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ABSTRACT 

RESOLVING VARIABILITY IN SIZE STRUCTURE IN AN INDIVIDUAL-BASED 

MODEL FOR THE NORTH PACIFIC KRILL, EUPHAUSIA PACIFICA 

 

Roxanne Robertson 

 

Individual-based models (IBMs) have emerged as a powerful tool for ecological 

research and are particularly well suited to studies of plankton ecology. In this thesis, I 

develop an IBM for the North Pacific krill, Euphausia pacifica, with the goal of 

replicating observed variability in size-structure in the northern California Current 

Ecosystem. Krill, and E. pacifica in particular, are central to the structure and function of 

the California Current Ecosystem. Their response to environmental forcing translates 

climate variability to higher trophic levels and underpins broader ecosystem responses. 

Recent observations indicate environmental and climate-related shifts in E. pacifica size 

distributions, which have important implications for understanding krill production 

dynamics and ecosystem interactions. I advance existing IBMs for E. pacifica by 

enabling temperature-dependent maturation and incorporating other observed 

relationships that were not captured in published models. I used a pattern-oriented 

modeling approach to develop a model capable of resolving realistic size and growth 

dynamics. Patterns in model output were compared to population size distributions from 

field-based observations off northern California. Modifications to the model were 

incorporated based on discrepancies between model output and field observations. The 
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resulting IBM represents a clear advancement toward obtaining accurate predictions of E. 

pacifica growth and size dynamics. The model captures seasonal and interannual patterns 

in growth and size across most life history stages. In addition to size dynamics, model-

generated development, growth, and reproductive rates are generally consistent with field 

observations. Improved predictions of E. pacifica dynamics have implications across a 

broad range of issues, including estimates of forage biomass and research focused on life 

history strategies and population dynamics. The enhanced IBM I have developed 

strengthens the foundation for such models to serve as tools for broader examination of 

dynamics within the California Current Ecosystem.  
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INTRODUCTION 

Individual-based models (IBMs) have emerged as a powerful tool for ecological 

research (DeAngelis and Mooji, 2005; DeAngelis and Grimm, 2014; DeAngelis, 2018). 

These models resolve dynamics at the level of an individual by tracking changes in an 

individual's state through the iterative application of (state-dependent) rules that govern 

how an individual responds to and is affected by its environment. By doing so, an IBM 

integrates the experience of an individual over time, explicitly capturing how the past 

conditions the present state of the individual and sets the stage for behaviors or responses 

going forward. Depending on the purpose for which an IBM is designed, processes may 

be described by detailed mechanistic submodels or represented as phenomenological 

patterns for which underlying mechanisms are not fully understood or are of limited 

relevance to the question at hand. The level of biological detail encompassed by IBMs 

varies, but, because they track the state of an individual, they are generally more complex 

than other mathematical models. The complexity of IBMs enables researchers to explore 

the effect of variability among individuals and the range of responses that can arise under 

varying internal and external conditions, including those that are not readily observed in 

nature (e.g., the characteristics of individuals that die) (Peck and Hufnagl, 2012). Because 

population, community, and ecosystem-level dynamics reflect the aggregated response of 

individuals to their environment, IBMs can also contribute to our understanding of larger-

scale system-level properties (Railsback et al., 2002; Rademacher et al., 2004; Andrello 

et al., 2015; Blechschmidt et al., 2020).  
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IBMs are particularly well suited to studies of plankton ecology. They have been 

applied to research focused on understanding how environment and behavior affect the 

foraging success, predation risk, and transport of individuals (Leising, 2001; Batchelder 

et al., 2002; Ospina-Alvarez et al., 2012), how these processes scale up to population 

dynamics and species distributions (Meynecke, and Richards, 2014; Politikos et al., 

2015) and shape the evolution of species’ life histories (Van Winkle et al., 1993). In 

many cases, insights revealed by IBMs arise from integrating IBMs into circulation and 

ecosystem models. These studies also highlight the potential of IBMs as a powerful 

complement to biogeochemical ecosystem models (e.g., NEMURO; Kishi et al., 2007) 

that resolve plankton ecosystems in terms of flows of nutrients among coarsely structured 

ecosystem components (e.g., “phytoplankton”, “small zooplankton”), but do not resolve 

the structure or dynamics of key species.  

In this thesis, I develop an IBM for the North Pacific krill, Euphausia pacifica, 

with the goal of replicating observed variability in size-structure in the northern 

California Current Ecosystem (CCE). This work is motivated by the centrality of krill, 

and E. pacifica in particular, to the structure and function of the CCE. Euphausia pacifica 

are omnivorous and feed on phytoplankton, zooplankton, and marine snow (Ohman, 

1984; Dilling et al., 1998). In turn, they are prey for numerous ecologically and 

economically important organisms and represent a key link between lower and higher 

trophic levels (Schoenherr, 1991; Brodeur and Pearcy, 1992; Hunt et al., 1999; Abraham 

and Sydeman, 2004; Becker et al., 2007; Miller and Brodeur, 2007; Miller et al. 2010). 
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The response of krill populations to environmental forcing translates climate variability 

to higher trophic levels and underpins broader ecosystem responses (Smiles and Pearcy, 

1971; Gómez-Gutiérrez et al., 2005; Brinton and Townsend, 2003; Ruzicka et al., 2012; 

Jones et al., 2018).  

Krill have a complex life cycle, with an ontogeny that spans several orders of 

magnitude in size. As such, resolution of size-structured dynamics, rather than only bulk 

biomass estimates, is important for obtaining accurate production estimates and 

understanding ecosystem interactions. The role of E. pacifica among lower trophic levels 

shifts with ontogeny. Early life history stages are potential prey for juvenile and forage 

fishes (Reilly et al., 1992; Brodeur et al., 2008; Bosley et al., 2014). As adults, E. pacifica 

become predators of smaller zooplankton, including the larval stages of fishes that once 

preyed upon their younger and smaller counterparts (Theilacker et al., 1986). The role of 

size in shaping ecological interactions underscores the importance of resolving structured 

dynamics of E. pacifica.  

In the CCE, euphausiid dynamics are strongly linked to environmental forcing on 

seasonal and interannual scales (see 'Model System: California Current Ecosystem', 

below). Production tends to be greatest during spring and summer months coincident 

with upwelling conditions supportive of growth (Smiles and Pearcy, 1971; Tanasichuk, 

1998; Shaw et al., 2010; Feinberg et al., 2010). Winter phytoplankton blooms can also 

trigger egg production (Feinberg et al., 2010). Variability in the onset and intensity of 

upwelling affects the abundance and biomass of krill species with cool-water, coastal 
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affinities, such as E. pacifica and Thysanoessa spinifera (Tanasichuk, 1998; Gómez-

Gutiérrez et al., 2005; Sydeman et al., 2006). Larger-scale climate variability also has a 

pronounced effect on euphausiid assemblages and populations. For example, during El 

Niño events, abundance and biomass of cool-water species tends to decline in the CCE 

and warm-water species are encountered more frequently and in greater abundance 

(Brinton and Townsend, 2003; Smith, 1985; Marinovic et al., 2002; Peterson et al., 2017; 

Lilly and Ohman, 2018). 

Environmental conditions also affect characteristics of individual krill. Detailed 

analysis of E. pacifica collected off northern California revealed a negative relationship 

between the size of E. pacifica adults and juveniles and temperature associated with 

seasonal and interannual variability (Robertson and Bjorkstedt, 2020). Euphausia 

pacifica adults, juveniles, and furcilia tend to be smaller during warmer (non-upwelling) 

seasons and larger during cooler (upwelling) seasons. At longer time scales, warm-water 

events (e.g., El Niño) disrupt seasonal growth patterns leading to persistent shifts in adult 

and juvenile size towards distributions dominated by smaller size classes. These patterns 

are consistent with the ability of juvenile and adult E. pacifica to shrink under warm 

conditions, even when food is not limiting (Marinovic and Mangel, 1999). Robertson and 

Bjorkstedt (2020) also found that early life history stages exhibited a contrasting response 

to that of adults and juveniles, in which interannual warming shifted the population 

towards larger size classes. The contrasting response between early life history stages and 

and juvenile and adult stages to interannual variability in temperature is consistent with 
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stage-dependent temperature-size relationships reported for diverse marine taxa, 

including crustaceans (Forster and Hirst, 2012). The warm-water event that occurred 

during 2014-16 had a particularly strong and abrupt effect on size distributions of E. 

pacifica off northern California; numerous adults collected during this event were smaller 

than size ranges reported in the literature and large adults were rare when the heatwave 

signal was strongest along the coast (Robertson and Bjorkstedt, 2020). 

Two IBMs have previously been developed for E. pacifica (Lindsey et al., 2013; 

Dorman et al., 2015). These models have been applied to scientific inquiries focused on 

spatial distribution and production dynamics and revealed important insight into krill 

retention mechanisms and the link between euphausiid production dynamics and 

ecosystem variability (Dorman et al., 2011; Lindsey, 2013; Dorman et al., 2015). 

However, these models do not account for observed relationships in empirical data, 

including the tendency of juveniles and adults to shrink at higher temperatures 

(Marinovic and Mangel, 1999) and variability in size-at-maturity (Robertson and 

Bjorkstedt, 2020), that have the potential to influence growth and size distributions of E. 

pacifica (see, for example, implementation of Dorman et al. (2015) IBM below), which 

limits their utility for more detailed population and ecosystem modeling.  

My research objective is to develop an IBM capable of resolving realistic 

variability in growth and size dynamics of E. pacifica off northern California. To do so, I 

adopt an approach grounded in pattern-oriented modeling (POM) (Grimm et al., 2005; 

Grimm and Railsback, 2013 and references therein), taking the time series of E. pacifica 
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size, temperature, and chlorophyll a data reported in Robertson and Bjorkstedt (2020) as 

the basis for evaluating model performance. Although statistical comparisons are often 

used to evaluate model agreement with data, POM is not grounded in formal statistics 

(e.g., estimating parameters via minimization of least-squares). Instead, POM is a 

modeling approach where patterns observed in the real system addressed by the model 

are used to inform model development and evaluation.  

The application of POM leads to a structured and iterative approach to model 

development. I build on existing IBMs for E. pacifica (Lindsey, 2013; Dorman et al., 

2015) to advance the model in two phases. The first phase is focused on revising 

submodels to better connect empirical estimates of vital rates to observed patterns in the 

field. I generate submodels to account for thermal sensitivity of ingestion at high 

temperatures and the effect of temperature on maturation. I also develop a submodel for 

assimilation that reflects dependence on temperature, body size, and prey density. The 

second phase of model development is focused on tuning the model to observed patterns 

through the design and implementation of phenomenological models that represent 

hypotheses focused on variability in energetics. I implemented POM as a sequential 

development; model versions were evaluated to test whether model output matched 

observed patterns and modifications were made to rectify discrepancies identified in 

preceding model versions. In other words, the methods determined results and results 

determined the next iteration of methods. As such, the traditional format which separates 

'methods' from 'results' does not facilitate clear communication of model development. I 
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combine these sections below into 'Model Development' to describe how models were 

developed and justify modifications at each step.



8 

 

  

THE MODEL SYSTEM 

In this section I provide a more detailed review of the empirical data and its 

environmental context (the California Current Ecosystem) and the life cycle of E. 

pacifica that are to be integrated into or represented by the IBM. I also briefly introduce 

existing IBMs for E. pacifica (Lindsey, 2013; Dorman et al., 2015) with a focus on 

identifying key patterns and processes targeted for revision and improvement in this 

research. 

The California Current Ecosystem 

The CCE encompasses a biologically rich and highly productive environment 

along the West Coast of North America. Production and transport processes within the 

CCE are modulated by regional winds, vertical transport (upwelling), and bottom-up 

dynamics (Ware and Thomson, 2005; Kudela et al., 2008; Chavez and Messié, 2009; 

Checkley and Barth, 2009, and references therein). In the coastal environment, 

equatorward winds drive offshore transport of surface waters, which are replaced by cool 

and nutrient-rich waters upwelled from below. Coastal upwelling dynamics vary 

throughout the CCE, but are generally strongest during spring and summer months 

(Hickey and Banas, 2008; Bograd et al., 2009). Upwelling of nutrient-rich waters 

contributes to enhanced primary productivity which supports production in higher trophic 

levels. During El-Niño events, the onset of upwelling tends to be delayed, the duration of 

the upwelling season is often shortened, and upwelling intensity weakens (Bograd et al., 

2009; Jacox et al., 2015). Since production in the CCE is closely related to upwelling 
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dynamics, shifts in upwelling phenology and intensity have the potential to alter 

ecosystem dynamics (Lenarz et al., 1995; Barth et al., 2007; Chenillat et al., 2012). 

Large-scale, climate-related shifts in horizontal transport (advection) also contribute to 

ecosystem variability via altered productivity, species composition, and spatial 

connectivity (Di Lorenzo et al., 2013). For example, anomalous transport of water masses 

hosting a diverse assemblage of zooplankton has the potential to impact nearshore 

ecosystem dynamics (Bi et al., 2011).  

Field Data 

The time series of E. pacifica body size, temperature, and chlorophyll a data used 

in our previous analysis provide a unique opportunity to evaluate an IBM’s ability to 

resolve realistic dynamics in E. pacifica size distributions (Robertson and Bjorkstedt, 

2020). These data are comprised of approximately monthly measurements from 2008 to 

2020 obtained along the Trinidad Head Line, a transect off northern California (Figure 1; 

see Robertson and Bjorkstedt, 2020 for complete sampling methods). Length 

measurements of E. pacifica are stage-specific and span F1 – F7 furcilia (F4/5 furcilia are 

combined), juveniles, and adults. For this analysis, E. pacifica data were aggregated 

across stations TH03 – TH05. These stations were selected because most adult E. 

pacifica are distributed along and offshore of the shelf break and size distributions of 

immature and adult life history stages at these stations are representative of the entire 

transect (Robertson and Bjorkstedt, 2020).  
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Figure 1. Bathymetric map of sampling location; Trinidad Head Line (THL; 41°03.50 N) 

off Trinidad, CA. Nearshore station (TH01) and offshore station (TH05) are labeled 

for reference. Bottom-depth is labeled in meters. 

Hydrographic data collected at THL station TH04 (Figure 1; 41°03.50 N, 

124°26.00 W; ~450 m water depth) were interpolated between (roughly) monthly cruises 

to provide daily values of environmental conditions at 1-meter bins from the surface to 

200 m (Figure 2). In cases where hydrographic data were only available in the top 150 m, 

data were extrapolated from the last observed depth to 200 m (see Appendix A for 

methods).  
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Figure 2. Time series (x-axis) of hydrographic data by depth (y-axis) at THL station 

TH04. top) Interpolated temperature (°C); bottom) Interpolated chlorophyll a 

concentration (mg L-1). Rug indicates date of cruise and measurement. 

E. pacifica Life Cycle and Ontogenetic Behavior 

The E. pacifica life cycle includes 16 life history stages (Figure 3). After 

approximately 24 – 48 hours, an egg hatches into the first of two naupliar stages (Iguchi 

and Ikeda, 1994; Feinberg et al., 2006). Progression through nauplius N1, N2, and the 

metanauplius stage takes approximately six days. During this time, individuals do not 

feed. Next, individuals transition to the first of three calyptopis stages. At this point, 

feeding appendages are acquired and individuals are able to feed for the first time. 

Following progression through calyptopis C1 – C3, krill develop through up to seven 

furcilia stages. Development to the juvenile stage takes approximately 58 days. At this 

point, the individual closely resembles the adult form. Maturation occurs once individuals 



12 

 

  

obtain sexual characteristics (approximately 30-180 days after transition to the juvenile 

stage; Harvey et al., 2010; Shaw et al., 2021). 

An IBM for E. pacifica must resolve behavior and physiology that determine 

environmental exposure and energetic dynamics. A key element of the life cycle is a 

transition in behavior represented by the initiation of diel vertical migration (DVM). 

Swimming legs are acquired in the F3 furcilia stage and individuals begin performing 

DVM (Vance et al., 2003; Feinberg et al., 2006). Vertical migration to shallower waters 

coincides with the onset of dusk and individuals return to deeper waters at dawn (Sato et 

al., 2013). The depth to which individuals migrate during daylight hours deepens with 

ontogeny (Vance et al., 2003; Liu and Sun, 2010; Im and Suh, 2016). Non-migrating 

individuals are exposed to a range of temperatures as they are moved throughout the 

water column, for example, as a sinking egg or when positioned in waters that are being 

vertically mixed.   
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Figure 3. Life-history of E. pacifica. Development time (time to stage in days) for 

immature (Feinberg et al., 2006) and adult stages (Harvey et al., 2010 and Shaw et 

al., 2021). 

Review of Existing IBMs and Motivation for Model Advancement 

Existing IBMs implement growth and development with submodels that are based 

on laboratory observations and empirical data (Lindsey, 2013; Dorman et al., 2015). 

However, a few of the submodels fail to accurately characterize observed dynamics. 

• Published IBMs do not allow for variability in size-at-maturity (as was 

observed in Robertson and Bjorkstedt, 2020) and instead implement 

maturation using invariant weight-based thresholds. 

• Discrepancies between laboratory and field-based observations of growth with 

respect to temperature suggest published submodels do not capture realistic 
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dynamics. Submodels in Dorman et al. (2015) and Lindsey (2013) predict 

enhanced growth rates at higher temperatures (when sufficient food resources 

are available). This pattern directly contradicts lab-based observations that 

juvenile and adult E. pacifica growth rates above 14°C are negatively related 

to temperature, even when food is not limiting (Marinovic and Mangel, 1999). 

This rise-and-fall pattern in growth rate is observed across a wide range of 

taxa and can reflect a consumption-metabolism mismatch, whereby metabolic 

rates increase more than ingestion rates with respect to temperature (Rall et 

al., 2010; Lemoine and Burkepile, 2012 and references therein). 

Consequently, at higher temperatures, the amount of surplus energy available 

for growth decreases and growth rates exhibit a negative relationship with 

temperature (Brett, 1971; Rall et al., 2010; Lemoine and Burkepile, 2012). 

• Ingestion rates have been shown to vary with temperature, body weight, and 

prey density (Ross, 1982a; Ohman, 1984). The ingestion submodel in Dorman 

et al. (2015) accounts for all of these factors. However, critical concentration, 

or the concentration of prey at which maximal growth is achieved, is resolved 

for discrete size groups, rather than implemented as a continuous function of 

size. Accurate estimates of critical concentration are important for obtaining 

the response of E. pacifica to prey density – which contribute to accurate 

estimates of ingestion. Rectifying the discrepancies between published 

submodels and in-situ dynamics will improve resolution of realistic growth 
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and size dynamics – crucial metrics for obtaining accurate production and 

biomass estimates and understanding ecosystem interactions.  

Models presented herein include mechanistic and phenomenological approaches 

to modeling growth and development. The mechanistic approach to modeling growth 

calculates growth from the remainder of energy following allocation of assimilated 

material to respiration, molting, and (in the case of adults) reproduction (as in Lindsey, 

2013). This approach enables modifications to specific energetic components (e.g., 

metabolic and ingestion rates) in the course of model development. In contrast, the 

phenomenological approach to modeling growth (as seen in Dorman et al., 2015) does 

not explicitly calculate energetic components. Instead, growth is scaled with temperature, 

body size, and food availability. In model versions presented here, development is 

modeled using a phenomenological approach. This approach uses either invariant weight-

based thresholds (as in Dorman et al., 2015) or a temperature-dependent Bělehrádek 

development function (following Lindsey, 2013)
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MODEL DEVELOPMENT 

The model I developed is based on published IBMs for E. pacifica (Lindsey, 

2013; Dorman et al., 2015). Like those models, the IBM versions developed herein build 

upon the POPCYCLE framework. POPCYCLE was initially developed to implement 

species-specific physiology and behavior at the individual-level for copepods (Batchelder 

and Miller, 1989). Bioenergetic rates (e.g., growth and assimilation rates) are calculated 

in carbon per unit of time (e.g., µg C d-1) and are a function of life history stage, body 

size (µg C), and environmental exposure (temperature and food concentrations). 

Migration behavior (i.e., vertical position) is dependent upon life history stage and time 

of day. Model development, data analysis, and simulations were conducted in R (4.0.4; R 

Core Team, 2021). 

Submodels within the IBMs fall along a spectrum that ranges from mechanistic, 

where a process is specified as a detailed function of factors affecting it, to 

phenomenological, where specification of the model may be grounded in hypotheses but 

underlying mechanisms are not modeled in detail. When empirical data linking processes 

to mechanisms are not available or do not resolve patterns observed in the real system, 

the phenomenological approach facilitates implementation of POM. 

Generic Model Process 

IBMs presented and developed herein follow a similar process schedule (Figure 

4). Environmental conditions that drive the model are drawn from conditions along the 
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THL. At each timestep, vertical position, temperature, and food availability are 

determined. Energetic components (e.g., growth) are calculated based on environmental 

conditions and the state of the individual. If reproductive requirements have been met, 

adults reproduce. Following calculation of physiological rates, development is calculated. 

The individual is then evaluated for mortality, either due to starvation or end of lifespan.  

 

Figure 4. Flow diagram of process schedule in individual-based models. Following 

initiation of an egg, for each 30-minute timestep vertical position, energetics (e.g., 

assimilation and metabolism), development, and mortality (due to starvation or 

end of lifespan) are determined. 

Application of Pattern-Oriented Modeling 

I implemented POM to develop a series of models that sequentially address 

discrepancies between model predictions and observed patterns. At each iterative step in 

model development, model size distributions were compared to field-based observations. 
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Discrepancies between model output and observations were identified and used to inform 

modifications of submodels. The modified submodels were then incorporated into the 

IBM and the new model version was evaluated by comparison of model output and 

observations. This process was repeated until I arrived at a model that produced realistic 

patterns in size distributions and reduced discrepancies between model output and 

observations. 

To assess IBM predictions of seasonal patterns in growth and size dynamics, I 

generated a seasonal climatology of temperature, chlorophyll a concentration, and median 

size of E. pacifica by stage. Krill size data were screened for outliers; for each life history 

stage, measurements outside the 5 and 95% quantile range were removed. Climatological 

values were estimated by fitting generalized additive models (GAMs; 'mgcv' version 1.8-

33; Wood, 2017) to each response variable as a function of day-of-year. GAMs were 

based on cubic cyclic splines to ensure continuity across transitions between years. To 

resolve seasonal variability throughout the water column, a GAM was fit to each of 200 

one-meter bins of temperature and chlorophyll a concentration and the results were 

concatenated to recover a time-by-depth matrix (Figure 5).   
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Figure 5. Seasonal climatology of hydrography along the THL. a) Temperature (C°) and 

b) chlorophyll a concentration (mg L-1) versus month (x-axis) at THL station 

TH04 from 2007 – 2020. 

Initially, pattern matching was focused on seasonal dynamics from climatological 

results. Seasonal patterns were qualitatively analyzed and modifications were made based 

on discrepancies between the shape of model output and field-based observations. 

Following analysis of seasonal patterns, time series scenarios were qualitatively and 

quantitatively analyzed (see details below). Like seasonal pattern-matching, 

modifications were made based on discrepancies between model output and field 

observations. I focused on matching patterns during years that were oceanographically 

consistent, as opposed to years characterized by sharp oceanographic transitions, such as 

the arrival of the Warm Blob and onset of the 2015-16 El Niño (Chao et al., 2017). 

Documented shifts of water masses and zooplankton assemblages during these periods 

indicate the potential for sampling transient krill populations with diverse size 

a b 
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distributions (Wells et al., 2017; Peterson et al., 2017; Bjorkstedt and Robertson, 

unpublished data). 

Quantitative metrics of model performance included the root-mean square error 

(RMSE; 'rmse' in 'Metrics'; version 0.1.4; Hamner and Frasco, 2018) and direct 

correlation ('cor' in 'stats'; version 4.0.4; R Core Team, 2021) between THL observations 

and IBM predictions of median size (body length) for F1 furcilia – adult life history 

stages. Time series scenarios started on 1 January 2008 and were run through 31 

December 2019. To allow for spin-up (i.e., development time) quantitative analyses were 

confined to a period starting on 1 March 2008 (furcilia stages) or 1 January 2010 

(juvenile and adult stages). A lower RMSE and higher correlation between IBM 

predictions and THL observations indicated model improvement relative to other model 

versions. I emphasized the ability to replicate adult size distribution, because adult size is 

a strong determinant of overall biomass and production estimates (due to relatively large 

body size and longer stage duration). 

Model development included numerous iterations and model versions. A few 

select versions that represent key modifications are presented here. These versions range 

from an initial ('Phase I') model that incorporates reformulated submodels that better 

reflect realistic temperature-dependent growth, development, and assimilation dynamics 

to versions that build on these mechanistic improvements by incorporating 

phenomenological modifications to improve resolution of discrepancies in seasonal and 

interannual patterns. 
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Body Size 

Published IBMs and those developed here express individual state in units of 

carbon weight (W; µg C). However, our field-based observations of E. pacifica body size 

and published information on growth rates (e.g., Shaw et al., 2010) record body size as a 

length measurement. To facilitate comparisons between model output and field 

observations, body weight (W) was converted to dry weight (DW; mg), total length (TL; 

mm), and body length (BL; mm) per the following equations (1-3): 

 

𝐷𝑊 =
𝑊+1.985

0.401 

1000
 (1) 

𝑇𝐿 =  
𝐷𝑊

0.795

1/3.239
  (2) 

𝐵𝐿 =  
𝑇𝐿−0.2807

1.218
 (3) 

 

following (Shaw et al., 2010; Feinberg et al., 2007, and Ross, 1982a). 

Body length represents the distance from the back of the eye to the base of the 

telson (Shaw et al., 2010) and is used for comparison to length measurements along the 

THL. Total length represents the distance from the back of the eye to the tip of the telson 

(Gómez-Gutiérrez et al., 2006) and is used for comparison to published growth rates, 

which are typically expressed in mm TL d-1 (e.g., Shaw et al., 2010). 
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Preliminary versions of the model revealed biased estimates for F1 and F2 

furcilia. Rather than modify energetics, which would impact growth and body size of 

subsequent life history stages, I modified the weight-to-length conversion for F1 and F2 

furcilia as follows (equations 4 and 5): 

 

𝐹1 𝐹𝑢𝑟𝑐𝑖𝑙𝑖𝑎 𝑇𝐿 =  𝐷𝑊1/3.239  (4) 

𝐹2 𝐹𝑢𝑟𝑐𝑖𝑙𝑖𝑎 𝑇𝐿 =  
𝐷𝑊

0.900

1/3.239
  (5) 

 

This modification is justified by the difference in body form between F1 and F2 furcilia 

and later life history stages, especially the broader telson and wider carapace. This 

modification has no impact on weight-based processes in the model and is consistent with 

the POM approach.  

Demographics 

IBMs developed here are not implemented to simulate population dynamics, they 

track a single individual representative of a cohort. However, field observations are a 

composite of individual growth trajectories (size-at-age) that arise from variable egg 

production over time and mortality. Therefore, it is necessary to weight the contribution 

of each simulated cohort (i.e., size-age trajectory) to the size distribution existing on each 

day for fair comparison to field observations. To do so, I weight the initial value of each 
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cohort by climatological egg production and apply cumulative size-dependent mortality 

over the course of that cohort's lifetime. Production and size-based mortality rates are 

applied to model output post-simulation. Note that other sources of mortality (i.e., 

starvation or end of lifespan) are implemented in the IBM (see 'Generic Model Process' 

above and 'Mortality' below). 

Egg production (eggs d-1) was estimated by fitting a GAM to E. pacifica egg 

density (from THL vertical ring-net data collected at station TH02 from 2009 – 2016) as 

a function of day-of-year (Figure 6). Observations of egg densities greater than two 

standard deviations from the mean were removed prior to fitting the model. The GAM 

was based on a cubic-cyclic spline to ensure continuity across the start and end of the 

seasonal cycle. Effective degrees of freedom were fixed (edf = 8) to resolve early and late 

seasonal peaks in egg production. To implement egg production as a discrete value, egg 

densities predicted by the GAM were scaled to a maximum of 1000 eggs d-1 and rounded 

to the nearest integer for weighting of IBM output data.  
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Figure 6. Observed and predicted egg density. a) GAM (line) fit to THL observations 

(points) of egg density by day-of-year (x-axis) at THL station TH02 from 2009 – 

2016; b) Scaled egg production values by day-of-year. 

Size-based (predation) mortality was calculated following Peterson-Wroblewski 

(1984) who estimated weight-based instantaneous mortality as (equation 6): 

 

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 = (5.26 ∗ 10−3) ∗ 𝐷𝑊−0.25 (6) 

 

where 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 is instantaneous mortality (day-1) and D𝑊 is dry weight (g). Body 

weight (µg C) was converted to dry weight (g) following equation 1. The size-specific 

instantaneous mortality rate was applied to the daily mean size of the individual. 

The resulting densities for each cohort by date and stage were used to generate 

population size distributions (e.g., median body length) over time. Stage-specific 
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minimum (10th quantile), median (50th quantile), and maximum (90th quantile) size was 

calculated for life history stages for which THL observations exist (F1 furcilia – adults). 

Base IBM: Based on Dorman et al. (2015) 

A published IBM for E. pacifica resolves the important life-history behavior and 

structure described above (Dorman et al., 2015). Growth is scaled directly as a function 

of body size, temperature, and food availability. This model includes 13 life history 

stages: egg, metanauplius, calyptopis C1 – C3, furcilia 1 -7 (furcilia 4/5 are combined), 

juvenile, and adult. Nauplius 1 and 2 are subsumed in the non-feeding egg stage. 

Development (i.e., transition to the next life history stage) of non-feeding and feeding 

stages is implemented using degree day and invariant weight thresholds, respectively 

(Table 1). Initial egg weight is 2.58 µg C. Starvation occurs when an individual's weight 

drops below 70% of the maximum weight achieved by the individual over the course of 

its life.  
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Table 1. Thresholds used to implement development of E. pacifica to the next life history 

stage in the Dorman et al., (2015) IBM. Degree-day thresholds were used for egg 

and metanauplius stages. All other stage transitions are determined by invariant 

weight thresholds (µg C).  

Life History Stage Threshold Threshold Units 

Egg 17.06 degree-days 

Metanauplius 38.28 degree-days 

Calyptopis C1 2.33 µg C 

Calyptopis C2 3.52 µg C 

Calyptopis C3 6.52 µg C 

Furcilia F1 11.76 µg C 

Furcilia F2 17.7 µg C 

Furcilia F3 32.44 µg C 

Furcilia F4/5 55.77 µg C 

Furcilia F6 70.56 µg C 

Furcilia F7 78.02 µg C 

Juvenile 84.9 µg C 

Mature Adult 1500 µg C 

 

I ported the Dorman et al. (2015) bioenergetics code from Fortran to R (Figure 

B1) to serve as 1) a base against which to demonstrate model improvements and 2) as a 

structural template into which submodels would be integrated, thus ensuring 

compatibility of outputs. Vertical migration behavior followed rules described below (see 
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'Vertical Position and Migration Behavior'). To evaluate patterns in seasonal and 

interannual size distributions, this 'Base' model was forced with environmental conditions 

from climatological and time series data. For each simulation, an egg was initiated every 

ten days. A 30-minute timestep was used to calculate growth in size and development 

from one life history stage to the next. The length of this timestep enables realistic 

implementation of vertical migration and provides frequent updates to individual stage 

variables (e.g., size). Date, depth, environmental conditions, energetic components, and 

individual characteristics (e.g., size, stage, age, and mortality status) were recorded every 

six hours. Output (body size) from climatological and time series simulations was 

compared with field-based observations.  

Vertical Position and Migration Behavior 

In IBMs presented here, daytime depth is stage-dependent and based on in-situ 

observations (Vance et al., 2003; Im and Suh, 2016; Table 2). To simulate mixing of non-

migrating krill, egg – F2 furcilia stages are exposed to the mean of temperature and 

chlorophyll a concentration over a stage-specific depth range. Vertical migration is 

implemented once krill reach the F3 furcilia stage, the first stage at which swimming legs 

are fully developed (Boden, 1950). At the onset of dusk, individuals are moved from their 

stage-specific daytime depth to the depth (below 10 m) at which maximum chlorophyll 

concentration occurs. Individuals return to their corresponding daytime depth with the 

onset of dawn. Civil twilight, the time at which the sun is 6° below the horizon, is used to 

mark the onset of dawn and dusk, which translates to a minimum of 7.75 (summer) and 

maximum of 13.75 (winter) hours spent in shallower waters. The timing of civil twilight 
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is date-specific and determined using 'crepuscule' in 'maptools' (Bivand and Lewin-Koh; 

version 1.1-1).  

Table 2. Diel vertical migration (DVM) behavior of krill in IBMs. Non-migrating stages 

(Egg – F2 furcilia) are exposed to the mean temperature and chlorophyll a 

concentration across the noted depth range (e.g.,10 to 100 m). Krill performing 

DVM migrate at night to the depth at which maximum chlorophyll occurs and 

return to their stage-specific day depth during daylight hours.  

Stage  DVM Day Depth (m) Night Depth (m) 

Egg  No 10 to 100 10 to 100 

Nauplius N1 No 10 to 100 10 to 100 

Nauplius N2 No 10 to 100 10 to 100 

Metanauplius No 10 to 50 10 to 50 

Calyptopis C1 No 10 to 50 10 to 50 

Calyptopis C2 No 10 to 50 10 to 50 

Calyptopis C3 No 10 to 50 10 to 50 

Furcilia F1 No 10 to 50 10 to 50 

Furcilia F2 No 10 to 50 10 to 50 

Furcilia F3 Yes 25 Maximum Chlorophyll Depth 

Furcilia F4/5 Yes 35 Maximum Chlorophyll Depth 

Furcilia F6 Yes 45 Maximum Chlorophyll Depth 

Furcilia F7 Yes 50 Maximum Chlorophyll Depth 

Juvenile Yes 150 Maximum Chlorophyll Depth 

Adult Yes 200 Maximum Chlorophyll Depth 
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Base IBM: Diagnosis  

The Base IBM performed poorly in resolving realistic patterns in size 

distributions (Figure 7). Predicted size distributions for furcilia stages were relatively 

constant and did not exhibit seasonal or interannual variability (Figure 7a and b). Model 

predictions for older life history stages were almost completely out of phase with 

observed trends in size at seasonal scales. Juvenile size was overestimated in winter and 

underestimated in spring and summer and did not match well with field observations in 

the time series scenario. Likewise, simulated size distributions of adults contrasted 

sharply with field-observations; model adults were larger in winter and smaller in spring 

(Figure 7a). Like other life history stages, interannual variability in adult size was not 

well resolved (Figure 7b and c). Across all life history stages, correlations indicated a 

poor match between field observations and IBM predictions (Figure 7d).  
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Figure 7. Stage-specific size (BL in mm; y-axis) distributions from the Base IBM 

(energetic submodels from Dorman et al., 2015) forced with a) climatologies and 

b) time series of temperature and chlorophyll a concentration along the THL. IBM 

results (blue dashed-line indicates median size; blue ribbon spans loess smooth of 

minimum (10th quantile) and maximum (90th quantile) body length) and THL data 

(gray points indicate median size by cruise date; solid black line represents loess 

smooth of median size, gray ribbon spans ± 1 SD). c) Residuals from THL 

observations and IBM predictions of median size. Horizontal dashed-line at zero 

for reference. d) Correlation between median size of THL observations and IBM 

predictions. Title in top left corner of first column indicates life history stage (F1 

– F7 furcilia, J = Juvenile, A = Adult) by rows. 
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Phase I IBM: Reanalysis and Reality 

The Phase I IBM retains the process schedule and vertical migration rules from 

the Base model. However, I took a more mechanistic approach to modeling growth. 

Growth is calculated from the carbon remaining following allocation of assimilated 

carbon to respiration, molting, and reproduction (as in Lindsey, 2013). This approach 

enables modifications to specific energetic components (e.g., ingestion rate). A detailed 

description of submodels follows, but in general I constructed submodels to better 

account for thermal sensitivity of ingestion at high temperatures and the effect of 

temperature on maturation. I also constructed a submodel for assimilation that reflects 

dependence on temperature, body size, and prey density. Like the Dorman et al. (2015) 

IBM, development is implemented using a phenomenological approach. However, rather 

than using invariant weight thresholds to determine stage transitions, the Phase I model 

uses a temperature-dependent Bělehrádek development function (following Lindsey, 

2013; see 'Development' below for details). 

Life history stages are parsed more finely in the Phase I IBM than the Base IBM. 

The Phase I IBM includes 15 life history stages: egg, nauplius 1 and 2, metanauplius, 

calyptopis C1 - C3, furcilia F1 - F7 (furcilia F4/5 are combined), juvenile, and adult. Life 

history stage determines behavior (e.g., feeding, vertical position) as well as whether 

growth is modelled directly as a function of temperature, food availability, and body 

weight, or mechanistically as the remainder of energy following allocation of assimilated 

energy to somatic maintenance and reproduction (Table 3).  
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Table 3. Feeding behavior and type of growth submodel for E. pacifica life history stages 

in the Phase I IBM. 'Direct' growth model indicates growth is calculated by 

scaling expressions that relate growth rate to body size and temperature. In 

contrast 'Mechanistic' growth model indicates growth is calculated from the 

remainder of assimilated carbon following allocation to metabolism, molting, and 

in the case of adults, reproduction.  

Stage # Stage Feeding Growth Model 

1 Egg  No Direct 

2 Nauplius N1 No Direct 

3 Nauplius N2 No Direct 

4 Metanauplius No Direct 

5 Calyptopis C1 Yes Direct 

6 Calyptopis C2 Yes Direct 

7 Calyptopis C3 Yes Direct 

8 Furcilia F1 Yes Mechanistic: (Assimilation – Costs) 

9 Furcilia F2 Yes Mechanistic: (Assimilation – Costs) 

10 Furcilia F3 Yes Mechanistic: (Assimilation – Costs) 

11 Furcilia F4/5 Yes Mechanistic: (Assimilation – Costs) 

12 Furcilia F6 Yes Mechanistic: (Assimilation – Costs) 

13 Furcilia F7 Yes Mechanistic: (Assimilation – Costs) 

14 Juvenile Yes Mechanistic: (Assimilation – Costs) 

15 Adult Yes Mechanistic: (Assimilation – Costs) 
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Energetic Submodels 

Energetic submodels (physiological rates) are defined in text as daily rates of 

carbon allocation (µg C d-1). In the IBM, daily rates are scaled to 1/48 of the daily rate to 

reflect the 30-minute time step at which they are applied. 

Growth  

Growth dynamics over the life history of E. pacifica are described in detail below, 

but share a common characteristic of being dependent on temperature. To capture this 

dependence, Q10 relationships were used to scale physiological rates by temperature using 

equation 7: 

 

𝑅𝑎𝑡𝑒2  =  𝑅𝑎𝑡𝑒1 ∗ 𝑄10
(𝑇2 − 𝑇1)/10°𝐶 (7) 

 

where 𝑅𝑎𝑡𝑒2 is the projected physiological rate at temperature 𝑇2 (expressed in °C), 

𝑅𝑎𝑡𝑒1 is a known physiological rate at temperature 𝑇1, and 𝑄10 is the factor by which the 

physiological rate increases per 10°C rise in temperature. In this study, Q10 coefficients 

were established for each physiological process (i.e., ingestion, metabolism, molting, and 

reproduction) based on information in Ross (1979). Q10 values were calculated using the 

complete expression relating each physiological rate to weight at 8 and 12°C (Table 4). 

This method differs from that utilized by Ross (1982a) by including the intercept and 
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weight-specific coefficient regardless of whether they were significantly different at 8 

and 12°C. 

Table 4. Expressions for physiological rates from Ross (1979 and 1982a) and from my 

re-analysis of Ross's data. Intercept (a) and weight-specific coefficients (b) for 

allometric equations describing the relationship between physiological rate (µg C 

d-1) and body weight (µg C), where physiological rate = 𝑎 ∗ 𝑊𝑏. A = Adults, J = 

Juveniles, F = furcilia, FJA = furcilia, juvenile, and adults. Note that growth of 

early life history feeding stages (ELHF) follows a linear equation where growth =
 𝑎 +  𝑊 ∗ 𝑏. Q10 coefficients in this study are calculated using complete 

allometric expressions (versus only using intercepts if weight specific coefficients 

were not significantly different, as in Ross, 1979 and 1982a). 

Source Physiological rate (Stage) Q10 T (°C) a b 

Ross (1979, 1982a) Ingestion (FJA) 3.35 8 0.249 0.910 
   

12 0.404 0.910 
      

Ross (1979, 1982a) Metabolism (A) 1.9 8 0.154 0.810 
   

12 0.200 0.810 
      

Ross (1979, 1982a) Metabolism (J) 1.9 8 0.154 0.810 
   

12 0.200 0.810 
      

Ross (1979, 1982a) Metabolism (F) 2 8 0.171 0.839 
   

12 0.266 0.839 
      

Ross (1979, 1982a) Reproduction (A) 3.6 8 0.006 1.035 
   

12 0.010 1.035 
      

Ross (1979, 1982a) Molting (FJA) 2.46a 8 0.011 0.853 
   

12 0.021 0.805 
      

Ross (1979, 1982a) Growth (ELHF) 
 

8 -0.057 0.124 
   

12 -0.315 0.198 
      

This study IngestionMax (FJA) 3.35 8 0.249 0.910 
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Source Physiological rate (Stage) Q10 T (°C) a b 
   

12 0.404 0.910 
      

This study Metabolism (A) 3.37 8 0.139 0.930 
   

12 0.224 0.932 
      

This study Metabolism (J) 3.35 8 0.121 0.964 
   

12 0.192 0.968 
      

This study Metabolism (F) 3.25 8 0.103 0.996 
   

12 0.162 1.001 
      

This study Reproduction (A) 3.61 8 0.006 1.035 
   

12 0.010 1.035 
      

This study Molting (FJA) 5.08*weight-0.12 8 0.011 0.853 
   

12 0.021 0.805 
      

This study Growth (ELHF) 1.74 8 -0.057 0.124 
   

12 -0.315 0.198 

            

 

a: Average Q10 for all weights, range is 3.37 (30 ug C) to 1.93 (3,000 ug C). 

 

Growth of non-feeding stages  

Following Lindsey (2013), initial egg weight is set at 3.2 µg C (versus 2.58 in the 

Dorman et al. (2015) IBM), based on observations of E. pacifica egg size off Oregon 

(Gómez-Gutiérrez et al., 2003). 

By definition, non-feeding stages lose weight. Estimates from Ross (1979) 

indicate greater rates of weight loss in non-feeding stages at 8°C compared to 12°C. This 

pattern contradicts general rate-temperature relationships, in which metabolic rate tends 

to increase with temperature, at least over range of temperatures typically experienced by 
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an organism (Cossins and Bowler, 1987). Since alternative rates for non-feeding stages 

were not available, I selected a rate to implement weight loss (-0.145 µg C d-1) within the 

range of Ross's observations that generated realistic sizes of early life history stages. The 

rate of weight loss in non-feeding stages was scaled with temperature using a generic Q10 

of 2.0.  

Growth of feeding stages 

Growth of feeding stages (calyptopis C1 through adult) is dependent upon 

temperature and food concentration. Food concentration in µg C is estimated from 

chlorophyll a concentration following a 1 µg chlorophyll a: 60 µg C conversion (as in 

Dorman et al., 2015). 

Growth rates of furcilia, juvenile, and adult stages are calculated as a function of 

explicit input and output variables following the expression for a carbon-only crustacean 

energy budget (equation 8; Dagg 1976): 

 

𝐺𝑟𝑜𝑤𝑡ℎ = 𝐴𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑠𝑚 − 𝑀𝑜𝑙𝑡𝑖𝑛𝑔 − 𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (8) 

 

Specific definitions are developed below, but components of this equation can generally 

be described in the following terms. Assimilation is calculated as the product of ingestion 

and assimilation efficiency, the amount of carbon ingested that is retained and available 
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for energetic processes. Metabolism represents the energy required for catabolic and 

anabolic processes. As in Ross (1982a) metabolic rate estimates account for leakage, or 

the amount of dissolved organic carbon released from the individual. Molt rate is 

calculated as the loss of carbon at each ecdysis (molt event) divided by the molt interval 

in days. Allocation to reproduction was estimated by Ross (1982a) and is based on the 

total amount of carbon allocated to broods over an individual's lifetime following 

maturation.  

Growth rates of early life history feeding stages (ELHF; calyptopis C1 – C3) are 

modeled directly using the empirical relationship between growth rate (µg C d-1) and 

body weight (W, µg C) (Ross, 1982a; equation 9). 

 

𝐺𝑟𝑜𝑤𝑡ℎ (derived at 12°C) = −0.315 + 0.198 𝑊 (9) 

 

Growth of ELHF stages is scaled with temperature using a Q10 of 1.74 (Table 4). 

The ELHF growth expression (equation 9) was derived under maximal food 

resources. As such, it represents maximum growth rate for ELHF stages. To account for 

variability in food resources, growth rates of ELHF stages were scaled by the ratio of 

available food concentration to critical concentration, the food concentration at which 
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maximal growth is achieved (see 'Assimilation' below for how critical concentration is 

calculated).  

Growth: Assimilation  

Ingestion is dependent on size, temperature (Ross, 1982a), and food concentration 

(Ohman, 1984; Kiørboe, 2008). Q10 coefficients are used to scale ingestion rates with 

temperature. To account for the effects of body weight and food concentration, I 

developed an ingestion rate function of the Type III form identified by Ohman (1984; 

equation 10):  

 

𝐼𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝐹𝑜𝑜𝑑 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  
𝑎𝐹𝑜𝑜𝑑𝐶𝑜𝑛𝑐.∗𝐹𝑜𝑜𝑑 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛2

1+𝑎𝐹𝑜𝑜𝑑𝐶𝑜𝑛𝑐.∗𝑇ℎ∗𝐹𝑜𝑜𝑑 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛2 (10) 

  

where 𝑎𝐹𝑜𝑜𝑑𝐶𝑜𝑛𝑐.is the capture efficiency or attack rate and 𝑇ℎ is the handling time and 

scale this equation with body weight. 

To determine weight-dependent critical concentration, which is defined as the 

food concentration at which maximal growth is achieved, I fit an allometric model to 

critical concentration and body weight data from Ross (1979) and Ohman (1984; Table 5 

and Figure 8a; critical concentration = 16.48*W0.35). An allometric model was preferred 

over an asymptotic model on the basis of greater biological relevance; as body size 

increases, the amount food required to maintain a larger size and grow is expected to 
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increase, not to plateau, thus requiring more food to achieve maximum growth. Ingestion 

rates were then predicted as a function of weight and food density using a Type III 

functional response model scaled so that ingestion is 90% of maximum ingestion 

(IngestionMax; Table 4) at critical concentration across all sizes (Figure 8b). Ingestion is 

capped so that it does not exceed ingestion at critical concentration (as in Dorman et al., 

2015).  

Table 5. Critical concentration (CC; µg C l-1) for various sizes of E. pacifica krill at 8 and 

12°C. Data from Ross (1979) and Ohman (1984). NA indicates field does not 

apply to data source. 

Source Size class (µg C) Avg. weight in size class CC at 8°C CC at 12°C 

Ross (1979) < 750 273 100 125 

Ross (1979) 750-1650 1205 190 225 

Ross (1979) 1650 2564 320 375 

Ohman (1984) NA 4700 290 NA 
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 Existing IBMs scale energetics using Q10 values determined by Ross (1979). In 

the Dorman et al. (2015) IBM, growth rate is scaled directly with the Q10 for growth. In 

the Lindsey (2013) IBM, ingestion and respiration are scaled with corresponding Q10 

values from Ross (1979), who calculated a greater Q10 for ingestion than metabolism 

(i.e., ingestion increases faster than metabolism as temperature increases). The result in 

both IBMs is that growth rate exhibits a positive relationship with temperature and is not 

constrained at higher temperatures. A monotonic increase in growth with temperature, 

however, contradicts observations that juvenile and adult E. pacifica growth rates are 

negatively related to temperature above 14°C, even when food is not limiting (Marinovic 

Figure 8. a) Allometric model (line) fit to critical concentration (CC; µg C l-1; y-axis) and 

weight data (x-axis) at 8°C from Ross (1979; points) and Ohman (1984; triangle); 

b) Predicted ingestion rates for various sizes of krill using weight- and food 

concentration-dependent function (at 8°C to match experimental temperature in 

Ohman, 1984). Closed purple circles and purple dotted-line indicate critical 

concentration at various body sizes (see legend). Orange dashed-line represents 

the Type III functional response for the average krill size (4700 µg C) in Ohman's 

(1984) study. 
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and Mangel, 1999). Furthermore, a rise-and-fall pattern in growth rate with respect to 

temperature is observed across a wide range of taxa and can reflect a consumption-

metabolism mismatch, whereby energetic costs exceed assimilation (Rall et al., 2010; 

Lemoine and Burkepile, 2012 and references therein; Alcaraz et al., 2014; Grote et al., 

2015).  

To resolve disparities between growth predictions from existing IBMs and 

observations, I refined the energetics component of the IBM to allow for shrinking as 

reported in Marinovic and Mangel (1999) by modifying the Q10 value used for scaling of 

ingestion rates in juvenile and adult stages. This modification is supported by 

observations that indicate Q10 values tend to decrease with increasing temperature (Ege 

and Krogh, 1914; Alcaraz et al., 2014). At intermediate and high temperatures, the 

relationship between ingestion rate and temperature is strongly correlated with that of 

growth rate and temperature, more so than the thermal sensitivity of other energetic 

components (Kingsolver and Woods, 1997). Based on the strong correlation between 

thermal sensitivity of ingestion and growth, I chose to modify ingestion (as opposed to 

other energetic components). 

 In my IBM, transition to a temperature-dependent Q10 begins once an individual 

reaches the juvenile stage. Dependency on the temperature-dependent Q10 scales linearly 

with juvenile weight, such that for krill exceeding 266 µg C (~8 mm TL, the minimum 

size of krill in Marinovic and Mangel, 1999), the Q10 is defined by a sigmoidal 

relationship with temperature (Figure 9). The sigmoidal model was anchored by the Q10 
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value for ingestion (3.35) estimated by Ross (1982a) at temperatures between 8 and 12 

°C and tuned by manipulation of Q10 values at higher temperatures to generate negative 

growth rates consistent with rates reported by Marinovic and Mangel (1999). The 

resulting Q10 values are within a typical range for biological rates (Cossins and Bowler, 

1987). 

 

Figure 9. Q10 values for ingestion. a) Predicted Q10 values for ingestion generated from 

sigmoidal model (black line) fit to empirical (upper asymptote) and simulated 

(lower asymptote) Q10 data; b) Q10 ingestion values (see color legend) for various 

log-scaled weights of krill (y-axis) and temperatures (x-axis). 

Preliminary IBM simulations with realistic environmental conditions indicated 

that individuals in stages with substantial vertical migrations (i.e., juvenile and adult) 

frequently exhibit negative growth during the daytime when they are deeper in the water 

column. The magnitude of negative growth generated unrealistic growth dynamics as a 

consequence of inadequate food resources at depth. The IBM accounts only for 

phytoplankton food. However, krill are also capable of feeding on alternate food sources 

a b 
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(e.g., marine snow and zooplankton) that are more broadly distributed and available at 

depth (Dilling et al., 1998; Nakagawa et al., 2003; Park et al., 2011; Im and Suh, 2016). 

To account for food at depth, I modified the environment so food concentration for 

juvenile and adult stages is 30% of what was available at the daily maximum chlorophyll 

depth. This modification is only implemented if food at depth is below 30% of what was 

available at the maximum chlorophyll depth. This modification is supported by evidence 

indicating E. pacifica feed on alternate prey sources (e.g., tintinnids and copepods) while 

at depth during the daytime (Nakagawa et al., 2003). I also decreased metabolic demand 

during daylight hours by 30% for adults and 20% for juveniles. This modification reflects 

observations that indicate decreased feeding activity during the day at depth (Nakagawa 

et al., 2003).  

Growth: Metabolism  

Ross's direct measurement of growth was greater than the difference between 

assimilation and energetic costs. Ross attributed the discrepancy in the energy budget to 

possible measurement errors (Ross 1982b). Metabolic rate was suspected to have been 

underestimated, possibly as a consequence of suppressed activity due to confinement of 

krill in a small vial during respiration experiments and errors in leakage estimates.  

Under the assumption that empirical estimates of metabolism were the sole source 

of imbalance in Ross's (1982a) energy budget, I re-calculated metabolic rates for furcilia, 

juvenile, and adult stages using Ross's data and expressions for assimilation, growth, 
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molting, and reproduction. I rearranged equation 8 to generate a new estimate of 

metabolic rate (equation 11, Figure 10, and Table 4): 

 

𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑠𝑚 = 𝐴𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛 − 𝐺𝑟𝑜𝑤𝑡ℎ −  𝑀𝑜𝑙𝑡𝑖𝑛𝑔 − 𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (11) 

 

 

Figure 10. Adult metabolic rate at 8 (purple) and 12°C (orange) versus body weight. 

Expressions are from Ross (1982a; dashed-lines) and this study (solid-lines). 

Open circles represent original data from Ross (1979), filled circles represent 

metabolic rates calculated in this study. New allometric equation for metabolic 

rate assumes underestimation in original estimate by Ross (1982a). 

Growth: Molting 

I retained the allometric equation for molt rate determined by Ross (1982a; Table 

4). The Q10 for molt rate exhibits a clear inverse relationship with body weight (Ross, 

1979). To account for this pattern, I fit an allometric model to data from Ross (1979). The 

resulting model expresses the temperature sensitivity of molt rate (Q10 Molt; equation 12) 

as a function of body weight (W; Figure 11) and is defined as: 
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𝑄10 𝑀𝑜𝑙𝑡 = 5.08 ∗ 𝑊−0.12 (12) 

 

 

Figure 11. Allometric model (line) fit to Q10 values (points) for molt production and 

weight data from Ross (1979). 

Growth: Reproduction  

Allocation of energy to reproduction commences once an individual reaches 

maturity. Allocation to reproduction follows the relationship defined in Ross (1979; 

equation 13): 

 

𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝑅𝑊𝐴) = 0.010(𝑊 +  1.98)1.035 (13)  

 

where allocation to stored reproductive weight (𝑅𝑊𝐴; µg C) at each timestep is predicted 

as a function of body weight (𝑊; µg C). Allocation of energy to reproductive stores is 
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independent of whether there is sufficient food to maintain costs of living. This allows an 

individual to shrink but still reproduce, as has been observed in the field and laboratory 

(e.g., Shaw et al., 2010). 

Release of eggs is based on rules from the Dorman et al. (2015) IBM. Release of 

eggs occurs only at night and is dependent upon interbrood period (the time between 

release of eggs) and the ratio of stored reproductive weight (RW) to body weight (BW). 

Interbrood period is set to 10 days. Individuals release eggs every 10 days if RW:BW is 

between 2.5 and 7.5%. If the RW:BW ratio is greater than 7.5%, eggs are released 

independent of interbrood period. The number of eggs released is equal to the 

reproductive weight divided by egg weight (3.2 µg C). If any reproductive weight is 

leftover after egg release, it is conserved as reproductive weight for subsequent timesteps. 

Application of Mechanistic Submodels for Growth 

Results from the Phase I model indicate that growth rates for furcilia stages are 

similar to those predicted by the Base IBM (Figure 12a). Growth rates for juvenile and 

adult stages closely match growth rates from the Base IBM up to 12°C, at which point 

they reflect the modification that generates negative growth above 17.28°C (Figure 12b - 

e). 
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Figure 12. Growth rates (top row: µg C d-1; bottom row: mm d-1 TL) for various sizes (see 

legend) of a) furcilia, b and d) juvenile, and c and e) adult life history stages based 

on the Base IBM (purple lines in top row) and Phase I IBM (black dashed-lines 

with symbols; see legend). Purple lines in top row represent empirically estimated 

growth rates based on measurements of growth at 8 and 12°C (Ross, 1982b; 

Dorman et al., 2015). Solid green line in bottom row represents estimate of 

negative growth rates for the average size krill (10 mm) used in Marinovic and 

Mangel, 1999. Vertical red-dashed line indicates observed transition to negative 

growth at 17.28°C (Marinovic and Mangel, 1999). Horizontal dashed-line at zero 

for reference. 

Development  

Immature stages 

Development of immature stages is defined by a Bělehrádek function developed 

by Lindsey (2013) for E. pacifica. The Bělehrádek model predicts stage duration as a 

function of temperature (Bělehrádek, 1930). The Bělehrádek model Lindsey (2013) 

developed is based on empirical data of E. pacifica development rates from Ross (1981) 
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and Feinberg et al. (2006) (Figure 13). Progression to the subsequent life history stage is 

determined by equation 14: 

 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖 = 𝑎𝐷𝑢𝑟,𝑖(𝑇 + 𝐵)𝑐𝐷𝑢𝑟  (14) 

 

where 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖 is the duration of stage 𝑖 in days, 𝑎𝐷𝑢𝑟,𝑖 is an empirically 

determined stage-specific constant which defines the initial functional slope (day °C-1; 

Table C1), 𝑇 is temperature in °C, 𝐵 is a stage-independent temperature shift specific to 

E. pacifica (15.052 °C), and 𝑐𝐷𝑢𝑟 is an empirically derived constant that determines 

curvature (here, 𝑐𝐷𝑢𝑟 = -2.05).   
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Figure 13. Bělehrádek function for development of E. pacifica (development to juvenile 

stage was reproduced using Lindsey's (2013) Bělehrádek function). a) Stage 

duration (days) versus temperature. Stage indicated by color (see legend). Inset 

depicts stage duration of eggs through F7 furcilia. b) Days to stage (development 

time) versus stage at various temperatures (see legend). R.8 and R.12 indicate 

empirical observations at 8 and 12°C, respectively (Ross, 1981; Ross, 1982b). 

F.10.5 indicates empirical observation at 10.5°C (Feinberg et al., 2006). Inset 

depicts development time for the N1 nauplius through juvenile stage. 

Maturation 

Both Lindsey (2013) and Dorman et al. (2015) implement maturation using 

invariant weight-based maturation rules (e.g., maturity occurs once an individual reaches 

1500 µg C). To accommodate variability in size-at-maturation (as was observed in 

Robertson and Bjorkstedt, 2020), I defined a schedule of maturation by extending the 

Bělehrádek function developed by Lindsey (2013). To include an estimate for juvenile 

stage duration, and thus a temperature-dependent schedule for maturation, I estimated 

juvenile stage duration from data in Ross (1982b) and field observations (Harvey et al., 

2010; Shaw et al., 2021). I retained the value for the curvature coefficient used by 
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Lindsey (2013) but generated new estimates for Bjuvenile and aDur,juvenile. The coefficients 

for juvenile stage duration (𝑎𝐷𝑢𝑟,𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒 = 9.0*104, 𝐵𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒 = 8, 𝑐 = -2.05) generate a 

schedule of development within the range of estimates from laboratory and field-based 

experiments (Figure 13; Ross; 1982b; Harvey et al., 2010; Shaw et al., 2021). 

Maximum Size 

Rather than implement an invariant weight limit on maximum adult size (as in 

Dorman et al., 2015), maximum weight of adults was constrained using a linear model 

that predicted maximum size as a function of minimum size-at-maturity. A linear model 

was fit to minimum size-at-maturity (10th quantile) data from THL samples collected at 

station TH03 – TH05 from 2008 to 2020 (Figure 14; for comprehensive sampling and 

processing methods see Robertson and Bjorkstedt, 2020). Model individuals were 

allowed to exceed the predicted size by 50% up to a maximum size of around 20 mm 

body length (25 mm total length; 10,750 µg C), the maximum size attained by E. pacifica 

(Brinton et al., 1999). 
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Figure 14. Maximum versus minimum size-at-maturity (BL; mm). Linear model fit to 

THL data (black solid line, gray = 95% confidence interval). Dashed-line 

indicates maximum size cap implemented in the IBM as a function of minimum 

size-at-maturity. 

Mortality 

Starvation 

Starvation-induced mortality is not possible until an individual reaches the second 

calyptopis stage (as in Lindsey, 2013). At this stage (and subsequent stages up to the 

juvenile stage), an individual will die due to starvation if its weight drops below 70% of 

the individual's maximum weight. This starvation rule is based on the Dorman et al., 

(2015) IBM and is consistent with findings that indicate a 'point-of-no return' threshold of 

20-35% carbon loss in crustacean larvae (Anger and Dawirs, 1981; Dawirs, 1983; 

Dawirs, 1987). Lower point-of-no return thresholds (~50% body carbon loss) have been 

observed for larval stages of E. superba (Meyer and Oettl, 2005). However, E. superba, 

which experience extreme variability in food abundance in the Antarctic, are likely more 
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resistant to starvation than E. pacifica, which inhabit a more food-rich environment 

(Quentin and Ross, 1991). Therefore, as in Dorman et al., (2015), a conservative 

starvation value of 30% body carbon loss was selected. 

Once an individual reaches the juvenile stage, death by starvation occurs only if a 

juvenile or adult's weight falls below the minimum weight observed for these stages, 20 

and 90 µg C, respectively. This generous starvation rule allows for considerable 

shrinkage (e.g., as an overwintering strategy or in response to unfavorable conditions) by 

accommodating adaptation to a smaller size and is consistent with observations of 

shrinkage in juvenile and adult krill (Marinovic and Mangel, 1999).  

Lifespan 

The simulation of individual growth and development is terminated once an 

individual reaches two years of age. This lifespan is based on estimates from observations 

of E. pacifica in the California Current (Shaw et al., 2021).  

Predation 

Predation mortality is not included in the IBM (e.g., as a stochastic event). Rather, 

predation mortality was imposed post-simulation as a size-based instantaneous mortality 

rate and used to weight the contribution of each cohort to the predicted size distribution at 

a given point in time (see 'Demographics' above). 

Phase I IBM: Diagnosis 

Implementation of the Phase I model brought size distributions of juvenile and 

adults into phase with observations, and it shifted the negative correlations between THL 
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observations and model output observed from the Base model to positive correlations 

(Figure 15). Results indicated slight improvements in the resolution of size distributions 

across furcilia stages but seasonal and interannual patterns were still not well resolved. 

Like the Base model, modeled sizes of most furcilia stages exhibited a seasonal pattern 

that contrasts with field observations; model size distributions were either relatively 

constant (e.g., F2 furcilia) or larger in winter compared to spring and summer (e.g., F7 

furcilia). Correlations indicated slight improvements in F1, F3 and F4/5 furcilia but were 

the same for F2 furcilia and worse for F7 furcilia.  
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Figure 15. Stage-specific size (BL in mm; y-axis) distributions from Phase I IBM forced 

with a) climatologies and b) time series of temperature and chlorophyll a 

concentration along the THL. IBM results (blue dashed-line indicates median 

size; blue ribbon spans loess smooth of minimum (10th quantile) and maximum 

(90th quantile) body length) and THL data (gray points indicate median size by 

cruise date). THL observations in a) solid black line represents GAM fit to 

median size versus day-of-year, gray ribbon spans 95% confidence interval. THL 

observations in b) solid black line represents loess smooth of median size, gray 

ribbon spans ± 1 SD). c) Residuals from THL observations and IBM predictions 

of median size. Horizontal dashed-line at zero for reference. d) Correlation 

between median size of THL observations and IBM predictions. Title in top left 

corner of first column indicates life history stage (F1 – F7 furcilia, J = Juvenile, A 

= Adult) by row. 
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Patterns in climatological and time series scenarios indicate a major improvement 

in juvenile and adult size distributions. Visual inspection of patterns in size indicate 

model predictions are in phase with THL observations. This improvement in model-

observation agreement is also reflected in correlations between observations and model 

predictions. However, the seasonal (spring) increase in adult size often lagged the 

seasonal increase observed in field data.  

Phase II: Phenomenological Tuning 

Following the advancements culminating in the Phase I IBM, there were no 

obvious mechanistic approaches likely to yield substantial improvements in model-

observation agreement. Therefore, building off the Phase I model, I turned to 

development and evaluation of phenomenological modifications designed to explore the 

potential for ecosystem-based hypotheses to increase concordance between model 

predictions and observed patterns, with a particular focus on improving alignment at 

seasonal scales. Since size-at-stage reflects an integrated response to conditions over the 

course of an individual's life, I focused on resolving discrepancies in early life history 

stages prior to treatment of later life history stages. 

Seasonally Variable Energetics 

Individual growth rates emerge from physiological rates and exposure to 

environmental conditions. Published IBMs use physiological rates measured in laboratory 

experiments at 8 and 12 °C (Ross, 1982a; Lindsey, 2011; Dorman et al., 2015). Results 

from these experiments indicate that growth rate exhibits a positive relationship with 
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temperature. In the Dorman et al. (2015) IBM, incorporation of laboratory-based growth 

models generated higher growth rates during winter compared to spring and summer 

months. However, field observations suggest that growth rates are generally higher 

during spring and summer, periods typically characterized by cooler temperatures, and 

lower during years when delayed upwelling occurs and waters are warm (Shaw et al., 

2010; Shaw et al., 2021). The cause of the discrepancy between existing growth models 

and field observations is not clear. At least two mechanisms might explain the observed 

patterns. One, enhanced nutrient concentrations and food quality during cool and 

productive (upwelling) seasons might enhance assimilation and growth dynamics, 

allowing individuals to grow more even though temperatures are relatively cool. Two, the 

existing bioenergetics models based on empirical data from Ross (1982a) do not account 

for intrinsic seasonal variability in energetics. To construct energetic expressions, Ross 

used data from individuals collected only in spring and summer, but noted that ingestion 

rates were lower in fall and winter, perhaps due to quiescent individuals (Ross, 1982b). 

This pattern of lower energetic rates in fall and winter months has also been observed for 

metabolism and ingestion of Antarctic krill, E. superba (Teschke et al., 2007; Piccolin et 

al., 2018; Höring et al., 2018). Seasonal fluctuations in euphausiid energetics have the 

potential to alter growth rates and size dynamics.  

Implementing seasonality in euphausiid energetics has been used to advance an 

IBM for E. superba (Bahlburg et al., 2021). In the Southern Ocean, ingestion rates of 

Antarctic krill vary with photoperiod; during winter light conditions assimilation rates 
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can be as low as 36% of rates observed in summer conditions (Teschke et al., 2007). 

Respiration rates exhibit a similar response to photoperiod: winter light conditions 

correspond to significantly lower respiration rates. Bahlburg et al., (2021) accounted for 

seasonal variability in E. superba energetics by applying a day-length dependent scale 

factor to ingestion and metabolism submodels.  

I took two approaches to incorporate variability in E. pacifica energetics. Both 

approaches are phenomenological and based on the hypothesis that euphausiid energetics 

vary seasonally. If this is true, accounting for seasonal variability in energetics will 

improve the model's ability to resolve E. pacifica growth and size dynamics.  

Phase II IBM: Seasonal Variability in Energetics 

In the Phase II approach, I generated a seasonal scale factor that is a function of 

day-of-year. Patterns emerging from initial attempts using a day-length-based model, as 

had proven useful in the Antarctic case, proved unsatisfactory, as seasonal peaks in size 

occurred too late in the year to align well with observations. Shifting the peak of the scale 

factor to better overlap with seasonal upwelling rather than day length yielded an 

improved fit, and is consistent with the timing of seasonal drivers of ecosystem 

productivity in this system (spring upwelling in the CCE v. day-length in the Antarctic). 

Several scale factor shapes were explored. These included factors that decreased 

energetic rates by 5 to 30% in winter, altered the duration of the peak in the scale factor, 

and lengthened the duration of the scale factor minimum in winter. I also explored unique 

shapes for different life history stages (e.g., F1 – F4.5 and F6 – F7 furcilia). The scale 
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factor presented in Figure 16 was selected because it provided a good fit between model 

output and observations across most life history stages (see 'Phase II IBM: Diagnosis') by 

resolving the timing and magnitude of seasonal fluctuations in size. The scale factor 

increases from January to May 1 (day-of-year = 121) and decreases from July 1 (day-of-

year = 182) to December 31 (Figure 16). The peak of the scale factor falls within the 

window of peak climatological upwelling observed for northern California (Bograd et al., 

2009). In winter, the scale factor decreases energetic rates by a maximum of 10%. 

Following Bahlburg et al., (2021), the energetic scale factor is applied to assimilation and 

cost components of the growth equation. Thus, the ratio between assimilation and costs 

remains constant. The change in growth rate reflects the balance of scaled intake and cost 

components in absolute, not relative, terms. This implementation is analogous to a whole-

animal response; individuals are generally more active during spring and summer months 

and exhibit reduced activity during winter.  

 

Figure 16. Day-of-year (DOY)-based scale factor applied to energetic components of 

feeding stage krill. 
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For implementation of the Phase II model, the scale factor described above was 

applied to energetic rates across all feeding life history stages (C1 calyptopes – adults). 

Growth rate of stages for which growth is calculated directly (C1 – C3 calyptopes) was 

scaled by applying the scale factor directly to growth rate. For F1 furcilia – adults, the 

scale factor was applied to assimilation and energetic costs.  

Phase II IBM: Diagnosis 

Scaling the energetics of feeding stages improved the match between model 

results and observations across furcilia stages, but degraded agreement for juvenile and 

adult stages (Figure 17). Specifically, the downscaling of energetic processes early in the 

year magnified the discrepancy between model results and observations for older stages, 

and especially for adults. Given the stated focus on accurately modeling adult size 

distributions, I retained this energetic scaling for earlier life history stages as the 

foundation for subsequent models, but proceeded immediately to develop models that 

better resolved size dynamics for juveniles and adults.

 

Figure 17. Size (BL in mm; y-axis) distributions from implementation of Phase II model 

forced with climatology of temperature and chlorophyll a concentration. IBM 

results (blue dashed-line indicates median size; blue ribbon spans loess smooth of 

minimum (10th quantile) and maximum (90th quantile) body length) and THL data 

(gray points indicate median size by cruise date; solid black line represents GAM 

fit to median size versus day-of-year, gray ribbon spans 95% confidence interval). 

Title in top left corner of each plot indicates life history stage (F1 – F7 furcilia, J 

= Juvenile, A = Adult). 
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Phase IIa IBM: (Upwelling) season-dependent energetics 

To reduce the model-observation discrepancy in adult size structure during spring, 

I generated a second day-of-year-based scale factor to increase assimilation in adults 

during spring months (Figure 18). The 'spring enhancement' scale factor is based on the 

ecological hypothesis that assimilation is enhanced during the productive upwelling 

season (e.g., due to increased nutritional content of prey; Miller et al., 2017). Similar to 

development of the first scale factor, I explored several alternate scale factors for 

assimilation in adults. These included factors with a longer peak (e.g., from April to June) 

and a maximum value of 1.3. A scale factor that began to increase in February, peaked 

from April to May, and decreased until July generated a good match between model 

output and field observations and was consistent with the timing of physical and 

biogeochemical processes (e.g., upwelling, nitrate flux, phytoplankton blooms) that 

dominate the biological response in the CCE.

 

Figure 18. Day-of-year (DOY)-based, spring enhancement scale factor (y-axis) applied to 

assimilation rates of adults. 
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In the Phase IIa IBM, the first day-of-year-based scale factor (Figure 16) was 

applied to energetic rates in feeding stage larvae (C1 calyptopes – F7 furcilia). Since the 

day-of-year-based energetic scale factor did not improve resolution of juvenile size 

distributions in Phase II, it was not applied to juveniles in the Phase IIa model. The 

second 'spring enhancement' scale factor (Figure 18) was applied to assimilation in adults 

only. 

Phase IIa IBM: Diagnosis 

The Phase IIa model generates patterns in size that better match field observations 

(Figure 19). In general, seasonal patterns generated by the model match field 

observations. The model produces furcilia size distributions that are larger in spring and 

summer and smaller in fall and winter, in agreement with observed patterns. The increase 

in adult size during spring is also better resolved by the Phase IIa model. However, adult 

size is still underestimated in spring (Figure 20). Resolution of interannual variability 

improved across all life history stages. Correlations between field observations and model 

output improved across all life history stages. The lag in adult size during spring was 

apparent in several years of the time series scenario.   
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Figure 19. Stage-specific size (BL in mm; y-axis) distributions from Phase IIa IBM 

forced with a) climatology and b) time series of temperature and chlorophyll a 

concentration along the THL. IBM results (blue dashed-line indicates median 

size; blue ribbon spans loess smooth of minimum (10th quantile) and maximum 

(90th quantile) body length. THL observations in a) solid black line represents 

GAM fit to median size versus day-of-year, gray ribbon spans 95% confidence 

interval. THL observations in b) solid black line represents loess smooth of 

median size, gray ribbon spans ± 1 SD). c) Residuals from THL observations and 

IBM predictions of median size. Horizontal dashed-line at zero for reference. d) 

Correlation between median size of THL observations and IBM predictions. Title 

in top left corner of first column indicates life history stage (F1 – F7 furcilia, J = 

Juvenile, A = Adult) by row. 
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Figure 20. Residuals (y-axis) versus day-of-year (DOY; x-axis) for Phase IIa model. 

Loess smooth (blue line, gray ribbon spans 95% confidence interval) fit to data to 

highlight trend in fit between observations and model predictions. 

Phase IIb IBM: Temperature-dependent adult energetics 

The Phase IIb IBM incorporates a different approach to phenomenological scaling 

of seasonal variability in adult assimilation. Like the Phase IIa model, it builds off the 

core Phase II model, but instead of using a day-of-year-based scale factor nominally 

representative of the upwelling season, I developed a temperature-based 'upwelling' scale 

factor. The upwelling scale factor is a function of average temperature in the top 30 

meters of the water column (Figure 21). Like the spring enhancement scale factor, this 

metric is a proxy for the productive upwelling season. However, the temperature-based 

scale factor allows for a more dynamic response by implementing enhanced assimilation 

during cooler conditions rather than a fixed period of time. These dynamics are consistent 

with greater nutrient availability and food quality during cool and productive upwelling 
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conditions (Miller et al., 2017). At temperatures above 12°C, the upwelling scale factor is 

set to one and assimilation rates are equivalent to those described above in 'Ingestion'. 

 

Figure 21. Temperature-dependent upwelling scale factor. Scale factor (y-axis) applied to 

adult assimilation rate based on average temperature in top 30 m of water. 

The shape of the upwelling scale factor was based on the climatology and time 

series of temperature along the THL (Figure 22). Average temperature in the upper 30 

meters of water tends to be coolest during the first half of the year – a period that 

coincides with the discrepancy in adult size. Across the time series, average temperature 

in the upper 30 meters spans approximately 8 to 15°C. During spring, the average 

temperature is typically less than 12°C. The upwelling scale factor is defined by a linear 

decline from a value of 1.8 to 1 over temperatures between 8 and 12°C. The resulting 

expression was used to obtain a temperature-dependent scale factor value (Figure 21).  
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 Since resolution of furcilia size structure was relatively well resolved in the Phase 

IIa model, the day-of-year-based energetic scale factor was retained for feeding larvae 

(C1 calyptopes – F7 furcilia). Phase I and Phase IIa models generated size distributions 

of juveniles that matched reasonably well with observations. The temperature-based 

upwelling scale factor (Figure 21) was applied to assimilation rates in adults. 

Phase IIb IBM: Diagnosis 

The phase IIb model does a better job at resolving seasonal and interannual 

variability in size distributions of adults (Figure 23). The correlation between field 

observations and IBM predictions of median size is substantially higher than other model 

versions (R = 0.48). Additionally, the RMSE for adults in the Phase IIb model is lower 

compared to other model versions (Table 6). Despite an improvement in predictions of 

adult size, size distribution still tends to be underestimated during winter and is 

Figure 22. Temperature in the upper 30 meters at station TH04. a) Climatology 

(temperature versus day-of-year (DOY) and b) time series of temperature. Area 

between 8°C and 12°C (indicated by horizontal dashed lines) indicates range 

over which scale factor is not equal to one. 
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overestimated during a few spring/summers in the time series, most notably 2015 and 

2016.   
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Figure 23. Stage-specific size (BL in mm; y-axis) distributions from Phase IIb IBM 

forced with a) climatology and b) time series of temperature and chlorophyll a 

concentration along the THL. IBM results (blue dashed-line indicates median 

size; blue ribbon spans loess smooth of minimum (10th quantile) and maximum 

(90th quantile) body length). THL observations in a) solid black line represents 

GAM fit to median size versus day-of-year, gray ribbon spans 95% confidence 

interval. THL observations in b) solid black line represents loess smooth of 

median size, gray ribbon spans ± 1 SD). c) Residuals from THL observations and 

IBM predictions of median size. Horizontal dashed-line at zero for reference. d) 

Correlation between median size of THL observations and IBM predictions. Title 

in top left corner of first column indicates life history stage (F1 – F7 furcilia, J = 

Juvenile, A = Adult) by row. 
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Table 6. Root-mean square error for select IBM versions across F1 – F7 furcilia, juvenile 

(Jv), and adult (Ad) life history stages. 

Model Version F1 F2 F3 F4.5 F6 F7 Jv Ad 

Base 0.265 0.278 0.319 0.440 0.482 0.370 2.327 3.309 

Phase I 0.203 0.244 0.304 0.379 0.351 0.398 1.524 3.280 

Phase IIa 0.181 0.234 0.286 0.322 0.333 0.408 1.544 2.778 

Phase IIb 0.181 0.234 0.286 0.322 0.333 0.408 1.544 2.346 

A comparison of correlations between observations and model output for adults 

during spring in the Phase IIa versus Phase IIb model confirms the temperature-based 

scale factor improved resolution of adult size distributions (Figure 24).  
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Figure 24. Comparison of correlations between observations (BL in mm; y-axis) and 

model output (BL in mm; x-axis) for adults during spring in the Phase IIa (closed 

circles) versus Phase IIb (open circles) models. Correlation (R) values noted in 

legend. 

I also explored an alternative migration strategy that implemented migration to 

the depth at which maximum growth occurred. This version generated similar size 

dynamics and growth trajectories compared with the model that implements DVM to the 

maximum chlorophyll depth. Correlations between an individual's depth, temperature, 

and chlorophyll exposure in these two iterations of the Phase IIb model reflected similar 

environmental exposure throughout an individual's life (Rdepth = 0.94, Rtemperature = 0.96, 

Rchlorophyll = 0.98). The 'maximum growth' version did not improve resolution of adult size 

structure and was excluded from the set of models selected for presentation.  

Incorporating a temperature-dependent Q10 for adult and juvenile ingestion 

resulted in a trivial improvement in model performance. Size distributions from 
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climatological and time series scenarios were indistinguishable between the Phase IIb 

model with and without this modification (not shown). The RMSE is slightly lower for 

juveniles and adults in the model version that incorporates a temperature-dependent Q10 

compared to the model version that does not (1.544 versus 1.551 for juveniles and 2.346 

versus 2.364 for adults). The model version that incorporates a temperature-dependent 

Q10 also produces effectively equal correlations between observed and predicted size of 

juveniles and adults compared to the model version that did not incorporate this 

modification (0.25 versus 0.24 for juveniles and 0.48 versus 0.47 for adult). 

Summary of model development 

Model development built upon a 'Base' version that implemented growth and 

development using a phenomenological approach (following Dorman et al., 2015). In the 

first phase of model development, existing empirical data were reanalyzed and observed 

relationships (i.e., the tendency for adults and juveniles to shrink at high temperatures and 

variability in size-at-maturity) were incorporated. In the second phase of model 

development, the IBM framework from Phase I was expanded by incorporating 

phenomenological scaling of energetics (Table 7). 
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Table 7. Model descriptions for select versions of the IBM created during model development. Italicized font in 'Brief 

Description' column indicates key change to model version. 

Model 

Version 

Brief Description Environmental Input day-of-year 

'Energetic' 

Scale Factor  

day-of-year  

'Spring Enhancement' 

Scale Factor 

Temperature 

'Upwelling'' 

Scale Factor 

Egg Size 

(µg C) 

Food at 

Depth 

Base Directly-scaled growth 

following Dorman et al. 

(2015). Development 

implemented with weight 

thresholds (Table 1). At 

night, migrating stages are 

positioned at depth where 

max. chlorophyll occurs.  

 

Egg – F2 = mean (10 m 

to stage specific depth) 

F3 - Adults = stage 

specific depths & DVM 

to maximum chl. depth  

No No No 2.58 Chl. a at 

depth of 

individual 

Phase I Mechanistic model (growth 

= assimilation - metabolism 

- molt -reproduction). 

Development implemented 

with temperature-dependent 

function with extension for 

maturation. 

 

As in Base No No No 3.2 Chl. a at 

depth or 

0.30*max. 

chl. a, 

whichever 

is greater 

Phase IIa Energetic scale factor 

applied to feeding larvae 

(C1 calyptopes- F7 furcilia). 

Spring enhancement scale 

factor applied to adults. 

 

As in Base Yes, feeding 

larvae  

(Figure 16) 

Yes (Figure 18) No As in 

Phase I 

As in 

Phase I 

Phase IIb Upwelling scale factor 

applied to adults.   

As in Base Yes, as in 

Phase II 

No Yes  

(Figure 21) 

As in 

Phase I 

As in 

Phase I 
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In general, Base and Phase I model versions do a poor job resolving realistic 

patterns in E. pacifica size distributions (Figure 7 and Figure 15). Model versions that 

incorporate seasonal scaling of energetics perform better and resolve realistic size 

distributions across most life history stages. Size distributions of F6 and F7 furcilia are 

poorly resolved in all model versions. 

The Phase IIb model, which included an energetic scale factor for larvae, a 

temperature-dependent scale factor for assimilation in adults, and a temperature-

dependent Q10 for ingestion in juveniles and adults, produced the lowest RMSE and 

highest correlation between observations and model predictions (Figure 23 and Table 6). 

This model also resolved reasonable variability in climatological and time series 

scenarios. As such, the Phase IIb model was selected as the 'top' model and is analyzed in 

subsequent sections. The top model is summarized and presented in Figure 25. A 

complete description of the top model, following the Overview, Design, and Details 

protocol for describing individual-based models can be found in Appendix D (Grimm et 

al., 2006; Grimm et al., 2020).  
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Figure 25. Flow diagram of the final model, including energetics and development 

submodels for non-feeding larvae, calyptopes, furcilia, juveniles, and adults. 

Stage transitions within composite groups (e.g., early life history stages) are 

subsumed in boxes for compactness. Criteria for stage transitions is determined by 

the temperature-dependent Bělehrádek function (see 'Development'). SF = scale 

factor.  
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Analysis of Top Model 

I calculated growth, maturation, and reproductive rates for the top model and 

compared them to patterns observed in field. I generated daily growth rates from model 

output by calculating the difference between the start and end size of a particular stage on 

a single day. When rates did not span a full 24 hours (e.g., if transition to the next stage 

occurred during the 24-hour period), the growth rate was extrapolated to a full daily rate. 

Unless noted otherwise, growth rates are presented in mm TL d-1 to facilitate comparison 

with the literature (e.g., Shaw et al., 2010). Time to maturation represents development 

time (in days) from egg to the adult stage. Reproductive effort is presented as eggs per 

day per krill. This value was calculated by dividing the mean daily weight (in carbon) 

allocated to reproduction by the size of an egg (3.2 µg C). Values for minimum (10th 

quantile), median, and maximum (90th quantile) eggs per day per krill were calculated 

using weighted model output (as described in 'Demographics'). 

Growth Rates 

Adult and juvenile growth rates tended to follow a seasonal pattern driven by 

environmental input and seasonal scale factors; lower growth rates occurred in fall or 

winter months and higher growth rates occurred during spring or summer months (Figure 

26). The daily median adult growth rate (averaged by month for each year of the time 

series simulation) ranged from -0.18 (± 0.02 SD) to 0.18 (± 0.05 SD) mm TL d-1. These 

changes translate to -1.31 to 1.39% relative to body size. Positive growth was more likely 

to occur during spring and summer months. Negative growth occurred 50% of the time 

and in all years throughout the simulation, typically during the latter half of the year. At 
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the individual level, minimum and maximum growth rates ranged from -0.32 mm d-1 to 

0.42 mm d-1, respectively.

 

Figure 26. Daily median growth rate (y-axis; mm TL d-1) averaged by month across 2010 

- 2020 for adults (top) and juveniles (bottom). Gray ribbon indicates ± one 

standard deviation. Horizontal dashed-line at zero for reference. 

Juvenile growth rates were generally lower than adults; the daily median growth 

rate (averaged by month for each year of the time series simulation) ranged from -0.07 (± 

0.02 SD) to 0.10 (± 0.003 SD) mm TL d-1 (Figure 26). These changes translate to -0.72 to 

1.33% relative to body size. Positive growth rates occurred throughout the year. Negative 

growth rates were observed less frequently than adults, occurring 9% of the time, 

typically during winter months. Negative growth rates did not occur during 2012, 2013, 

and 2018. Minimum and maximum growth rates of individuals ranged from -0.22 mm d-1 

0.12 mm d-1, respectively.  
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Periods with larger adult size distributions (e.g., 2013 and 2018) tended to 

coincide with and follow years characterized by less severe negative growth in juvenile 

and adults. Similarly, larger juvenile size distribution in (e.g., in 2012/13 and 2017/18) 

coincided with low occurrence of negative growth. 

In general, furcilia growth rates were lower than juvenile and adult growth rates 

(Figure 27). In contrast with juveniles and adults, growth rates tended to be highest in the 

fall and lowest during spring and summer. Negative growth rates (from monthly averages 

of median size) were not observed in F1 through F4/5 furcilia stages, but were observed 

in F6 – F7 Furcilia, typically during spring and summer months. At the individual level, 

negative growth rates were observed in F3 – F7 furcilia (Figure 27). The magnitude of 

negative growth increased with ontogeny. 
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Figure 27. Daily median growth rate (y-axis; mm TL d-1) averaged by month from March 

2008 to January 2020 for F1 – F7 furcilia (noted in top left corner of each plot). 

Gray ribbon indicates ± one standard deviation. Horizontal dashed-line at zero for 

reference.  
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Table 8. Range of individual growth rates (mm TL d-1) observed for F1 – F7 furcilia, 

juveniles, and adult stages. 

 

 

Maturation and Reproduction 

Development time from egg to adult ranged from 153 to 204.5 days (Figure 28a). 

These values fall within the range of field-based estimates (see 'Discussion'). The effect 

of the temperature-dependent Bělehrádek function is evident in the relationship between 

thermal exposure and maturation times; longer maturation times tended to correspond 

with cooler conditions over the lifetime of the krill while shorter maturation times 

corresponded to warmer conditions over the lifetime of the krill. Krill born in late 

September 2014 had the shortest maturation time and matured in early 2015. Krill born in 

early February 2013 had the longest maturation time and matured in late August 2013. As 

expected, body length at maturation was reduced for individuals that experienced warmer 

conditions (Figure 28b and d). However, individuals that experienced cooler temperatures 

Stage Minimum Date Maximum Date 

F1 furcilia 0.04 06-May-2013 0.09 27-Oct-2014 

F2 furcilia 0.04 08-May-2013 0.10 19-Nov-2016 

F3 furcilia -0.02 22-Apr-2009 0.11 30-Oct-2014 

F4/5 furcilia -0.07 17-Sep-2015 0.11 27-Oct-2014 

F6 furcilia -0.14 06-Mar-2012 0.11 14-Nov-2014 

F7 furcilia -0.14 20-May-2012 0.10 17-Dec-2014 

Juvenile -0.22 18-Aug-2010 0.12 15-Sep-2014 

Adult -0.32 07-Jul-2010 0.42 07-Sep-2010 
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matured at various sizes from relatively small (~6 mm BL) to relatively large body size 

(~12 mm BL). Chlorophyll a exposure tended to have a positive effect on size-at-

maturity; individuals exposed to low concentrations of chlorophyll a over the course of 

their life tended to mature at smaller sizes while larger size-at-maturation tended to 

correspond with exposure to greater chlorophyll a concentrations (Figure 28c and d).   
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Figure 28. Maturation results from the top IBM. a) Days to maturation by date. Points are 

filled with the cumulative average temperature from egg to adult (see legend); b) 

Size-at-maturity (BL; mm) by date, point color as in a; c) Size-at-maturity by 

date. Points are filled with the cumulative average chlorophyll from egg to adult 

(see legend); d and e) Size-at maturity versus time (days) to maturity. Points filled 

with average temperature (d; see legend) and chlorophyll (e; see legend).  
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In general, the smallest individuals at maturity experienced warm conditions and 

low food availability (Figure 28d and e). In contrast, the largest individuals at maturity 

experienced cool to moderate thermal conditions and moderate to high chlorophyll a 

concentration. The smallest size-at-maturation (5.27 mm BL) occurred in early 2016, 

which corresponded with a relatively warm thermal exposure history (11.8 °C) and low 

chlorophyll a concentration (2.0 mg L-1; Figure 28b and c). In contrast, the largest size at 

maturation (12.44 mm BL) occurred in May 2015 and corresponded with moderately 

warm thermal exposure history (10.6 °C) and higher chlorophyll a concentration (4.26 

mg L-1).  

Field observations of size-at-maturity (indexed by 10th quantile) were positively 

correlated with size-at-maturity in the IBM (R = 0.30; Figure 29).  

 

Figure 29. Size-at-maturity (BL; mm) from IBM output (y-axis) and THL observations 

(as indexed by the 10th quantile; x-axis). Diagonal line at 1:1 relationship for 

reference. 
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Per capita reproductive output exhibited a clear seasonal pattern. Allocation to 

reproduction is greatest during the summer months and declines in fall and winter months 

(Figure 30). Interannual variability in reproductive effort is apparent but is muted 

compared to seasonal fluctuations. Average reproductive output was greatest in 2013, 

maximum egg production peaked in March (85 eggs d-1 krill -1) while median egg 

production peaked in August (56 egg d-1 krill -1). Reproductive effort was lowest in 

January 2010 (1 egg d-1 krill -1). The duration of reproductive "peaks" appears to have 

been longer from 2010 through 2015 compared to more confined peaks of reproduction 

during 2016, 2017, and 2019. Years with a longer period of elevated egg production (e.g., 

2010-2013) tended to generate a larger number of total eggs compared to years with 

greater absolute production but shorter seasons (e.g., 2016). 

 Brood size of individual krill was directly related to body size and ranged from 4 

to 229 eggs female-1 (Figure 31). The upper limit of the brood size-body size relationship 

Figure 30. Reproductive effort (eggs d-1 krill-1; y-axis) averaged by month from 2010 

to 2020. Black line represents median reproductive effort, gray ribbon spans 

minimum (10th quantile) and maximum (90th quantile) reproductive effort. 

Numbers between year labels indicate the total of average eggs krill-1 year-1.  
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indicates exposure to optimal conditions; the spread below this limit is due to less 

favorable conditions. The minimum size krill producing a brood was approximately 7 

mm (TL). 

 

Figure 31. Brood size (eggs) versus total length (mm) of individual krill from the time 

series scenario of the top model. 

Sensitivity Analysis 

I also evaluated the sensitivity of output (i.e., size) from the top model to variation 

in key energetic components and environmental conditions. Rather than conduct a 

sensitivity analysis for each energetic parameter, I focused on sensitivity of output to 

variability in energetic rates. To do this, I altered ingestion, metabolism, molting, and 

reproductive rates by ± 10%. In each sensitivity simulation, a change to only one 

energetic component was implemented. Because growth is modeled as the balance of 

intake and costs, a change to an energetic component affected the amount of surplus 

energy available for growth, but did not have an immediate effect on other energetic 

components. For example, a 10% increase in metabolism decreased the amount of energy 
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(carbon) available for growth by metabolic rate*0.10. Similarly, a 10% increase in 

ingestion increased the amount of surplus energy available for growth.  

Temperature and chlorophyll are generally correlated in upwelling systems. As 

context for differentiating the relative contribution of changes in temperature and food to 

krill size, model results were developed for a cross-factorial array of temperature (±1°C) 

and food offsets (± 20% chlorophyll a concentration) from seasonal climatology. Results 

from sensitivity analyses are presented as change in size; or the difference between body 

length generated by each simulation and body length generated by the un-altered 

climatological simulation. 

Model Sensitivity: Energetics 

Sensitivity analyses examining the effect of changes in key energetic components 

indicated diverse responses to changes in ingestion, metabolism, molt, and reproductive 

rates (Figure 32). Across all life history stages, changes to ingestion rate had the greatest 

effect on size. The magnitude of change was greatest in juvenile and adult stages, though 

this reflects (at least in part) a cumulative response to change in ingestion over the course 

of an individual's life. Changes to metabolic rate had a considerable, though smaller, 

effect on size. Across furcilia stages, the change in size in response to changes in 

ingestion and metabolism was relatively constant throughout the year. Juveniles and 

adults exhibited a greater response in spring and fall. Changes in molt rate were nearly 

inconsequential to size distributions. Similarly, changes in reproduction rate had a small 

effect on adult size distributions. 
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Figure 32. Results from simulations examining sensitivity of model output (size; y-axis) 

to changes (± 10%; see legend) in key energetic components. a) ingestion, b) 

metabolism, c) molt, and d) reproductive rate by stage (F1 – F7 furcilia, J = 

juvenile, A = adult). Note: y-axis scale varies with life history stage. 

Model Sensitivity: Environmental Response 

Like sensitivity analyses examining the effect of key energetic components, the 

effect of changes in environmental conditions represents a cumulative response over the 

course of an individual's life. Sensitivity to environmental conditions varied across life 

history stages (Figure 33). Changes in chlorophyll had little to no effect on the size of 
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furcilia stages (not shown). This pattern was consistent across scenarios, including those 

where temperature was also altered. F6 and F7 furcilia stages exhibited a weak response 

to variability in chlorophyll; decreased chlorophyll resulted in a slight shift to smaller 

size structure. In contrast, temperature had a marked effect across furcilia stages. In 

general, early furcilia stages exhibited a contrasting response to later furcilia stages. F1 

and F2 furcilia tended to be smaller (larger) in response to increased (decreased) 

temperature whereas F3 – F7 furcilia tended to be larger (smaller) in response to 

increased (decreased) temperature.  

Juvenile and adult stages exhibited a clear response to changes in chlorophyll and 

temperature. In general, decreased (increased) chlorophyll generated smaller (larger) size 

structure. Changes in chlorophyll seemed to have a greater effect on size during winter 

months compared to spring and summer months. Except for the scenario where 

temperature and chlorophyll were reduced, decreased temperature resulted in larger size 

structure during the spring compared to climatological results. In the case of juveniles, 

increased temperature resulted in larger size structure during late winter and fall, though 

the effect was greater when chlorophyll was also increased. Increased temperature 

resulted in smaller size structure during spring and winter months. In general, adult size 

tended to be larger (smaller) with decreased (increased) temperature. However, the 

magnitude of the response varied seasonally; reduced temperature generated larger size 

structure in adults, particularly during winter months. In contrast, increased temperature 

generated smaller size structure in adults, particularly during spring months.



 

  

87 

a b 

c 

Figure 33. Results from simulations examining sensitivity to environmental input. Size of a) furcilia, b) juvenile, and c) adult 

stages. Title (top left plot) indicates life history stage (F1 – F7 furcilia, J = Juvenile, A = Adult). Subtitle (top left 

corner of each plot) indicates environmental conditions. Scenarios include combinations of temperature ± 1°C and ± 

20% chlorophyll a concentration (see plot subtitles). Black lines represent the difference between body length (mm) of 

each model scenario versus the scenario forced with THL climatology data (BLscenario - BLclimatology). Dashed gray line 

at zero to facilitate interpretation of results. 
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DISCUSSION 

IBMs are powerful tools for exploring how behavior and ecological interactions 

define individuals’ fates and, in aggregate, yield emergent dynamics at the population 

level. However, the utility of IBMs depends on the fidelity with which the rules and 

mechanisms that constitute the model reflect reality. In this thesis, I use a pattern-oriented 

modeling approach to advance an IBM's ability to produce growth and size dynamics of 

E. pacifica in the northern California Current Ecosystem, thereby strengthening the 

foundation for such models to serve as tools for broader examination of ecosystem 

dynamics. 

The model I developed incorporates three key modifications to previously 

published IBMs. These modifications were implemented in two phases of development. 

The first phase incorporated two of the modifications: improved estimates of 

temperature-dependent energetic parameters and extension of temperature-dependent 

development to maturation. The second phase incorporated the third modification—

seasonal variability in energetics, including assimilation in adults. The first modification 

is a robust enhancement of realistic mechanisms. The second and third modifications are 

phenomenological extensions grounded in plausible links between environmental 

conditions and E. pacifica physiology, yet lack a detailed empirical or mechanistic basis.  

Contribution of Model Revisions to Improved Realism 

Overall, the iterative, pattern-oriented approach led to substantial improvement in 

resolution of realistic size and production dynamics. Improved agreement between model 
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predictions and observed size distributions was grounded in the re-analysis of available 

empirical data and subsequent revision of fundamental physiological submodels that 

make up the core of the IBM. These modifications and the extension of temperature-

dependent development to adults brought model size distributions of juveniles and adults 

into phase with observations. Although the first phase of model development did not 

yield full improvement across life history stages, this step represents a major and 

essential advancement as it brings the IBM into agreement with observed relationships. 

In the second phase of model development, remaining discrepancies between 

model-generated size distributions and observations were improved by tuning energetic 

submodels. Furcilia size distributions were brought into agreement with observations by 

implementing day-of-year-based seasonal variability in energetic rates. The emerging 

patterns are consistent with our observations indicating larger size distributions in spring 

and summer and smaller size distributions in fall and winter (Robertson and Bjorkstedt, 

2020). Application of this scale factor to energetic rates in later life history stages did not 

improve discrepancies. Instead, underestimation of adult size distributions during spring 

was improved by implementing a scale factor for assimilation in adults. This 

modification was based on the hypothesis that improved prey quality or forage conditions 

during the productive upwelling season result in enhanced assimilation and larger size 

distributions and is supported by research indicating higher lipid content in 

phytoplankton during the cool, upwelling season and observations of greater growth rates 

during upwelling conditions (Shaw et al., 2010; Miller et al., 2017). The enhanced 
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flexibility of a temperature-based scale factor resulted in greater agreement between 

model output and observations compared with a day-of-year-dependent scale factor.  

A similar scale factor, but based on light level, was used to implement seasonal 

variability in assimilation and energetic costs in an IBM for the Antarctic krill, E. 

superba (Bahlburg et al., 2021). In the Antarctic environment, E. superba energetics are 

closely tied to day length and light level. Here, day-of-year and temperature were 

preferred over day length because they serve as more flexible proxies for upwelling, an 

important driver of ecosystem responses in the CCE (Kudela et al., 2008; Bograd et al., 

2009). Day-of-year was weighted to reflect climatological upwelling; the peak of the 

energetic scale factor coincides with a period when conditions in the CCE tend to be 

more productive and supportive of euphausiid growth (Kudela et al., 2008; Bograd et al., 

2009; Shaw et al., 2010).  

Unlike other life history stages, predictions of juvenile size distributions were not 

improved with implementation of a scale factor that modified energetics. The ability of 

the IBM to reasonably resolve juvenile size structure without implementing variability in 

energetics reflects the greater energetic demand of juvenile krill (compared to furcilia) 

and food concentrations that fluctuate from abundant in spring and summer to insufficient 

in fall and winter. These dynamics resulted in juvenile size distributions that generally 

tracked abundance of prey. 

Despite marked improvements in the ability to resolve size structure for most life 

history stages, the final model (and all others) do a poor job resolving size structure in F6 
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and F7 furcilia stages. This pattern might reflect a structural element of the model; the 

sharp transition from a temperature-independent Q10 which is applied to larvae to the 

temperature-dependent Q10 applied to juveniles and adults. An alternative, though not 

mutually exclusive, explanation is based on the greater likelihood that individuals will 

skip a later furcilia stage (Feinberg et al., 2006). Skipping a stage tends to decrease 

development time, which has the potential to alter size dynamics, especially if increased 

development rates are not coupled with similar changes in growth rates. Despite the poor 

resolution of F6 and F7 furcilia size distributions, an improved fit between model output 

and field observations was restored for juvenile and adult stages. This pattern likely 

reflects the relatively short stage duration of F6 and F7 furcilia and low potential for 

growth, especially if one of these stages is skipped. 

Model Analysis 

In anticipation of future implementation of the IBM to simulate population 

dynamics, it is important to assess that the model also matches other measures of krill 

dynamics and to identify discrepancies as foci for future research. I consider three metrics 

relevant to population dynamics that are related to size, but are not specifically targeted 

in the pattern-matching approach: growth rates, reproduction, and maturation. 

Growth Rates 

Model estimates of juvenile and adult growth rates are comparable to field-based 

estimates of E. pacifica growth within the CCE. Off the coast of Oregon, growth rate 

estimates from instantaneous growth rate experiments (Shaw et al., 2010) and cohort 
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analyses (Shaw et al., 2020) ranged from approximately -0.2 to 0.5 mm TL d-1. Model 

estimates of individual adult (-0.32 to 0.42 mm TL d-1) and juvenile (-0.22 to 0.12 mm 

TL d-1) growth rates are well within the ranges reported by Shaw et al. (2010; 2021). 

Furthermore, seasonal patterns in juvenile and adult growth rates are similar to field-

based observations indicating greater growth in spring and summer months (Brinton, 

1971; Shaw et al., 2010). This pattern was not clearly resolved by the Dorman et al. 

(2015) IBM and represents an improvement in model-observation agreement. 

Comparable field estimates of growth rates for furcilia are sparse. Bollens et al. 

(1992) estimated growth rates for larval E. pacifica (2-5 mm) ranging from 0.04 to 0.12 

mm d-1. Individual (-0.14 to 0.10 mm TL d-1) and monthly averages of median growth 

rates (-0.08 to 0.10 mm TL d-1) emerging from the model for similar sized krill exhibit a 

wider range than field-based estimates. Additionally, Shaw et al. (2021) reported that 

negative growth rates were not observed for E. pacifica smaller than 5 mm (~3.8 mm 

BL). This size corresponds to approximately the F4/5 furcilia stage. IBM simulations 

included periods of negative growth at stages as early as F3 furcilia.  

The wider range of growth rates in model predictions compared to field-based 

estimates and occurrence of negative growth in model krill as early as the F3 furcilia 

stage might be explained by biases in field-based estimates of growth rate. Furcilia 

experiencing poor conditions and negative growth are unlikely to be represented among 

survivors present in samples from the field (Taggart and Frank, 1990). Another factor 

possibly contributing to discrepancies between model-predictions and field-based 
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estimates of growth rates is that individuals in the field are not tracked, so observations of 

negative growth are less likely. Negative growth would have to be substantial and 

sustained and not be confounded with cohort transitions. Similarly, the use of modal or 

cohort analysis (as in Bollens et al., 1992 and Shaw et al., 2021) to estimate growth rates 

from field samples is less likely to result in negative growth than measurements made on 

individual krill. These methods generate estimates that represent average growth of the 

population over the time period measured. Negative growth would have to be exhibited 

by a substantial portion of the population to emerge in population-level estimates of 

growth rates. 

Reproduction 

Model-generated patterns in reproductive effort are consistent with field 

observations that indicate enhanced reproduction during spring through early fall (Smiles 

and Pearcy, 1971; Tanasichuk, 1998; Feinberg and Peterson, 2003). Also, the positive 

relationship between body length and eggs per krill is consistent with observations off 

southern California and Oregon (Brinton; 1976; Gómez-Gutiérrez et al., 2006). Brood 

size is also consistent with observations. The range (4 – 229 eggs female-1) produced by 

the top model is well within ranges reported by Brinton (1976) for southern California 

(20-212 eggs female-) and Gómez-Gutiérrez et al. (2006; 11-599 eggs female-) and 

Feinberg et al. (2007; 3-804 eggs female-) off Oregon. The maximum brood size 

predicted by the model exceeds those in Dorman et al. (max. 20 eggs female-1; 2015), 

whose predictions tend to be lower than average brood sizes obtained from field 

observations.  
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Maturation  

The effect of environmental conditions (e.g., temperature and food quality and 

availability) on the schedule of maturation has not been documented for E. pacifica. 

Previous IBMs implemented maturation of E. pacifica as an invariant weight-based 

threshold (Lindsey, 2013; Dorman et al., 2015). However, our research indicates size-at-

maturation (as indexed by minimum size-at-maturity) is not constant and is related to 

thermal exposure (Robertson and Bjorkstedt, 2020). Extension of the temperature-

dependent development function developed by Lindsey (2013) to juvenile stage duration 

yields maturation times (153 – 204 days) well within estimates obtained from field 

observations by Harvey et al. (90 days; 2010) and Shaw et al., (240 days; 2021). 

The relationship between model size-at-maturity and temperature is generally 

consistent with that emerging from field-based observations of minimum adult size and 

concurrent temperature measurements. Like field-based observations, model individuals 

that have experienced higher temperatures over the course of their lifetime tend to exhibit 

smaller size-at-maturity (Figure 28). In comparison, model individuals exposed to cooler 

conditions over the course of their lifetime exhibit a wider range of size-at-maturity, 

including larger size-at-maturity (Figure 28). Minimum size-at-maturity within a 

population has not been found to correlate with chlorophyll a concentration (Robertson 

and Bjorkstedt, 2020). However, model results indicate krill exposed to higher levels of 

chlorophyll tend to be larger at maturity than those exposed to lower levels of chlorophyll 

(Figure 28). This discrepancy might be explained by uncertainty in field-based estimates 

of size-at-maturity based on the minimum size of adult distributions, as these do not 
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necessarily represent the range of maturation sizes exhibited across all individuals. 

Moreover, these metrics might be confounded by the ability for krill to shrink, yet 

continue to reproduce (Feinberg et al., 2007). The discrepancy might also be explained by 

the period over which environmental conditions were measured. IBM measurements 

reflect average cumulative chlorophyll exposure over the course of the individual's life 

whereas the relationship in THL data reflects concurrent measurements of chlorophyll a 

concentration.  

Model Sensitivity 

Model Sensitivity: Energetic Balance 

Sensitivity to changes in energetic components generally reflects the portion of 

the energetic budget for which each component accounts. For example, size distributions 

are most sensitive to changes in ingestion (Figure 32). Ingestion is the only mechanism 

by which individuals are able to assimilate carbon; it accounts for the entire input budget 

and must satisfy maintenance requirements before energy is allocated to growth. As such, 

changes in ingestion rate have a considerable effect on size across all life history stages. 

A large majority of assimilated energy is allocated to metabolic demands (approximately 

60 – 80%; Lasker (1966) and reanalysis developed in this study). Consequently, a change 

in metabolism has a marked effect on size distributions. Other energetic costs, such as 

molting and reproduction, represent a small portion of the energetic budget. As such, size 

distributions are less sensitive to changes in these processes. It is evident that accurate 

estimates of ingestion and metabolic rates are crucial to resolving size structure across 

life history stages.  



 

  

96 

Model Sensitivity: Environmental Response 

Sensitivity to chlorophyll a concentration and temperature varied across life 

history stages (Figure 33). Size of furcilia stages was not sensitive to changes in 

chlorophyll a concentration. This pattern reflects a low critical concentration that is met 

even under reduced prey scenarios. Beyond the critical concentration threshold, ingestion 

(and thus growth) remains constant regardless of prey concentration. In contrast, furcilia 

size was sensitive to changes in temperature. This response is due to temperature-related 

changes in ingestion and metabolic rates; two processes that strongly effect growth and 

size distributions (see above and Figure 32).  

Our previous analysis indicated larger size distributions of furcilia were correlated 

with enhanced temperature on an interannual scale (Robertson and Bjorkstedt, 2020). 

Except for F1 and F2 furcilia, results from sensitivity analyses are consistent with these 

observations (Figure 33). F1 and F2 furcilia tend to be smaller (larger) in response to 

increased (decreased) temperature. The discrepancy between our field observations and 

the F1 and F2 furcilia response in the model prompted review of the stage duration data 

that informed Lindsey's (2013) Bělehrádek function. It appears that development of 

earlier stages, particularly C3 calyptopes, may not be as sensitive to temperature as 

defined by the Bělehrádek function (Ross, 1981; Feinberg et al., 2006). Preliminary 

analysis suggests a temperature-independent stage duration during the C3 calyptopis 

stage generates patterns in F1 and F2 furcilia stages that are more consistent with our 

field observations (Figure E1). The modification to C3 calyptopis stage duration has little 
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effect on size dynamics of later life history stages or model performance, yet points to a 

new line of research and parameterization to be pursued in the future. 

Juveniles and adults exhibited a clear response to changes in chlorophyll and 

temperature that was generally consistent with our observations; smaller (larger) size 

distributions tended to correspond with warmer (cooler) temperatures and increased 

(decreased) chlorophyll tended to generate larger (smaller) juveniles and adults. (Figure 

30b and c; Robertson and Bjorkstedt, 2020).  

The response to changes in environmental conditions varied by season. This 

pattern emerges from the combined effect of temperature on metabolic and ingestion 

rates, the seasonality in prey concentration, and a structural component of the IBM—

implementation of a temperature-dependent Q10 for ingestion. Recall that due to 

incorporation of the temperature-dependent Q10, the response of juveniles and adults to 

changes in temperature depends on the absolute value of temperature. For example, an 

increase from 9 to 10°C could generate greater growth (depending on food availability) 

while an increase from 14 to 15°C would generate negative growth, regardless of food 

availability.  

Juvenile and adult size was sensitive to enhanced thermal conditions during late 

spring. The marked reduction in size during this period reflects enhanced metabolic 

demand (due to increased temperature) and reduced rates of assimilation (due in part to 

the temperature-dependent scale factor). This pattern, though emerging in part from 

implementation of a phenomenological scale factor, indicates the potential for reduced 
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productivity during warmer spring months and is consistent with observations indicating 

the importance of seasonal upwelling dynamics with respect to E. pacifica size (Abraham 

and Sydeman, 2006; Robertson and Bjorkstedt, 2020).  

Size of juveniles and adults was particularly sensitive to enhanced prey 

availability and cooler temperatures during winter months. This response is consistent 

with observations that winter preconditioning, or enhanced nutrient availability and 

production prior to the onset of spring upwelling, plays an important role in determining 

production dynamics within the CCE (Schroeder et al., 2013). The strong (positive) 

response in size to conditions in winter also aligns with our hypothesis that seasonal 

trajectories of E. pacifica size distributions are set early in the year, and represent another 

facet of ecosystem preconditioning affecting higher trophic levels (Robertson and 

Bjorkstedt, 2020).  

Juvenile and adult size structure was less sensitive to changes in chlorophyll 

during late spring through early fall. This pattern can be explained by assimilation rates 

near or equivalent to those at critical concentration; at prey concentrations exceeding this 

threshold, ingestion rates (and growth) are, by definition, constant. 

The response of juvenile and adult size distributions to changes in temperature 

and chlorophyll conditions indicates the model does a reasonable job predicting size in 

the context of climatological variability. Our previous observations indicate that smaller 

size structure in juveniles and adults is related to warm-water events (e.g., El Niño), 

periods which are also often characterized by lower primary production (Legaard and 
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Thomas, 2006; Thomas et al., 2009; Kahru et al., 2018). Analogous conditions in the 

sensitivity analysis (i.e., +1°C and -20% chlorophyll) generated smaller size structure 

throughout the year for adults and for most of the year for juveniles. In contrast, 

conditions analogous to more productive La Niña conditions (e.g., -1°C and +20% 

chlorophyll) generated larger size structure in adults and juveniles.  

Results from sensitivity analyses suggest E. pacifica populations residing in 

warmer, less productive regions (e.g., the offshore environment) would have smaller 

juvenile and adult size distributions. In contrast, populations residing in cooler, 

productive regions (e.g., north of the THL) would have larger juvenile and adult size 

distributions. These patterns are consistent with general trends in temperature-size 

relationships that indicate larger (smaller) body size is related to cooler (warmer) thermal 

exposure (e.g., Bergmann's rule, for review see Blackburn et al., 1999).  

The IBM developed here represents a clear improvement in the ability to resolve 

realistic growth and size dynamics in E. pacifica populations off northern California. The 

ability of the IBM to resolve general trends in temperature-size relationships (see above) 

suggests the model might successfully capture broad changes in size dynamics when 

applied to regions other than Trinidad Head Line. Resolution of smaller scale size 

dynamics in regions outside of northern California depends on whether state-based rules 

(e.g., physiological rates) accurately relate the response of individuals to their 

environment. Physiological rates from Ross (1979) were obtained from krill collected in 

Puget Sound, WA. The resolution of realistic size dynamics using only these base 
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physiological rates (e.g., see 'Phase I' model results) suggests the IBM can be 

successfully applied to regions within the northern California Current Ecosystem. 

However, day-of-year and temperature-based scale factors used to tune the model to 

observations along the THL will likely need to be adjusted to resolve growth and size 

dynamics in regions characterized by upwelling dynamics and thermal conditions 

different from those off northern California. Region-specific scale factors can easily be 

incorporated into the existing model framework.  

It is unclear whether the model I have developed can be used to resolve growth 

and size dynamics of other species of krill within the CCE. Diverse life history strategies 

(e.g., the accumulation of lipids in some krill taxa) might require species-specific 

physiology and behavior. Regardless, the model developed here can provide a framework 

into which future modifications are incorporated. 

Assumptions, Uncertainties, and Opportunities for Future Research 

Like other models, the IBM I have developed is a summation of hypotheses. 

Some of the hypotheses are well justified by data while others are more 

phenomenological in nature. Some hypotheses are represented by assumptions that frame 

the context for analysis. Here I address several assumptions and uncertainties that are 

relevant to the interpretation of results and that highlight issues to be addressed in future 

implementations of the model.  
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The success of the model in matching observations as well as it does is perhaps 

somewhat surprising given assumptions implicit in the temporal and spatial scales of the 

model and the underlying environmental and population data. Like cohort growth 

analyses, the use of population size structure to calibrate model dynamics assumes that 

field observations involve re-sampling of a single E. pacifica population. The CCE is a 

highly dynamic environment and transport of plankton into and out of the sampling range 

is almost certain to have occurred, as indicated by sharp changes in the species 

composition of plankton assemblages (McClatchie et al., 2016; Peterson et al., 2017; 

Winnacott, 2021). However, save for extreme events, the assumption that field-based 

samples are from a single krill population is supported by research indicating vertical 

migration and physical mechanisms (e.g., upwelling) contribute to retention of plankton 

in dynamic, nearshore environments (Peterson et al., 1979; Batchelder et al., 2002; 

Dorman et al., 2005; Morgan et al., 2009; Lindsey, 2013). Furthermore, the success of 

cohort analyses in tracking zooplankton populations over time suggests the assumption of 

population re-sampling is valid (Shaw et al., 2021). The most obvious potential violation 

of this assumption is linked to periods associated with anomalous transport (e.g., 2014-

16). During periods characterized by anomalous transport (e.g., the 2014 – 2016 marine 

heatwave) it is possible the individuals we sampled along the THL were residents of a 

distinct offshore population. If this was the case, their population size distribution would 

reflect the integrated effect of exposure to offshore conditions and possibly diverse 

genetic expression and life history strategies (e.g., adaptation to warmer, less productive 

waters). Coupling my IBM with a coupled circulation-ecosystem model (e.g., ROMS-
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NEMURO; Fiechter et al., 2018) would enable exploration of these mechanisms and 

might help rectify some of the size discrepancies observed during periods characterized 

by anomalous transport. 

Environmental exposure in the model differs from in-situ exposure in two ways: 

1) interpolation between monthly cruises produces smoothed environmental variability 

on a monthly scale and 2) the model is not spatially explicit in the horizontal dimension; 

environmental exposure history represents conditions at a fixed horizontal location (i.e., 

the model does not allow for horizontal transport or mixing of individuals into regions 

with divergent conditions). These features have the potential to contribute to 

discrepancies between model output and field observations. Exclusion of higher 

frequency variability (e.g., short duration phytoplankton blooms) from model input 

generates smoother growth and development trajectories than might be observed in the 

field, especially for life history stages with shorter stage durations, than might be 

observed in the field. Yet, resolution on a monthly scale is sufficient to resolve seasonal 

and interannual patterns and accommodates the 10-day interval between initialization of 

eggs. I do not expect that inclusion of higher frequency input data would significantly 

alter the seasonal and interannual patterns generated by the model. 

The deterministic approach to implementing growth, development, and behavior 

is a structural assumption with implications for comparisons between model output and 

field-based observations. Real populations of krill are comprised of individuals that 

exhibit variability across a multitude of traits, such as behavior and gene expression, 
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which can influence how an individual responds to its environment (e.g., Valentine and 

Ayala, 1976; De Robertis, 2002; Tarling, 2003). Inclusion of a wider range of variability 

across behavioral, physiological, and morphological traits has the potential to shift 

patterns in population-level dynamics, including size distributions, and could reveal 

otherwise unresolved growth and size trajectories.  

Size distributions will also be shaped by ecological interactions, such as size-

based predation and shifting patterns of aversion to risk (Jørgensen et al., 2014). For 

example, the rules I used to implement DVM do not account for other factors affecting 

vertical position (e.g., such as predator distribution, size-based predation risk, energetic 

cost of migration, and water clarity; Bollens and Frost, 1991; Ohman and Romagnan, 

2016). Incorporating migration rules that result in different environmental exposures have 

the potential to shift patterns in growth trajectories and size dynamics. Such additions to 

the current model could help rectify some of the observed discrepancies, for example by 

buffering the negative growth response in 2014-2016.  

It is unlikely that incorporating variability in growth rates among model-

individuals would have a considerable impact on model output. Krill exhibiting lower 

growth rates would likely experience a higher rate of attrition due to size-based mortality. 

Therefore, the effect of size-based mortality would limit the contribution of smaller, 

slower growing krill to the size distribution of the population. Incorporating variability 

that generates enhanced growth in individuals has the potential to shift population size 

distributions larger. However, this effect would be dampened by the contribution of krill 
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exhibiting lower growth rates. Overall, enhanced variability would likely cause more 

overlap among cohort size distributions, but the mean size would be roughly the same. 

With the goal of resolving realistic growth and size dynamics of E. pacifica off northern 

California attained, future model development should incorporate a more realistic 

approach and incorporate variability among individuals. 

The weighting of daily cohorts' contributions to virtual samples (i.e., size 

distribution by date) does not appear to have compromised the fit between model output 

and observations. This reflects the comparison between size distributions rather than 

abundance, and the likelihood that the timing of egg production is relatively consistent 

from year to year, even if magnitude changes. Upwelling-fueled production will occur 

during the spring and summer and production during the winter will consistently be 

lower. Thus, comparisons based on weighted distributions (e.g., median size) are 

insensitive to whether interannual fluctuations in the magnitude of egg production are 

resolved or not. Moreover, by constraining population dynamics, I was able to focus on 

matching model output to general patterns in observations. Future 'self-renewing' 

generations of the IBM will likely be more successful in generating realistic population 

dynamics (including abundance) because processes fundamental to growth and size 

dynamics are better resolved. A self-renewing version of the IBM will also avoid the 

need for post-simulation demographic corrections. 

The scale factors implemented here represent a phenomenological approach to 

modeling. While they help resolve realistic variability in size distributions, the ability of 
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an IBM to resolve realistic dynamics is likely to improve with incorporation of a more 

mechanistic approach. Nevertheless, these phenomenological models are grounded in 

well justified hypotheses, yield credible results, and point to areas where greater 

resolution of mechanism might be achieved. Variability in energetics might be due, at 

least in part, to shifts in prey quality and foraging conditions. The nutritional content of 

phytoplankton prey affects growth efficiencies in zooplankton (Jones et al., 2002). 

Upwelling-related variability in phytoplankton assemblages and biochemical composition 

alters prey quality, including lipid content and fatty acid composition, and affects 

zooplankton growth (Du and Peterson, 2014; Miller et al., 2017). Changes in prey shape, 

size, and toxicity can influence handling times and ingestion rates (Bargu et al., 2006). 

Additionally, shifts in prey density and distribution have the potential to alter feeding 

behavior (e.g., forage efficiency), which could drive changes in metabolic costs and 

energy available for surplus growth. For example, convergence of water masses at 

upwelling-driven fronts concentrates prey and enhances trophic interactions (Woodson 

and Litvin, 2015). During winter, low front activity and enhanced mixing due to storm 

activity might contribute to a more uniform prey distribution and lower concentrations, 

potentially decreasing foraging efficiency of E. pacifica (Farstey et al., 2002; Castelao et 

al., 2006; Gruber et al., 2006). One clear avenue to explore is the link between upwelling-

related variability in prey and factors affecting prey, such as phytoplankton assemblage, 

biochemical composition, and nutrient availability. A likely and straightforward 

improvement to the model would be to link to outputs from coupled models or even to 

simple indices of upwelling-driven productivity (e.g., BEUTI; Jacox et al., 2018). 
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It is clear that sources of nutrition matter and information on diet may be 

necessary to resolve variability in growth and size structure. The model is not constructed 

to differentiate between sources of chlorophyll and the assumption that all chlorophyll is 

equal with respect to its role in growth dynamics might underpin some of the more severe 

discrepancies in model fit. For example, overestimation of adult size during spring and 

summer months in 2014 through 2016 might be explained by climate-related shifts in 

prey. Beginning in 2014, elevated abundance of domoic-acid producing Pseudo-nitzschia 

was observed along the THL. In 2015 and 2016, a harmful algal bloom (HAB) occurred 

that generated high levels of domoic acid along the West Coast, including the THL 

(McCabe et al., 2016; McClatchie et al., 2016; Wells et al., 2017; Trainer et al., 2020). 

Sustained exposure to domoic acid has been shown to suppress feeding in E. pacifica 

(Bargu et al., 2006), with obvious consequences for growth rates. Failure to account for 

the effects of a shift to a phytoplankton assemblage characterized by high densities of 

toxigenic Pseudo-nitzschia could readily explain the overprediction of size during this 

period. Since the model does not differentiate between sources of chlorophyll, the high 

levels of chlorophyll during spring and summer months generated larger size structure, 

even though phytoplankton prey might have been less nutritious or had a negative impact 

on assimilation rates. A shift to lower quality prey during this period is supported by 

concurrent measurements indicating lower lipid content in E. pacifica along the THL (C. 

Cass, unpublished data). 
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Similarly, underestimation of size during winter 2010, 2016, and 2017 might be 

explained by model structure – input data do not include alternative, non-phytoplankton 

prey. These periods correspond to El Niño events (2010 and 2016) and a period following 

the 2014-16 MHW when the THL had not yet recovered from warm water anomalies 

(Wells et al., 2017; Bjorkstedt and Robertson, unpublished data). El Niño reduces 

chlorophyll concentrations (Legaard and Thomas, 2006; Thomas et al., 2009; Kahru et 

al., 2018), which may force E. pacifica to greater reliance on other prey resources. For 

example, a shift to a diet with a greater proportion of ciliates might contribute to 

sustained growth when phytoplankton prey are less available (Fessenden and Coweles, 

1994; Nakagawa et al., 2004; Okazaki et al., 2020). Since the IBM does not account for 

ingestion of non-phytoplankton prey during nighttime feeding (or include independent 

estimates of non-phytoplankton prey at-depth), growth and size distributions cannot 

reflect the potential for growth supported by alternate prey sources. A shift to an alternate 

prey source would help buffer the slow and negative growth rates, and resulting small 

size distributions, produced by the model. 

Application of the temperature-dependent assimilation scale factor during some of 

the coldest conditions along the THL (Figure 2) results in the overestimation of adult size 

during spring and summer 2013. This discrepancy indicates the current scale factor does 

not accurately resolve the effect of upwelling on adult growth and size dynamics when 

applied at relatively low temperatures. This pattern is likely due to a non-linear 

relationship between upwelling-related processes and coastal production; as upwelling-
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favorable winds increase beyond a threshold, productivity accessible to coastal 

populations declines as offshore transport outstrips the rate of bloom productivity 

(Botsford et al., 2003). Future model improvements could address this issue by 

accounting for a change in the relationship between assimilation and temperature at low 

temperature extremes or alternative metrics for upwelling. Linking the IBM to an 

ecosystem model (e.g., NEMURO) where temperature and prey composition are directly 

coupled could help refine the shape of the current scale factor by resolving the 

relationship between temperature (as a proxy for prey quality) and assimilation dynamics. 

Linking the IBM to this type of ecosystem model would also enable exploration of the 

relationship between prey composition, which might itself be a proxy for variability in 

prey quality (e.g., diatoms versus dinoflagellates), and growth dynamics. This could 

inform development of a more mechanistic scale factor based on prey composition.  

Agreement between model predictions and observations of size-at-maturity might 

be improved by incorporating additional information relevant to maturation dynamics. 

For example, the IBM accounts for variability in maturation only due to temperature. 

Prey availability and quality might influence development rates, as has been seen in 

copepods (Breteler et al., 1995; Breteler et al., 2005). Accounting for the effect of prey 

quality and quantity, perhaps through modification of the Bělehrádek function, might 

yield broader agreement in size and transition dynamics throughout the life cycle.  

Moreover, the maturation rule implemented in the IBM is not condition-

dependent, nor does it take into account expected future conditions, both of which have 
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been shown to be important in analysis of life history models focused on maximizing 

lifetime fitness (Mangel, 2015; Reimer et al., 2019). The timing of maturation has broad 

fitness consequences. The benefit of early maturation (e.g., improved probability of 

reproduction) is balanced against smaller size, which can influence brood size and 

mortality (Brinton, 1976; Peterson and Wroblewski, 1984; Gómez-Gutiérrez et al., 2006). 

Delayed maturation can result in larger body and thus brood size, but risks reduced 

fitness due to mortality or shorter time at maturation. Integrating all such considerations 

in a comprehensive analysis with fitness measures is beyond the scope of this study. 

However, the model I have developed establishes a solid foundation for future fitness-

based analysis of life history strategies, such as might be developed using stochastic 

dynamic programming or similar approaches that take an evolutionary perspective by 

considering the effect of current decisions in the context of future results (Mangel, 2015). 

Looking forward, future research should address the assumptions and 

uncertainties noted above. Among these issues, information on factors that drive seasonal 

variability in energetics (particularly ingestion and metabolism) and prey quality (e.g., 

assemblage and nutritional content) is of particular importance, and should be a focus of 

future experimental and observational study. By resolving the drivers of dynamics 

currently captured as ‘scaling factors’ in the IBM, such research will provide critical, 

empirical grounding for replacing the phenomenological relationships proposed here with 

improved mechanistic resolution of growth and size dynamics. Such advances will 

support efforts to generalize the IBM so it can be applied to regions outside northern 
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California, incorporated into larger-scale ecosystem models (e.g., NEMURO), and used 

to complement analyses focused on spatial distributions of krill (e.g., Santora et al., 2011) 

Explicit resolution of size structure within ecosystem models will contribute to improved 

estimates of krill production and resolution of predator-prey dynamics. Similarly, 

information on the size structure of krill populations can complement spatial analyses of 

krill by providing information on the condition of an important forage component within 

the CCE.
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CONCLUSION 

Patterns and trends in size distributions of E. pacifica (as documented in 

Robertson and Bjorkstedt, 2020) motivated development of an IBM capable of producing 

realistic variability in size across life history stages. The model I have developed 

generates variability in E. pacifica size, growth, and development that is generally 

consistent with observations. Long-term, high-frequency field observations enabled a 

pattern-oriented modeling approach that helped rectify discrepancies between model 

output and field-based observations. By incorporating a few key modifications, the IBM I 

have developed represents an advancement toward obtaining more accurate predictions of 

E. pacifica dynamics.  

Improved predictions of E. pacifica development, growth, and size distributions 

have implications across a broad range of issues, including estimates of forage biomass 

and research focused on life history strategies and population dynamics. Resolution of 

adult size distributions is particularly important for obtaining accurate estimates of 

production – size-dependent metrics such as brood size and mortality affect estimates of 

fecundity and production (Peters, 1983; Kiørboe, 2008). Similarly, accounting for 

variability in development time and size-at-maturation can contribute to better estimates 

of production by more accurately resolving the reproductive state of individuals within a 

population. Since adults account for the majority of E. pacifica biomass, accurate 

prediction of adult size is especially important for estimates of forage biomass (Robertson 

and Bjorkstedt, 2020).  
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In addition to the improved resolution of E. pacifica size dynamics, the IBM I 

have developed provides a useful framework for incorporating additional model 

advancements. The parsing of growth into specific energetic processes enables future 

modifications to physiological rates (e.g., metabolism) to accommodate our growing 

understanding of how E. pacifica respond to ongoing change in environmental 

conditions, such as ocean acidification, deoxygenation, and harmful algal blooms 

(McLaskey et al., 2016, Bargu et al, 2006).  

The model I have developed can be applied to a broad range of research. For 

example, at the individual and population level, the IBM can be used to investigate 

potential responses to climate-variability. Size and biomass predictions can provide 

important information on the (future) state of forage within the CCE. This type of 

information has the potential to contribute to ecosystem-based management of fisheries 

dependent on or affected by forage resources within the CCE. The IBM can also be 

incorporated into larger-scale ecosystem models to provide detailed estimates of E. 

pacifica biomass and improved estimates of forage resources within the CCE. 

It is evident the response of E. pacifica to its environment is complex. Because of 

their importance and high connectivity in the CCE, efforts that help resolve and predict 

the response of this critical forage species are worthwhile. Among these efforts are 

detailed, high-frequency, and long-term field observations, the value of which is 

highlighted here. Without the time series of observations, important information from a 

real-system would not have been available. This information was crucial for developing 



 

  

113 

an IBM for E. pacifica that resolves realistic variability in growth and size dynamics. The 

enhanced capabilities of the model I have developed strengthen the ability of the IBM to 

serve as a tool for deepening our understanding of a crucial forage species and how 

dynamics at the individual and population-level are translated to broader ecosystem-level 

dynamics.  
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APPENDIX A 

 

Hydrographic data from THL station TH04 (41°03.50 N, 124°26.00 W; ~450 m 

water depth) were interpolated between (roughly) monthly cruises to provide daily values 

of temperature and chlorophyll at 1-meter bins from the surface to 200 m (Figure 2).  

For the early part of the THL record, hydrographic data are limited to the upper 

150 m of the water column, thus requiring extrapolation to 200 m to span the migration 

range of krill. Based on comparisons to cases for which full (420 m) temperature profiles 

were available, direct linear extrapolation based on, e.g., the change in temperature with 

depth from 120 m to 150 m yielded unacceptably low temperatures at depth, as the rate of 

change of temperature with depth declines with depth. Therefore, an iterative method was 

developed to generate more realistic extrapolations of temperatures below 150 m, and 

implemented using hydrographic data for station TH04. 

 For each cruise lacking deep temperature data, (1) the temperature at 400 m 

(T400) was predicted from a linear relationship between temperature at 140 m and at 400 

m estimated from data from cruises for full (> 400 m) temperature profiles, and (2) a 

cruise-specific linear relationship between temperature and depth at the base of the 

hydrographic cast (depths between 120 and 150 m) was fit and the slope of this 

relationship designated as Sbase. The extrapolation then proceeds iteratively for each 

successively deeper 1-m depth bin as follows. First, the change in temperature over depth 

between the (current) deepest temperature (TD; observation or previous extrapolation) and 
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temperature at 400 m is calculated as (T400 – TD)/(400 - D), where D is the current depth; 

this slope is designated as Sanchor. Second, the rate of change in temperature with depth 

over the next 1 m is calculated following equation A1:  

 

𝑆𝑛𝑒𝑤 = 𝑤 ∗ 𝑆𝑏𝑎𝑠𝑒 + (1 − 𝑤) ∗ 𝑆𝑎𝑛𝑐ℎ𝑜𝑟 (A1) 

 

where the relative contribution of Sbase (i.e., the rate of change with temperature with 

depth at the base of the observed temperature profile) declines with depth per w = 1 – 

D/200. Temperature at the next deeper 1-m depth bin is calculated from the current 

deepest temperature and Snew. The algorithm is iterated to extrapolate the temperature 

profile to a depth of 200 m. Application of this algorithm yields a temperature profile that 

maintains continuity with the change in temperature with depth observed at the bottom of 

the hydrographic cast, yet is tuned towards more gradual changes in temperature with 

increasing depth. Comparisons between observed and extrapolated temperature profiles 

for cruises with full hydrographic profiles confirm that this approach generates realistic 

temperature profiles between 150 m and 200 m. 

Chlorophyll data were extrapolated by extending the last observed value 

(typically a value close to zero) throughout the remainder of the water column below the 

depth at which the last value was observed. Note that this extrapolation has little or no 

impact on model results due to non-phytoplankton prey at depth that are assumed to scale 

with maximum chlorophyll concentration.
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APPENDIX B 

 
Figure B1. Results from Dorman et al. IBM (2015; plots with open symbols) and after porting the energetic submodels from Dorman 

et al. (2015) into R (plots with closed symbols). a) Development time to metanauplius versus temperature; b) Development 

time to juvenile life stages at 8, 10.5, and 12 °C (see legend); c) Development time to 1000, 3000, and 6000 µg C adults (see 

legend) versus temperature; d) Growth rate for various weights (see legend) under maximum food conditions, red asterisk 

indicates errata for growth rate of 6000 µg C individual (J. Dorman, personal communication, 8 January 2020); e) Chlorophyll 

concentration needed for maximum growth at various weights (see legend).
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APPENDIX C 

Table C1. Coefficients for the temperature-dependent Bělehrádek function (𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖 =
𝑎𝐷𝑢𝑟,𝑖(𝑇 + 𝐵)𝑐𝐷𝑢𝑟 ) . Coefficients for the egg through F7 furcilia stages are from 

Lindsey (2013). Coefficients for the juvenile stage were estimated in this study. 

Stage (i) aDur,i B 

Egg  1217 15.052 

Nauplius N1 599 15.052 

Nauplius N2 1423 15.052 

Metanauplius 2547 15.052 

Calyptopis C1 5767 15.052 

Calyptopis C2 2771 15.052 

Calyptopis C3 2621 15.052 

Furcilia F1 4045 15.052 

Furcilia F2 4269 15.052 

Furcilia F3 8239 15.052 

Furcilia F4/5 5693 15.052 

Furcilia F6 3296 15.052 

Furcilia F7 2247 15.052 

Juvenile 9.0*104 8 
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APPENDIX D 

 

The model I have developed is described below following the Overview, Design, 

and Details (ODD) protocol for describing individual-based models (Grimm et al., 2006; 

Grimm et al., 2020). The format specified by this protocol consists of three blocks (ODD) 

comprised of seven elements: purpose, state variables and scales, process overview and 

scheduling, design concepts, initialization, input, and submodels.  

Overview 

 

Purpose 

The purpose of the individual-based model is to predict realistic size, growth, and 

maturation dynamics of Euphausia pacifica off northern California.  

State variables and scales 

The model I developed is based on published IBMs for E. pacifica (Lindsey, 

2013; Dorman et al., 2015). Like those models, the IBM versions developed herein build 

upon the POPCYCLE framework. POPCYCLE was initially developed to implement 

species-specific physiology and behavior at the individual-level for copepods (Batchelder 

and Miller, 1989). Bioenergetic rates (e.g., growth and assimilation rates) are calculated 

in carbon per unit of time (e.g., µg C d-1) and are a function of life history stage, body 

size (µg C), and environmental exposure (temperature and food concentrations). 

Migration behavior (i.e., vertical position) is dependent upon life history stage and time 

of day. Model development, data analysis, and simulations were conducted in R (4.0.4; R 

Core Team, 2021). 
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The IBM is comprised of two levels: individuals and their environment. 

Individuals are characterized by their size (weight in µg of carbon) and life history stage. 

The IBM includes 15 life history stages: egg, nauplius 1 and 2, metanauplius, calyptopis 

C1 - C3, furcilia F1 - F7 (furcilia F4/5 are combined), juvenile, and adult. Life history 

stage determines behavior (e.g., feeding, vertical position) as well as how growth is 

modeled (directly or indirectly; Table D1). The environment is characterized by water 

temperature (°C) and food availability (µg C). Date is included for use in seasonal scale 

factors (functions that allow seasonal tuning of energetics) and as an index for 

environmental input. 
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Table D1. Feeding behavior and type of growth submodel for E. pacifica life history 

stages in the Phase I IBM. 'Direct' growth model indicates growth is calculated by 

scaling expressions that relate growth rate to body size and temperature. In 

contrast 'Mechanistic' growth model indicates growth is calculated from the 

remainder of assimilated energy following allocation to metabolism, molting, and 

in the case of adults, reproduction.  

Stage # Stage Feeding Growth Model 

1 Egg  No Direct 

2 Nauplius N1 No Direct 

3 Nauplius N2 No Direct 

4 Metanauplius No Direct 

5 Calyptopis C1 Yes Direct 

6 Calyptopis C2 Yes Direct 

7 Calyptopis C3 Yes Direct 

8 Furcilia F1 Yes Mechanistic: (Assimilation – Costs) 

9 Furcilia F2 Yes Mechanistic: (Assimilation – Costs) 

10 Furcilia F3 Yes Mechanistic: (Assimilation – Costs) 

11 Furcilia F4/5 Yes Mechanistic: (Assimilation – Costs) 

12 Furcilia F6 Yes Mechanistic: (Assimilation – Costs) 

13 Furcilia F7 Yes Mechanistic: (Assimilation – Costs) 

14 Juvenile Yes Mechanistic: (Assimilation – Costs) 

15 Adult Yes Mechanistic: (Assimilation – Costs) 

Hydrographic data collected at THL station TH04 (Figure D1; 41°03.50 N, 

124°26.00 W; ~450 m water depth) were interpolated between (roughly) monthly cruises 
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to provide daily values of environmental conditions at 1-meter bins from the surface to 

200 m (Figure D2). In cases where hydrographic data were only available in the top 150 

m, data were extrapolated from the last observed depth to 200 m (see Appendix A for 

methods).  

 
Figure D1. Bathymetric map of sampling location; Trinidad Head Line (THL; 41°03.50 

N) off Trinidad, CA. Nearshore station (TH01) and offshore station (TH05) are 

labeled for reference. Bottom-depth is labeled in meters. 

−125.5 −125.0 −124.5 −124.0 −123.5

40.5

41.0

41.5

Point St. George

Klamath River

Trinidad Head

Humboldt Bay

Eel River

Cape Mendocino

THL
TH01TH05



 

  

137 

 
Figure D2. Time series (x-axis) of hydrographic data by depth (y-axis) at THL station 

TH04. a) Interpolated temperature (°C); b) Interpolated chlorophyll a 

concentration (mg L-1). Rug indicates date of cruise and measurement. 

 

Process overview and scheduling 

A 30-minute timestep is used to calculate growth and development throughout the 

period of interest. The length of this timestep enables realistic implementation of vertical 

migration and provides frequent updates to individual stage variables (e.g., size).  

At each timestep, vertical position, temperature, and food availability are 

determined (Figure D3). Energetic components (e.g., growth) are calculated based on 

environmental conditions and the state of the individual. If reproductive requirements 

have been met, adults reproduce. Following calculation of physiological rates, 

development is calculated. The individual is then evaluated for mortality, due either to 

starvation or end of lifespan.   

a 

b 
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Figure D3. Flow diagram of the final model, including energetics and development 

submodels for non-feeding larvae, calyptopes, furcilia, juveniles, and adults. 

Stage transitions within composite groups (e.g., early life history stages) are 

subsumed in boxes for compactness. Criteria for stage transitions is determined by 

the temperature-dependent Bělehrádek function (see 'Development'). SF = scale 

factor.  
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Design concepts 

 

Emergence: Growth and development emerge from an individual's physiology 

and exposure to environmental conditions. An individual's environmental exposure is 

determined by its vertical position, which is a function of stage and time of day. At night, 

vertically migrating krill are distributed to maximum chlorophyll depth. Adaptation and 

fitness are not modeled explicitly. 

Sensing: Individuals are omniscient; it is assumed the individual knows their 

stage and environment throughout the water column so they are able to migrate without 

error according to stage-specific depth rules. 

Stochasticity: Bioenergetics and behavior of an individual is deterministic and 

based on empirical relationships and observations.  

Observation: IBM data are recorded at six-hour intervals. These data include: 

date, depth, environmental conditions, energetic components, and individual 

characteristics (e.g., size, stage, age, and mortality status).  

Initialization: Eggs are initiated two years prior to start dates of interest. This 

allows for development and growth of krill prior to dates of interest and is based on the 

expected life span of two years. 

Input: The IBM is driven by hydrographic data (temperature and chlorophyll a 

concentration) and a date-specific schedule of sunrise and sunset (for implementation of 

DVM).  
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Details 

 

Vertical Position and Migration Behavior 

In the IBM, daytime depth is stage-dependent and based on in-situ observations 

(Vance et al., 2003; Im and Suh, 2016; Table D2). To simulate mixing of non-migrating 

krill, egg – F2 furcilia stages are exposed to the mean of temperature and chlorophyll a 

concentration over a stage-specific depth range. Vertical migration is implemented once 

krill reach the F3 furcilia stage, the first stage at which swimming legs are fully 

developed (Boden, 1950). At the onset of dusk, individuals are moved from their stage-

specific daytime depth to the depth (below 10 m) at which maximum chlorophyll 

concentration occurs. Individuals return to their corresponding daytime depth with the 

onset of dawn. Civil twilight, the time at which the sun is 6° below the horizon, is used to 

mark the onset of dawn and dusk, which translates to a minimum of 7.75 (summer) and 

maximum of 13.75 (winter) hours spent in shallower waters. The timing of civil twilight 

is date-specific and determined using 'crepuscule' in 'maptools' (Bivand and Lewin-Koh; 

Table D2. Diel vertical migration (DVM) behavior of krill in IBMs. Stages with day and 

night depth ranges (e.g., 10 to 100 m) are exposed to the mean temperature and 

chlorophyll a concentration across the noted depth range. Horizontal dashed-lines 

indicate transition to new behavior or depth (also indicated with text).  
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Table D2. Diel vertical migration (DVM) behavior of krill in IBMs. Non-migrating 

stages (Egg – F2 furcilia) are exposed to the mean temperature and chlorophyll a 

concentration across the noted depth range (e.g.,10 to 100 m). Krill performing 

DVM migrate at night to the depth at which maximum chlorophyll occurs and 

return to their stage-specific day depth during daylight hours.  

Stage  DVM Day Depth (m) Night Depth (m) 

Egg  No 10 to 100 10 to 100 

Nauplius N1 No 10 to 100 10 to 100 

Nauplius N2 No 10 to 100 10 to 100 

Metanauplius No 10 to 50 10 to 50 

Calyptopis C1 No 10 to 50 10 to 50 

Calyptopis C2 No 10 to 50 10 to 50 

Calyptopis C3 No 10 to 50 10 to 50 

Furcilia F1 No 10 to 50 10 to 50 

Furcilia F2 No 10 to 50 10 to 50 

Furcilia F3 Yes 25 Maximum Chlorophyll Depth 

Furcilia F4/5 Yes 35 Maximum Chlorophyll Depth 

Furcilia F6 Yes 45 Maximum Chlorophyll Depth 

Furcilia F7 Yes 50 Maximum Chlorophyll Depth 

Juvenile Yes 150 Maximum Chlorophyll Depth 

Adult Yes 200 Maximum Chlorophyll Depth 
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Body Size 

Published IBMs and those developed here express individual state in units of 

carbon weight (W; µg C). However, our field-based observations of E. pacifica body size 

and published information on growth rates (e.g., Shaw et al., 2010) record body size as a 

length measurement. To facilitate comparisons between model output and field 

observations, body weight (W) was converted to dry weight (DW; mg), total length (TL; 

mm), and body length (BL; mm) per the following equations (D1-D3): 

 

𝐷𝑊 =
𝑊+1.985

0.401 

1000
 (D1) 

𝑇𝐿 =  
𝐷𝑊

0.795

1/3.239
  (D2) 

𝐵𝐿 =  
𝑇𝐿−0.2807

1.218
 (D3) 

 

following (Shaw et al., 2010; Feinberg et al., 2007, and Ross, 1982a). 

Body length, which represents the distance from the back of the eye to the base of 

the telson (Shaw et al., 2010), is used for comparison to length measurements along the 

THL. Total length, which represents the distance from the back of the eye to the tip of the 

telson (Gómez-Gutiérrez et al., 2006), is used for comparison to published growth rates, 

which Preliminary versions of the model revealed biased estimates for F1 and F2 furcilia. 
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Rather than modify energetics, which would impact growth and body size of subsequent 

life history stages, I modified the weight-to-length conversion for F1 and F2 furcilia as 

follows (equations D4 and D5): 

 

𝐹1 𝐹𝑢𝑟𝑐𝑖𝑙𝑖𝑎 𝑇𝐿 =  𝐷𝑊1/3.239  (D4) 

𝐹2 𝐹𝑢𝑟𝑐𝑖𝑙𝑖𝑎 𝑇𝐿 =  
𝐷𝑊

0.900

1/3.239
  (D5) 

 

This modification is justified by the difference in body form between F1 and F2 furcilia 

and later life history stages, especially the broader telson and wider carapace. This 

modification has no impact on weight-based processes in the model and is consistent with 

the POM approach.  

Demographics 

The IBM developed here are not implemented to simulate population dynamics, 

they track a single individual representative of a cohort. However, field observations are 

a composite of individual growth trajectories (size-at-age) that arise from variable egg 

production over time and mortality due to predation. Therefore, it is necessary to weight 

the contribution of each simulated cohort (i.e., size-age trajectory) to the size distribution 

existing on each day for fair comparison to field observations. To do so, I weight the 

initial value of each cohort by climatological egg production and apply cumulative size-
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dependent mortality over the course of that cohort's lifetime. Production and size-based 

mortality rates are applied to model output post-simulation. Note that other sources of 

mortality (i.e., starvation or end of lifespan) are implemented in the IBM (see 'Generic 

Model Process' above and 'Mortality' below). 

Egg production (eggs d-1) was estimated by fitting a GAM to E. pacifica egg 

density (from THL vertical ring-net data collected at station TH02 from 2009 – 2016) as 

a function of day-of-year (Figure D3). Observations of egg densities greater than two 

standard deviations from the mean were removed prior to fitting the model. The GAM 

was based on a cubic-cyclic spline to ensure continuity across the start and end of the 

seasonal cycle. Effective degrees of freedom were fixed (edf = 8) to resolve early and late 

seasonal peaks in egg production. To implement egg production as a discrete value, egg 

densities predicted by the GAM were scaled to a maximum of 1000 eggs d-1 and rounded 

to the nearest integer for weighting of IBM output data.  
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Figure D3. Observed and predicted egg density. a) GAM (line) fit to THL observations 

(points) of egg density by day-of-year (x-axis) at THL station TH02 from 2009 – 

2016; b) Scaled egg production values by day-of-year. 

Size-based (predation) mortality was calculated following Peterson-Wroblewski 

(1984) who estimated weight-based instantaneous mortality as (equation D6): 

 

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 = (5.26 ∗ 10−3) ∗ 𝐷𝑊−0.25 (D6) 

 

where 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 is instantaneous mortality (day-1) and D𝑊 is dry weight (g). Body 

weight (µg C) was converted to dry weight (g) following equation 1. The size-specific 

instantaneous mortality rate was applied to the daily mean size of the individual. 

Resulting densities by date and stage were used to generate population size 

distributions (e.g., median body length) over time. Stage-specific minimum (10th 
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quantile), median (50th quantile), and maximum (90th quantile) size was calculated for life 

history stages for which THL observations exist (F1 furcilia – adults). 

Energetic Submodels 

Energetic submodels (physiological rates) are defined in text as daily rates of 

carbon allocation (µg C d-1). In the IBM, daily rates are scaled to 1/48 of the daily rate to 

reflect the 30-minute time step at which they are applied. 

Growth  

Growth dynamics over the life history of E. pacifica are described in detail below, 

but share a common characteristic of being dependent on temperature. To capture this 

dependence, Q10 relationships were used to scale physiological rates by temperature using 

equation D7: 

 

𝑅𝑎𝑡𝑒2  =  𝑅𝑎𝑡𝑒1 ∗ 𝑄10
(𝑇2 − 𝑇1)/10°𝐶 (D7) 

 

where 𝑅𝑎𝑡𝑒2 is the projected physiological rate at temperature 𝑇2 (expressed in °C), 

𝑅𝑎𝑡𝑒1 is a known physiological rate at temperature 𝑇1, and 𝑄10 is the factor by which the 

physiological rate increases per 10°C rise in temperature. In this study, Q10 coefficients 

were established for each physiological process (i.e., ingestion, metabolism, molting, and 
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reproduction) based on information in Ross (1979). Q10 values were calculated using the 

complete expression relating each physiological rate to weight at 8 and 12°C (Table D3). 

This method differs from that utilized by Ross (1982a) by including the intercept and 

weight-specific coefficient regardless of whether they were significantly different at 8 

and 12°C. 

Table D3. Expressions for physiological rates from Ross (1979 and 1982a) and from my 

re-analysis of Ross's data. Intercept (a) and weight-specific coefficients (b) for 

allometric equations describing the relationship between physiological rate (µg C 

d-1) and body weight (µg C), where physiological rate = 𝑎 ∗ 𝑊𝑏. A = Adults, J = 

Juveniles, F = furcilia, FJA = furcilia, juvenile, and adults. Note that growth of 

early life history feeding stages (ELHF) follows a linear equation where growth =
 𝑎 +  𝑊 ∗ 𝑏. Q10 coefficients in this study are calculated using complete 

allometric expressions (versus only using intercepts if weight specific coefficients 

were not significantly different, as in Ross, 1979 and 1982a). 

Source Physiological rate (Stage) Q10 T (°C) a b 

Ross (1979, 1982a) Ingestion (FJA) 3.35 8 0.249 0.910 
   

12 0.404 0.910 
      

Ross (1979, 1982a) Metabolism (A) 1.9 8 0.154 0.810 
   

12 0.200 0.810 
      

Ross (1979, 1982a) Metabolism (J) 1.9 8 0.154 0.810 
   

12 0.200 0.810 
      

Ross (1979, 1982a) Metabolism (F) 2 8 0.171 0.839 
   

12 0.266 0.839 
      

Ross (1979, 1982a) Reproduction (A) 3.6 8 0.006 1.035 
   

12 0.010 1.035 
      

Ross (1979, 1982a) Molting (FJA) 2.46a 8 0.011 0.853 
   

12 0.021 0.805 
      



 

  

148 

Source Physiological rate (Stage) Q10 T (°C) a b 

Ross (1979, 1982a) Growth (ELHF) 
 

8 -0.057 0.124 
   

12 -0.315 0.198 
      

This study IngestionMax (FJA) 3.35 8 0.249 0.910 
   

12 0.404 0.910 
      

This study Metabolism (A) 3.37 8 0.139 0.930 
   

12 0.224 0.932 
      

This study Metabolism (J) 3.35 8 0.121 0.964 
   

12 0.192 0.968 
      

This study Metabolism (F) 3.25 8 0.103 0.996 
   

12 0.162 1.001 
      

This study Reproduction (A) 3.61 8 0.006 1.035 
   

12 0.010 1.035 
      

This study Molting (FJA) 5.08*weight-0.12 8 0.011 0.853 
   

12 0.021 0.805 
      

This study Growth (ELHF) 1.74 8 -0.057 0.124 
   

12 -0.315 0.198 

            

 

a: Average Q10 for all weights, range is 3.37 (30 ug C) to 1.93 (3,000 ug C). 

 

Growth of non-feeding stages  

Following Lindsey (2013), initial egg weight is set at 3.2 µg C (versus 2.58 in the 

Dorman et al. (2015) IBM), based on observations of E. pacifica egg size off Oregon 

(Gómez-Gutiérrez et al., 2003). 
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By definition, non-feeding stages lose weight. Estimates from Ross (1979) 

indicate greater rates of weight loss in non-feeding stages at 8°C compared to 12°C. This 

pattern contradicts general rate-temperature relationships, in which metabolic rate tends 

to increase with temperature, at least over range of temperatures typically experienced by 

an organism (Cossins and Bowler, 1987). Since alternative rates for non-feeding stages 

were not available, I selected a rate to implement weight loss (-0.145 µg C d-1) within the 

range of Ross's observations that generated realistic sizes of early life history stages. The 

rate of weight loss in non-feeding stages was scaled with temperature using a generic Q10 

of 2.0.  

Growth of feeding stages 

Growth of feeding stages (calyptopis C1 through adult) is dependent upon 

temperature and food concentration. Food concentration in µg C is estimated from 

chlorophyll a concentration following a 1 µg chlorophyll a: 60 µg C conversion (as in 

Dorman et al., 2015). 

Growth rates of furcilia, juvenile, and adult stages are calculated as a function of 

explicit input and output variables following the expression for a carbon-only crustacean 

energy budget (equation D8; Dagg 1976): 

 

𝐺𝑟𝑜𝑤𝑡ℎ = 𝐴𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑠𝑚 − 𝑀𝑜𝑙𝑡𝑖𝑛𝑔 − 𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (D8) 
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Specific definitions are developed below, but components of this model can 

generally be described in the following terms. Assimilation is calculated as the product of 

ingestion and assimilation efficiency, the amount of carbon ingested that is retained and 

available for energetic processes. Metabolism represents the energy required for catabolic 

and anabolic processes. As in Ross (1982a) metabolic rate estimates account for leakage, 

or the amount of dissolved organic carbon released from the individual. Molt rate is 

calculated as the loss of carbon at each ecdysis (molt event) divided by the molt interval 

in days. Allocation to reproduction was estimated by Ross (1982a) and is based on the 

total amount of carbon allocated to broods over an individual's lifetime following 

maturation.  

Growth rates of early life history feeding stages (ELHF; calyptopis C1 – C3) are 

modeled directly using the empirical relationship between growth rate (µg C d-1) and 

body weight (W, µg C) (Ross, 1982a; equation D9). 

 

𝐺𝑟𝑜𝑤𝑡ℎ (derived at 12°C) = −0.315 + 0.198 𝑊 (D9) 

 

Growth of ELHF stages is scaled with temperature using a Q10 of 1.74 (Table D3). 

The ELHF growth expression (equation D9) was derived under maximal food 

resources. As such, it represents maximum growth rate for ELHF stages. To account for 
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variability in food resources, growth rates of ELHF stages were scaled by the ratio of 

available food concentration to critical concentration, the food concentration at which 

maximal growth is achieved (see 'Assimilation' below for how critical concentration is 

calculated).  

Growth: Assimilation  

Ingestion is dependent on size, temperature (Ross, 1982a), and food concentration 

(Ohman, 1984; Kiørboe, 2008). Q10 coefficients are used to scale ingestion rates with 

temperature. To account for the effects of body weight and food concentration, I 

developed an ingestion rate function of the Type III form identified by Ohman (1984; 

Equation D10):  

 

𝐼𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝐹𝑜𝑜𝑑 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  
𝑎𝐹𝑜𝑜𝑑𝐶𝑜𝑛𝑐.∗𝐹𝑜𝑜𝑑 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛2

1+𝑎𝐹𝑜𝑜𝑑𝐶𝑜𝑛𝑐.∗𝑇ℎ∗𝐹𝑜𝑜𝑑 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛2 (D10) 

  

where 𝑎𝐹𝑜𝑜𝑑𝐶𝑜𝑛𝑐.is the capture efficiency or attack rate and 𝑇ℎ is the handling time and 

scale this equation with body weight. 

To determine weight-dependent critical concentration, which is defined as the 

food concentration at which maximal growth is achieved, I fit an allometric model to 

critical concentration data from Ross (1979) and Ohman (1984; Table D4 and Figure D4; 

critical concentration = 16.48*W0.35). An allometric model was preferred over an 
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asymptotic model on the basis of greater biological relevance; as body size increases, the 

amount food required to maintain a larger size and grow is expected to increase, not to 

plateau, thus requiring more food to achieve maximum growth. Ingestion rates were then 

predicted as a function of weight and food density using a Type III functional response 

model scaled so that ingestion is 90% of maximum ingestion (IngestionMax; TableD3) at 

critical concentration across all sizes (Figure D4). Ingestion is capped so that it does not 

exceed ingestion at critical concentration (as in Dorman et al., 2015).  

Table D4. Critical concentration (CC; µg C l-1) for various sizes of E. pacifica krill at 8 

and 12°C. Data from Ross (1979) and Ohman (1984). NA indicates field does not 

apply to data source. 

Source Size class (µg C) Avg. weight in size class CC at 8°C CC at 12°C 

Ross (1979) < 750 273 100 125 

Ross (1979) 750-1650 1205 190 225 

Ross (1979) 1650 2564 320 375 

Ohman (1984) NA 4700 290 NA 
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 Figure D4. a) Allometric model (line) fit to critical concentration (µg C l-1; y-axis) and 

weight data (x-axis) at 8°C from Ross (1979; points) and Ohman (1984; triangle); 

b) Predicted ingestion rates for various sizes of krill using weight- and food 

concentration-dependent function (at 8°C to match experimental temperature in 

Ohman, 1984). Closed purple circles and purple dotted-line indicate critical 

concentration at various body sizes (see legend). Orange dashed-line represents 

the Type III functional response for the average krill size (4700 µg C) in Ohman's 

(1984) study. 

Existing IBMs scale energetics using Q10 values determined by Ross (1979). In 

the Dorman et al. (2015) IBM, growth rate is scaled directly with the Q10 for growth. In 

the Lindsey (2013) IBM, ingestion and respiration are scaled with corresponding Q10 

values from Ross (1979), who calculated a greater Q10 for ingestion than metabolism 

(i.e., ingestion increases faster than metabolism as temperature increases). The result in 

both IBMs is that growth rate exhibits a positive relationship with temperature and is not 

constrained at higher temperatures. A monotonic increase in growth with temperature, 

however, contradicts observations that juvenile and adult E. pacifica growth rates are 

negatively related to temperature above 14°C, even when food is not limiting (Marinovic 

and Mangel, 1999). Furthermore, a rise-and-fall pattern in growth rate with respect to 
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temperature is observed across a wide range of taxa and can reflect a consumption-

metabolism mismatch, whereby energetic costs exceed assimilation (Rall et al., 2010; 

Lemoine and Burkepile, 2012 and references therein; Alcaraz et al., 2014; Grote et al., 

2015).  

To resolve disparities between growth predictions from existing IBMs and 

observations, I refined the energetics component of the IBM to allow for shrinking as 

reported in Marinovic and Mangel (1999) by modifying the Q10 value used for scaling of 

ingestion rates in juvenile and adult stages. This modification is supported by 

observations that indicate Q10 values tend to decrease with increasing temperature (Ege 

and Krogh, 1914; Alcaraz et al., 2014). At intermediate and high temperatures, the 

relationship between ingestion rate and temperature is strongly correlated with that of 

growth rate and temperature, more so than the thermal sensitivity of other energetic 

components (Kingsolver and Woods, 1997). Based on the strong correlation between 

thermal sensitivity of ingestion and growth, I chose to modify ingestion (as opposed to 

other energetic components). 

 In my IBM, transition to a temperature-dependent Q10 begins once an individual 

reaches the juvenile stage. Dependency on the temperature-dependent Q10 scales linearly 

with juvenile weight, such that for krill exceeding 266 µg C (~8 mm TL, the minimum 

size of krill in Marinovic and Mangel, 1999), the Q10 is defined by a sigmoidal 

relationship with temperature (Figure D5). The sigmoidal model was anchored by the Q10 

value for ingestion (3.35) estimated by Ross (1982a) at temperatures between 8 and 12 
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°C and tuned by manipulation of Q10 values at higher temperatures to generate negative 

growth rates consistent with rates reported by Marinovic and Mangel (1999). The 

resulting Q10 values are within a typical range for biological rates (Cossins and Bowler, 

1987). 

 

Figure D5. Q10 values for ingestion. a) Predicted Q10 values for ingestion generated from 

sigmoidal model (black line) fit to empirical (upper asymptote) and simulated 

(lower asymptote) Q10 data; b) Q10 ingestion values (see color legend) for various 

log-scaled weights of krill (y-axis) and temperatures (x-axis). 

Preliminary IBM simulations with realistic environmental conditions indicated 

that individuals in stages with substantial vertical migrations (i.e., juvenile and adult) 

frequently exhibit negative growth during the daytime when they are deeper in the water 

column. The magnitude of negative growth generated unrealistic growth dynamics as a 

consequence of inadequate food resources at depth. The IBM accounts only for 

phytoplankton food. However, krill are also capable of feeding on alternate food sources 

(e.g., marine snow and zooplankton) that are more broadly distributed and available at 

a b 
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depth (Dilling et al., 1998; Nakagawa et al., 2003; Park and Suh, 2011; Im and Suh, 

2016). To account for food at depth, I modified the environment so food concentration 

for juvenile and adult stages is 30% of what was available at the daily maximum 

chlorophyll depth. This modification is only implemented if food at depth is below 30% 

of what was available at the maximum chlorophyll depth. This modification is supported 

by evidence indicating E. pacifica feed on alternate prey sources (e.g., tintinnids and 

copepods) while at depth during the daytime (Nakagawa et al., 2003). I also decreased 

metabolic demand during daylight hours by 30% for adults and 20% for juveniles. This 

modification reflects observations that indicate decreased feeding activity during the day 

at depth (Nakagawa et al., 2003).  

Growth: Metabolism  

Ross's direct measurement of growth was greater than the difference between 

assimilation and energetic costs. Ross attributed the discrepancy in the energy budget to 

possible measurement errors (Ross 1982b). Metabolic rate was suspected to have been 

underestimated, possibly as a consequence of suppressed activity due to confinement of 

krill in a small vial during respiration experiments and errors in leakage estimates.  

Under the assumption that empirical estimates of metabolism were the sole source 

of imbalance in Ross's (1982a) energy budget, I re-calculated metabolic rates for furcilia, 

juvenile, and adult stages using Ross's data and expressions for assimilation, growth, 

molting, and reproduction. I rearranged equation D8 to generate a new estimate of 

metabolic rate (equation D11, Figure D6, and Table D3): 
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𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑠𝑚 = 𝐴𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛 − 𝐺𝑟𝑜𝑤𝑡ℎ −  𝑀𝑜𝑙𝑡𝑖𝑛𝑔 − 𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (D11) 

 

 

Figure D6. Adult metabolic rate at 8 (purple) and 12°C (orange) versus body weight. 

Expressions are from Ross (1982a; dashed-lines) and this study (solid-lines). 

Open circles represent original data from Ross (1979), filled circles represent 

metabolic rates calculated in this study. New allometric equation for metabolic 

rate assumes underestimation in original estimate by Ross (1982a). 

 

Growth: Molting 

I retained the allometric equation for molt rate determined by Ross (1982a; Table 

D3). The Q10 for molt rate exhibits a clear inverse relationship with body weight (Ross, 

1979). To account for this pattern, I fit an allometric model to data from Ross (1979). The 

resulting model expresses the temperature sensitivity of molt rate (Q10 Molt; equation D12) 

as a function of body weight (W; Figure D7) and is defined as: 

 

𝑄10 𝑀𝑜𝑙𝑡 = 5.08 ∗ 𝑊−0.12 (D12) 
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Figure D7. Allometric model (line) fit to Q10 values (points) for molt production and 

weight data from Ross (1979). 

Growth: Reproduction  

Allocation of energy to reproduction commences once an individual reaches 

maturity. Allocation to reproduction follows the relationship defined in Ross (1979; 

equation D13): 

 

𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝑅𝑊𝐴) = 0.010(𝑊 +  1.98)1.035 (D13)  

 

Where allocation to stored reproductive weight (𝑅𝑊𝐴; µg C) at each timestep is 

predicted as a function of body weight (𝑊; µg C). Allocation of energy to reproductive 

stores is independent of whether there is sufficient food to maintain costs of living. This 
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allows an individual to shrink but still reproduce, as has been observed in the field and 

laboratory (e.g., Shaw et al., 2010). 

Release of eggs is based on rules from the Dorman et al. (2015) IBM. Release of 

eggs occurs only at night and is dependent upon interbrood period (the time between 

release of eggs) and the ratio of stored reproductive weight (RW) to body weight (BW). 

Interbrood period is set to 10 days. Individuals release eggs every 10 days if RW:BW is 

between 2.5 and 7.5%. If the RW:BW ratio is greater than 7.5%, eggs are released 

independent of interbrood period. The number of eggs released is equal to the 

reproductive weight divided by egg weight (3.2 µg C). If any reproductive weight is 

leftover after egg release, it is conserved as reproductive weight for subsequent timesteps. 

Application of Mechanistic Submodels for Growth 

Results from the Phase I model indicate that growth rates for furcilia stages are 

similar to those predicted by the Base IBM (Figure D8a). Growth rates for juvenile and 

adult stages closely match growth rates from the Base IBM up to 12°C, at which point 

they reflect the modification that generates negative growth above 17.28°C (Figure D8 b 

- e).   
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Development  

Immature stages 

Development of immature stages is defined by a Bělehrádek function developed 

by Lindsey (2013) for E. pacifica. The Bělehrádek model predicts stage duration as a 

function of temperature (Bělehrádek, 1930). The Bělehrádek model Lindsey (2013) 

developed is based on empirical data of E. pacifica development rates from Ross (1981) 
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Figure D8. Growth rates (top row: µg C d-1; bottom row: mm d-1 TL) for various sizes 

(see legend) of a) furcilia, b and d) juvenile, and c and e) adult life history stages 

based on the Base IBM (purple lines in top row) and Phase I IBM (black dashed-

lines with symbols; see legend). Purple lines in top row represent empirically 

estimated growth rates based on measurements of growth at 8 and 12°C (Ross, 

1982b; Dorman et al., 2015). Solid green line in bottom row represents estimate 

of negative growth rates for the average size krill (10 mm) used in Marinovic and 

Mangel, 1999. Vertical red-dashed line indicates observed transition to negative 

growth at 17.28°C (Marinovic and Mangel, 1999). Horizontal dashed-line at zero 

for reference. 
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and Feinberg et al. (2006) (Figure D9). Progression to the subsequent life history stage is 

determined by equation D14: 

 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖 = 𝑎𝐷𝑢𝑟,𝑖(𝑇 + 𝐵)𝑐𝐷𝑢𝑟  (D14) 

 

where 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖 is the duration of stage 𝑖 in days, 𝑎𝐷𝑢𝑟,𝑖 is an empirically determined 

stage-specific constant which defines the initial functional slope (day °C-1; Table C1), 𝑇 

is temperature in °C, 𝐵 is a stage-independent temperature shift specific to E. pacifica 

(15.052°C), and 𝑐𝐷𝑢𝑟 is an empirically derived constant that determines curvature (here, 

𝑐𝐷𝑢𝑟 = -2.05).  

 

Figure D9. Bělehrádek function for development of E. pacifica (development to juvenile 

stage was reproduced using Lindsey's (2013) Bělehrádek function). a) Stage 

duration (days) versus temperature. Inset depicts stage duration of eggs through 

F7 furcilia. b) Days to stage (development time) versus stage at various 
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temperatures (see legend). R.8 and R.12 indicate empirical observations at 8 and 

12°C, respectively (Ross, 1981; Ross, 1982b). F.10.5 indicates empirical 

observation at 10.5°C (Feinberg et al., 2006). Inset depicts development time for 

n1 nauplii through juveniles. 

Maturation 

Both Lindsey (2013) and Dorman et al. (2015) implement maturation using 

invariant weight-based maturation rules (e.g., maturity occurs once an individual reaches 

1500 µg C). To accommodate variability in size-at-maturation (as was observed in 

Robertson and Bjorkstedt, 2020), I defined a schedule of maturation by extending the 

Bělehrádek function developed by Lindsey (2013). To include an estimate for juvenile 

stage duration, and thus a temperature-dependent schedule for maturation, I estimated 

juvenile stage duration from data in Ross (1982b) and field observations (Harvey et al., 

2010; Shaw et al., 2021). I retained the value for the curvature coefficient used by 

Lindsey (2013) but generated new estimates for Bjuvenile and aDur,juvenile. The coefficients 

for juvenile stage duration (𝑎𝐷𝑢𝑟,𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒 = 9.0*104, 𝐵𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒 = 8, 𝑐 = -2.05) generate a 

schedule of development within the range of estimates from laboratory and field-based 

experiments (Figure D9; Ross; 1982b; Harvey et al., 2010; Shaw et al., 2021). 

Maximum Size 

Rather than implement an invariant weight limit on maximum adult size (as in 

Dorman et al., 2015), maximum weight of adults was constrained using a linear model 

that predicted maximum size as a function of minimum size-at-maturity. A linear model 

was fit to minimum size-at-maturity (10th quantile) data from THL samples collected at 

station TH03 – TH05 from 2008 to 2020 (Figure D10; for comprehensive sampling and 

processing methods see Robertson and Bjorkstedt, 2020). Model individuals were 
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allowed to exceed the predicted size by 50% up to a maximum size of around 20 mm 

body length (25 mm total length; 10,750 µg C), the maximum size attained by E. pacifica 

(Brinton et al., 1999). 

 

Figure D10. Maximum versus minimum size-at-maturity (BL mm). Linear model fit to 

THL data (black solid line, gray = 95% confidence interval). Dashed-line 

indicates maximum size cap implemented in the IBM as a function of minimum 

size-at-maturity. 

Mortality 

Starvation 

Starvation-induced mortality is not possible until an individual reaches the second 

calyptopis stage (as in Lindsey, 2013). At this stage (and subsequent stages up to the 

juvenile stage), an individual will die due to starvation if its weight drops below 70% of 

the individual's maximum weight. This starvation rule is based on the Dorman et al., 

(2015) IBM and is consistent with findings that indicate a 'point-of-no return' threshold of 

20-35% carbon loss in crustacean larvae (Anger and Dawirs, 1981; Dawirs, 1983; 
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Dawirs, 1987). Lower point-of-no return thresholds (~50% body carbon loss) have been 

observed for larval stages of E. superba (Meyer and Oettl, 2005). However, E. superba, 

which experience extreme variability in food abundance in the Antarctic, are likely more 

resistant to starvation than E. pacifica, which inhabit a more food-rich environment 

(Quentin and Ross, 1991). Therefore, as in Dorman et al., (2015), a conservative 

starvation value of 30% body carbon loss was selected. 

Once an individual reaches the juvenile stage, death by starvation occurs only if a 

juvenile or adult's weight falls below the minimum weight observed for these stages, 20 

and 90 µg C, respectively. This generous starvation rule allows for considerable 

shrinkage (e.g., as an overwintering strategy or in response to unfavorable conditions) by 

accommodating adaptation to a smaller size and is consistent with observations of 

shrinkage in juvenile and adult krill (Marinovic and Mangel, 1999).  

Lifespan 

The simulation of individual growth and development is terminated once an 

individual reaches two years of age. This lifespan is based on estimates from observations 

of E. pacifica in the California Current (Shaw et al., 2021).  

Predation 

Predation mortality is not included in the IBM (e.g., as a stochastic event). Rather, 

predation mortality was imposed post-simulation as a size-based instantaneous mortality 

rate and used to weight the contribution of each cohort to the predicted size distribution at 

a given point in time (see 'Demographics' above). 
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Energetic Scale Factors 

Individual growth rates emerge from physiological rates and exposure to 

environmental conditions. Published IBMs use physiological rates measured in laboratory 

experiments at 8 and 12 °C (Ross, 1982a; Lindsey, 2011; Dorman et al., 2015). Results 

from these experiments indicate that growth rate exhibits a positive relationship with 

temperature. In the Dorman et al. (2015) IBM, incorporation of laboratory-based growth 

models generated higher growth rates during winter compared to spring and summer 

months. However, field observations suggest that growth rates are generally higher 

during spring and summer, periods typically characterized by cooler temperatures, and 

lower during years when delayed upwelling occurs and waters are warm (Shaw et al., 

2010; Shaw et al., 2021). The cause of the discrepancy between existing growth models 

and field observations is not clear. At least two mechanisms might explain the observed 

patterns. One, enhanced nutrient concentrations and food quality during cool and 

productive (upwelling) seasons might enhance assimilation and growth dynamics, 

allowing individuals to grow more even though temperatures are relatively cool. Two, the 

existing bioenergetics models based on empirical data from Ross (1982a) do not account 

for intrinsic seasonal variability in energetics. To construct energetic expressions, Ross 

used data from individuals collected only in spring and summer, but noted that ingestion 

rates were lower in fall and winter, perhaps due to quiescent individuals (Ross, 1982b). 

This pattern of lower energetic rates in fall and winter months has also been observed for 

metabolism and ingestion of Antarctic krill, E. superba (Teschke et al., 2007; Piccolin et 
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al., 2018; Höring et al., 2018). Seasonal fluctuations in euphausiid energetics have the 

potential to alter growth rates and size dynamics.  

Implementing seasonality in euphausiid energetics has been used to advance an 

IBM for E. superba (Bahlburg et al., 2021). In the Southern Ocean, ingestion rates of 

Antarctic krill vary with photoperiod; during winter light conditions assimilation rates 

can be as low as 36% of rates observed in summer conditions (Teschke et al., 2007). 

Respiration rates exhibit a similar response to photoperiod: winter light conditions 

correspond to significantly lower respiration rates. Bahlburg et al., (2021) accounted for 

seasonal variability in E. superba energetics by applying a day-length dependent scale 

factor to ingestion and metabolism submodels.  

I generated similar scale factors to implement seasonal variability in E. pacifica 

energetics. Rather than day length, the scale factors are a function of day-of-year and 

temperature. These metrics were preferred over day length because they enable coupling 

of energetics to a proxy for physical and biogeochemical processes (e.g., upwelling, 

nitrate flux, phytoplankton blooms) that dominate the biological response in the 

California Current Ecosystem.  

Energetics of early life history feeding stages (calyptopis C1 - F7 furcilia) were 

scaled using the day-of-year-based scale factor (Figure D11). Growth rate of stages for 

which growth is calculated directly (calyptopis C1 - C3) is scaled by applying the scale 

factor directly to growth rate. For F1 – F7 furcilia, the scale factor is applied to 

metabolism, ingestion, molting, and reproduction. Growth (for calyptopis C1 – C3), 
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metabolism, ingestion, and molting rates of early life history stages were decreased by a 

maximum of 10% in winter. The energetic scale factor increases linearly from January 1 

to May 1 (day-of-year = 121) and decreases linearly from July 1 (day-of-year 182) to 

January. Scaling of early life history stage energetics reflects the hypothesis that 

assimilation and energetic costs are reduced in winter months. The peak of the scale 

factor falls within the window of peak climatological upwelling observed for northern 

California (Bograd et al., 2009). In winter, the scale factor decreases energetic rates by a 

maximum of 10%. Following Bahlburg et al., (2021), the energetic scale factor is applied 

to assimilation and cost components of the growth equation. Thus, the ratio between 

assimilation and costs remains constant. The change in growth rate reflects the balance of 

scaled intake and cost components in absolute, not relative, terms. This implementation is 

analogous to a whole-animal response; individuals are generally more active during 

spring and summer months and exhibit reduced activity during winter.  

 

Figure D11. Day-of-year (DOY)-based scale factor applied to energetic components of 

feeding stage krill. 

Analyses during model development indicated a persistent discrepancy between 

model predictions and observations of adult size in spring. From approximately March 
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through June, adult size was underestimated by the IBM. To improve model predictions, 

a temperature-dependent scale factor is applied to adult assimilation rates. The 

'Upwelling Scale Factor' is a multiplicative scale factor that is a function of average 

temperature in the top 30 meters of the water column. The upwelling scale factor 

enhances assimilation during cooler conditions, a pattern that is consistent with greater 

nutrient availability and food quality during cool and productive upwelling conditions 

(Figure D12; Miller et al., 2017). At temperatures above 12°C, the upwelling scale factor 

is set to one and assimilation rates are equivalent to those described in 'Ingestion'. 

  

 
Figure D12. Upwelling scale factor. Temperature-dependent factor (y-axis) applied to 

adult assimilation rate based on average temperature in the top 30 m of water.
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Figure E1. Results from sensitivity analysis examining the response in size to 

environmental variability for furcilia (top), juvenile (middle), and adult stages 

(bottom). Title (top left plot) indicates life history stage (F1 – F7 furcilia, J = 

Juvenile, A = Adult). Subtitle (top left corner of each plot) indicates 

environmental conditions. Scenarios include THL climatology and combinations 

of temperature ± 1°C and ± 20% chlorophyll a concentration (see plot subtitles). 

Gray line represents the difference between body length (mm) of each model 

scenario versus the scenario forced with THL climatology data (BLscenario - 

BLclimatology). Black line represents results from a modified model with constant, 

temperature-independent stage duration for the C3 calyptopis stage (3.5 days). 

Dashed gray line at zero to facilitate interpretation of results.  


