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ABSTRACT 

SATELLITE-BASED PHENOLOGY ANALYSIS IN EVALUATING THE RESPONSE 

OF PUERTO RICO AND THE UNITED STATES VIRGIN ISLANDS’ TROPICAL 

FORESTS TO THE 2017 HURRICANES 

 

Melissa Collin 

 

 The functionality of tropical forest ecosystems and their productivity is highly 

related to the timing of phenological events. Understanding forest responses to major 

climate events is crucial for predicting the potential impacts of climate change. This 

research utilized Landsat satellite data and ground-based Forest Inventory and Analysis 

(FIA) plot data to investigate the dynamics of Puerto Rico and the U.S. Virgin Islands’ 

(PRVI) tropical forests after two major hurricanes in 2017. Analyzing these two datasets 

allowed for validation of the remote sensing methodology with field data and for the 

investigation of whether this is an appropriate approach for estimating forest health in 

areas lacking in-situ data. I performed extensive cloud masking processes on the satellite 

imagery to produce masked, repaired, near cloud-free imagery, which were used to 

extract phenology metrics and produce annual phenology curves. FIA data was used to 

estimate forest percent mortality and change in aboveground live biomass (AGLB). 

Simple and multiple linear regression were used to explore the relationship between the 

FIA data and the remote sensing derived phenology metrics to analyze and compare 

trends. Phenology metrics showed a consistent trend of an initial decrease in index values 

the first year after the hurricanes, followed by a spike in values the second year after. 
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Consistent trends were seen after the hurricanes of a decrease in AGLB, an increase in 

mortality, and a decrease in phenology values the first year, followed by increase in 

values the second year after. Significant changes were found in AGLB and in the 

phenology metrics before and after the hurricanes, however there were no significant 

linear relationships found between the FIA data and the remote sensing data. Meaningful 

phenology curves were successfully generated when analyzing a small region with only 

one forest type and no data gaps. The results, therefore, help in constructing a base 

understanding of PRVI’s tropical forests dynamic relative to climate change and give a 

clearer indication of the capabilities of the remotely sensed data. Furthermore, this 

research demonstrated approaches and techniques that can be further applied to larger, 

global sustainability goals to sustain living systems in times of climate variability and 

change.  



iv 

ACKNOWLEDGEMENTS 

This work was part of the Puerto Rico Sustainability Project, which was funded 

by the United States Forest Service, Grant number 19-CS-11120101-412. Research was 

in collaboration with Humboldt State University, Hong Kong Polytechnic University, the 

United States Forest Service – International Institute of Tropical Forestry,  and the 

Southern Research Station.  

Thank you to Sean Fleming, Dr. David Gwenzi, Dr. James Graham, Dr. Eileen 

Helmer, Dr. Xiaolin Zhu, Dr. Kerry Byrne, and Dr. Buddhika Madurapperuma for their 

guidance, advising, and expertise. Additionally, thank you to Mason Long, Humfredo 

Marcano, Dr. Yoon Kim, Kacie Flynn, and Angela Turner for their assistance. Lastly, 

thank you to my friends, family, and fellow graduate students for their support. 

  



v 

TABLE OF CONTENTS 

 

ABSTRACT ........................................................................................................................ ii 

ACKNOWLEDGEMENTS ............................................................................................... iv 

LIST OF TABLES ............................................................................................................ vii 

LIST OF FIGURES ............................................................................................................ x 

LIST OF APPENDICES .................................................................................................... xi 

INTRODUCTION .............................................................................................................. 1 

Agricultural Abandonment ............................................................................................. 1 

Phenology in Puerto Rico ............................................................................................... 3 

Hurricanes ....................................................................................................................... 4 

Remote Sensing .............................................................................................................. 6 

Literature Survey ............................................................................................................ 7 

Research Objectives ........................................................................................................ 8 

Rationale and Significance ............................................................................................. 9 

METHODS ....................................................................................................................... 11 

Data Collection ............................................................................................................. 11 

Study Site .................................................................................................................. 11 

Time Frame and Data Selection ................................................................................ 13 

Image Preprocessing ..................................................................................................... 16 

Angle File Generation ............................................................................................... 17 

Cloud Masking and Repairing Time Series Images.................................................. 17 

Image Analysis ............................................................................................................. 18 



vi 

Spectral Indices ......................................................................................................... 18 

Phenology Curves ..................................................................................................... 20 

Linking the Data ........................................................................................................... 20 

Statistical Analysis ........................................................................................................ 21 

Kruskal-Wallis Rank Sum Test ................................................................................ 22 

Dunn’s Test of Multiple Comparisons ...................................................................... 23 

Simple and Multiple Linear Regression ................................................................... 24 

RESULTS ......................................................................................................................... 26 

Phenology Metrics ........................................................................................................ 26 

Aboveground Live Biomass ......................................................................................... 30 

Mortality ....................................................................................................................... 40 

Phenology Curves ......................................................................................................... 44 

DISCUSSION ................................................................................................................... 47 

Phenology Metrics ........................................................................................................ 47 

Aboveground Live Biomass ......................................................................................... 49 

Mortality ....................................................................................................................... 51 

Phenology Curves ......................................................................................................... 52 

Exploratory Analysis .................................................................................................... 53 

Uncertainties ................................................................................................................. 57 

CONCLUSIONS AND RECOMMENDATIONS ........................................................... 59 

LITERATURE CITED ..................................................................................................... 61 

APPENDICES .................................................................................................................. 66 

 



vii 

LIST OF TABLES 

Table 1: The path, row, scene generalized name of the Landsat imagery used. ............... 14 

Table 2: Number of FIA plots sampled for aboveground live biomass in each region for 

each time frame. There’s a combined total of 379 plots, 278 of which were sampled on 

the main island of Puerto Rico. ......................................................................................... 15 

Table 3: Results of Dunn's Test on phenology metrics for all forests in PRVI. 

Comparison columns indicates the two time frames being compared (1 = 2010-2014, 2 = 

2016-2017, 3 = 2017-2018, 4 = 2018-2019). Pre-hurricane time frames are in orange and 

post-hurricane time frames are in blue. An adjusted p-value (P. adj) of <0.05 indicates the 

two time frames being compared are significantly different from each other. ................. 29 

Table 4: Results of Dunn's Test on AGLB for PRVI. Comparison columns indicates the 

two time frames being compared (1 = 2010-2014, 2 = 2016-2017, 3 = 2017-2018, 4 = 

2018-2019). Pre-hurricane time frames are in orange and post-hurricane time frames are 

in blue. An adjusted p-value (P. adj) of <0.05 indicates the two time frames being 

compared are significantly different from each other. ...................................................... 33 

Table 5: Results of Dunn's Test on AGLB net change for PRVI. Comparison columns 

indicates the two time frames being compared (1 = 2010-2014, 2 = 2016-2017, 3 = 2017-

2018, 4 = 2018-2019). Pre-hurricane time frames are in orange and post-hurricane time 

frames are in blue. An adjusted p-value (P. adj) of <0.05 indicates the two time frames 

being compared are significantly different from each other. ............................................ 33 

Table 6: P-values from multiple linear regression, conducted on all forests of PRVI for 

AGLB and max index, min index, and integral of the dry season for EVI, NDMI, and 

NDVI................................................................................................................................. 34 

Table 7: P-values from multiple linear regression, conducted on all forests of PRVI for 

AGLB net change and max index, min index, and integral of the dry season for EVI, 

NDMI, and NDVI. ............................................................................................................ 35 

Table 8: P-values from multiple linear regression, conducted on only dry forests of 

PRVI for AGLB and max index, min index, and integral of the dry season for EVI, 

NDMI, and NDVI. ............................................................................................................ 35 

Table 9 :P-values from multiple linear regression, conducted on only dry forests of 

PRVI for AGLB net change and max index, min index, and integral of the dry season 

for EVI, NDMI, and NDVI. .............................................................................................. 35 



viii 

Table 10: P-values from multiple linear regression, conducted on only humid forests of 

PRVI for AGLB and max index, min index, and integral of the dry season for EVI, 

NDMI, and NDVI. ............................................................................................................ 36 

Table 11: P-values from multiple linear regression, conducted on only humid forests of 

PRVI for AGLB net change and max index, min index, and integral of the dry season 

for EVI, NDMI, and NDVI. .............................................................................................. 36 

Table 12: P-values from multiple linear regression, conducted on all forests on the Main 

Island of Puerto Rico for AGLB and max index, min index, and integral of the dry 

season for EVI, NDMI, and NDVI. .................................................................................. 37 

Table 13: P-values from multiple linear regression, conducted on all forests on the Main 

Island of Puerto Rico for AGLB net change and max index, min index, and integral of 

the dry season for EVI, NDMI, and NDVI. ...................................................................... 37 

Table 14: P-values from multiple linear regression, conducted on only dry forests on the 

Main Island of Puerto Rico for AGLB and max index, min index, and integral of the dry 

season for EVI, NDMI, and NDVI. .................................................................................. 38 

Table 15: P-values from multiple linear regression, conducted on only dry forests on the 

Main Island of Puerto Rico for AGLB net change and max index, min index, and 

integral of the dry season for EVI, NDMI, and NDVI. .................................................... 38 

Table 16: P-values from multiple linear regression, conducted on only humid forests on 

the Main Island of Puerto Rico for AGLB and max index, min index, and integral of the 

dry season for EVI, NDMI, and NDVI. ............................................................................ 38 

Table 17: P-values from multiple linear regression, conducted on only humid forests on 

the Main Island of Puerto Rico for AGLB net change and max index, min index, and 

integral of the dry season for EVI, NDMI, and NDVI. .................................................... 39 

Table 18: P-values from simple linear regression conducted on all forests for AGLB and 

the Δmax index values for EVI, NDMI, and NDVI. ........................................................... 39 

Table 19: Adjusted R2 values from simple linear regression conducted on all forests for 

AGLB and the Δmax index values for EVI, NDMI, and NDVI. ..................................... 39 

Table 20: Average percent mortality of PRVI for each time frame, additionally 

separated by humid and dry forests. Bold values indicate the percent mortality of all: 

both humid and dry forest combined. ............................................................................... 40 

Table 21: Average percent mortality of only plots on the Main Island of Puerto Rico 

for each time frame, additionally separated by humid and dry forests. Bold values 

indicated the percent mortality of all both humid and dry forest combined. .................... 41 



ix 

Table 22: P-value results of Kruskal-Wallis Rank Sum Test on PRVI for percent 

mortality of saplings, small trees, and large trees............................................................ 41 

Table 23: P-value results of Kruskal-Wallis Rank Sum Test on only the Main Island for 

percent mortality of saplings, small trees, and large trees. ............................................. 42 

Table 24: P-values of multiple linear regression among time frames for the percent 

mortality saplings, small trees, and large trees, conducted on all PRVI plots. ............... 43 

Table 25: Results (p-values) from simple linear regression conducted on PRVI’s percent 

mortality and the Δmax index values for EVI, NDMI, and NDVI. ................................... 44 

Table 26: Results (p-values) from simple linear regression conducted on only the Main 

Island’s percent mortality and the Δmax index values for EVI, NDMI, and NDVI. .... 44 

  



x 

LIST OF FIGURES 

Figure 1: Puerto Rico and the U.S. Virgin Islands. Data Sources: Natural Earth, OCHA, 

U.S. Census Bureau. ......................................................................................................... 12 

Figure 2: A flow chart outlining the methodology for processing, merging, and analyzing 

the satellite imagery and the FIA plot data. ...................................................................... 16 

Figure 3: Plot level maxEVI values separated by dry forests (white boxes with black dots) 

and humid forest (grey boxes) for each time frames. K-W are the p-value results for the 

Kruskal-Wallis test............................................................................................................ 27 

Figure 4: Plot level maxNDMI values separated by dry forests (white boxes with black 

dots) and humid forest (grey boxes) for each time frames. K-W are the p-value results for 

the Kruskal-Wallis test. ..................................................................................................... 27 

Figure 5: Plot level maxNDVI values separated by dry forests (white boxes with black 

dots) and humid forest (grey boxes) for each time frames. K-W are the p-value results for 

the Kruskal-Wallis test. ..................................................................................................... 28 

Figure 6: Plot level AGLB values separated by dry forests (white boxes with black dots) 

and humid forest (grey boxes) for each time frames. K-W are the p-value results for the 

Kruskal-Wallis test............................................................................................................ 30 

Figure 7: Plot showing plot level AGLB net change values separated by dry forests 

(white boxes with black dots) and humid forest (grey boxes) for each time frames. K-W 

are the p-value results for the Kruskal-Wallis test. ........................................................... 31 

Figure 8: Phenology curves derived from FIA data showing EVI changes before and after 

the 2017 hurricanes. The x-axis in the months going across with 1 being January and 12 

being December. ............................................................................................................... 45 

Figure 9: Phenology curves derived from FIA data, collected only from the island Mona, 

showing EVI changes before and after the 2017 hurricanes. The x-axis in the months 

going across with 1 being January and 12 being December. ............................................ 46 

Figure 10: Scatterplots showing linear models for PRVI’s Humid Forest for each time 

frame for AGLB in Mg/ha on the y axis and maximum EVI value on the x axis. The 

black dotted line shows the best trend line. ...................................................................... 55 

Figure 11: Scatterplot showing a linear model of PRVI’s Humid Forests all time frames 

for aboveground live biomass in mg/ha on the y axis and maximum EVI value on the x 

axis. The black dotted line shows the best trend line. ....................................................... 56 



xi 

LIST OF APPENDICES 

Appendix A: Maps showing Forest Inventory and Analysis (FIA) plot locations on PRVI 

during each time frame. .................................................................................................... 66 

Appendix B: Number of FIA plots sampled for mortality in each region for each time 

frame. There’s a combined total of 358 plots, 264 of which were sampled on the main 

island of Puerto Rico. ........................................................................................................ 68 

Appendix C: Results of Dunn's Test on phenology metrics for dry forests in PRVI. 

Comparison columns indicates the two time frames being compared (1 = 2010-2014, 2 = 

2016-2017, 3 = 2017-2018, 4 = 2018-2019). Pre-hurricane time frames are in orange and 

post-hurricane time frames are in blue. An adjusted p-value (P. adj) of <0.05 indicates the 

two time frames being compared are significantly different from each other. ................. 69 

Appendix D: Results of Dunn's Test on phenology metrics for humid forests in PRVI. 

Comparison columns indicates the two time frames being compared (1 = 2010-2014, 2 = 

2016-2017, 3 = 2017-2018, 4 = 2018-2019). Pre-hurricane time frames are in orange and 

post-hurricane time frames are in blue. An adjusted p-value (P. adj) of <0.05 indicates the 

two time frames being compared are significantly different from each other. ................. 70 

Appendix E: P-values of Multiple linear regression between time frames on the percent 

mortality saplings, small trees, and large trees, conducted on dry forests and humid 

forests on all PRVI plots. Bold indicates a significant p-value of less than 0.05. .......... 71 

Appendix F: P-values of Multiple linear regression between time frames on the percent 

mortality saplings, small trees, and large trees, conducted on all forests on only plots 

from the Main Island of Puerto Rico. Bold indicates a significant p-value of less than 

0.05.................................................................................................................................... 72 

Appendix G : P-values of Multiple linear regression between time frames on the percent 

mortality saplings, small trees, and large trees, conducted on dry forests and humid 

forests on only plots from the Main Island of Puerto Rico............................................. 73 

 



1 

 

INTRODUCTION 

Tropical forests occupy only about 8% of the Earth’s land surface, yet they host 

the majority of our flora and fauna species (Gardner et al., 2009). These forests not only 

support endangered and rare species, but also provide valuable ecosystem services such 

as carbon sequestration and climate regulation (Asner et al., 2000; Miller & Lugo, 2009). 

While their importance is undisputed, it is unclear whether these forests can maintain 

their high levels of productivity in the face of anthropogenic climate change.  

The functionality of tropical forest ecosystems and their productivity is highly 

related to the timing of phenological events (Lieberman, 1982). However, research on 

how these tropical forests respond to climate change and climatic events, such as drought 

and hurricanes, is limited. Understanding these responses to major climate events can 

help identify trends and patterns in forest resilience (Thompson et al., 2009; Isbell et al., 

2015). This information is essential for forest management, biodiversity assessment, and 

ecosystem modeling. 

Agricultural Abandonment 

Most of Puerto Rico’s forests today are not native old-growth, but are instead a 

mix of successional, naturalized vegetation, and young mixed-species stands. Within 

these secondary forests, many of the species are nonnatives that were introduced for 

ornamental, shade, fruit, or agroforestry, that became naturalized over time (Francis & 
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Liogier, 1991). These younger, secondary forests are a byproduct of industrialization and 

agriculture abandonment (Parés-Ramos et al., 2008). 

By the 1940s in Puerto Rico, 90% of the forests had been cleared for various 

economical purposes, such as agriculture, charcoal production, and urban construction. It 

was at this time that the U.S. government and what is now the Puerto Rico Industrial 

Development Company implemented Operation Bootstrap, a series of projects to help 

transition the territory’s economy from a rural agrarian to modern industrial (Rudel et al., 

2000; Miller & Lugo, 2009).  

As economic development occurred, there began a transition from agriculture to 

manufacturing. This movement of rural to urban migration resulted in vast agricultural 

abandonment (Rudel et al., 2000; Helmer et al., 2008; Parés-Ramos et al., 2008). Land 

that was previously greatly altered and shaped by land use practices was now suddenly 

left with little to no restoration. Over time forest succession occurred, transforming the 

abandoned pastures into secondary forests, where past disturbances are no longer evident 

on the landscape. Between 1940 to 2000, the island’s forests increased from occupying 

approximately 6% of the island to 40%, occurring almost entirely on abandoned pastures 

and agricultural lands. However, these new forests did not return to their historic, native 

species, but instead are either mixed with or dominated by non-native, naturalized species 

(Parés-Ramos et al., 2008). These past events have provided an opportunity to research a 

unique and understudied tropical forest structure. 
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Phenology in Puerto Rico 

Phenology is the study of cyclic and seasonal natural phenomena, specifically in 

relation to climate and plant and animal life. It can also be looked at as the seasonal 

timing of biological events and is crucial for long-term monitoring and trend analysis of 

biological systems. Climates with distinct seasonalities often have vegetation that has 

adapted to these phenological cycles (Kramer et al., 2000). If rapid climate change occurs 

within the life of a tree, it may be less adapted to the prevailing climate (Ostertag et al., 

2005). Variation in phenology is a highly sensitive and influential factor in ecosystem 

function (Chen & Pan, 2002). Understanding short and long-term dynamics of phenology 

is key for evaluating the future of the ecosystems. 

Puerto Rico’s forests have distinct phenological cycles attributed to the region’s 

uncommon seasonality, with not one, but two rainy seasons and two “dry” seasons 

(relative to Puerto Rico’s tropical climate) each year (Gwenzi et al., 2017). This type of 

seasonality can be seen in many of the Caribbean islands. From April to June is the early 

rainy season, followed by a mild midsummer drought in July and August. August through 

November is the late rain season, where Puerto Rico reaches its peak greenness. This is 

succeeded by a long, dry winter from December to March, when peak brownness is 

reached. 

The timing of the green up and brown down cycles can be detected by analyzing 

spatial and temporal variations. Vegetation indices, such as normalized difference 

vegetation index (NDVI) and enhanced vegetation index (EVI), can be applied to 
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imagery to measure plant greenness, indicating relative density and overall health of 

vegetation (Zhang, Friedl, & Schaaf, 2009; Wang et al., 2017a). Other indices such as 

normalized difference moisture index (NDMI) measure plant health by determine 

vegetation water content. Applying these indices to time series imagery allows for the 

detection of seasonal trends and the assessment of change in these patterns. These distinct 

seasonal patterns are a key component contributing to estimations such as aboveground 

live biomass (AGLB) which is a key sub-indicator of forest sustainability, as well as 

forest deciduousness, tree mortality, trait diversity, etc., and will be a base for future 

understanding of tropical forest dynamics in the face of climate change (Gwenzi et al., 

2017). 

Additionally, using these indices allows for the calculation of integral of the dry 

season. Integral of the dry season is a metric that is estimated using the start and end of 

the dry season and the integral of the spectral indices curve (Wei et al., 2012; Horion et 

al., 2014). Since the tropical forests of Puerto Rico and the U.S. Virgin Islands have 

unique seasonality, integral of the dry season may be a better measurement than the more 

common metric, length of the growing season, as it may better capture the changes that 

occur (E. Helmer, personal communication, May 21, 2021).  

 Hurricanes 

Puerto Rico and the U.S. Virgin Islands are in the hurricane belt of the Caribbean 

and Western Atlantic, making them highly susceptible to frequent tropical cyclones. 

Tropical cyclones are rapidly rotating storm systems that produce squalls and heavy rain. 
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Hurricanes are a type of tropical cyclones that originate in the Atlantic and Northeastern 

Pacific, created in the summer and early fall as warm ocean water evaporates and twists 

into the atmosphere. The majority of these hurricanes form off the west coast of Africa 

between June and October and intensify as they travel across the warm Atlantic with the 

trade winds (Emanuel, 2003). 

Most hurricanes that Puerto Rico encounters are peripheral and produce minor 

effects, however high intensity and direct hits can cause rapid, long-lasting damage to the 

island (Miller & Lugo, 2009). The level of damage caused to the tropical forests can 

range from leaf stripping and branch breaking to uprooting, stem damage, and ultimately 

tree mortality (Boose et al., 2004). This type of damage can alter regeneration and 

succession. 

In September 2017, Puerto Rico was one of the many Caribbean islands 

devastated by two hurricanes, Hurricane Irma and Maria. Hurricane Irma formed off the 

north coast of Africa near the Cape Verde Islands in late August and intensified as it 

traveled across the Atlantic. When it reached Puerto Rico and the U.S. Virgin Islands on 

September 6th, it was a Category 5 hurricane, reaching maximum speeds of over 290 

kilometers per hour (kph) (Cox et al., 2019). This hurricane was most devastating to the 

Virgin Islands, Culebra, Vieques, and Northeast Puerto Rico, a highly populated region 

and the location of the capital, San Juan. Nearly half the island lost power and over 80% 

of Puerto Rico’s crops were destroyed. 

About two weeks later, Puerto Rico and the Virgin Islands were struck again. 

Hurricane Maria formed east of the Lesser Antilles and hit Puerto Rico on September 20th 
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as a Category 4 (Cox et al., 2019). Unlike Irma, Maria’s path crossed directly through the 

main island of Puerto Rico with winds up to 250 kph. Storm surges produced heavy rain, 

reaching up to 70 centimeters, causing widespread flooding around the island. The 

disaster greatly damaged the already weakened Puerto Rican power grid and left the 

entire territory without power (Tian & Zou, 2018). There were an estimated 3,000 

causalities and billions of dollars in total damage. Possibly 40 million trees were killed or 

severely damaged, with the larger, older, and more established trees receiving the greatest 

damage (Gray, 2018). These older trees species, which are typically slower growing, 

provide important habitat to species that cannot reside in younger secondary forests (Tian 

& Zou, 2018). 

Remote Sensing 

Remote sensing is the process acquiring information and data remotely such as 

from a satellite or aircraft (Richards & Jia, 2006). Remote sensing can be very 

advantageous for research since so much of the data is open access, easily accessible, and 

is constantly being collected across the globe. A few examples of open access remotely 

sensed imagery are the National Aeronautics and Space Administration’s (NASA) 

Landsat program, NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS), 

and the European Space Agency’s Sentinel-2. This kind of data is especially important 

when researching remote, hard to reach regions and areas being affected by climatic 

events, as data can be collected rapidly and analyzed from a safe location. But there are 

also limitations to remote sensing, such as temporal and spectral resolution. Remote 



7 

 

  

sensing cannot replace the data and value that one can received from visiting a study site 

in person. Therefore, it is important, when possible, to have in-situ data, also referred to 

as on-the-ground data, to validate the results of the remotely sensed data. Having both 

types of datasets also allow us to assess the capabilities and further our understanding of 

remotely sensed data (Goetz et al., 1983). Ideally, if relationships and correlations can be 

found between the remotely sensed data and the on-the-ground data, analysis and 

estimates can be made without having to visit a site, as well as predict how future change 

will affect tropical forests (Gwenzi et al., 2017).  

Literature Survey 

Past research has analyzed the effects of hurricanes in tropical forests, with 

particular attention being paid to Hurricane Hugo, which hit Puerto Rico in 1989. These 

past studies focused on field surveying as their primary source of data collection. Field 

surveys allow for precise, detailed data collection; however, this approach can be very 

time consuming, expensive, and does not capture data across large landscapes. 

Researchers found no clear patterns in damage between species, but instead suggested 

size, spatial position, diameter growth rate, and past disturbance history as the strong 

variables in relation to resistance to damage (Ostertag et al., 2005). Strong winds from 

hurricanes remove substantial amounts of the canopy and break branches and stems. Tree 

mortality was found to be closely associated with stem breakage and uprooting, with fast-

growing species being more susceptible to stem breakage. Where patterns were 

statistically detectable, the study found larger trees had higher mortality rates and 
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suffered greater overall damage after hurricanes than small trees (Lugo & Likens, 1992). 

Past studies also found that tree species commonly found in humid forests were least 

resistant to hurricane related damage (Brokaw & Grear, 1991; Zimmerman et al., 1994). 

The use of remote sensing data is also commonly used by researchers to estimate 

plant health. Previous studies have used satellite imagery, drone imagery, and LiDAR to 

measure variables that are used to estimate forest biomass such as canopy height, area, 

and volume (Gwenzi et al., 2017). It is also used to estimate greenness, spatial pattern, 

and phenology factors (Wang et al., 2017b). This research provides a unique opportunity 

to harmonized field data with remote sensing, two methods of data collection with 

advantageous results.  

Research Objectives 

This study aimed to identify if tropical forest response to sudden disturbances, 

specifically hurricanes, can be detected with remote sensing. Using Puerto Rico and the 

U.S. Virgin Islands as a case study, this research focused on achieving two main objectives.  

1. Quantify the effects of the 2017 hurricanes on tropical forest mortality and 

determine its relationship with Landsat derived phenology metrics.  

2. Quantify the effects of the 2017 hurricanes on aboveground live biomass and 

determine its relationship with Landsat derived phenology metrics.  

An additionally goal of the study was to generate meaningful phenology curves 

from the Landsat-derived phenology metrics to reflect the changes in trends across the 

island. Understanding these short and long-term dynamics of forest phenology will aid in 
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evaluating the future of these ecosystems. The results will be used to show phenology 

changes and aid in assessing forest vulnerability which could be used for forest 

management and restoration.  

Rationale and Significance 

As our climate continues to change, there will likely be more frequent and more 

extreme climatic events, such as hurricanes, and tropical regions will be greatly affected 

(Mann & Emanuel, 2006). Tropical forests occupy only a small portion of Earth; 

however, they are home to the majority of our species, and play a critical role in 

ecosystem services (Gardner et al., 2009). Puerto Rico and the U.S. Virgin Islands’ 

extreme climatic events paired with an abundance of available data (Landsat and Forest 

Inventory and Analysis data) offers a unique research opportunity. Better understanding 

climatic events such as hurricanes gives insight into the challenges they create and aid in 

mitigating their effects. This research also helps in resolving uncertainties in modeling 

tropical forest dynamics and improving precision in future forest ecosystem modeling 

(Hilibrand & Robbins, 2004). 

Results from this study allows researchers to better identify the forests most 

susceptible and resilient to hurricane-related events. This gives forest managers a stronger 

understanding of forest vulnerability. This helps with the promotion and implementation 

of sustainable management of all types of forests, and informs people and groups 

involved in forest conservation, as well as those involved in harvesting and reforesting. 

Lastly, this research demonstrates approaches and techniques used on Puerto Rico and 



10 

 

  

the U.S. Virgin Islands that can further be applicable to larger, global sustainability goals, 

such as the NASA supported Sustainable Development Goal 15, to halt biodiversity loss 

and sustain living systems in a time of climate variability and change (Hilibrand & 

Robbins, 2004).  
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METHODS 

Due to the confidentiality of plot locations, some analysis and data extraction was 

conducted by the Principal Investigator (PI), Dr. David Gwenzi, a professor and my 

former graduate advisor from Humboldt State University, and the co-PI, Dr. Eileen 

Helmer, a research ecologist from the USFS – International Institute of Tropical Forestry. 

Additionally, many of the IDL and R scripts used in this study were written by a project 

collaborator, Dr. Xiaolin Zhu, a professor at Hong Kong Polytechnic University. Work 

conducted by the PI and co-PI is specified in the relevant sections. All other analysis was 

conducted by myself unless stated otherwise. 

Data Collection 

Study Site 

The region of interest for this study was Puerto Rico and the U.S. Virgin Islands 

(PRVI). Puerto Rico and the U.S. Virgin Islands are unincorporated United States 

territories located in the North Caribbean Sea, approximately 1,850 kilometers southeast 

of Florida (Figure 1). The main island of Puerto Rico has an area of approximately 8,900 

km2. Puerto Rico is part of the Greater Antilles, the island group consisting of Puerto 

Rico, Cuba, Hispaniola (Haiti and the Dominican Republic), Jamaica, and the Cayman 

Islands. In total, the Greater and Lesser Antilles are approximately 7,000 islands and are 

part of the West Indies. Puerto Rico consists of the main island of Puerto Rico and five 

smaller islands, Vieques, Culebra, Mona, Desecheo, and Caja de Muertos. Of the five 
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smaller islands, Culebra and Vieques are the only ones inhabited year-round (Miller & 

Lugo, 2009).  

 

Figure 1: Puerto Rico and the U.S. Virgin Islands. Data Sources: Natural Earth, OCHA, 

U.S. Census Bureau. 

 

Puerto Rico is located in the tropics, giving it a maritime climate with warm temperatures 

with minimal fluctuation. Rainfall varies greatly across the island because of its dynamic 

topography. Average annual precipitation ranges from 745mm in Magueyes Island to 

4,346 mm in Pico del Este. The island can be broken into three major physiographic 

regions: high mountains, foothills, and coastal plains. Nearly all the coastal plains have 

been converted for either agriculture, roads, or urban. Puerto Rico can also be broken up 

by ecological life zones based on factors such as latitude, elevation, temperature, and 

precipitation. While this study only separated forest types by either dry or humid forests, 

Puerto Rico can be divided further into six major life zones: subtropical dry forest, 

subtropical moist forest, subtropical rainforest, subtropical wet forest, lower montane rain 
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forest, and lower montane wet forest (Ewel & Whitmore, 1973). The subtropical moist 

forest is overwhelmingly the largest of the life zones, however most of it was deforested 

for agriculture before 1930 (Miller & Lugo, 2009). Analysis was conducted on the main 

island of Puerto Rico, the smaller islands Mona, Culebra, and Vieques, and the three 

main U.S. Virgin Islands of Saint Croix, Saint John, and Saint Thomas. 

Time Frame and Data Selection 

This research was split into four time frames: January 1, 2010 to December 31, 

2014 (2010-2014), September 1, 2016 to September 1, 2017 (2016-2017), October 1, 

2017 to October 1, 2018 (2017-2018), and November 1, 2018 to November 1, 2019 

(2018-2019). The first time frame, January 2010 to December 2014, established 

consistent, pre-hurricane conditions. 2010-2014 were four consecutive years with no 

major climatic events, such as hurricanes or drought, which also corresponded with the 

FIA inventory cycle for PRVI. 2015 and the first half of 2016 were excluded from the 

study due to the drought that occurred across PRVI during that time. The second time 

frame, September 2016 to September 2017, was one full year leading up to the 

hurricanes, which occurred on September 6th and September 20th of 2017. The third and 

fourth time frames, October 2017 to October 2018 and November 2018 to November 

2019, captured the two years directly after the hurricanes.  

The satellite imagery used in the study were surface reflectance products from 

Landsat 8 OLI/TIRS C1 Level-2, Landsat 7 ETM+ C11 Level-2, and Landsat 5 TM C1 

Level-2. Landsat is the longest running continuous satellite program, run by NASA and 
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the United States Geological Survey (USGS). Landsat imagery has numerous spectral 

bands with, a 30 by 30-meter spatial resolution (900 m2), and a 16 day revisit time 

(Williams et al., 2006). All satellite imagery was downloaded from the USGS Earth 

Explorer website (https://earthexplorer.usgs.gov/). Five Landsat scenes were needed to 

capture all of Puerto Rico and the U.S. Virgin Islands (Table 1).  

Table 1: The path, row, scene generalized name of the Landsat imagery used. 

Path Row Scene generalized name 

6 47 Mona  

5 47 Main (Northwest and Central Puerto Rico) 

4 47 North East (Northeast Puerto Rico, Vieques, Culebra, St Thomas, and St John) 

5 48 South West (Southwest Puerto Rico) 

4 48 South East (Southeast Puerto Rico and St Croix) 

 

When selecting imagery from these datasets, only images estimated to contain 

less than 50% land cloud coverage were downloaded. Imagery with large amounts of 

cloud cover greatly limits its use in analysis. Additionally, the cloud masking algorithm 

performance decreases on images with greater than 50% cloud cover.  

Field data used in this study was from the FIA program. FIA data was collected 

by the United States Forest Service (USFS) and plot-level summaries across Puerto Rico 

and the U.S. Virgin Islands were prepared by the co-PI. Each plot is approximately 36 x 

36 meters (1,296 m2), is representative of roughly 6,000 acres, and is selected semi-

randomly using a hexagonal grid (USDA, 2014). FIA data was utilized from the 

inventory cycles between 2011-2014 and 2016-2019, which were separated into the four 

time frames. Inventories occurred in different locations across the study site depending 

on the year surveyed (Table 2, Appendix A and B). The PI extracted data and provided 
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the plot numbers and associated metrics which allowed me to join the FIA data with the 

remote sensing data without revealing confidential plot locations.  

Table 2: Number of FIA plots sampled for aboveground live biomass in each region for 

each time frame. There’s a combined total of 379 plots, 278 of which were 

sampled on the main island of Puerto Rico. 

 

After the satellite data and FIA data was selected and acquired, I began analysis. The 

methodology was conducted in three segments: image preprocessing, image analysis, and 

statistical analysis (Figure 2).  

Region (abbrev.) 2010-14 2016-17 2017-18 2018-19 Total 

Northwest and Central Puerto Rico (Main) 105 66 28 
 

199 

Northeast Puerto Rico (NEMain) 13 11 3  27 

Southeast Puerto Rico (SEMain) 6 5 1  12 

Southwest Puerto Rico (SW) 21 14 5  40 

Mona (Mona) 25    25 

Vieques (NE1) 16   16 32 

Culebra  (NE2) 8   7 15 

St Croix (SE1) 14    14 

St Thomas and St John (NE3)  15    15 

Total 223 96 37 23 379 
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Figure 2: A flow chart outlining the methodology for processing, merging, and analyzing 

the satellite imagery and the FIA plot data.  

 

Image Preprocessing 

Intensive preprocessing was conducted on the downloaded satellite imagery prior 

to data analysis. I downloaded imagery from September 1, 2016 to September 1, 2017, 

October 1, 2017 to October 1, 2018, and November 1, 2018 to November 1, 2019. 

Repaired Landsat imagery from January 1, 2010 to December 31, 2014 was provided by 

the PI who conducted the downloading and image preprocessing for that time frame.  

Satellite Imagery 

Angle File Generation 

Cloud Mask & Repair 

Calculate Indices 

Image 

Preprocessing 

Image 

Analysis 

Phenology Curves 
Kruskal Wallis 
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Simple & Multiple 

Linear Regression 
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Angle File Generation 

First, I made solar and sensor angle bands using the USGS’s Landsat Angle 

Creation Tool. These bands provide per-pixel solar and sensor azimuth and zenith values, 

which are necessary for the cloud masking process. I used Oracle VM Virtual Box to 

create an Ubuntu Linux virtual machine, since the tool can only be used in a Linux 

environment. I downloaded angle coefficient files off the USGS EarthExplorer website 

and extracted them from the Level 1 top of atmosphere (TOA) products for the 

corresponding Level 2 surface reflectance (SR) images. I then brought these angle 

coefficient files into the virtual machine and input them into the Angle Creation Tool. I 

wrote and executed a python script to automate the file generation. I then moved the 

generated solar and sensor files out of the virtual machine, renamed to match Landsat's 

nomenclature, and converted to Tagged Image File Format (TIFF) files using R. 

Cloud Masking and Repairing Time Series Images 

Next, I executed a series of steps to create the time series, mask for clouds, and 

repair the final time series images, using the remote sensing software Environment for 

Visualizing Images (ENVI) and the programming language Interactive Data Language 

(IDL). I conducted these processes for each time frame using R codes and a set of IDL 

codes created by Dr. Zhu and Dr. Gwenzi (Helmer et al., 2018; Zhu & Helmer, 2018). 

The following paragraph outlines the processes I ran using these codes. 

After the Landsat satellite imagery was obtained from the EarthExplorer website, 

I used a bidirectional reflectance distribution function (BDRF) to normalize pixel values 

across the scenes with codes from Roy et al., 2016. BDRF accounts for different effects 
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caused by the angle of the satellite and the angle of the sun when the image was taken, or 

view zenith and solar zenith respectively. BRDF combats this by adjusting the view 

zenith to 0° and the solar zenith to 30° for each scene. Next, I reordered the images based 

on the day of the year the image was taken (i.e., February 5 = 36, December 31 = 365), 

regardless of the actual year, and then stacked them together into a time series. This 

prepared the images for the masking process. Using ENVI, I used a water mask 

corresponding with the region to indicate what pixels in the image represent water and 

what pixels represent land. Water was not within my scope of interest, and therefore was 

masked out from any further steps to reduce the processing time. I then used the 

Automatic Time-Series Analysis (ATSA) algorithm to screen clouds and cloud shadows 

in the imagery (Zhu & Helmer, 2018). This multistep method works by first calculating 

clouds/cloud shadow indices and generating initial cloud and shadow masks. The masks 

are then refined using the time series image stack to identify, omit, and interpolate the 

masked images. The nearest similar pixel interpolator (NSPI) algorithm was then used to 

estimate and fill any missing data values and produces the final repaired time series 

images (Zhu et al., 2012, Zhu et al., 2019). 

Image Analysis  

Spectral Indices 

I used the repaired Landsat images to compute spectral indices, which are 

combinations of spectral reflectance values from multiple spectral bands that indicate 

abundance of a feature of interest (Jackson, 1983). Each index provides varying 
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adjustments and sensitivities to better detect different aspects of vegetation. The three 

spectral indices I utilized in this study were enhanced vegetation index (EVI), normalized 

difference vegetation index (NDVI), and normalized difference moisture index (NDMI) 

(Wang et al., 2017). The Enhanced Vegetation Index measures vegetation greenness, 

specifically canopy type and leaf area index, while also correcting for atmospheric 

conditions and noise. The EVI equation is as follows: 

𝐸𝑉𝐼 = 𝐺 ∗ 
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝐶1 ∗ 𝑅𝑒𝑑 − 𝐶2 ∗ 𝐵𝑙𝑢𝑒 + 𝐿)
 

Where NIR/Red/Blue are atmospherically corrected surface reflectance values, L is the 

canopy correction factor (1.0), C1 and C2 are coefficients for atmospheric resistance (6.0 

and 7.5 respectively), and G is gain factor (2.5). Next, the Normalized Difference 

Vegetation Index also detects greenness by measuring vegetation health and vigor. The 

NDVI equation is as follows: 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

Where the Near Infrared Band (NIR) and the Red Band (Red) are atmospherically 

corrected surface reflectance values. Last, the Normalized Difference Moisture Index 

measures vegetation water content/water stress. The NDMI equation is as follows: 

𝑁𝐷𝑀𝐼 =  
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

Where NIR and the Short-wave Infrared Band (SWIR) are atmospherically corrected 

surface reflectance values. I extracted the spectral indices using a series of IDL codes 

written by Dr. Zhu. Final spectral index images were sent to the co-PI., who conducted 

the following steps to extract and summarize plot level phenology metrics. To extract 
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metrics, the co-PI assigned FIA plots a phenology value by averaging the values of the 

plot’s surrounding Landsat pixels. Some phenology metrics were transformed before 

averaging pixel values in a window. Each index value was extracted and averaged from a 

3x3 pixel window corresponding with each FIA plot locations. This produced an accurate 

plot level approximation since a 3x3 Landsat pixel window is roughly the same size as an 

FIA plot. Once the phenology metrics were extracted and calculated, the co-PI sent the 

data back to me for further statistics.  

Phenology Curves 

I generated phenology curves using the phenology metrics that the PI created and 

extracted from the repaired time series images. Extracted values from across the study 

site were combined and averaged to create a mean value for each time window. I plotted 

values on a line graph with the index values on the y-axis and the day of the year on the 

x-axis to created phenology curves. I made additional curves using only values from plots 

on the island of Mona.  

Linking the Data 

  I combined plot level phenology metrics extracted from satellite imagery and FIA 

data into a single dataset in Microsoft Excel using the plot numbers as the common link. 

Merging these two datasets allowed me to relate field data with remotely sensed data.  
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Statistical Analysis 

I conducted all analysis involving FIA data (AGLB and mortality) at the plot level 

to investigate for relationships between the data and anomalies in phenology. Analyses 

were conducted on all fully forested plots, on all fully forested plots separated into two 

habitat types: dry forests (subtropical dry forest) and humid forests (subtropical moist 

forest, subtropical rain forest, lower montane rain forest, lower montane wet forest, and 

subtropical wet forests), and on fully forested plots only on the main island of Puerto 

Rico. I generated boxplots and histograms for both AGLB and mortality to visually 

assess distributions, patterns, and trends in the data. Data transformations such as 

logarithmic and square root were tested, but ultimately not kept as they failed to 

successfully fit the data to a more normal distribution. 

For analyzing aboveground live biomass, the two variables I utilized were 1. total 

aboveground live biomass (saplings + trees) in megagrams of dry mass per hectare 

(Mg/ha) and 2. net growth in aboveground live biomass in Megagrams of dry mass per 

hectare of forest per year (Mg/ha/yr), which herein is referred to as AGLB and AGLB net 

change, respectively. These variables were generated by the co-PI using models from the 

FIA program. For AGLB, tree-level aboveground live biomass was estimated using 

diameter at breast height and tree height to estimate main stem volume, and allometric 

ratios were used to estimate biomass of tree components (Burrill et al., 2018). Per hectare 

biomass was derived by summing values of saplings and trees from the subplots and 

microplots, then dividing by the forested area of the plot. For AGLB net change, net 
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biomass growth/loss was calculated by summing the growth of survivors from the 

previous inventory cycle (t1) and the new growth from the current inventory cycle (t2), 

then subtracting the mortality from the previous inventory cycle (t1). 

For analyzing mortality, each plot had survival and mortality data, which showed 

the number of individuals that died and the number of individuals that survived. 

Individual plants/vegetation was separated into three categories: saplings, small trees, and 

large trees. Saplings were classified as saplings or seedlings of any size, small trees were 

classified as trees with less than 5 inches diameter breast height (d.b.h.), and large trees 

were classified as trees with greater than or equal to 5 inches d.b.h. Using these variables, 

I calculated percent mortality for saplings, small trees, large trees with the following 

formula: 

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝐶𝑜𝑢𝑛𝑡

𝑆𝑢𝑟𝑖𝑣𝑎𝑙 𝐶𝑜𝑢𝑛𝑡 + 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝐶𝑜𝑢𝑛𝑡
 

Where mortality count is the number of individuals in the plot that died, and survival 

count is the number of living individuals in the plot. 

Kruskal-Wallis Rank Sum Test 

I conducted the Kruskal-Wallis Rank Sum test on the following variables to test 

for significant differences among the four-time frames: AGLB, AGLB net change, and 

the maximum (max) value, minimum (min) value, and integral of the dry season for each 

of the indexes, EVI, NDMI, and NDVI. Kruskal-Wallis was chosen as an alternative, 

non-parametric method to ANOVA because the data did not meet the assumptions 
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required for ANOVA (normal distributions and homogeneity of variances) (Hecke, 

2012). The Kruskal-Wallis Rank Sum Test equation is as follows: 

𝐾 = [
12

𝑁(𝑁 + 1)
 ∑

𝑇𝑖
2

𝑛𝑖
] − 3(𝑁 + 1) 

Where N is the sum of all sample sizes, 𝑇𝑖 is the sum of ranks for the ith sample, and ni is 

the size of the ith sample.  

Dunn’s Test of Multiple Comparisons 

I conducted the Dunn’s Test of Multiple Comparisons, a nonparametric pairwise 

test which follows up a significant Kruskal-Wallis test to determine which group or 

groups are statistically different from one another (Dinno, 2015). This test was conducted 

on each variable listed above for the Kruskal-Wallis test that received a significant test 

result. The Dunn’s Test of Multiple Comparisons formula to calculate the z-test statistic 

for the difference between two groups is as follows: 

𝓏𝑖 =
𝓎𝑖

𝜎𝑖
 

Where 𝑖 is one of the 1 to 𝑚 multiple comparisons, 𝓎𝑖 = 𝑊𝐴 −𝑊𝐵 (Where 𝑊𝐴 is the 

average of the sum of the ranks for it ith group) and 𝜎𝑖 is calculated as: 

𝜎𝑖 = √{
𝑁(𝑁 + 1)

12
−
∑ 𝑇𝑠

3 − 𝑇𝑠
𝑇
𝑠=1

12(𝑁 − 1)
} (

1

𝑛𝐴
+

1

𝑛𝐵
) 

Where N is the total number of observations across all groups, r is the number of tied 

ranks, and 𝑇𝑠 is the number of observations tied at the specific tied value.  
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Simple and Multiple Linear Regression 

I used simple and multiple linear regression to assess the degree to which the FIA 

data (AGLB, mortality) were linearly related to the satellite data (EVI, NDVI, NDMI). 

For analysis on biomass change, multiple linear regression was conducted using AGLB 

and AGLB net change as response variables and max index values, min index values, and 

integral of the dry season for each spectral index as predictor variables. The formula for 

multiple linear regression is as follows: 

𝑌̂ = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + …+ 𝑏𝑝𝑋𝑝 

Where 𝑌̂  is the predicted value of the dependent variable, X1 through Xp are predictor 

variables, b0 is the values of Y when the independent variables are equal to zero, and b1 

through bp are the estimated regression coefficient (LaMorte, 2016).    

For mortality analysis, I conducted multiple linear regression using percent 

mortality of saplings, percent mortality of small trees, and percent mortality of large trees 

as response variables and max index values, min index values, and integral of the dry 

season for each spectral index as predictor variables.  

Additionally, I conducted simple linear regression on percent mortality and delta 

maximum index, or Δmax index. Δmax index was calculated by linking plots using the 

previous plot number, then subtracting the max index values of the current inventory 

cycle (t2) from the max index values from the previous inventory cycle (t1). The formula 

for simple linear regression is as follows: 

𝑌̂ = 𝑏0 + 𝑏1𝑋1 
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Where Ŷ is the predicted value of the dependent variable, X1 is the predictor variable, b0 

is the values of Y when the independent variable is equal to zero, and b1 is the estimated 

regression coefficient (LaMorte, 2016).  
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RESULTS 

Phenology Metrics 

The three spectral indices (EVI, NDMI, and NDVI) were visualized using 

boxplots to analyze the spread of the datasets and the change across the time frames. In 

each figure showing box and whisker plots, X’s indicate the mean value, the lower boxes 

show the 1st quantile, the top boxes show the 3rd quantile, both separated in the middle by 

the median line. The whiskers showing the min and max values for each time frame and 

for each graph outliers were removed. Box and whisker plots were chosen for 

visualization because the data was not normally distributed. During the post-hurricane 

period, there was an initial drop in index values of humid forests directly after the 2017-

2018 time frame. However, in the following year, 2018-2019, there was a spike in humid 

forest values, exceeding the two pre-hurricane time frames (Figures 3, 4, and 5). Dry 

forests were less effected, i.e. maintained similar index values across time frames and 

only showing small changes in the distribution of values.  
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Figure 3: Plot level maxEVI values separated by dry forests (white boxes with black dots) 

and humid forest (grey boxes) for each time frames. K-W are the p-value results 

for the Kruskal-Wallis test. 

 

 

Figure 4: Plot level maxNDMI values separated by dry forests (white boxes with black 

dots) and humid forest (grey boxes) for each time frames. K-W are the p-value 

results for the Kruskal-Wallis test. 

 

K-W Dry: <0.05   K-W Humid: <0.05 

K-W Dry: <0.05   K-W Humid: >0.05 
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Figure 5: Plot level maxNDVI values separated by dry forests (white boxes with black 

dots) and humid forest (grey boxes) for each time frames. K-W are the p-value 

results for the Kruskal-Wallis test. 

Every Kruskal-Wallis Rank Sum Test conducted on the spectral indices, with the 

exception of maxNDMI values for dry forest, showed significant differences (p < 0.05) 

among the time frames. Results for the Dunn’s Test of Multiple Comparisons conducted 

on the spectral indices showed that almost every time frame, regardless or whether it was 

a pre-hurricane or post-hurricane time frame, was significantly different from each other 

(Table 3). When conducted on dry and humid forests separately, I saw more significant 

differences when comparing time frames in the humid forest (Appendix C and D).  

  

K-W Dry: <0.05   K-W Humid: <0.05 
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Table 3: Results of Dunn's Test on phenology metrics for all forests in PRVI. Comparison columns indicates the two time 

frames being compared (1 = 2010-2014, 2 = 2016-2017, 3 = 2017-2018, 4 = 2018-2019). Pre-hurricane time frames 

are in orange and post-hurricane time frames are in blue. An adjusted p-value (P. adj) of <0.05 indicates the two time 

frames being compared are significantly different from each other. 

Index 

Type 

Comparison 

1 (EVI) 

Comparison 2 

(EVI) 

P. adj 

(EVI) 

Comparison 1 

(NDMI) 

Comparison 2 

(NDMI) 

P. adj 

(NDMI) 

Comparison 1 

(NDVI) 

Comparison 2 

(NDVI) 

P. adj 

(NDVI) 

Max 1 2 <0.05 1 2 <0.05 1 2 <0.05 

Max 1 3 1.00 1 3 0.71 1 3 <0.05 

Max 2 3 <0.05 2 3 <0.05 2 3 <0.05 

Max 1 4 <0.05 1 4 <0.05 1 4 <0.05 

Max 2 4 0.87 2 4 1.00 2 4 1.00 

Max 3 4 <0.05 3 4 <0.05 3 4 <0.05 

Min 1 2 <0.05 1 2 <0.05 1 2 <0.05 

Min 1 3 <0.05 1 3 1.00 1 3 1.00 

Min 2 3 <0.05 2 3 <0.05 2 3 <0.05 

Min 1 4 <0.05 1 4 <0.05 1 4 <0.05 

Min 2 4 <0.05 2 4 <0.05 2 4 <0.05 

Min 3 4 <0.05 3 4 <0.05 3 4 <0.05 

IntDry 1 2 0.12 1 2 <0.05 1 2 <0.05 

IntDry 1 3 1.00 1 3 1.00 1 3 1.00 

IntDry 2 3 0.22 2 3 <0.05 2 3 <0.05 

IntDry 1 4 <0.05 1 4 <0.05 1 4 <0.05 

IntDry 2 4 0.23 2 4 1.00 2 4 1.00 

IntDry 3 4 <0.05 3 4 <0.05 3 4 <0.05 
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Aboveground Live Biomass 

The FIA data (AGLB, mortality) exhibited slightly different, but more expected 

trends than the spectral indices across the time frames. Directly after the hurricanes in 

2017-2018, AGLB had an increase in range for dry forests, while humid forest remained 

relatively unchanged (Figure 6). These values and ranges dropped drastically 2 years 

after the hurricane in the 2018-2019 time period. AGLB net change (Figure 7) on the 

other hand dropped/decreased in the first post-hurricane time frame (2017-2018), and 

unlike the spectral indices, showed little to no recovery in the second post-hurricane time 

frame (2018-2019). Unlike the spectral indices, AGLB showed variability in both dry and 

humid forests.  

 

Figure 6: Plot level AGLB values separated by dry forests (white boxes with black dots) 

and humid forest (grey boxes) for each time frames. K-W are the p-value results 

for the Kruskal-Wallis test. 

K-W Dry: <0.05   K-W Humid: <0.05 
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Figure 7: Plot showing plot level AGLB net change values separated by dry forests 

(white boxes with black dots) and humid forest (grey boxes) for each time frames. 

K-W are the p-value results for the Kruskal-Wallis test. 

The Kruskal-Wallis Rank Sum Test on AGLB for all forests (both dry and humid 

forests combined) showed an overall significant difference (p-value=0.0001) among the 4 

time frames. However, when separated by habitat type, only humid forests showed 

significant differences (p=0.02), while dry forests showed no significant differences 

(p=0.55). AGLB net change was significantly different (p=7.10e-11) among the 4- 

frames for both dry and humid forests combined as well as when separated by habitat 

types (p=0.01 for humid forests and p=0.02 for dry forests).  

Results from the Dunn’s Test of Multiple Comparisons conducted on AGLB 

showed that only the 2018-2019 time frame was significantly different from the other 3 

time frames (Table 4). 2010-2014, 2016-2017, and 2017-2018 were not significantly 

K-W Dry: <0.05   K-W Humid: <0.05 



32 

 

  

different when compared to each other. Results from the Dunn’s test on AGLB net 

change showed that the two pre-hurricane time periods (2010-2014 and 2016-2017) were 

not significantly different from each other and the two post-hurricane time periods (2017-

2018 and 2018-2019) were not significantly different from each other (Table 5). 

However, when comparing a pre-hurricane time period and a post-hurricane time periods 

(2010-2014 and 2017-2018, 2010-2014 and 2018-2019, 2016-2017 and 2017-2018, or 

2016-2017 and 2018-2019) there were significant differences between the two time 

frames.
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Table 4: Results of Dunn's Test on AGLB for PRVI. Comparison columns indicates the two time frames being compared (1 

= 2010-2014, 2 = 2016-2017, 3 = 2017-2018, 4 = 2018-2019). Pre-hurricane time frames are in orange and post-

hurricane time frames are in blue. An adjusted p-value (P. adj) of <0.05 indicates the two time frames being compared 

are significantly different from each other. 

Comparison 1 

(ALL) 

Comparison 2 

(ALL) 

P. adj 

(ALL) 

Comparison 1 

(DRY) 

Comparison 

2 (DRY) 

P. adj 

(DRY) 

Comparison 

1 (HUMID) 

Comparison 

2 (HUMID) 

P. adj 

(HUMID) 

1 2 0.17 1 2 1.00 1 2 1.00 

1 3 0.41 1 3 1.00 1 3 1.00 

2 3 1.00 2 3 1.00 2 3 1.00 

1 4 <0.05 1 4 1.00 1 4 <0.05 

2 4 <0.05 2 4 1.00 2 4 <0.05 

3 4 <0.05 3 4 1.00 3 4 <0.05 

 

Table 5: Results of Dunn's Test on AGLB net change for PRVI. Comparison columns indicates the two time frames being 

compared (1 = 2010-2014, 2 = 2016-2017, 3 = 2017-2018, 4 = 2018-2019). Pre-hurricane time frames are in orange 

and post-hurricane time frames are in blue. An adjusted p-value (P. adj) of <0.05 indicates the two time frames being 

compared are significantly different from each other. 

Comparison 1 

(ALL) 

Comparison 2 

(ALL) 

P. adj 

(ALL) 

Comparison 1 

(DRY) 

Comparison 

2 (DRY) 

P. adj 

(DRY) 

Comparison 

1 (HUMID) 

Comparison 

2 (HUMID) 

P. adj 

(HUMID) 

1 2 1.00 1 2 1.00 1 2 <0.05 

1 3 <0.05 1 3 0.07 1 3 <0.05 

2 3 <0.05 2 3 0.16 2 3 <0.05 

1 4 <0.05 1 4 0.22 1 4 <0.05 

2 4 <0.05 2 4 0.56 2 4 <0.05 

3 4 1.00 3 4 1.00 3 4 1.00 
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Multiple linear regression was conducted on PRVI to analyze the relationship 

between AGLB and max index, min index, and integral of the dry season (Table 6). For 

regression with AGLB, significant p-values were found for max and min values for the 

indices, almost exclusively in the pre-hurricane time frames (2010-2014 and 2016-2017). 

Integral of the dry season yielded no significant results for any indices. For regression 

with AGLB net change, NDMI yielded p-values of less than 0.05 for all three spectral 

indices in the 2018-2019 window (Table 7). When the multiple linear regression was run 

on dry and humid forests separately, only significant p-values were found in humid 

forests (Table 8, 9, 10, and 11). However, for all regression analysis that produced 

significant p-values, none produced any high adjusted R-squared values, ranging from 

only 0.07 to 0.27. 

Table 6: P-values from multiple linear regression, conducted on all forests of PRVI for 

AGLB and max index, min index, and integral of the dry season for EVI, NDMI, 

and NDVI.  

Index Index Type 2010-2014 2016-2017 2017-2018 2018-2019 

EVI Max 0.97 < 0.05 0.39 0.61 

EVI Min < 0.05 0.61 0.65 0.43 

EVI IntDry 0.73 0.23 0.68 0.28 

NDMI Max 0.95 0.23 < 0.05 0.98 

NDMI Min < 0.05 < 0.05 0.11 0.82 

NDMI IntDry 0.52 0.12 0.06 0.19 

NDVI Max < 0.05 < 0.05 0.08 0.95 

NDVI Min 0.09 0.42 0.15 0.44 

NDVI IntDry 0.18 0.33 0.06 0.9 
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Table 7: P-values from multiple linear regression, conducted on all forests of PRVI for 

AGLB net change and max index, min index, and integral of the dry season for 

EVI, NDMI, and NDVI. 

Index Index Type 2010-2014 2016-2017 2017-2018 2018-2019 

EVI Max 0.45 0.64 0.83 0.23 

EVI Min 0.67 0.94 0.66 0.19 

EVI IntDry 0.94 0.35 0.55 0.52 

NDMI Max 0.67 0.4 0.84 < 0.05 

NDMI Min 0.53 0.14 0.68 < 0.05 

NDMI IntDry 0.8 0.38 0.62 < 0.05 

NDVI Max 0.43 0.89 0.46 0.06 

NDVI Min 0.64 0.89 0.51 < 0.05 

NDVI IntDry 0.62 0.39 0.5 0.69 

 

Table 8: P-values from multiple linear regression, conducted on only dry forests of 

PRVI for AGLB and max index, min index, and integral of the dry season for 

EVI, NDMI, and NDVI.  

Index Index Type 2010-2014 2016-2017 2017-2018 2018-2019 

EVI Max 0.70 0.59 0.91 0.80 

EVI  Min 0.06 0.23 0.90 0.67 

EVI  IntDry 0.55 0.64 0.89 0.34 

NDMI Max 0.38 0.42 0.58 0.38 

NDMI Min 0.57 0.09 0.98 0.45 

NDMI IntDry 0.17 0.18 0.76 0.33 

NDVI Max 0.07 0.59 0.46 0.051 

NDVI Min 0.89 < 0.05 0.56 0.38 

NDVI IntDry < 0.05 0.13 0.40 0.51 

 

Table 9 :P-values from multiple linear regression, conducted on only dry forests of 

PRVI for AGLB net change and max index, min index, and integral of the dry 

season for EVI, NDMI, and NDVI. 

Index Index Type 2010-2014 2016-2017 2017-2018 2018-2019 

EVI Max 0.50 0.66 0.98 0.13 

EVI Min 0.32 0.21 0.81 0.13 

EVI IntDry 0.74 0.55 0.87 0.19 

NDMI Max 0.76 0.41 0.65 0.29 

NDMI Min 0.21 0.14 0.44 0.14 

NDMI IntDry 0.90 0.30 0.32 < 0.05 

NDVI Max 0.84 0.29 0.34 0.12 

NDVI Min 0.34 0.08 0.38 < 0.05 

NDVI IntDry 0.67 0.33 0.11 0.18 
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Table 10: P-values from multiple linear regression, conducted on only humid forests of 

PRVI for AGLB and max index, min index, and integral of the dry season for 

EVI, NDMI, and NDVI.  

Index Index Type 2010-2014 2016-2017 2017-2018 2018-2019 

EVI Max 0.99 0.11 0.94 0.38 

EVI  Min < 0.05 0.47 0.91 0.80 

EVI IntDry 0.88 0.78 0.81 0.19 

NDMI Max 0.35 0.34 < 0.05 0.87 

NDMI Min 0.18 < 0.05 0.28 0.80 

NDMI IntDry 0.37 0.48 0.44 0.64 

NDVI Max < 0.05 < 0.05 0.31 0.52 

NDVI Min 0.12 0.12 0.30 0.24 

NDVI IntDry 0.90 0.61 0.22 0.75 

 

Table 11: P-values from multiple linear regression, conducted on only humid forests of 

PRVI for AGLB net change and max index, min index, and integral of the dry 

season for EVI, NDMI, and NDVI. 

Index Index Type 2010-2014 2016-2017 2017-2018 2018-2019 

EVI Max 0.62 0.59 0.84 0.69 

EVI  Min 0.87 0.84 0.61 0.52 

EVI IntDry 0.87 0.42 0.60 0.68 

NDMI Max 0.51 0.31 0.89 0.15 

NDMI Min 0.72 0.11 0.72 0.63 

NDMI IntDry 0.77 0.42 0.86 0.79 

NDVI Max 0.49 0.47 0.29 0.08 

NDVI Min 0.82 0.65 0.50 0.73 

NDVI IntDry 0.80 0.22 0.81 0.40 

 

Multiple linear regression was then rerun on only the main island’s plots (Table 

12 and 13). This reduced the analysis from four to only three time frames, as plots on the 

main island were not sampled during the 2018-2019 time frame. Results for AGLB 

remain relatively unchanged, while AGLB net change yielded no significant results. 

When the multiple linear regression was run on the main island’s dry and humid forests 

separately, the majority of the significant p-values were found in humid forests (Table 14, 
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15, 16, and 17). Adjust R-squared values for all regression models ran again yielded only 

low values. 

Table 12: P-values from multiple linear regression, conducted on all forests on the Main 

Island of Puerto Rico for AGLB and max index, min index, and integral of the 

dry season for EVI, NDMI, and NDVI.  

Index Index Type 2010-2014 2016-2017 2017-2018 2018-2019 

EVI Max 0.15 < 0.05 0.39  

EVI  Min 0.08 0.61 0.65  

EVI IntDry 0.84 0.23 0.68  

NDMI Max 0.131 0.20 < 0.05  

NDMI Min 0.23 < 0.05 0.11  

NDMI IntDry 0.86 0.09 0.06  

NDVI Max < 0.05 < 0.05 0.08  

NDVI Min 0.65 0.43 0.15  

NDVI IntDry 0.95 0.33 0.06  

 

Table 13: P-values from multiple linear regression, conducted on all forests on the Main 

Island of Puerto Rico for AGLB net change and max index, min index, and 

integral of the dry season for EVI, NDMI, and NDVI. 

Index Index Type 2010-2014 2016-2017 2017-2018 2018-2019 

EVI Max 0.27 0.64 0.83  

EVI  Min 0.95 0.94 0.66  

EVI IntDry 0.98 0.35 0.55  

NDMI Max 0.30 0.40 0.84  

NDMI Min 0.88 0.14 0.68  

NDMI IntDry 0.82 0.38 0.62  

NDVI Max 0.32 0.89 0.46  

NDVI Min 0.92 0.89 0.51  

NDVI IntDry 0.80 0.39 0.50  
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Table 14: P-values from multiple linear regression, conducted on only dry forests on the 

Main Island of Puerto Rico for AGLB and max index, min index, and integral of 

the dry season for EVI, NDMI, and NDVI.  

Index Index Type 2010-2014 2016-2017 2017-2018 2018-2019 

EVI Max 0.76 0.59 0.91  

EVI  Min 0.14 0.23 0.90  

EVI IntDry 0.50 0.64 0.90  

NDMI Max 0.50 0.43 0.58  

NDMI Min 0.66 0.09 0.99  

NDMI IntDry 0.80 0.18 0.76  

NDVI Max 0.21 0.59 0.46  

NDVI Min 0.65 < 0.05 0.56  

NDVI IntDry 0.28 0.13 0.40  

 

Table 15: P-values from multiple linear regression, conducted on only dry forests on the 

Main Island of Puerto Rico for AGLB net change and max index, min index, 

and integral of the dry season for EVI, NDMI, and NDVI. 

Index Index Type 2010-2014 2016-2017 2017-2018 2018-2019 

EVI Max 0.32 0.66 0.98  

EVI  Min 0.58 0.21 0.81  

EVI IntDry 0.92 0.55 0.87  

NDMI Max 0.60 0.41 0.65  

NDMI Min 0.94 0.14 0.44  

NDMI IntDry 0.48 0.30 0.32  

NDVI Max 0.75 0.29 0.34  

NDVI Min 0.79 0.08 0.38  

NDVI IntDry 0.84 0.33 0.11  

 

Table 16: P-values from multiple linear regression, conducted on only humid forests on 

the Main Island of Puerto Rico for AGLB and max index, min index, and 

integral of the dry season for EVI, NDMI, and NDVI.  

Index Index Type 2010-2014 2016-2017 2017-2018 2018-2019 

EVI Max 0.29 0.12 0.94  

EVI  Min 0.14 0.47 0.91  

EVI IntDry 0.96 0.78 0.81  

NDMI Max 0.06 0.30 < 0.05  

NDMI Min 0.39 < 0.05 0.28  

NDMI IntDry 0.95 0.36 0.44  

NDVI Max < 0.05 < 0.05 0.31  

NDVI Min 0.51 0.12 0.30  

NDVI IntDry 0.22 0.14 0.45  
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Table 17: P-values from multiple linear regression, conducted on only humid forests on 

the Main Island of Puerto Rico for AGLB net change and max index, min index, 

and integral of the dry season for EVI, NDMI, and NDVI. 

Index Index Type 2010-2014 2016-2017 2017-2018 2018-2019 

EVI Max 0.33 0.59 0.84  

EVI  Min 0.73 0.84 0.61  

EVI IntDry 0.78 0.42 0.60  

NDMI Max 0.25 0.32 0.89  

NDMI Min 0.90 0.11 0.72  

NDMI IntDry 0.52 0.43 0.86  

NDVI Max 0.34 0.47 0.29  

NDVI Min 0.98 0.65 0.50  

NDVI IntDry 0.88 0.30 0.22  

 

Simple linear regression was conducted on AGLB versus the Δmax change of each 

spectral index. Regression yielded significant p-values for all indices; however, the low 

adjusted R-squared values indicate a weak relationship between the variables (Table 18 

and 19). Data transformations were tested but did not yield better results. 

Table 18: P-values from simple linear regression conducted on all forests for AGLB and 

the Δmax index values for EVI, NDMI, and NDVI. 

 Δmax EVI Δmax NDMI Δmax NDVI 

AGLB (PRVI) < 0.05 < 0.05 <0.05 

AGLB (only Main Island) < 0.05 < 0.05 0.41 

 

Table 19: Adjusted R2 values from simple linear regression conducted on all forests for 

AGLB and the Δmax index values for EVI, NDMI, and NDVI. 

 Δmax EVI Δmax NDMI Δmax NDVI 

AGLB (PRVI) 0.23 0.22 0.05 

AGLB (only Main Island) 0.14 0.20 0.0 
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Mortality 

Percent mortality was calculated for saplings, small trees, and large trees (Table 

20). Overall, there was an increase in percent mortality in all categories after the 

hurricanes, which occurred between the 2016-2017 and 2017-2018 time frame. This trend 

is seen in the complete dataset, as well as when separated into dry and humid forests. 

Similar trends were also seen in percent mortality when analyzing only plots on the main 

island of Puerto Rico (Table 21). There was no data for the 2018-2019 time frame 

because no plots were surveyed on the main island during that time. 

Table 20: Average percent mortality of PRVI for each time frame, additionally 

separated by humid and dry forests. Bold values indicate the percent mortality 

of all: both humid and dry forest combined. 

 2010-2014 2016-2017 2017-2018 2018-2019 

Sapling (All) 19.7% 20.6% 24.7% 34.9% 

Sapling (Dry) 17.0% 15.4% 24.1% 37.0% 

Sapling (Humid) 21.1% 21.7% 24.9% 33.0% 

Small Tree (All) 9.3% 9.1% 13.6% 16.8% 

Small Tree (Dry) 7.0% 6.9% 10.7% 10.7% 

Small Tree (Humid) 10.4% 9.4% 14.1% 21.7% 

Large Tree (All) 5.6% 6.5% 16.6% 15.6% 

Large Tree (Dry) 0.0% 0.0% 20.0% 0.0% 

Large Tree (Humid) 7.2% 7.5% 15.9% 20.0% 
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Table 21: Average percent mortality of only plots on the Main Island of Puerto Rico 

for each time frame, additionally separated by humid and dry forests. Bold 

values indicated the percent mortality of all both humid and dry forest combined.  

 2010-2014 2016-2017 2017-2018 2018-2019 

Sapling (All) 22.3% 20.4% 28.9%  

Sapling (Dry) 19.1% 14.6% 47.1%  

Sapling (Humid) 22.6% 21.0% 27.3%  

Small Tree (All) 10.9% 10.0% 14.8%  

Small Tree (Dry) 3.0% 9.9% 26.7%  

Small Tree (Humid) 11.6% 10.0% 13.8%  

Large Tree (All) 8.7% 6.9% 19.6%  

Large Tree (Dry) 0.0% 0.0% 50%  

Large Tree (Humid) 9.4% 7.7% 16.5%  

 

When conducting the Kruskal-Wallis Rank Sum Test on percent mortality by time 

frame, percent large tree mortality was significantly different among time frames for both 

forest types, and percent small tree mortality was significantly different among time 

frames for humid forest only (Table 22). However, when rerunning the test on only the 

main island’s plots, none of the variables were significantly different (Table 23). I did not 

conduct the Dunn’s test on mortality, since it did not show significant difference among 

groups, aside from large trees which showed significance by had a very small sample 

size. 

Table 22: P-value results of Kruskal-Wallis Rank Sum Test on PRVI for percent 

mortality of saplings, small trees, and large trees.  

 All Forests (Dry and Humid) Dry Forests Humid Forests 

Saplings 0.11 0.18 0.53 
Small Trees 0.08 0.93 < 0.05 
Large Trees < 0.05 < 0.05 < 0.05 
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Table 23: P-value results of Kruskal-Wallis Rank Sum Test on only the Main Island for 

percent mortality of saplings, small trees, and large trees. 

 All Forests (Dry and Humid) Dry Forests Humid Forests 

Saplings 0.20 0.18 0.43 
Small Trees 0.45 0.85 0.41 
Large Trees 0.07 0.12 0.10 

 

Multiple linear regression was conducted on percent mortality (Table 24). 

Significant p-values were scattered among the time frames, such as significant values for 

NDVI max, min, and integral of the dry season with percent sapling mortality in 2016-

2017, and minEVI and minNDMI with percent large tree mortality in 2010-2014. There 

were many significant p-values in the 2018-2019 time window, however they did not 

remain significant when the data was separated into humid and dry forests (Appendix E) 

or when the data was reduced to looking at just the main island of Puerto Rico (Appendix 

F, G). Between dry and humid forests, humid forests appeared to show more significance 

than dry. For all regression analysis that produced significant p-values, none produced 

any high adjusted R-squared values.
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Table 24: P-values of multiple linear regression among time frames for the percent mortality saplings, small trees, and large 

trees, conducted on all PRVI plots.  

Index Variable % Sap 

Mort 

(2010-

2014) 

% ST 

Mort 

(2010-

2014) 

% LT 

Mort 

(2010-

2014) 

% Sap 

Mort 

(2016-

2017) 

% ST 

Mort 

(2016-

2017) 

% LT 

Mort 

(2016-

2017) 

% Sap 

Mort 

(2017-

2018) 

% ST 

Mort 

(2017-

2018) 

% LT 

Mort 

(2017-

2018) 

% Sap 

Mort 

(2018-

2019) 

% ST 

Mort 

(2018-

2019) 

% LT 

Mort 

(2018-

2019) 

EVI Max 0.34 0.54 0.58 0.30 0.38 0.88 0.98 0.27 0.40 0.29 0.06 0.29 

EVI Min 0.29 0.38 < 0.05 0.72 0.68 0.81 0.56 0.52 0.40 0.26 < 0.05 0.13 

EVI IntDry 0.46 0.45 0.65 0.26 0.71 0.80 0.79 0.86 0.11 0.06 < 0.05 0.09 

NDMI Max 0.93 0.83 0.07 0.85 0.10 0.99 0.27 0.16 0.38 0.48 < 0.05 0.19 

NDMI Min 0.80 0.48 0.1 0.45 0.07 0.92 0.86 0.28 0.27 0.23 < 0.05 0.12 

NDMI IntDry 0.84 0.27 0.98 0.77 0.10 0.79 0.81 0.17 0.08 < 0.05 < 0.05 0.07 

NDVI Max 0.50 0.90 0.44 < 0.05 0.23 0.08 0.39 0.84 0.56 0.51 0.09 0.90 

NDVI Min 0.71 0.39 < 0.05 < 0.05 0.58 0.11 0.51 0.76 0.54 0.21 < 0.05 0.73 

NDVI IntDry 0.66 0.87 0.70 < 0.05 0.79 0.75 0.71 0.76 0.13 < 0.05 0.62 0.23 
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Simple linear regression was additionally run to investigate the relationship 

between percent mortality and Δmax index (Table 25 and 26). After running on PRVI and 

only the main island of Puerto Rico, no significant relationships were found. 

Table 25: Results (p-values) from simple linear regression conducted on PRVI’s percent 

mortality and the Δmax index values for EVI, NDMI, and NDVI. 

 % Sap Mort % ST Mort % LT Mort 

Δmax EVI 0.39 0.07 0.18 

Δmax NDMI 0.44 0.63 0.23 

Δmax NDVI 0.61 0.29 0.78 

 

Table 26: Results (p-values) from simple linear regression conducted on only the Main 

Island’s percent mortality and the Δmax index values for EVI, NDMI, and 

NDVI. 

 % Sap Mort % ST Mort % LT Mort 

Δmax EVI 0.86 0.23 0.26 

Δmax NDMI 0.22 0.59 0.37 

Δmax NDVI 0.75 0.79 0.99 

 

Phenology Curves 

Phenology curves were generated for each index, visualizing the trends over 12 

months. 2010-2014 and 2016-2017 were combined into one pre-hurricane curve (Figure 

8). The values of the pre-hurricane time frames were weighted when combining, since 

2010-2014 captures four years while 2016-2017 only captures one.  
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Figure 8: Phenology curves derived from FIA data showing EVI changes before and after 

the 2017 hurricanes. The x-axis in the months going across with 1 being January 

and 12 being December. 

 

Phenology curves were also made using only plots from the island of Mona 

(Figure 9). This reduction in sample size focused in on a smaller area with more data 

availability and only one forest type, and thus produce more sound phenology curves.  
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Figure 9: Phenology curves derived from FIA data, collected only from the island Mona, 

showing EVI changes before and after the 2017 hurricanes. The x-axis in the 

months going across with 1 being January and 12 being December. 
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DISCUSSION 

This study showed that significant changes in tropical forests caused by 

hurricanes could be detected using remote sensing data. I was able to detect these trends 

by obtaining, processing, and producing near cloud-free imagery. Trends seen in the 

remote sensing data could also be seen in the FIA data. However, the inconsistency and 

scarcity in both the satellite data and the FIA data made it challenging to detect strong 

relationships between the datasets. These same challenges were present when generating 

phenology curves, but I was able to find more consistent trends when the study area was 

narrowed to a region with one forest type and no data gaps. Additionally, analysis further 

affirmed the necessity of more frequent field surveying to ground truth the remote 

sensing data. 

Phenology Metrics 

For the three spectral indices, I saw an initial drop in index values directly after 

the hurricane, followed but a spike in values the following year, especially in humid 

forests implying a sudden crash followed by a quick recovery (Figures 3, 4, and 5). It 

appears the first year after the hurricanes, the index values were low since the forests 

were stripped of their leaves, damaged, or killed, and therefore were producing less 

chlorophyll and taking in less moisture (Cox et al., 2019). However, in the second year 

post-hurricane (2018-2019) there was a spike in index values as the forests began to 

recover and regrow. This could be from new plants or species flourishing with a more 
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open canopy or from the surviving trees beginning to regrow, producing more 

chlorophyll, and taking in more water (Reed et al., 1994). 

When conducting the Kruskal-Wallis Rank Sum Test on the spectral indices for 

all forests and when separated into dry and humid forests, all but 1 test, maxNDMI values 

for dry forest, showed significant differences among time frames. This was an indicator 

that these variables, which were generated using remotely sensed data, were able to 

detect on-the-ground forest changes. Results from Dunn’s Test for Multiple Comparisons 

on the phenology metrics further emphasized the necessity for ground truthing when 

analyzing remote sensing data, as many of the results from these phenology metrics did 

not follow the same trends as the FIA data (Table 3). Some results contradicted trends 

that may have been expected, for instance maxNDMI for all forests shows significant 

different between its two pre-hurricane time frames (2010-2014 and 2016-2017) and 

significant difference between its two post-hurricane time frames (2017-2018 and 2018-

2019), but no significant differences between some pre- and post-hurricane time frames 

(2010-2014 and 2017-2018, and 2016-2017 and 2018-2019). There was however, 

consistency among phenology metrics, i.e. the same time frames showing significant 

differences in one phenology metric were also significant for the other two metrics. These 

results also reaffirmed that more change was occurring in the humid forests, since most 

of the time frames for dry forests were not significantly different, but humid forests were.  
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Aboveground Live Biomass 

Analyzing the boxplots of AGLB and AGLB net change showed there was a 

dramatic decrease, specifically in the humid forests, in the last two time frames (Figures 6 

and 7). Since hurricanes are highly disruptive and destructive, a large decrease in AGLB 

and AGLB net change after the hurricanes was expected. The Kruskal-Wallis Rank Sum 

Test confirmed that these differences among time frames were significant.  

When looking at AGLB and AGLB net change separated by forest type, a trend 

can be seen of humid forests having more variability among time frames than dry forests. 

When running the Kruskal-Wallis test on AGLB separated by forest type, only humid 

forests showed significant changes, further emphasizing that humid forests were more 

substantially altered among time frames. This could mean that humid forests or certain 

species within the humid forests are less resistant to environmental changes (Zimmerman 

et al., 1994; Lugo & Frangi, 2016).   

Dunn’s Test for Multiple Comparisons on AGLB and AGLB net change yielded 

many significant results. Looking at AGLB, time frame 4’s humid forest (2018-2019) 

was significantly different from the other three time frames (Table 4). This matched the 

trends seen in the box plots, since we saw consistency in the 2 pre-hurricane time frames 

and little change in the first post-hurricane time frame, but a major drop in the 2nd post-

hurricane time frame (Figure 6). AGLB net change’s results also matched the trends 

visualized in the boxplots, as I found significant differences between the pre-hurricane 

time frames (2010-2014 and 2016-2017) and the post-hurricane time frames (2017-2018 
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and 2018-2019) (Figure 7, Table 5). Additionally, these results reaffirms that these were 

hurricane related changes, as there were no significant differences when comparing the 

two pre-hurricane periods with each another, and no significant differences when 

comparing the two post-hurricane periods with each other. Only significant differences 

were seen when comparing pre- and post-hurricane time frames. 

Beyond both detecting significant change, I detected very few significant linear 

relationships between the FIA data and the remotely sensed data. Significant linear 

relationship that were detected explained very little variation in the data. When 

conducting multiple linear regression on both AGLB and AGLB net change versus the 

spectral indices, while I did see some significant p-values, adjusted R-squared values 

were low and overall, there were not any strong trends (Table 6 and 7). Breaking down 

the data to look at only dry forests or humid forest, or just the main island of Puerto Rico, 

did not yield any stronger results (Table 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17).  

When conducting simple linear regression, there were strong relationships 

detected from AGLB of saplings and Δmax indices, however I hypothesize that there is no 

cause-and-effect relationship, but instead an association (Table 18 and 19). Despite many 

of the linear models having a significant p-value, the adjust R-squared values were 

relatively low, showing the data did not fit the regression line well. We can interpret this 

as high sapling biomass patches suffered most of the negative effects of the hurricanes, 

such as loss of vigor, as represented by the drop in mean EVI. 
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Mortality 

While the increase in percent mortality can be seen in all three categories after the 

hurricanes, only large trees showed statistical significance (Table 22). This finding is 

likely attributed to lack of data, as the sample sizes for large trees were much smaller 

than the other two categories. Some plots had only 1 or 2 large trees, while others didn’t 

have any. This makes the loss or survival of even a single large tree highly influential, 

and likely negates any significant findings.  

Multiple linear regression on percent mortality and spectral indices did not yield 

any stronger results or trends (Table 24, Appendix E, F, G). This could mean that the on-

the-ground changes occurring that were reflected in the FIA data may not be as easily 

detectable with the remote sensing data. This could be from the limitations of Landsat, 

such as its 30 by 30 meter spectral resolution or its 16 day return time (Zhang et al., 

2009). It could also mean that the changes occurring are non-linear or more complex than 

the regression is able to show. 

When conducting simple linear regression on percent mortality of saplings, small 

trees, and large trees, with the Δmax index, I found no significant relationships (Table 25). 

I further isolated the data to only include plots located on the main island of Puerto Rico 

but still found no significant relationship (Table 26). When separating by habitat type, a 

linear relationship was only found in humid forests between percent mortality of small 

trees and a Δmax EVI, albeit with a low R-squared value.  
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Phenology Curves 

For the phenology curves, the extreme dips in the curves are due to the lack of 

data (Figure 8). Where these dips occurred, the only data available during that time frame 

was from the island of Mona and Southwestern Puerto Rico, or just Mona (Appendix A). 

This trend is expected, as the western regions of the island are more cloud-free, but also 

are largely dry forests with generally lower index values. Since data from these regions 

are the only ones available during those time frames, it is creating these dips that would 

normally be balanced and averaged out with other phenology data from around the island.  

From generating phenology curves using only data from Mona, I produced 

meaningful curves (Figure 9). The two green ups and brown downs can be clearly seen in 

the pre-hurricane phenology curve, which was generated using the 2010-2014 and 2016-

2017 time frames. In the pre-hurricane time frame the first green up was around mid-May 

(5th and 6th month), and the second, larger green up was from September to October (9th 

to 11th month). However, the 2017-2018 and 2018-2019 time frames produced quite 

difference curves. For these time frames I still had two green ups and two brown downs, 

but their timing was different. The post-hurricane time frames had their largest green up 

first, from mid-May to August (4th to 7th month), followed by a smaller green up around 

mid-October (10th month). Another interesting trend we can see is right after the 

hurricane is the large increase in EVI values in both post-hurricane time windows. The 

values are significantly larger in the 2017–2018 time frame and then drop down in 2018-

2019, closer to but still above the pre-hurricane curves.  
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The trend visualized in Mona phenology curves were different than the trends 

seen in boxplots for PRVI and the main island, which show that index values tended to 

drop in 2017-2018 directly after the hurricanes, then shoot up in 2018-2019 as the trees 

are greening up and recovering. However, these phenology curves are still very skewed 

due to the data gaps (missing time windows during the year when cloud cover was so bad 

that we could not use the images). These data gaps are causing the data from the very 

small island of Mona, which is only dry forests, to have a very strong influence on what 

is supposed to be phenology curves of the entire study site. Mona is not a strong 

representation of the entire island of Puerto Rico and the U.S. Virgin Islands. The 

phenology curves produced with only Mona’s data should be only seen as representing 

Mona, and not assumed as a representation of all the islands. An alternative method for 

generating more meaningful phenology curves would be utilizing all the pixels across the 

islands, not just pixels that align with the FIA plots.  

Exploratory Analysis 

Since finding a significant relationship between the remote sensing data and FIA 

data proved to be challenging, I additionally singled out the EVI for humid forests dataset 

to generate scatterplots to see if I could find any other interesting trends and patterns. EVI 

for humid forests was selected to investigate because it was the dataset with the most 

significant p-values.  

The range of the data in the pre-hurricane time frames stayed relatively consistent. 

In the 2010-2014 time frame, most points fell between an EVI value of 0.5 and 0.8 and 
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between 0 and 200 AGLB in mg/ha (Figure 10-A). In the 2016-2017 time frame, most 

points fell between an EVI value of 0.55 and 0.85, slightly higher than the previous time 

frame, but stayed between 0 and 200 for AGLB in mg/ha (Figure 10-B). In the two post-

hurricane time frames, the range of the data changed. In the 2017-2018 time frame, most 

points fell between an EVI value of 0.55 and 0.75 and between 0 and 200 AGLB in 

mg/ha (Figure 10-C). In the 2018-2019 time frame, most points fell between an EVI 

value of 0.7 and 0.9, but between 0 and 100 AGLB in mg/ha (Figure 10-D). While the 

EVI values appear to increase, the amount of AGLB dropped significantly by roughly 

half. 

 In the prehurricane time frames the trend lines have a slightly positive trend. 

While the R-squared values for these time frames were very low, it is interesting and 

noteworthy that both had a similar trend that explain roughly 5% of variation in the data. 

These were also the two time frames with the most FIA plots, with 223 plots for 2010-

2014 and 96 plots for 2016-2017. Although a high R-squared values is generally desired, 

perhaps 5% variation is all that can be explained using phenology metrics for forested 

areas with dense canopy cover (Pettorelli et al., 2005). 

In the two post-hurricane time frames, there is almost a straight trend line in the 

2017-2018 time frame, and a slightly negative trend line in the 2018-2019 time frame. 

The post-hurricane time frames do not have as many FIA plots as the pre-hurricane time 

frame, with 37 plots in the 2017-2018 time frame and 23 plots in the 2018-2019 time 

frame. Because of this scarcity of data it is difficult to see as clear shapes or trends in the 

data.   
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Figure 10: Scatterplots showing linear models for PRVI’s Humid Forest for each time frame for AGLB in Mg/ha on the y 

axis and maximum EVI value on the x axis. The black dotted line shows the best trend line.   
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When looking all the FIA plots for every time frame on the scatter plot, we can 

see there is no obvious linear trends (Figure 11). Points generally are not lower than an 

EVI value of 0.55 and fan out into a megaphone shape as EVI increases. Most of the 

points fall between an EVI value of 0.6 and 0.8 and an AGLB value of 0 and 200 Mg/ha.  

 

Figure 11: Scatterplot showing a linear model of PRVI’s Humid Forests all time frames 

for aboveground live biomass in mg/ha on the y axis and maximum EVI value on the x 

axis. The black dotted line shows the best trend line. 
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we would want surveying of the same set of plots twice a month, in line with when 
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periods, or if the hurricanes altered this pattern.  

0

50

100

150

200

250

300

350

400

450

0.4 0.5 0.6 0.7 0.8 0.9 1

A
G

L
B

 i
n
 M

g
/h

a

maximum EVI value

2010-2014 2016-2017 2017-2018 2018-2019



57 

 

  

Uncertainties  

In the mortality data, AGLB data, and phenology data the effects of the hurricane 

can be visually seen. For mortality, I saw an increase in percent mortality in sapling, 

small trees, and large trees after the hurricanes. For AGLB, there was a decrease in 

Mg/ha after the hurricanes. For AGLB net change, there was a drop directly after the 

hurricanes, followed by an increase as the plants begin to recover 1 year later. For 

phenology data, in all indices there was an initial drop in index values in the 2017-2018 

time frame after the hurricane, followed by a spike in index value the following year, 

even higher than pre-hurricane values, as the forest was recovering. 

These changes were also verified using the Kruskal-Wallis Rank Sum Test, 

confirming that there was significant change among the time frame, indicating the 

hurricanes caused significant, detectable change. However, beyond identifying significant 

change, I was not able to identify any linear relationships that linked the satellite derived 

phenology metrics to the on the ground FIA data. This could be for a variety of reasons of 

reasons, such as preprocessing errors or differences in sampling of on the ground plots. 

Another factor to consider is that these are dense tropical forests, and Landsat has a 30 x 

30 meters pixel size and only captures the top of the canopy. Because of this, it does not 

detect understory trees, shrubs, or any other complexity that lies underneath the canopy 

(Zhang et al., 2009). Additionally, EVI and NDVI are vegetation indices and NDMI is a 

moisture index, i.e., only proxies for biomass (Santin-Janin et al., 2009). Because of this 

we may often find discrepancies in our results, as large trees being destroyed and 
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replaced with new, small trees would yield smaller AGLB values, but would likely show 

a high EVI and NDVI values as there is a lot of plant growth being detected (Gaw & 

Richards, 2021). Trees also grow rapidly when they are young, which could have 

contributed to the sharp increase in index values in the last time frame as new growth is 

booming.  
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CONCLUSIONS AND RECOMMENDATIONS 

This study demonstrated the ability and challenges of Earth observations to detect 

the effects of climatic anomalies across a tropical landscape. I demonstrated a novel 

approach to detecting and removing cloud cover using ENVI and IDL. This method 

allowed for the reconstruction of time series images through a series of codes and 

processes. With the increase in climatic anomalies as climate change intensifies, I believe 

this methodology will provide a solid baseline for remote tropical forest phenology 

detection and allow for future work and expansion.  

The goals of this study were to evaluate the effects of the hurricanes on 

aboveground live biomass and tree mortality and to detect trends in relation to changes in 

phenological metrics. While I was able to detect substantial changes that occurred in 

AGLB and percent mortality after the hurricanes, substantial trends and relationships 

with remote sensing indices were either weak or not detectable.  

In this study, phenology curves were generated for visual interpretation. Further 

research could examine temporal curves from these indices to summarize phenological 

stages, create mean phenology variables utilizing similarities among years, and find 

patterns indicative of forest characteristics. Anomalies could also be quantified by 

determining the deviation of phenology matrices between the post disturbance periods 

(2017-2018 and 2018-2019) and the normal, undisturbed periods (2010-2014 and 2016-

2017). These deviations could be used to link climate and vegetation and thus examine 

mortality and growth in relation to future change. Additionally, while I only looked at dry 
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and humid forests, the humid forests can be further divided into 5 different types: 

subtropical moist, subtropical rain, lower montane rain, lower montane wet, and 

subtropical wet forests (Miller & Lugo, 2009). Future analysis could be conducted on 

these humid forest types since I found more accuracy when looking at just the dry forests 

alone.  

One of the primary conclusions from this analysis is the phenology and forest 

changes relationship is more complex than a linear relationship could explain, or that the 

data or analyses are not robust enough to detect it. Future studies may find value in 

incorporating additional factors such as species diversity, forest type beyond just dry and 

humid, landscape elements such as slope, aspect, and elevation, and climatic variables 

such as precipitation, temperature, and hurricane path. Incorporating other sources of on-

the-ground data, similar to FIA but with consistent, more frequent resampling could also 

aid in further studies. Adding in other satellite imagery such as Sentinel, MODIS, or 

imagery from high resolution private satellites may also be of value. Another avenue to 

be explored would be conducting patch analysis on FIA data and grouping plots together 

based on region and index range to better identify anomalies. Tropical forests are 

complex ecosystems and looking at these variables may yield insightful results. The data 

has provided useful information for researchers using Earth observation to detect climatic 

changes and can be used in future remote sensing and climate related studies.  
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APPENDICES 

Appendix A: Maps showing Forest Inventory and Analysis (FIA) plot locations on PRVI 

during each time frame. 
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Appendix B: Number of FIA plots sampled for mortality in each region for each time 

frame. There’s a combined total of 358 plots, 264 of which were sampled on the 

main island of Puerto Rico. 

Region (abbrev.) 2010-14 2016-17 2017-18 2018-19 Total 

Northwest and Central Puerto Rico (Main) 101 61 26  188 

Northeast Puerto Rico (NEMain) 13 11 3  27 

Southeast Puerto Rico (SEMain) 6 4   10 

Southwest Puerto Rico (SW) 20 14 5  39 

Mona (Mona) 25    25 

Vieques (NE1) 14   15 29 

Culebra (NE2) 7   6 13 

St Croix (SE1) 12    12 

St Thomas and St John (NE3)  15    15 

Total 213 90 34 21 358 
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Appendix C: Results of Dunn's Test on phenology metrics for dry forests in PRVI. Comparison columns indicates the two 

time frames being compared (1 = 2010-2014, 2 = 2016-2017, 3 = 2017-2018, 4 = 2018-2019). Pre-hurricane time 

frames are in orange and post-hurricane time frames are in blue. An adjusted p-value (P. adj) of <0.05 indicates the 

two time frames being compared are significantly different from each other. 

Index 

Type 

Comparison 

1 (EVI) 

Comparison 2 

(EVI) 

P. adj 

(EVI) 

Comparison 1 

(NDMI) 

Comparison 

2 (NDMI) 

P. adj 

(NDMI) 

Comparison 1 

(NDVI) 

Comparison 2 

(NDVI) 

P. adj 

(NDVI) 

Max 1 2 0.30 1 2 0.65 1 2 0.06 

Max 1 3 1.00 1 3 1.00 1 3 1.00 

Max 2 3 0.39 2 3 1.00 2 3 1.00 

Max 1 4 0.46 1 4 1.00 1 4 0.14 

Max 2 4 1.00 2 4 1.00 2 4 1.00 

Max 3 4 0.42 3 4 1.00 3 4 1.00 

Min 1 2 0.07 1 2 0.15 1 2 <0.05 

Min 1 3 0.72 1 3 0.21 1 3 0.26 

Min 2 3 1.00 2 3 1.00 2 3 1.00 

Min 1 4 <0.05 1 4 0.08 1 4 <0.05 

Min 2 4 1.00 2 4 1.00 2 4 1.00 

Min 3 4 1.00 3 4 1.00 3 4 1.00 

IntDry 1 2 1.00 1 2 <0.05 1 2 <0.05 

IntDry 1 3 0.16 1 3 1.00 1 3 <0.05 

IntDry 2 3 1.00 2 3 1.00 2 3 1.00 

IntDry 1 4 <0.05 1 4 <0.05 1 4 <0.05 

IntDry 2 4 <0.05 2 4 <0.05 2 4 <0.05 

IntDry 3 4 1.00 3 4 <0.05 3 4 <0.05 
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Appendix D: Results of Dunn's Test on phenology metrics for humid forests in PRVI. Comparison columns indicates the 

two time frames being compared (1 = 2010-2014, 2 = 2016-2017, 3 = 2017-2018, 4 = 2018-2019). Pre-hurricane time 

frames are in orange and post-hurricane time frames are in blue. An adjusted p-value (P. adj) of <0.05 indicates the 

two time frames being compared are significantly different from each other. 

Index 

Type 

Comparison 1 

(EVI) 

Comparison 2 

(EVI) 

P. adj 

(EVI) 

Comparison 1 

(NDMI) 

Comparison 2 

(NDMI) 

P. adj 

(NDMI) 

Comparison 1 

(NDVI) 

Comparison 2 

(NDVI) 

P. adj 

(NDVI) 

Max 1 2 <0.05 1 2 <0.05 1 2 <0.05 

Max 1 3 <0.05 1 3 <0.05 1 3 <0.05 

Max 2 3 <0.05 2 3 <0.05 2 3 <0.05 

Max 1 4 <0.05 1 4 <0.05 1 4 <0.05 

Max 2 4 <0.05 2 4 <0.05 2 4 <0.05 

Max 3 4 <0.05 3 4 <0.05 3 4 <0.05 

Min 1 2 <0.05 1 2 <0.05 1 2 <0.05 

Min 1 3 <0.05 1 3 <0.05 1 3 <0.05 

Min 2 3 <0.05 2 3 <0.05 2 3 <0.05 

Min 1 4 <0.05 1 4 <0.05 1 4 <0.05 

Min 2 4 <0.05 2 4 1.00 2 4 1.00 

Min 3 4 <0.05 3 4 <0.05 3 4 <0.05 

IntDry 1 2 1.00 1 2 <0.05 1 2 <0.05 

IntDry 1 3 <0.05 1 3 <0.05 1 3 <0.05 

IntDry 2 3 <0.05 2 3 <0.05 2 3 <0.05 

IntDry 1 4 1.00 1 4 <0.05 1 4 <0.05 

IntDry 2 4 1.00 2 4 1.00 2 4 1.00 

IntDry 3 4 <0.05 3 4 <0.05 3 4 <0.05 
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Appendix E: P-values of Multiple linear regression between time frames on the percent mortality saplings, small trees, and 

large trees, conducted on dry forests and humid forests on all PRVI plots. Bold indicates a significant p-value of 

less than 0.05. 

Index Band Habitat 

Type 

% Sap 

Mort 

(2010-

2014) 

% ST 

Mort 

(2010-

2014) 

% LT 

Mort 

(2010-

2014) 

% Sap 

Mort 

(2016-

2017) 

% ST 

Mort 

(2016-

2017) 

% LT 

Mort 

(2016-

2017) 

% Sap 

Mort 

(2017-

2018) 

% ST 

Mort 

(2017-

2018) 

% LT 

Mort 

(2017-

2018) 

% Sap 

Mort 

(2018-

2019) 

% ST 

Mort 

(2018-

2019) 

% LT 

Mort 

(2018-

2019) 

EVI Max Dry 0.99 0.52 NA 0.12 0.09 NA 0.75 0.85 0.87 0.89 < 0.05 NA 

EVI Min Dry 0.57 0.55 NA 0.08 0.20 NA 0.91 0.99 0.98 1 < 0.05 NA 

EVI IntDry Dry 0.42 0.12 NA 0.31 0.37 0 0.49 0.70 0.73 0.51 < 0.05 NA 

NDMI Max Dry 0.58 0.17 NA 0.44 0.82 NA 0.94 NA NA 0.26 0.19 NA 

NDMI Min Dry 0.52 0.34 NA 0.33 0.69 NA 0.55 NA NA 0.18 0.07 NA 

NDMI IntDry Dry 0.86 0.77 NA 0.20 0.57 NA 0.46 NA NA 0.23 0.06 NA 

NDVI Max Dry 0.39 0.17 NA 0.15 0.98 NA 0.89 0.63 0.60 0.2 0.26 NA 

NDVI Min Dry 0.16 0.65 NA 0.21 0.82 NA 0.85 0.65 0.64 0.10 < 0.05 NA 

NDVI IntDry Dry 0.86 0.49 NA 0.26 0.36 NA 0.50 0.46 0.42 0.45 0.36 0 

EVI Max Humid 0.85 0.10 0.73 0.26 0.75 0.71 0.50 0.36 0.22 0.30 0.66 0.18 

EVI Min Humid 0.32 0.46 0.06 0.48 0.89 0.86 0.37 0.62 0.18 0.20 0.06 0.06 

EVI IntDry Humid 0.60 0.76 0.86 0.35 0.88 0.52 0.67 0.86 0.35 0.09 0.17 0.06 

NDMI Max Humid 0.18 < 0.05 0.21 0.82 < 0.05 0.85 0.34 0.22 0.53 0.23 0.41 0.23 

NDMI Min Humid 0.93 0.49 0.17 0.53 < 0.05 0.32 0.71 0.47 0.81 0.79 0.70 0.15 

NDMI IntDry Humid 0.28 0.51 0.53 0.40 0.09 0.88 0.76 0.57 1.00 0.06 0.46 0.10 

NDVI Max Humid 0.07 < 0.05 0.12 < 0.05 0.27 0.08 0.62 0.45 0.23 0.27 0.63 < 0.05 

NDVI Min Humid 0.42 0.29 0.08 < 0.05 0.47 0.10 0.51 0.63 0.64 0.75 0.57 0.06 

NDVI IntDry Humid 0.31 0.99 0.40 < 0.05 0.80 0.60 0.79 0.32 0.73 0.06 0.66 < 0.05 
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Appendix F: P-values of Multiple linear regression between time frames on the percent mortality saplings, small trees, and 

large trees, conducted on all forests on only plots from the Main Island of Puerto Rico. Bold indicates a significant 

p-value of less than 0.05. 

Index Band Habitat 

Type 

% Sap 

Mort 

(2010-

2014) 

% ST 

Mort 

(2010-

2014) 

% LT 

Mort 

(2010-

2014) 

% Sap 

Mort 

(2016-

2017) 

% ST 

Mort 

(2016-

2017) 

% LT 

Mort 

(2016-

2017) 

% Sap 

Mort 

(2017-

2018) 

% ST 

Mort 

(2017-

2018) 

% LT 

Mort 

(2017-

2018) 

% Sap 

Mort 

(2018-

2019) 

% ST 

Mort 

(2018-

2019) 

% LT 

Mort 

(2018-

2019) 

EVI Max Both 0.10 0.54 0.91 0.30 0.38 0.88 0.98 0.27 0.40    

EVI Min Both 0.04 0.97 0.18 0.72 0.38 0.81 0.56 0.52 0.40    

EVI IntDry Both 0.08 0.61 0.68 0.26 0.71 0.80 0.79 0.86 0.11    

NDMI Max Both 0.51 0.32 0.27 0.85 0.10 0.98 0.27 0.16 0.38    

NDMI Min Both 0.17 0.76 0.24 0.45 0.07 0.92 0.86 0.28 0.27    

NDMI IntDry Both 0.24 0.63 0.98 0.77 0.10 0.79 0.81 0.17 0.08    

NDVI Max Both 0.38 0.26 0.09 0.01 0.23 0.08 0.39 0.84 0.56    

NDVI Min Both 0.81 0.55 0.15 0.005 0.58 0.11 0.51 0.76 0.54    

NDVI IntDry Both 0.72 0.96 0.50 0.03 0.79 0.75 0.71 0.76 0.13    
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Appendix G : P-values of Multiple linear regression between time frames on the percent mortality saplings, small trees, and 

large trees, conducted on dry forests and humid forests on only plots from the Main Island of Puerto Rico.  

  
 2010-

2014 

2010-

2014 

2010-

2014 

2016-

2017 

2016-

2017 

2016-

2017 

2017-

2018 

2017-

2018 

2017-

2018 

2018-

2019 

2018-

2019 

2018-

2019 

Index Band Habitat 

Type 

% Sap 

Mort 

% ST 

Mort 

% LT 

Mort 

% Sap 

Mort 

% ST 

Mort 

% LT 

Mort 

% Sap 

Mort 

% ST 

Mort 

% LT 

Mort 

% Sap 

Mort 

% ST 

Mort 

% LT 

Mort 

EVI Max Dry 0.43 0.91 NA 0.12 0.09 NA 0.75 0.85 0.87    

EVI Min Dry 0.27 0.97 NA 0.08 0.20 NA 0.91 0.99 0.98    

EVI IntDry Dry 0.75 0.74 NA 0.31 0.37 NA 0.49 0.73 0.73    

NDMI Max Dry 0.74 0.64 NA 0.44 0.82 NA 0.94 NA NA    

NDMI Min Dry 0.62 0.32 NA 0.33 0.69 NA 0.55 NA NA    

NDMI IntDry Dry 0.87 0.11 NA 0.20 0.57 NA 0.46 NA NA    

NDVI Max Dry 0.75 0.68 NA 0.15 0.98 NA 0.89 0.63 0.60    

NDVI Min Dry 0.91 0.16 NA 0.21 0.82 NA 0.85 0.65 0.64    

NDVI IntDry Dry 0.63 < 0.05 NA 0.26 0.36 NA 0.50 0.46 0.42    

EVI Max Humid 0.40 0.28 0.96 0.26 0.75 0.71 0.50 0.36 0.22    

EVI Min Humid 0.14 0.87 0.19 0.48 0.89 0.86 0.34 0.62 0.18    

EVI IntDry Humid 0.33 0.88 0.77 0.35 0.88 0.52 0.67 0.86 0.35    

NDMI Max Humid 0.89 < 0.05 0.30 0.82 < 0.05 0.85 0.34 0.02 0.53    

NDMI Min Humid 0.43 0.98 0.19 0.53 < 0.05 0.32 0.71 0.47 0.81    

NDMI IntDry Humid 0.94 0.92 0.72 0.40 0.09 0.88 0.76 0.57 1.00    

NDVI Max Humid 0.13 < 0.05 0.07 < 0.05 0.27 0.07 0.62 0.45 0.23    

NDVI Min Humid 0.55 0.47 0.16 < 0.05 0.47 0.10 0.51 0.63 0.64    

NDVI IntDry Humid 0.61 0.80 0.82 < 0.05 0.80 0.60 0.79 0.32 0.73    

 


