# Does peak shaving & storage integration green the grid?

Aditya Mishra

mishraa@seattleu.edu

# **Motivation**

- Earth's temperature is rising
  - 2020 tied the record for being the hottest year (with 2016)
- Temperature increase chiefly driven by human-caused greenhouse gas emissions
- Burning of fuel for electricity and heat is among the largest sources of CO2
   Emissions proportionate to the energy generated and peak demands served
- Cutting peak demands could also save a utility's capital, operational costs

#### Peak-based variable electricity pricing



- Utilities offering pricing plans to incentivize peak shaving
- Seattle City Light (SCL) Downtown N/W rates:
  - Peak period (day times):
    - Energy: \$0.1045/kWh
    - Peak surcharge: \$8.38/kW
  - Off-peak period (night & holidays):
    - Energy: \$0.0690/kWh
    - Peak surcharge: \$0.27/kW

# Commercial energy storage solutions

- To help industrial customers avoid peak pricing, several commercial battery systems now available
  - Tesla Powerpack, Megapack

LG ESS Battery

Voltpack from Northvolt







### **Problem statement**

- Given today's peak-based variable pricing and commercial battery storage systems, determine:
  - 1. Can batteries shave customer's peak demands?
  - 2. Can batteries save enough on bills to result in a positive return-on-investment?
  - 3. Can battery-based peak shaving solutions reduce the customer's CO2 footprint?

# MinBills optimization formulation

 Devised MinBills, an optimization formulation to minimize the customer's electricity bills using battery with peak-based variable pricing plans

| $b_1 = B$                                                                     | (1) |
|-------------------------------------------------------------------------------|-----|
| $b_{T+1} = B$                                                                 | (2) |
| $b_t = b_{t-1} + I * s_{t-1} - I * \frac{d_{t-1}}{e}, \forall t \in [2, T+1]$ | (3) |
| $b_t \le C, \forall t \in [1, T]$                                             | (4) |
| $b_t \ge 0, \forall t \in [1, T]$                                             | (5) |
| $s_i \ge 0, \forall i \in [1, T]$                                             | (6) |
|                                                                               |     |

$$s_{i} \leq C/4, \forall i \in [1, T]$$
(7)  

$$d_{i} \geq 0, \forall i \in [1, T]$$
(8)  

$$d_{t} \leq b_{t} + s_{t} * e, \forall t \in [1, T]$$
(9)  

$$m_{i} = (p_{i} + s_{i} - d_{i}) * I * c_{i}, \forall i \in [1, T]$$
(10)  

$$l_{i} = p_{i} + s_{i} - d_{i}, \forall i \in [1, T]$$
(11)  

$$l_{i} \leq L, \forall i \in [1, T]$$
(12)

# MinBills Evaluation using real-world data

- Real power traces from two industrial houses
  - Power data logged every 15 minutes for a year
  - Industry 1
    - Daily consumption 11.31 MWh
    - Tallest annual peak: 792 kW
  - Industry 2
    - Daily consumption 16.96 MWh
    - Tallest annual peak: 1.38 MW
- Existing commercial electricity pricing plans from
  - Seattle City Light
  - Holyoke Gas and Electric
- Commercial battery from Tesla







#### Conclusion

- Energy storage with peakbased variable pricing
  - Can cut peak demands
  - Amount to significant cost savings over the system's lifetime
  - But increase the customer's CO2 footprint



Many thanks to 1) The Office of the Provost for funding the project; 2) Altanai Bisht (student collaborator).