I−PT be demiclosed with respect to zero and {xn} be the
iterative algorithm defined by (1.9), then {xn} converges weekly to a fixed point of T.

P r o o f. Let q ∈ F (T) = F (PT). From Lemma 5 we have that lim
n→∞

‖xn − q‖ exists. Now we

show that the sequence {xn} has a unique weak sequential limit in F (T). To prove this, let p1 and
p2 be weak limits of the subsequences {xni

} and {xnk
} of {xn}, respectively. From (4.16), there

exists ℓn ∈ Txn such that lim
n→∞

‖xn − ℓn‖ = 0. Therefore, from the demiclosedness of I − PT with

respect to zero, we have p1 ∈ F (T) = F (PT). Following the same method of proof, we can show
that p2 ∈ F (T). Next, we prove uniqueness. To show this, suppose that p1 6= p2, then from Opial’s
condition we obtain

lim
n→∞

‖xn − p1‖ = lim
ni→∞

‖xni
− p1‖

< lim
ni→∞

‖xni
− p2‖

= lim
n→∞

‖xn − p2‖

= lim
nk→∞

‖xnk
− p2‖

< lim
nk→∞

‖xnk
− p1‖

= lim
n→∞

‖xn − p1‖,

which is a contradiction, so p1 = p2. Hence, {xn} converges weakly to a fixed point of T. �

Furthermore, we state and prove strong convergence theorems of the new iterative algo-
rithm (1.9) for multivalued generalized α-nonexpansive mappings.

Theorem 4. Let K be a nonempty closed convex subset of a real Banach space G . Let T :
K → P(K) be a multivalued mapping such that F (T) 6= ∅ and PT is a generalized α-nonexpansive
mapping. If {xn} be the iterative algorithm defined by (1.9), then {xn} converges strongly to a fixed
point of T if and only if lim inf

n→∞
d(xn, F (T)) = 0.



74 A.E. Ofem, U.E. Udofia and D. I. Igbokwe

P r o o f. The necessity is obvious. Conversely, assume that lim inf
n→∞

d(xn, F (T)) = 0. By

Lemma 5, it is proved that

‖xn+1 − q‖ ≤ ‖xn − q‖.

This yields

d(xn+1, F (T)) ≤ d(xn, F (T)).

Thus lim inf
n→∞

d(xn, F (T)) exists. By hypothesis,

lim inf
n→∞

d(xn, F (T)) = 0

so we must have
lim
n→∞

d(xn, F (T)) = 0.

Next, we prove that the sequence {xn} is Cauchy in K. We choose arbitrary ǫ > 0. Since
lim
n→∞

d(xn, F (T)) = 0, then there exists n0 such that for all n ≥ n0.

d(xn, F (T)) <
ǫ

4
.

Particularly,

inf{‖xn0
− q‖ : q ∈ F (T)} <

ǫ

4
,

so an element p ∈ F (T) must exist such that

‖xn0
− q‖ <

ǫ

2
.

Now for n, s ≥ n0, we have

‖xn+s − xn‖ ≤ ‖xn+s − p‖+ ‖xn − p‖ ≤ 2‖xn0
− p‖ < 2

( ǫ

2

)

= ǫ.

Hence, {xn} is the Cauchy sequence in the closed subset K of the Banach space G . It follows
that {xn} must converge in K. Now let lim

n→∞
xn = p∗, then from Lemma 1 we obtain

d(p∗,PT(p
∗)) ≤ ‖xn − p∗‖+ d(xn,PT(p

∗))

≤ ‖xn − p∗‖+

(

3 + α

1− α

)

d(xn,PT(xn)) + ‖xn − p∗‖ → 0 as n→ ∞.

This implies that p∗ ∈ PT(p
∗) and p∗ ∈ F (PT). From Lemma 4, we have p∗ ∈ F (PT). Hence, {xn}

converges strongly to a fixed point of T. �

Theorem 5. Let K be a nonempty compact convex subset of a uniformly convex Banach
space G . Let T : K → P(K) be a multivalued mapping such that F (T) 6= ∅ and PT is a gener-
alized α-nonexpansive mapping. Suppose {xn} is the iterative algorithm defined by (1.9), then {xn}
converges strongly to a fixed point of T.

P r o o f. By Lemma 5, we know that {xn} is bounded and lim
n→∞

d(xn,Txn) = 0. Since K is

compact, it follows that a subsequence {xni
} of {xn} exists such that xni

converges to some y ∈ K.
Since PT is a multivalued generalized α nonexpansive mappings, then from Lemma 1 we obtain

d(xni
,PT(y)) ≤

(

3 + α

1− α

)

d(xni
,T(xni

) + ‖xni
− y‖.

Again, since F (T) = F (PT), by taking the limit as i → ∞, we have that y ∈ Ty. Hence, {xn}
converges strongly to y ∈ F (T). �
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Theorem 6. Let K be a nonempty closed convex subset of a real Banach space G . Let
T : K → P(K) be a multivalued mapping satisfying condition (I) such that F (T) 6= ∅ and PT is
a generalized α-nonexpansive mapping. If {xn} be the iterative algorithm defined by (1.9), then
{xn} converges strongly to a fixed point of T.

P r o o f. From Lemma 5, lim
n→∞

‖xn − q‖ exits for all q ∈ F (T) and therefore {xn} is bounded.

Let lim
n→∞

‖xn − q‖ = b for some b ≥ 0. If b = 0, then the result follows trivially. Suppose b > 0,

then by Lemma 5 we have

‖xn+1 − q‖ ≤ ‖xn − q‖

which gives

inf
q∈F (T)

‖xn+1 − q‖ ≤ inf
q∈F (T)

‖xn − q‖.

It follows that

d(xn+1, F (T)) ≤ d(xn, F (T)),

so lim
n→∞

d(xn, F (T)) exists. From condition (I) and Lemma 6, we get

lim
n→∞

f(d(xn, F (T))) ≤ lim
n→∞

d(xn,Txn) = 0.

Since f is a nondecreasing function and f(0) = 0, it follows that lim
n→∞

d(xn, F (T)) = 0. Conclusion

of the result follows from Theorem 4. �

5. Numerical Experiment

In this section, we give an example of a multivalued generalized α-nonexpansive mapping which
does not satisfy condition (C). We will also compare the convergence of our new iterative algorithm
with the iterative algorithms (1.2)–(1.6) using the provided example.

Example 3. Let (R, ‖ · ‖) be a normed space with the usual norm and K = [2, 4]. Define
T : K → P(K) as:

Tx =

{
[

2,
x+ 2

2

]

, if x ∈ [2, 3],

2, if x ∈ (3, 4].

Then T is a multivalued generalized α-nonexpansive mapping, but T does not satisfy condition (C).
First, we show that T is a multivalued generalized 1/3-nonexpansive mapping. For this, we

consider the following possible cases:

Case (a): If x, y ∈ [2, 3], then

αd(Tx, y) + αd(Ty, x) + (1− 2α)‖x − y‖ =
1

3

∣

∣

∣

∣

x+ 2

2
− y

∣

∣

∣

∣

+
1

3

∣

∣

∣

∣

y + 2

2
− x

∣

∣

∣

∣

+
1

3
|x− y|

≥
1

3

∣

∣

∣

∣

3x

2
−

3x

2

∣

∣

∣

∣

+
1

3
|x− y|

=
1

2
|x− y|+

1

3
|x− y|

≥
1

2
|x− y|

= H (Tx,Ty).



76 A.E. Ofem, U.E. Udofia and D. I. Igbokwe

Case (b): If x ∈ [2, 3] and y ∈ (3, 4], we obtain

αd(Tx, y) + αd(Ty, x) + (1− 2α)‖x − y‖ =
1

3

∣

∣

∣

∣

x+ 2

2
− y

∣

∣

∣

∣

+
1

3
|x− 2|+

1

3
|x− y|

≥
1

3

∣

∣

∣

∣

x

2
+ y −

6

2

∣

∣

∣

∣

+
1

3
|x− y|

≥
1

3

∣

∣

∣

∣

3x

2
−

6

2

∣

∣

∣

∣

+
1

3
|x− y|

=
1

2
|x− 2|

= H (Tx,Ty).

Case (c): If x, y ∈ (3, 4], then we have

d(Ty, x) + αd(Ty, x) + (1− 2α)‖x − y‖ ≥ 0 = H (Tx,Ty).

Hence, T is a multivalued generalized 1/3-nonexpansive mapping.
Next we show that T does not satisfy condition (C). Now, take x = 29/10 and y = 19/6, then

we obtain
1

2
d(x,Tx) =

(

29

10
,T

29

10

)

=
9

40
<

16

60
= |x− y|.

But,

H (Tx,Ty) =
9

20
>

16

60
= |x− y|.

Hence, T does not satisfy condition (C).
Finally, we will now show that PT is a multivalued generalized α-nonexpansive mapping. Note

that q = 2 ∈ Tx. We consider the following cases:

Case (I): If x ∈ [2, 3], then

PT =
{

y ∈ Tx : |y − x| = d
(

x,
[

1,
x+ 2

2

])}

=
{

y ∈ Tx : |y − x| =
∣

∣

∣
x−

x+ 2

2

∣

∣

∣

}

=
{

y ∈ Tx : |y − x| =
∣

∣

∣

x− 2

2

∣

∣

∣

}

=
{

y ∈ Tx : x− y =
∣

∣

∣

x− 2

2

∣

∣

∣

}

=
{

y ∈ Tx : y =
x+ 2

2

}

.

Case (II): If x ∈ (3, 4], then we get

PT = {y ∈ Tx : |y − x| = d(x, {2}}

= {y ∈ Tx : |y − x| = |x− 2|}

= {y ∈ Tx : x− y = x− 2}

= {y ∈ Tx : y = 2}.

Following the same argument as those in Example 3, one can easily show that PT is a multivalued
generalized α-nonexpansive mapping.
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With the aid of MATLAB (R2015a), we will use the above example to show that our new
iterative algorithm (1.9) converges faster than the iterative algorithms (1.2)–(1.6) and the com-
parison Table 2 and Fig. 2 are obtained for various iterative algorithms with control sequences
un = vn = tn = 3/4 and initial guess x0 = 4.

Table 2. Comparison of speed of convergence of our new iterative algorithm (1.9) with
Mann, Ishikawa, S, Thakur, Picard-Ishikawa iterative schemes.

Step Mann Ishikawa S Thakur Picard-Ishikawa New
1 4.0000000 4.0000000 4.0000000 4.0000000 4.0000000 4.0000000
2 3.2500000 2.9687500 2.7187500 2.6054688 2.4843750 2.1796875
3 2.7812500 2.4692383 2.2583008 2.1832962 2.1173096 2.0161438
4 2.4882813 2.2272873 2.0928268 2.0554901 2.0284109 2.0014504
5 2.3051758 2.1100923 2.0333596 2.0167987 2.0068808 2.0001303
6 2.1907349 2.0533259 2.0119886 2.0050856 2.0016664 2.0000117
7 2.1192093 2.0258298 2.0043084 2.0015396 2.0004036 2.0000011
8 2.0745058 2.0125113 2.0015483 2.0004661 2.0000977 2.0000001
9 2.0465661 2.0060602 2.0005564 2.0001411 2.0000237 2.0000000
10 2.0291038 2.0029354 2.0002000 2.0000427 2.0000057 2.0000000
11 2.0181899 2.0014218 2.0000719 2.0000129 2.0000014 2.0000000
12 2.0113687 2.0006887 2.0000258 2.0000039 2.0000003 2.0000000
13 2.0071054 2.0003336 2.0000093 2.0000012 2.0000001 2.0000000
14 2.0044409 2.0001616 2.0000033 2.0000004 2.0000000 2.0000000
15 2.0027756 2.0000783 2.0000012 2.0000001 2.0000000 2.0000000
16 2.0017347 2.0000379 2.0000004 2.0000000 2.0000000 2.0000000
17 2.0010842 2.0000184 2.0000002 2.0000000 2.0000000 2.0000000
18 2.0006776 2.0000089 2.0000001 2.0000000 2.0000000 2.0000000
19 2.0004235 2.0000043 2.0000000 2.0000000 2.0000000 2.0000000

Iteration number

2 4 6 8 10 12 14 16 18 20

V
a
lu

e
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f 
x

n

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Mann

S

Picard-Ishikawa

New

Ishikawa

Thakur

Figure 2. Graph corresponding to Table 2.
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6. Application

Existence theorem for fixed points of an operator is concerned with establishing sufficient condi-
tions in which the operator will have solution, but does not necessarily show how to find it. On the
other hand, the iteration method of fixed points is concerned with approximation or computation
of sequences which converge to the solution of such operator.

In this section, we will approximate the solution of nonlinear Volterra delay integro-differential
equations by utilizing the following iterative algorithm recently introduced by Ofem et al. [24]:























x0 ∈ K,
sn = (1− vn)xn + vnTxn,
zn = (1− un)Txn + unTsn,
yn = Tzn,
xn+1 = Tyn,

∀n ≥ 1, (6.1)

where {un} and {vn} are sequences in (0, 1).

Remark 2. We remark that the iterative algorithm (1.9) is the multivalued conversion of the
iterative algorithm (6.1). It is shown in [24] that the iterative algorithm (6.1) has a better speed of
convergence than S [3], Picard-S [12], Thakur [34] and M [36] iteration processes for single-valued
generalized α-nonexpansive mappings.

In particular, we will be interested in the following nonlinear Volterra delay integro–differential
equation (VDIE):

x′(t) = f
(

t, x(t), x(ℏ(t)),

∫ t

0
℘
(

t, s, x(s), x(ℏ(s))
)

ds
)

, t ∈ I, (6.2)

x(t) = ψ(t), t ∈ [−r, 0], (6.3)

where I = [0, k], k > 0 and ψ ∈ C([−r, 0],ℜ).

A function x ∈ C([r, k],ℜ) ∩ C ′([0, k],ℜ) that satisfies the equations (6.2)–(6.3) is called a
solution of the initial value problem (6.2)–(6.3).

Suppose that the following conditions are performed:

(M1) Let f ∈ C([0, k]×ℜ3,ℜ), ℘ ∈ C([0, k]× [0, k]×ℜ2,ℜ) and ℏ ∈ C([0, k], [−r, k]) be such that
ℏ(t) ≤ t.

(M2) There exists constants Lf , L℘ > 0 such that

|f(t, ♯1, ♯2, ♯3)− f(t, ♭1, ♭2, ♭3)| ≤ Lf (|♯1 − ♭1|+ |♯2 − ♭2|+ |♯3 − ♭3|);

|℘(t, s, ♯1, ♯2)− ℘(t, s, ♭1, ♭2)| ≤ Lf (|♯1 − ♭1|+ |♯2 − ♭2|)

for all t, s ∈ I, ♯i, ♭i ∈ ℜ (i = 1, 2, 3).

(M3) kLf [2 + Lfk] < 1.

(M4) The function φ : [−r, k] → ℜ+ is positive, nondecreasing and continuous and there exists
` > 0 such that

∫ t

0
φ(s)ds ≤ `φ(t), t ∈ [0, k].
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Clearly, from assumption (M1), the initial value problem (6.2)–(6.3) is equivalent to the following
integral equations:

x(t) = ψ(0) +

∫ t

0
f
(

s, x(s), x(ℏ(s)),

∫ s

0
℘
(

s, τ, x(τ), x(ℏ(τ))
)

dτ
)

ds, t ∈ I,

x(t) = ψ(t), t ∈ [−r, 0].

The following existence result for initial value problem is due to Kucche and Shikhare [18].

Theorem 7. If the assumptions (M1)–(M4) hold, then the problem (6.2)–(6.3) has a unique
solution and the equation (6.2) is generalized Ulam–Hyers–Rassias stable with respect to the func-
tion φ.

We now present our main result in section.

Theorem 8. Let {xn} be the iterative procedure (6.1) with un, vn ∈ (0, 1) such that
∑∞

n=0 unvn = ∞. Suppose that the conditions (M1)–(M3) are fulfilled. Then the initial value
problem (6.2)–(6.3) has a unique solution, say, q in C([r, k],ℜ) ∩ C ′([0, k],ℜ) and {xn} converges
to q.

P r o o f. Consider the Banach space G = C([−r, k],ℜ) with Chebyshev norm ‖ · ‖C . Let {xn}
be an iterative sequence generated by the iteration process (6.1) for the operator T : G → G define
by

Tx(t) = ψ(0) +

∫ t

0
f
(

s, x(s), x(ℏ(s)),

∫ s

0
℘
(

s, τ, x(τ), x(ℏ(τ))
)

dτ
)

ds, t ∈ I,

Tx(t) = ψ(t), t ∈ [−r, 0].

Let q stand for the fixed point of T . We now prove that xn → q as n → ∞. It obvious that for
t ∈ [−r, 0], xn → q as n→ ∞. Next for t ∈ I, we get

‖sn − q‖ = ‖(1 − vn)xn + vnTxn − Tq‖

≤ (1− vn)‖xn − q‖+ vn‖Txn − Tq‖

= (1− vn)|xn(t)− q(t)|+ vn|T (xn)(t) − T (q)(t)|

= (1− vn)|xn(t)− q(t)|

+ vn

∣

∣

∣

∣

ψ(0) +

∫ t

0
f
(

s, xn(s), xn(ℏ(s)),

∫ s

0
℘
(

s, τ, xn(τ), xn(ℏ(τ))
)

dτ
)

− ψ(0) −

∫ t

0
f
(

s, q(s), q(ℏ(s)),

∫ s

0
℘
(

s, τ, q(τ), q(ℏ(τ))
)

dτ
)

∣

∣

∣

∣

≤ (1− vn)|xn(t)− q(t)|

+ vn

∫ t

0
Lf

{

max
0≤d1≤s

|xn(d1)− q(d1)|+ max
0≤d1≤s

|xn(ℏ(d1))− q(ℏ(d1))|

+

∫ s

0
L℘

[

max
0≤d2≤τ

|xn(d2)− q(d2)|+ max
0≤d1≤τ

|xn(ℏ(d2))− q(ℏ(d2))|
]

dτ
}

ds

≤ (1− vn)|xn(t)− q(t)|

+ vn

∫ t

0
Lf

{

max
−r≤d1≤k

|xn(d1)− q(d1)|+ max
−r≤τ1≤k

|xn(τ1)− q(τ1)|

+

∫ s

0
L℘

[

max
−r≤d2≤k

|xn(d2)− q(d2)|+ max
−r≤τ2≤k

|xn(τ2)− q(τ2)|
]

dτ
}

ds
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≤ (1− vn)‖xn − q‖C + vn

∫ t

0
Lf

{

2‖xn − q‖C + 2

∫ s

0
L℘‖xn − q‖Cdτ

}

ds

≤ (1− vn)‖xn − q‖C + vnkLf (2 + L℘k)‖xn − q‖C

=
[

1− vn(1− kLf (2 + L℘k))
]

‖xn − q‖C ; (6.4)

‖zn − q‖ ≤ (1− un)‖Txn − Tq‖+ un‖Tsn − Tq‖

= (1− un)

∣

∣

∣

∣

∫ t

0
f
(

s, xn(s), xn(ℏ(s)),

∫ s

0
℘
(

s, τ, xn(τ), xn(ℏ(τ))
)

dτ
)

−

∫ t

0
f
(

s, q(s), q(ℏ(s)),

∫ s

0
℘(s, τ, q(τ), q(ℏ(τ)))dτ

)

∣

∣

∣

∣

+ un

∣

∣

∣

∣

∫ t

0
f
(

s, sn(s), sn(ℏ(s)),

∫ s

0
℘
(

s, τ, sn(τ), sn(ℏ(τ))
)

dτ
)

−

∫ t

0
f
(

s, q(s), q(ℏ(s)),

∫ s

0
℘(s, τ, q(τ), q(ℏ(τ)))dτ

)

∣

∣

∣

∣

≤ (1− un)

∫ t

0
Lf

{

max
0≤d1≤s

|xn(d1)− q(d1)|+ max
0≤d1≤s

|xn(ℏ(d1))− q(ℏ(d1))|

+

∫ s

0
L℘

[

max
0≤d2≤τ

|xn(d2)− q(d2)|+ max
0≤d1≤τ

|xn(ℏ(d2))− q(ℏ(d2))|
]

dτ
}

ds

+ un

∫ t

0
Lf

{

max
0≤d1≤s

|sn(d1)− q(d1)|+ max
0≤d1≤s

|sn(ℏ(d1))− q(ℏ(d1))|

+

∫ s

0
L℘

[

max
0≤d2≤τ

|sn(d2)− q(d2)|+ max
0≤d1≤τ

|sn(ℏ(d2))− q(ℏ(d2))|
]

dτ
}

ds

≤ (1− un)

∫ t

0
Lf

{

max
−r≤d1≤k

|xn(d1)− q(d1)|+ max
−r≤τ1≤k

|xn(τ1)− q(τ1)|

+

∫ s

0
L℘

[

max
−r≤d2≤k

|xn(d2)− q(d2)|+ max
−r≤τ2≤k

|xn(τ2)− q(τ2)|
]

dτ
}

ds

+ un

∫ t

0
Lf

{

max
−r≤d1≤k

|sn(d1)− q(d1)|+ max
−r≤τ1≤k

|sn(τ1)− q(τ1)|

+

∫ s

0
L℘

[

max
−r≤d2≤k

|sn(d2)− q(d2)|+ max
−r≤τ2≤k

|sn(τ2)− q(τ2)|
]

dτ
}

ds

≤ (1− un)

∫ t

0
Lf

{

2‖xn − q‖C + 2

∫ s

0
L℘‖xn − q‖Cdτ

}

ds

+ un

∫ t

0
Lf

{

2‖sn − q‖C + 2

∫ s

0
L℘‖sn − q‖Cdτ

}

ds

≤ (1− un)kLf (2 + L℘k)‖xn − q‖C + unkLf (2 + L℘k)‖sn − q‖C

= kLf (2 + L℘k)
[

(1− un)‖xn − q‖C + un‖sn − q‖C
]

; (6.5)

‖zn − q‖ = ‖Tzn − Tq‖

=

∣

∣

∣

∣

∫ t

0
f
(

s, zn(s), zn(ℏ(s)),

∫ s

0
℘
(

s, τ, zn(τ), zn(ℏ(τ))
)

dτ
)

−

∫ t

0
f
(

s, q(s), q(ℏ(s)),

∫ s

0
℘
(

s, τ, q(τ), q(ℏ(τ))
)

dτ
)

∣

∣

∣

∣

≤

∫ t

0
Lf

{

max
0≤d1≤s

|zn(d1)− q(d1)|+ max
0≤d1≤s

|zn(ℏ(d1))− q(ℏ(d1))|
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+

∫ s

0
L℘

[

max
0≤d2≤τ

|zn(d2)− q(d2)|+ max
0≤d1≤τ

|zn(ℏ(d2))− q(ℏ(d2))|
]

dτ
}

ds

≤

∫ t

0
Lf

{

max
−r≤d1≤k

|zn(d1)− q(d1)|+ max
−r≤τ1≤k

|zn(τ1)− q(τ1)|

+

∫ s

0
L℘

[

max
−r≤d2≤k

|zn(d2)− q(d2)|+ max
−r≤τ2≤k

|zn(τ2)− q(τ2)|
]

dτ
}

ds

≤

∫ t

0
Lf

{

2‖zn − q‖C + 2

∫ s

0
L℘‖zn − q‖Cdτ

}

ds

≤ kLf (2 + L℘k)‖zn − q‖C . (6.6)

‖xn+1 − q‖ = ‖Tyn − Tq‖

=
∣

∣

∣

∫ t

0
f
(

s, yn(s), yn(ℏ(s)),

∫ s

0
℘
(

s, τ, yn(τ), yn(ℏ(τ))
)

dτ
)

−

∫ t

0
f
(

s, q(s), q(ℏ(s)),

∫ s

0
℘
(

s, τ, q(τ), q(ℏ(τ))
)

dτ
)∣

∣

∣

≤

∫ t

0
Lf

{

max
0≤d1≤s

|yn(d1)− q(d1)|+ max
0≤d1≤s

|yn(ℏ(d1))− q(ℏ(d1))|

+

∫ s

0
L℘

[

max
0≤d2≤τ

|yn(d2)− q(d2)|+ max
0≤d1≤τ

|yn(ℏ(d2))− q(ℏ(d2))|
]

dτ
}

ds

≤

∫ t

0
Lf

{

max
−r≤d1≤k

|yn(d1)− q(d1)|+ max
−r≤τ1≤k

|yn(τ1)− q(τ1)|

+

∫ s

0
L℘

[

max
−r≤d2≤k

|yn(d2)− q(d2)|+ max
−r≤τ2≤k

|yn(τ2)− q(τ2)|
]

dτ
}

ds

≤

∫ t

0
Lf

{

2‖yn − q‖C + 2

∫ s

0
L℘‖yn − q‖Cdτ

}

ds

≤ kLf (2 + L℘k)‖yn − q‖C . (6.7)

Using (6.4), (6.5), (6.6) and (6.7), we get

‖xn+1 − q‖ ≤ [kLf (2 + L℘k)]
3[1− unvn(1− kLf (2 + L℘k))]‖xn − q‖C .

Using assumption (M3), we obtain

‖xn+1 − q‖ ≤ [1− unvn(1− kLf (2 + L℘k))]‖xn − q‖C . (6.8)

Now define
σn = unvn(1− kLf (2 + L℘k)) < 1,

then σn ∈ (0, 1) such that
∑∞

0 σn = ∞ and set θn = ‖xn − q‖C . Then (6.8) can be rewritten as

θn+1 = (1− σn)θ.

Therefore, all the conditions of Lemma 2 are satisfied. Hence, lim
n→∞

‖xn − q‖ = 0. �

Now, we furnish the following example in support of the above claims in Theorem 8.

Example 4. Consider the following nonlinear delay Volterra integro-differential equations:

x′(t) = 1 +
tx(t)

25
−

7tx(ℏ(t))

50
+

1

5

∫ t

0

1

10
[x(s)− x(ℏ(s))]ds, t ∈ [0, 3],

x(t) = 0, t ∈ [−1, 0],

where ℏ(t) = t/3, t ∈ [0, 3]. Obviously, we have that ℏ(t) = t/3 ≤ t, t ∈ [0, 3].
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(i) Define ℘ : [0, 3] × [0, 3] ×ℜ× ℜ → ℜ by

℘(t, s, x(s), x(ℏ(s))) =
1

5
[x(s)− x(ℏ(s))], t, s ∈ [0, 3].

Then for t, s ∈ [0, 3] and ♯i, ♭i ∈ ℜ (i = 1, 2), we have

|℘(t, s, ♯1, ♯2)− ℘(t, s, ♭1, ♭2)| ≤
1

5
(|♯1 − ♭1|+ |♯2 − ♭2|).

(ii) Define f : [0, 3] ×ℜ× ℜ× ℜ → ℜ by

f
(

t, x(t), x(ℏ(t)),

∫ s

0
℘(t, s, x(s), x(ℏ(s)))ds

)

= 1 +
tx(t)

25
−

7tx(ℏ(t))

50
+

1

10

∫ t

0

1

5
[x(s)− x(ℏ(s))]ds

= 1 +
tx(t)

25
−

7tx(ℏ(t))

50
+

1

10

∫ t

0
℘(t, s, x(s), x(ℏ(s)))ds, t ∈ [0, 3].

Then, for any t, s ∈ [0, 3] and ♯i, ♭i ∈ ℜ (i = 1, 2, 3), we have

|f(t, ♯1, ♯2, ♯3)− f(t, ♭1, ♭2, ♭3)| ≤
1

25
|♯1 − ♭2|+

7

50
|♯2 − ♭2|+

1

10
|♯3 − ♭3|

≤
7

50
(|♯1 − ♭2|+ |♯2 − ♭2|+ |♯3 − ♭3|).

Thus the above defined functions f and ℘ satisfy the assumptions (M1) and (M2) with Lf = 7/50,
L℘ = 1/10. Further, we see that

kLf (2 + kLh) = 3 ·
7

50
(2 + 3 ·

1

10
) =

483

500
< 1.

Thus condition (M3) holds. Now, if we take un = n/(n+ 1) and vn = 1/n, it follows that

∞
∑

n=0

unvn = ∞.

In addition, we notice that the exact solution of the problem (6.2)–(6.3) is the function

x(t) =







t, if t ∈ [0, 3],

0, if t ∈ [−1, 0].

Indeed, for x(t) = t, t ∈ [0, 3] and ℏ(t) = t/3, t ∈ [0, 3], we get

1+
tx(t)

25
−
7tx(ℏ(t))

50
+
1

5

∫ t

0

1

10
[x(s)− x(ℏ(s))]ds=1+

t2

25
−
7t2

150
+

1

5

∫ t

0

1

10

[

s−
s

3

]

ds = 1 = x′(t).

Thus, all the conditions of Theorem 8 are fulfilled. Hence, Theorem 8 is applicable.

Remark 3. For any fixed r > 0, define

ℏ1(t) = t− r, t ∈ [0, k].
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Then we get the following special case of the Problem (6.2)–(6.3) as follows:

x′(t) = f1

(

t, x(t), x(t− r),

∫ t

0
℘1(t, s, x(s), x(t − r))ds

)

, t ∈ [0, k], (6.9)

x(t) = ψ(t), t ∈ [−r, 0], (6.10)

which is the initial value problem for a nonlinear Volterra integro–differential equation.

The approximation of solution the problem (6.9)–(6.10) has been studied by several authors for
℘1(t, s, x(s), x(t− r)) = 0 (see for example [4, 9, 12, 23, 25–27] and the references there in). Hence,
our result in Theorem 8 generalizes the corresponding results in [4, 9, 12, 23, 25–27] and several
others.

7. Conclusion

In this paper, we have studied the stability result of our newly introduced iterative algo-
rithm (1.9) for a wider concept of stability known as w2–stability instead of the simple notion
of stability considered in [15, 24, 28]. A numerical example is also used to support the analytical
proof of our stability theorem. We have also proved the weak and strong convergence theorems
of our new iterative algorithm (1.9) for fixed points of multivalued generalized α–nonexpansive
mappings. In addition, a numerical experiment was also carried out to illustrate the advantage
of our iterative method over some well known iterative methods in the literature. Further, as ap-
plication of our new iterative algorithm (1.9), we approximated the solution of nonlinear Volterra
delay integro-differential equations (6.2)–(6.3). A nontrivial example of a nonlinear Volterra de-
lay integro-differential equation which satisfies all the mild conditions used in obtaining our re-
sult has been provided. We have also seen that the class of delay differential equation studied
in [4, 9, 12, 23, 25–27] is a special case of the class nonlinear Volterra delay integro-differential
equation considered in this article. Hence, our results generalize, improve and unify the corre-
sponding results in [4, 9, 12, 15, 23–28] and several others in the existing literature.
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10. Göhde D. Zum Prinzip der kontraktiven Abbildung. Math. Nachr., 1965. Vol. 30, No. 3–4. P. 251–258.
(in German) DOI: 10.1002/mana.19650300312

11. Gunduz B., Alagoz O., Akbulut S. Convergence theorems of a faster iteration process including multi-
valued mappings with analytical and numerical examples. Filomat, 2018. Vol. 32, No. 16. P. 5665–5677.
DOI: 10.2298/FIL1816665G

12. Gürsoy F., Karakaya V. A Picard–S Hybrid Type Iteration Method for Solving a Differential Equation
with Retarded Argument. 2014. 16 p. arXiv:1403.2546v2 [math.FA]

13. Harder A .M. Fixed Point Theory and Stability Results for Fixed Point Iteration Procedures. Ph.D. thesis.
Missouri: University of Missouri-Rolla, 1987. 70 p.

14. Harder A.M., Hicks T. L. A stable iteration procedure for nonexpansive mappings. Math. Japonica,
1988. Vol. 33, No. 5. P. 687–692.

15. Iqbal H., Abbas M., Husnine S.M. Existence and approximation of fixed points of multivalued gen-
eralized α-nonexpansive mappings in Banach spaces. Numer. Algor., 2020. Vol. 85. P. 1029–1049.
DOI: 10.1007/s11075-019-00854-z

16. Ishikawa S. Fixed points by a new iteration method. Proc. Amer. Math. Soc., 1994. Vol. 44. P. 147–150.
DOI: 10.2307/2039245

17. Kirk W.A. A fixed point theorem for mappings which do not increase distance. Amer. Math. Monthly,
1965. Vol. 72, No. 9. P. 1004–1006. DOI: 10.2307/2313345

18. Kucche K.D., Shikhare P.U. Ulam Stabilities for nonlinear Volterra delay integro-differential equations.
J. Contemp. Math. Anal., 2019. Vol. 54, No. 5. P. 276–287. DOI: 10.3103/S1068362319050042

19. Mann W.R. Mean value methods in iteration. Proc. Amer. Math. Soc., 1953. Vol. 4. P. 506–510.
DOI: 10.1090/S0002-9939-1953-0054846-3

20. Markin J. A fixed point theorem for set valued mappings. Bull. Amer. Math. Soc., 1968. Vol. 74, No. 1.
P. 639–640.

21. Nadler S. B. Multi-valued contraction mappings. Pacific J. Math., 1969. Vol. 30, No. 2. P. 475–488.
DOI: 10.2140/pjm.1969.30.475

22. Noor M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl., 2000.
Vol. 251, No. 1. P. 217–229. DOI: 10.1006/jmaa.2000.7042

23. Ofem A.E., Igbokwe D. I. An efficient iterative method and its applications to a nonlinear integral
equation and a delay differential equation in Banach spaces. Turkish J. Ineq., 2020. Vol. 4, No. 2.
P. 79–107.

24. Ofem A.E., Udofia U.E., Igbokwe D. I. New iterative algorithm for solving constrained convex min-
imization problem and split feasibility problem. Eur. J. Math. Anal., 2021. Vol. 1, No. 2. P. 106–132.
DOI: 10.28924/ada/ma.1.106

25. Ofem A.E., Udofia U. E. Iterative solutions for common fixed points of nonexpansive mappings and
strongly pseudocontractive mappings with applications. Canad. J. Appl. Math., 2021. Vol. 3, No. 1.
P. 18–36.

26. Okeke G.A. Convergence analysis of the Picard–Ishikawa hybrid iterative process with applications. Afr.
Mat., 2019. Vol. 30, No. 5–6. P. 817–835. DOI: 10.1007/s13370-019-00686-z

27. Okeke G.A., Abbas M.A. A solution of delay differential equations via Picard–Krasnoselskii hybrid
iterative process. Arab. J. Math., 2017. Vol. 6. P. 21–29. DOI: 10.1007/s40065-017-0162-8

28. Okeke G.A., Abbas M.A., de la Sen M. Approximation of the fixed point of multivalued quasi-
nonexpansive mappings via a faster iterative. Process with applications. Discrete Dyn. Nat. Soc., 2020.
Vol. 2020. Art. no. 8634050. P. 1–11. DOI: 10.1155/2020/8634050

29. Pant D., Shukla R. Approximating fixed points of generalized α-nonexpansive map-
pings in Banach spaces. Numer. Funct. Anal. Optim., 2017. Vol. 38, No. 2. P. 248–266.
DOI: 10.1080/01630563.2016.1276075

30. Schu J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bull.
Aust. Math. Soc., 1991. Vol. 43, No. 1. P. 153–159. DOI: 10.1017/S0004972700028884

https://doi.org/10.3934/math.2020205
https://doi.org/10.1002/mana.19650300312
https://doi.org/10.2298/FIL1816665G
https://arxiv.org/pdf/1403.2546v2
https://doi.org/10.1007/s11075-019-00854-z
https://doi.org/10.2307/2039245
https://doi.org/10.2307/2313345
https://doi.org/10.3103/S1068362319050042
https://doi.org/10.1090/S0002-9939-1953-0054846-3
https://doi.org/10.2140/pjm.1969.30.475
https://doi.org/10.1006/jmaa.2000.7042
https://doi.org/10.28924/ada/ma.1.106
https://doi.org/10.1007/s13370-019-00686-z
https://doi.org/10.1007/s40065-017-0162-8
https://doi.org/10.1155/2020/8634050
https://doi.org/10.1080/01630563.2016.1276075
https://doi.org/10.1017/S0004972700028884


A Robust Iterative Approach for Solving Nonlinear Volterra Delay 85

31. Senter H. F., Dotson W.G. Approximating fixed points of nonexpansive mappings. Proc. Amer. Math.
Soc., 1974. Vol. 44, No. 2. P. 375–380. DOI: 10.2307/2040440

32. Song Y., Cho Y. J. Some notes on Ishikawa iteration for multivalued mappings. Bull. Korean Math. Soc.,
2011. Vol. 48, No. 3. P. 575–584. DOI: 10.4134/BKMS.2011.48.3.575

33. Suzuki T. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings.
J. Math. Anal. Appl., 2008. Vol. 340, No. 2. P. 1088–10995. DOI: 10.1016/j.jmaa.2007.09.023

34. Thakur B. S., Thakur D., Postolache M. A new iteration scheme for approximating fixed points of
nonexpansive mappings. Filomat, 2016. Vol. 30, No. 10. P. 2711–2720. DOI: 10.2298/FIL1610711T

35. Timis I. On the weak stability of Picard iteration for some contractive type mappings and coincidence
theorems. Int. J. Comput. Appl., 2012. Vol. 37, No. 4. P. 9–13.

36. Ullah K., Arshad M. Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings
via new iteration process. Filomat, 2018. Vol. 32. P. 187–196. DOI: 10.2298/FIL1801187U

37. Weng X. Fixed point iteration for local strictly pseudo-contractive mapping. Proc. Amer. Math. Soc.,
1991. Vol. 113. P. 727–731. DOI: 10.1090/S0002-9939-1991-1086345-8

https://doi.org/10.2307/2040440
https://doi.org/10.4134/BKMS.2011.48.3.575
https://doi.org/10.1016/j.jmaa.2007.09.023
https://doi.org/10.2298/FIL1610711T
https://doi.org/10.2298/FIL1801187U
https://doi.org/10.1090/S0002-9939-1991-1086345-8

	Introduction
	Preliminaries
	Stability result
	Convergence results
	Numerical Experiment
	Application
	Conclusion

