

Article

Improved Development Cycle for 8-bit FPGA-Based
Soft-Macros Targeting Complex Algorithms

Ehsan Alia and Wanchalerm Porab,*

Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330,
Thailand
E-mail: aehssan.aali@email.com, b,*wanchalerm.p@chula.ac.th (Corresponding author)

Abstract. Developing complex algorithms on 8-bit processors without proper
development tools is challenging. This paper integrates a series of novel techniques to
improve the development cycle for 8-bit soft-macros such as Xilinx PicoBlaze. The
improvements proposed in this paper reduce development time significantly by eliminating
the required resynthesis of the whole design upon HDL source code changes. Additionally,
a technique is proposed to increase the maximum supported data memory size for
PicoBlaze which facilitates development of complex algorithms. Also, a general
verification technique is proposed based on a series of testbenches that perform code
verification using comparison method. The proposed testbench scenario integrates “Inter-
Processor Communication (IPC), shared memory, and interrupt” concepts that lays out a
guideline for FPGA developers to verify their own designs using the proposed method.
The proposed development cycle relies on a chip that has Programmable Logic (PL) fabric
(to hold the soft processor) alongside of a hardened processor (to be used as algorithm
verifier), therefore, a Xilinx Zynq Ultrascale+ MPSoC is chosen which has a hardened
ARM processor. The development cycle proposed in this paper targets the PicoBlaze, but
it can be easily ported to other FPGA macros such as Lattice Mico8, or any non-Xilinx
FPGA macros.

Keywords: FPGA, PicoBlaze, 8-bit soft microprocessor, software development methods,
verification techniques.

ENGINEERING JOURNAL Volume 25 Issue 12
Received 6 March 2021
Accepted 12 December 2021
Published 30 December 2021
Online at https://engj.org/
DOI:10.4186/ej.2021.25.12.21

DOI:10.4186/ej.2021.25.12.21

22 ENGINEERING JOURNAL Volume 25 Issue 12, ISSN 0125-8281 (https://engj.org/)

1. Introduction

Since the introduction of Intel 8008, the first byte-

oriented 8-bit microprocessor in November 1971[1] up
to present time, the 8-bit hardware architecture continues
to drive the computer industry in parallel to the upgraded
16/32/64/128-bit cores. In embedded systems, 8-bit
Low-Pin-Count (LPC) microcontroller units (MCUs)
which integrate few precision analog peripherals,
configurable general-purpose I/O (GPIO), serial
interface, and fast-data-bus architectures are excellent
choice to capture analog signals, convert, and then
condition them for signal-processing. Current MCUs run
on clock speeds up to tens of megahertz which provides
adequate computational power to handle modest signal
processing tasks or drive complex real-time state
machines [2]. Despite the competition from low-cost,
low power 32-bit MCUs, 8-bit MCUs have their own
target applications, and have an edge over their 32-bit
counterparts when it comes to power consumption, cost,
and electromagnetic interference (EMI) [3].

We can mention numerous applications for 8-bit
microcontrollers, from implementing simple RGB LEDs
[4] , control applications [5] [6] [7], battery-powered data
acquisition [8], Maximum Power Point
Tracking(MPPT)[9], to efficient cryptography [10] [11],
and even implementing TCP/IP stack [12].

Another revolutionary technology in the world of
embedded systems is Field Programmable Gate Array
(FPGA). It is a silicon-based integrated circuit which
contains an arrays of “programmable logic blocks”, and a

hierarchy of "reconfigurable interconnect” that allows
the blocks to be connected. FPGA advantage over
Application Specific Integrated Circuit (ASIC)
technologies with standard cells is in their flexibility to be
reprogrammed within few seconds. This allows designers
to correct mistakes and perform many design iterations
without undergoing through costly and lengthy
fabrication process [13]. The drawback of this flexibility
is that FPGA uses approximately 20 to 35 times more
area than a standard cell ASIC, has a speed roughly 3 to 4
times slower, and consumes roughly 10 times as much
dynamic power [14].

Initially FPGAs were used as “glue logic” [15], but
later the addition of fixed-function components such as
sophisticated clocking circuitry, Phase-Locked Loops
(PLLs), analog-to-digital and digital-to-analog converters
(ADCs and DACs) [16], hard-core processors, PCIe,
SATA3, DisplayPort, Gigabit Ethernet, SD/SDIO,
USB3, CAN, SPI, I2C, UART [17], and DDR memory

controllers on a single chip, gave rise to “System on a

Chip (SoC) FPGA” devices or “Platform FPGA” [18].
The SoC devices have opened the door for unlimited
applications in all areas of digital circuit design. Hence,
the implementation of an 8-bit design can be done via
two mediums: 1) MCU or 2) FPGA (We exclude the
other existing approach: ASIC due to its high Non-
Recurring Engineering (NRE) cost [19]). If flexibility in
design has highest priority and consequently the FPGA

approach is chosen, then the next decision would be
about the type of processors inside the FPGA.

FPGA embedded processor types are categorized
into three groups [20]:

1. Soft-cores: Written in Hardware Description
Language (HDL) without extensive optimization
for the target architecture.

2. Firm-cores: Written in HDL implementations
but have been optimized for a target FPGA
architecture.

3. Hard-cores: Hard cores are fixed-function gate
level intellectual property (IP) within the FPGA
fabric.

Although the hard-core processors implemented in
SoC chips run at higher clock rates, and consume less
dynamic power [21], but their fixed design makes them
totally inflexible for accommodating custom designs. In
contrast soft-cores are easy to modify, and highly
portable [20] which explains the rationality behind
picking an FPGA soft-core macro as target processor in
the work presented in this paper.

Currently we have several 8-bit macros available:

 Xilinx PicoBlaze [22]

 Lattice Mico8 [23]

 Navré [24] and pAVR [25]: Atmel AVR
compatible 8-bit RISC hosted on
OpenCores.org

 MCL86, MCL51, and MCL65 [26]: Intel
8088/8086, 8051, and MOS 6502 compatible

There are also academic-level cores such as: 8-bit
interface task-oriented processor [27], 8-bit RISC core
[28], 8-bit MiniMIPS [29] used for educational purposes,
and soft-core with dual accumulator [30]”. Among all
cores mentioned, only Xilinx and Lattice are
industry-level 8-bit cores, because they have adequate
documentation and software development tools.
Moreover, they have enough users who can find and file
potential bugs. Any soft-core available on open-source
websites such as GitHub.com or OpenCores.org must be
treated with cautiousness. For example, we tested
PauloBlaze [31], which is a plain VHDL implementation
of PicoBlaze, hosted on GitHub website, and we
observed that under specific circumstances it produces
wrong result. We choose Xilinx PicoBlaze due to
availability of Xilinx FPGA platforms in our laboratory,
and we hereby refrain from comparing Xilinx with
Lattice.

Maximum clock frequency of PicoBlaze reaches 105
megahertz (MHz) in Spartan-6 (-2 speed grade), and up
to 238MHz can be achieved in Kintex-7 (-3 speed grade)
devices [32]. High clock frequency of PicoBlaze, and the
possibility of adding hardware accelerators next to the
soft macros make PicoBlaze-based designs very attractive.
As of the time of writing this paper the fastest 8-bit
MCU runs at 100MHz (Silicon Labs MCU devices [33])
and do not include a programmable fabric for
implementing custom hardware.

DOI:10.4186/ej.2021.25.12.21

ENGINEERING JOURNAL Volume 25 Issue 12, ISSN 0125-8281 (https://engj.org/) 23

The original standard development cycle offered by
Xilinx for PicoBlaze is not suitable for developing
complex algorithms which demands facilities such as step
by step execution, text-based debugging output,
breakpoints, etc. Although a tool (JTAGLoader [32])
provided by Xilinx can prevent resynthesizing designs
when its program is modified, but it consumes a BSCAN
primitive, and does not support multiple PicoBlaze cores.
New FPGA boards, and new version of Vivado are not
supported either, as it relies on obsolete ISE libraries.
Additionally, the development cycle only opted for Xilinx
devices, and does not work with other FPGA vendors
such as Intel (former Altera), Microsemi (former Actel),
and Lattice.

The contributions of this paper are: 1) Resynthesis
elimination of FPGA designs when source code of a
soft-core processor changes. This reduces developmental
time significantly. 2) Resynthesis elimination support for
multi-core soft-core architectures. This allows multiple
instances of e.g., PicoBlaze to be used in a design and
their programs to be modified on run-time. 3)
Resynthesis elimination does not consume any
BSCAN primitive. This frees up a BSCAN primitive
and allows resynthesis elimination to be implemented on
high-end FPGAs which their BSCAN primitives are
already consumed by on-board components. 4) The
proposed resynthesis elimination mechanism works for
both Xilinx and non-Xilinx FPGA platforms. 5) A
verification mechanism to ensure the integrity of
complex algorithms written for FPGA-based soft-macros.

Note that our proposed method can be used in any
soft-core that relies on internal FPGA memory blocks.
For example, one can take advantage of our proposed
method and avoid FPGA re-synthesis when a low-end

FPGA design uses the 32-bit Xilinx MicroBlaze soft-core
and replaces external DDR3 or flash memories with
internal BRAMs.

This paper is organized into nine sections. After this
introduction, the second section explains the PicoBlaze,
its application, and its standard development cycle
provided, and its flaws are pointed out. In third section
the assembler for PicoBlaze is discussed. Section Four
explores available simulation options such as FIDEx [34].
In Section Five, necessary software, and hardware
combination needed to improve the development cycle is
proposed. In Section Six an address generator circuitry is
introduced to provide designers with a shared data
memory between the ARM core, and the PicoBlaze. In
Section Seven, code verification using comparison method is

employed to perform the “equivalence checking” of the
developed PicoBlaze program versus the result obtained
from C language program running on ARM core. Section
Eight provides the analysis of conserved development
time using the proposed method. Finally, we conclude
our article in the last section.

2. The PicoBlaze (KCPSM6) Macro

2.1. Overview

The latest version of PicoBlaze is technically called

KCPSM6 which is derived from older version

“(K)constant Coded Programmable State Machine 3”
(KCPSM3) [35]. It is a soft macro which defines an 8-bit
data processor that can execute a program of up to 4K
instructions. All instructions have 18-bit width and all of
them need 2 clock cycles for execution. It provides two
banks of 16 general purpose registers [32]. The KCPSM6

Fig. 1. KCPSM6 Architecture and Features [32].

DOI:10.4186/ej.2021.25.12.21

24 ENGINEERING JOURNAL Volume 25 Issue 12, ISSN 0125-8281 (https://engj.org/)

architecture overview as provided in official user manual
is shown in Fig. 1.

The soft-core provides the following facilities:
1. 6-bit opcode field that enables the support of up

to 64 instructions. The original KCPSM6
Instruction Set Architecture (ISA) has 55
instructions.

2. Thirty-two 8-bit registers which are organized in
two banks ’A’ and ’B’. Only one bank can be
activated at any given time.

3. Maximum 256-byte Scratch Pad Memory (SPM)
that works as data memory.

4. A stack with depth of 30.
5. 12-bit address bus which covers 4KB of

program memory.
6. 256 input ports, and 256 output ports.
7. One interrupt signal.
The PicoBlaze cannot support high-level

programming languages effectively due to its
simplicity [36]. Therefore, most designs use the assembly
language for implementing algorithms.

2.2. PicoBlaze Applications

We can mention myriad examples of PicoBlaze

Applications. We have PicoBlaze used in embedded
systems for “monitoring applications” [37], Vladimir
employed the processor to provide a controller for traffic
light [38], Pavel constructed a multiprocessor parallel
architecture based on message passing paradigm using
multiple PicoBlaze cores [39], Venkata studied the usage
of the PicoBlaze in “multiprocessor systems” [40], and
Robert implemented a network interface using the
PicoBlaze [41]. Lung, Sabou, and Barz implemented
“smart sensor using multiple cores” of PicoBlaze [42].

Seema and Purushottam used PicoBlaze to
implement a “wireless sensor network” [43]. PicoBlaze is
used as a “configuration engine” in a fault-tolerance
technique [44]. Hassan and Benaissa implemented a
scalable elliptic curve cryptography (ECC) on PicoBlaze
[45]. Tim Good and Benaissa used PicoBlaze for
“advanced encryption standard” (AES) [46]. This body
of literature justifies the usage of 8-bit soft-core

processors such as PicoBlaze in a broad range of
applications.

2.3. Standard Development Cycle - Related Work

The only related work to this paper is the standard

development cycle provided by Xilinx, which will be
discussed in detail in this section. The standard
development cycle for the latest version of PicoBlaze
(KCPSM6) provided by Xilinx is shown in Fig. 2. The
steps for VHDL language are listed below (Verilog
language is also supported) [32]:

1. Import “KCPSM6.vhd” (PicoBlaze core VHDL
version) into ISE [47] or Vivado [48] project.

2. Write a PicoBlaze program and save the source
code into a “source_code.psm” file.

3. Select an appropriate “ROM_form.vhd” that
matches target FPGA Xilinx device.

4. Run assembler on “source_code.psm” and
“ROM_form.vhd” files and get “program.vhd”
as assembler output.

5. Import “program.vhd” into ISE or Vivado
project.

6. Connect both KCPSM6 and program modules
together inside a wrapper module (“top.vhd”)
using signals.

7. Run ISE or Vivado simulator and debug the
program by looking into registers and SPM
content by examining simulation signals and
waveforms.

8. Synthesize the complete design, and upload
generated bit-stream file into FPGA device.

2.4. Standard Development Cycle Limitations

The Xilinx PicoBlaze standard tools fall short when

it comes to complex programming tasks. The only way to
check the register content and SPM memory is through
Vivado/ISE simulator waveform which is not practical if
the program is more than few hundred lines. Adding
more instructions between lines or simply a change in
conditional jumps, modifies the simulation timing and
makes waveform-based debugging very challenging.
Other issues are lack of breakpoints, and step by step

Fig. 2. PicoBlaze Standard Development Cycle.

DOI:10.4186/ej.2021.25.12.21

ENGINEERING JOURNAL Volume 25 Issue 12, ISSN 0125-8281 (https://engj.org/) 25

Table 1. PicoBlaze Assemblers.

Assembler Supported
Cores

Host OS Status License Features

Xilinx [52] KCPSM3,
KCPSM6

Windows
Linux(wine)

v2.7 Stable Xilinx Outputs .fmt, .log, .hex
Open PicoBlaze

[51]
Open

PicoBlaze [51]
KCPSM3,
KCPSM6

Any OS with
Python

v1.3 Stable Free MIT
license

High performance, m4 preprocessor,
static code analysis, local labels

Table 2. PicoBlaze Simulators.

Simulator Supported
Cores

Host OS Status License Features

kpicosim [53] KCPSM3 Linux v0.7 Beta Free Syntax highlighting, compiler,
simulator, and export functions to

VHDL, HEX and MEM files.
sc0ty [54] KCPSM3 Linux Beta GNU

GPL
wxWidgets library based, supports
LED, switches, keyboard, terminal,

and timer.
FIDEx [34] KCPSM3,

KCPSM6,
Mico8

Linux,
Windows

2016-09.0
Stable

Proprietary Project manager, memory page
support, full-fledged debug facility

execution. Meanwhile, the mandatory resynthesis step
and the need to reupload the bitstream file into FPGA
device increase the development time significantly.

In normal design flow, designer imports
“program.vhd” to a Vivado/ISE Design Suite project,
and then synthesizes the design, and finally uploads the
generated bitstream into the FPGA board. The problem
with this approach is that whenever PicoBlaze program is
modified, a rerun of assembler to generate a new
“program.vhd” is required. The change in content of
“program.vhd” file triggers a complete resynthesis of
wrapper module that holds the “program” Block RAM
module. To solve this, the “JTAG Loader” [32] is
provided by the Xilinx. It is a tool designed to upload the
generated .hex file by assembler to program BRAM. It
eliminates the need to resynthesize the design. Some
shortcomings of the tool are mentioned below:

 Only one PicoBlaze core (marked with
“C_JTAG_LOADER_ENABLE => 1” generic)
in the design is supported.

 Depends on old drivers provided by ChipScope
[49] and needs ISE Design Suite to be installed.

 No support for new advanced development
boards such as “Xilinx ZCU104” [50] that has
several devices attached to its JTAG chain.

 Consumes a BSCAN primitive.
Another issue is lack of support for other FPGA

vendors. PicoBlaze core and all its development tools
target Xilinx devices only and cannot be ported easily to
other FPGA devices manufactured by other vendors
such as Intel, Microchip, and QuickLogic.

The rest of paper covers several proposed techniques
needed to solve all issues mentioned above by integrating
third party tools with standard Xilinx tools to form a

reliable and consolidated solution for implementing
complex algorithms on PicoBlaze.

3. PicoBlaze Assembler

Currently, there are only two reliable PicoBlaze

assemblers which are listed in Table 1. The original
Xilinx assembler receives a program source code with
extension .psm and outputs a formatted PSM File .fmt,
a .log file, a .hex file which contains raw equivalent hex
value of each instruction, and a .vhd file if
“ROM_form.vhd” template file exists. In most cases the
original assembler is sufficient. Open PicoBlaze
Assembler (Opbasm [51]) is an alternative option which
offers special features such as faster assembling time, m4
preprocessor macros, static code analysis to identify dead
code and optionally remove it, code block annotations
with user defined PRAGMA meta-comments, and the
support for local labels. In this paper, the original
KCPSM6 assembler is chosen as it exhibits acceptable
degree of stability and is used widely by the community.

4. PicoBlaze Simulator

The standard waveform-based simulator suffices for

simple algorithms that can be implemented with less than
one or two hundred instructions. Anything more
complex needs a full-fledged simulator with breakpoints,
step by step execution, registers, and SPM content
monitoring capabilities.

An exhaustive search for all available PicoBlaze
simulators yields few results. Those which were buggy,
unstable, or had no proper documentation were omitted.
Table 2 shows those simulators which have passed the

DOI:10.4186/ej.2021.25.12.21

26 ENGINEERING JOURNAL Volume 25 Issue 12, ISSN 0125-8281 (https://engj.org/)

following criteria: A stable version is available, a
Graphical User Interface (GUI) is provided, debugging
facilities such as step by step execution and breakpoints
are available, proper documentation for compiling the
source and using the tool itself is provided. We found the
FIDEx the only solid simulator which supports the latest
version of PicoBlaze (KCPSM6). All other simulators are
either out of date or only support KCPSM3, or lack
quality, or a crucial debugging functionality.

5. Improved Development Cycle for PicoBlaze

For implementing a complex algorithm on PicoBlaze
the suggested development method which is: “To debug
using functional simulation or running the program on
hardware directly [32]” will not suffice. Our proposed
development setup includes an isolated PicoBlaze core
(pBlaze) on Program Logic (PL) of an FPGA connected
to standard URAT modules. The pBlaze module consist
of three submodules: 1) kcpsm6.vhd (the core provided
by Xilinx) 2) tx6.vhd (UART Send) 3) rx6.vhd (UART
Receive). The program block memory (pBlaze prog.vhd)
is moved to outside of the pBlaze VHDL module, The
dual port mode on the program block RAM (BRAM) is
enabled with the following IP settings: Mode= “Stand

Alone Memory”, Type= “True Dual Port RAM”,
Primitive Type= “BRAM”.

The read/write width, and memory depth setting is
shown in Fig. 4. Development starts in any IDE which
provides a simulator (such as FIDEx IDE [34]) by
writing assembly code. FIDEx supports several other
processors beside PicoBlaze (e.g., Lattice Mico8) and has
its own assembler dialect. The FIDEx dialect is used to
implement an algorithm, and its simulator is invoked to
verify algorithms correctness. Next, we convert the
developed machine code in FIDEx assembly dialect to
original KCPSM6 syntax using a sed [55] script shown in
Listing 1. The script outputs a new .psm file (PicoBlaze
assembly source code) which then can be fed into
standard KCPSM6 assembler.

5.1. Proposed Hardware Architecture

Any Xilinx SoC FPGA which incorporates a
processor next to an FPGA fabric can be chosen as
development platform. Note that our proposed method
is around controlling the synthesized hardware on FPGA
using a hardened processor. This hardened core does not
need to be resynthesized as it is fixed, therefore, it can be
used to rewrite (dynamic resynthesis) parts of the
synthesized hardware on FPGA PL fabric. This method
can be employed in any FPGA SoC device that is
equipped with a hardened processor such as Intel
Stratix10 FPGA that offers a quad core 64-bit ARM
Cortex-A53 or Microchip SmartFusion ProASIC3
IGLOO that has a hard 100Mhz ARM Cortex-M3 core.
Interestingly, in case that a hardened core is absent, our
proposed method is still viable as designers can replace

the hardened processor with a soft-core. For example,
Microchip PolarFire offers a Soft RISC-V or Soft ARM
Cortex-M1 as processing option which can be used as
Processing System (PS).

The “Xilinx Zynq Ultrascale+” device is chosen as it
provides a PS alongside of a Programmable Logic (PL).
The Vivado Design Suit 2018.3 [48] is used to create a
project that demonstrates the proposed improved
development cycle for PicoBlaze. The Vivado project
consist of a main “Vivado Block Design” (BD) named
“system.bd”. The system BD schematic is shown in Fig.
3. At the heart of the BD resides a ZYNQ UltraScale+
MPSoC which manages data transfer between all these
components via AXI interconnects: two shared Block
RAMs, a PicoBlaze core, and hardened ARM processor.

Figure 3 shows simplified schematic of components
inside the BD. Both Zynq Ultrascale+ MPSoC and
PicoBlaze are equipped with UART send and receive
ports which boost the debugging process by providing
terminal input and output for both processors. Registers
value, memory locations, and program variable can be
dumped to terminal through designated serial ports. One
of the two block RAMs contains the PicoBlaze program
and the other one acts as a shared data memory. Next
section discusses required BRAM setting for the
proposed setup. Full Vivado project is available at
author’s GitHub public domain [56].

5.2. Memory Block RAMs

Two Block RAMs (BRAMs) are used in proposed

development cycle. One holds PicoBlaze program while
the other one shares data between PicoBlaze and ARM
cores. This shared channel is used for verifying
algorithms implemented on PicoBlaze with the ARM
processor as verifier unit.

5.2.1. PicoBlaze Program BRAM

The following calculation must be considered to set a

dual port PicoBlaze program BRAM memory

s /\bRET\b/RETURN/ g

s /\bCOMPC\b/COMPARECY/ g

s /\bCOMP\b/COMPARE/g

s /\bTESTC\b/TESTCY/ g

s /\bADDC\b/ADDCY/ g

s /\bSUBC\b/SUBCY/ g

s /\bROLC\b/SLA/ g

s /\bRORC\b/SRA/ g

s /\bLOADRET\b/LOAD&RETURN/ g

s /\bRDMEM\b/FETCH/ g

s /\bRDPRT\b/INPUT/ g

s /\bWRPRT\b/OUTPUT/g

s /\bWRMEM\b/STORE/ g

s /0 x // g

Listing 1. Sed script to convert FIDEx dialect to
KCPSM6.

DOI:10.4186/ej.2021.25.12.21

ENGINEERING JOURNAL Volume # Issue #, ISSN 0125-8281 (https://engj.org/) 27

Fig. 3. Vivado Block Design of PicoBlaze Development Environment.

DOI:10.4186/ej.2021.25.12.21

28 ENGINEERING JOURNAL Volume 25 Issue 12, ISSN 0125-8281 (https://engj.org/)

specification: PicoBlaze has a 12-bit address bus,
therefore, 212 = 4096 locations can be addressed. Its
instruction width is 18-bit; therefore, the memory size

must be 18 ∗ 4096 =73728 bits or 72 kbit = 9kB. The
PicoBlaze core is not the only module that accesses this
BRAM. The ARM processor through AXI interconnect
also must be able to perform read and write memory
operations to and from this BRAM. The AXI
interconnect supports only 32-bit data-width, therefore,

demanding a 32 ∗ 4096 = 131072 bits or 128 kbit =
16kB BRAM.

The conclusion is that although program BRAM
needs only 9KB, but AXI interconnect forces us to

assign 16KB resulting in 16 − 9 = 7kB memory will be
wasted. Figure 4 shows the width of PORTA and
PORTB of the program BRAM is 14-bit. This provides
the ability to address 16384 locations. A 2-bit logical left
shift of address bus is required for 4-byte alignment of
PicoBlaze 12-bit addresses. Note that write and read
width of both ports are 18- bit.

5.2.2. Data Memory BRAM

A dual port BRAM is used to share information

between two systems. The size of RAM is 4098 ∗ 8 bits.
Port A is 10-bit wide and connected to the ARM
processor via AXI interconnect. This gives access to
1024 memory location. ARM processor can access the
whole 4KB memory by reading or writing 32-bit per
memory access. The port B is 12-bit wide and is
connected to PicoBlaze with 8-bit read and write width.

5.3. Proposed Software Architecture

5.3.1. ARM Application Project

After synthesizing the design proposed in previous

section in Vivado Design Suite, we export the hardware
platform to Xilinx SDK. We create a C language
Application Project for target processor psu_cortexa53_0

Fig. 4. Zynq Ultrascale+ and PicoBlaze Hardware
Platform.

void fill_picoBlaze_BRAM () {
 int loc = 0 ;
 for (int i =0; i <16384; i=i +4) {
 Xil_Out32 (
 XPAR_AXI_BRAM_CTRL
 _1_S_AXI_BASEADDR + i,
 program_4k [loc]) ;
 loc++;
 }
}

Listing 2. fill_picoBlaze_BRAM() function [runs on
FPGA PS]

DOI:10.4186/ej.2021.25.12.21

ENGINEERING JOURNAL Volume # Issue #, ISSN 0125-8281 (https://engj.org/) 29

with OS Platform option set to standalone. The project
name is “picoblaze_app” and its source code can be
found under “picoblaze_dev.sdk” folder [56]. The entry

point is “main.c” which included the header file

“pBlaze_prog.h”. The “pBlaze_prog.h” file defines a 4K
C language array that contains hex value of instructions
designed to be uploaded to PicoBlaze program BRAM
memory.

 The utility function fill_picoBlaze_BRAM() which is

defined in “main.c” is used to upload a PicoBlaze
program into the BRAM memory controlled by
AXI_BRAM _CTRL_1. It performs the task by reading a
one-dimensional u32 array with the size 4096 of bytes
(program_4k) and writes it into program BRAM. The
function source code is shown in Listing 2.

5.3.2. Hex to Header File Utility

The program_4k array is defined in “pBlaze_prog.h”
header file and must be regenerated every time the
designer modifies the PicoBlaze’s program. This header
file must be included in the “main.c”. Listing 3 shows the

C++ source code for “hex2ch.cpp” file. It is a command
line utility written by authors to perform the conversion
between PicoBlaze hex file generated by KCPSM6

assembler to “pBlaze_prog.h” header file.

To compile we issue the command “$ g++ -o

hex2ch hex2ch.cpp”, and to convert pBlaze_prog.hex we

issue: “$./hex2ch pBlaze_prog.hex” which outputs

“pBlaze_prog.h” header file in current working directory.

5.4. Proposed Development Cycle

With discussed hardware platform and software tools,

a complete development cycle for PicoBlaze that can
handle complex algorithms can now be achieved. To
develop for PicoBlaze we propose the following steps:

1. Synthesize the hardware platform and export it
to Xilinx SDK.

2. Program the FPGA using the synthesized
hardware.

3. Edit source code in FIDEx (“program.psm” file).
4. Simulate the code in FIDEx.

5. Run sed script on “program.psm” file. (Output

is “program_pb.psm” file)
6. Run KCPSM6 assembler on

program_pb.psm.(Output is “program_pb.hex”)
7. Run hex2ch on program_pb.hex. (Output is

"program_pb.h")

8. Update “program_pb.h” that resides in SDK
folder.

9. Run SDK Application on FPGA to update the
PicoBlaze program in FPGA.

Any modification to PicoBlaze program (Step #3)
triggers the rerun of steps #5 to #8 which can be easily
scripted in user development machine (e.g., a Linux bash

// This program converts picoblaze's .hex to //
SDK .h header file.
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
int main (int argc, char *argv[]) {
 if (argc < 2) return -1;
 string input_filename = argv[1];
 // ---------------------------------
 // Extract the filename by removing
 // the extension
 size_t lastindex = input_filename.
 find_last_of(".");
 if (lastindex == string::npos)
 return -2;
 string rawname = input_filename.substr
 (0, lastindex);
 // ---------------------------------
 // Add .h extension to input filename
 string output_filename = rawname + ".h";
 ifstream file_in (
 input_filename.c_str(), ios::in);
 ofstream file_out (
 output_filename.c_str(), ios::out);
 file_out << "u32 program_4k[4096]={" <<
 endl;
 string l;
 string line;
 // ---------------------------------
 // Get the first line
 getline(file_in, l);
 if (l.size() && l[l.size()-1]=='\r')
 line = l.substr(0, l.size() - 1);
 else
 line = l;
 file_out << "0x" << line << endl;
 // ---------------------------------
 // iterate through the remaining
 // lines.
 while (getline(file_in, l)) {
 if (l.size() && l[l.size()-1]=='\r')
 line = l.substr(0, l.size() - 1);
 else
 line = l;
 file_out << "," << "0x" <<
 line << endl;
 }
 file_out << "};" << endl;
 return 0;
}

Listing 3. hex2ch.cpp Tool [runs on development
environment].

DOI:10.4186/ej.2021.25.12.21

30 ENGINEERING JOURNAL Volume 25 Issue 12, ISSN 0125-8281 (https://engj.org/)

Fig. 5. Improved Development Cycle for PicoBlaze Macro.

Fig. 6. PicoBlaze Address Generator Circuit used for Data Memory Expansion,

script). Figure 5 shows the complete flowchart of
improved development cycle for PicoBlaze macro.

6. Proposed Address Generator Circuitry

The PicoBlaze’s 12-bit address supports maximum

range of 4KB program memory. Its SPM which is used
as data memory can have maximum size of 256 bytes.

To add another 4KB BRAM as a shared data
memory to PicoBlaze-based systems, an address
generator circuit is designed and shown in Fig. 6. The
design requires 7 instructions, or 14 clock cycles to
read/write a byte from/to shared data memory locations.
Accessing this BRAM is 7 times slower than the main
program BRAM. To access the memory, two routines are
provided: Read_ext_mem() and Write_ext_mem() which
are defined in Listing 4. The programmer simply calls
these two routines whenever a memory access to the
4KB data memory is required.

The s6, and s5 are general purpose PicoBlaze
registers. For reading from memory, the register pair [s6,
s5] is used with s6 as high byte, and s5 as low byte. The
12-bit read address is shown by ‘A’ letters. The bit 7 of s6
is Clock Enable (represented by letter ‘C’) and register s7
holds the read data. The 16-bit register pair format is
shown below:

8-bit s7 register 8-bit s6 register 8-bit s5 register

READ DATA C000_AAAA AAAA_AAAA

Similarly, for writing to memory, a 12-bit address is

formed in [s6, s5] register pair. The bit 7 of s6 is Clock
Enable, and bit 6 of s6 is Write Enable, and are
represented by letters ‘C’, and ‘W’. The register s7 must
contain 8-bit write data. The 16-bit register pair format is
shown below:

8-bit s7 register 8-bit s6 register 8-bit s5 register

WRITE DATA CW00_AAAA AAAA_AAAA

DOI:10.4186/ej.2021.25.12.21

ENGINEERING JOURNAL Volume # Issue #, ISSN 0125-8281 (https://engj.org/) 31

Fig. 7. PicoBlaze & Zynq Ultrascale+ Inter-Processor
Communication Platform for Verification.

Fig. 8. Four Verification Algorithms and Development
Time Conserved using our proposed method

7. Proposed Verification Mechanism

7.1. Concepts

Verification is the process of determining that a
model implementation accurately represents the
developer’s conceptual description of the model and the
solution to the model [56] [57]. Verification can be
classified into: A) Code Verification: To identify and
eliminate programming and implementation errors within
the software B) Calculation Verification: to quantify the
error of a numerical simulation or in other words
“numerical error estimation” [57]. A widely used
approach in code verification is the comparison method in
which one code is compared to another established
code [58].

In our proposed method the already established code
resides in the PS side of FPGA. It can be an already
established code (e.g., a well-known C language library
for ARM Cortex A-53 of Zynq Platform), or a hardware
module that is available in the PS side such as the VFPv4
hard unit inside ARM processor. This unit is fully IEEE-
754 compliant [59]. An Inter-Processor Communication
(IPC) [60] is established based on shared-memory, and
interrupt signaling as shown in Fig. 7.

Take implementing a 64-bit floating-point library
(complex algorithm) on PicoBlaze as an example [61].
After writing routines that perform floating point
operations in the assembly language of PicoBlaze, we can
verify the result by first writing the PicoBlaze floating
point arithmetic result into the “Shared BRAM” and then
compare the result with of those that are produced by

ARM processor (either by a software library or hardware
floating point unit).

To provide more verification scenarios beside
IEEE_64FP, three additional programs are chosen: 1) A
real-time complex state machines controller that manage
multi-core systems like the work presented in [62]. 2) A
loop in loop matrix multiplication algorithm. 3) A Tetris
game written for PicoBlaze [63].

Figure 8 shows four selected algorithms for the
verification process. The blue bars are total instruction
count per algorithm and the green bars indicate the time
conserved in development time in minutes. Notice the
positive correlation between the number of machine
instructions and conserved time. Note that the y-axis for
the conserved time is set to logarithmic scale to
overcome the visualization of data with wide range gap.

The conserved time is calculated based on average
number of resynthesis required during the development
of each algorithm. For state_machine 163 minutes,
matrix_multiplication 393 minutes, PicoTETRIS 9793
minutes and IEEE_64FP 45540 minutes are conserved.

The equivalent version of each algorithm is written
in C and then the verification method proposed in this
paper is employed to ensure the correctness of the
implementation. All results point to reliability of our
proposed method.

7.2. Mechanism

In this section the details of IEEE64_FP algorithm

verification is provided. Initially, the ARM core writes

CONSTANT Extra_mem_hi_output_port, 02
CONSTANT Extra_mem_output_port, 03

Read_ext_mem:
 OR s6, 80 ;Enable BRAM clock
 OUTPUT s5, Extra_mem_lo_output_port
 OUTPUT s6, Extra_mem_hi_output_port
 OR s5, s5 ;Delay
 INPUT s7, Extra_mem_input_port
 AND s6, 7F ;Disable BRAM clock
 OUTPUT s6, Extra_mem_hi_output_port
RETURN

Write_ext_mem:
 ;Enable BRAM and write enable.
 OR s6, C0
 OUTPUT s7, Extra_mem_output_port
 OUTPUT s5, Extra_mem_lo_output_port
 OUTPUT s6, Extra_mem_hi_output_port
 OR s5, s5 ;Delay
 ;Disable BRAM and write enable.
 AND s6, 3F
 OUTPUT s6, Extra_mem_hi_output_port
RETURN

Listing 4. Shared Memory Read/Write Routines

DOI:10.4186/ej.2021.25.12.21

32 ENGINEERING JOURNAL Volume 25 Issue 12, ISSN 0125-8281 (https://engj.org/)

Table 3. Synthesis and Implementation Elapsed Time.

Run 1st 2nd 3rd
Launch Runs 01:07 00:29 00:33
Submodule Runs 08:56 00:00 00:00
System Synthesis 01:14 02:03 01:42
System Implementation 04:35 05:54 05:34

Total 15:52 08:26 07:49
* All time periods are in MM:SS format where M stands for Minute and S
stands for Second.

input data into the shared memory and resets the
PicoBlaze core (by asserting pl_resetn1 signal in Fig. 7).
PicoBlaze reads the input data written by ARM through
routines defined in previous section, and performs the
operations specified in algorithm (e.g. addition), and then
writes the result back to the shared BRAM memory.

Next, PicoBlaze calls invoke_done_interrupt()
routine to send an interrupt to ARM core (by asserting
pl_ps_irq0 signal in Fig. 7) to indicate the end of
calculation. The ARM core then reads the calculated
result and compares it with of its own generated results.

 The verification loop then replaces the input data
and rewrites it into shared memory and resets the
PicoBlaze again. It keeps comparing the result until all
testcases pass. Finally, a list of all failed cases is printed,
or else it outputs a “verification passed” message to
ZCU104 serial debugging output port.

8. Synthesis and Implementation Elapsed
Time Analysis

In this section the synthesis and implementation time of
proposed architecture are measured, and the time
conserved via the proposed method is calculated. The
Xilinx Vivado v2020.1 (64-bit) is used on a development
machine running Windows 10 64-bit operating system.
The processor is Intel i7-8750 @ 2.30HHz with 16 GB
of installed RAM. Six cores are assigned to Vivado runs
and the elapsed times to synthesize the design for Xilinx
Zynq Ultrascale+ MPSoC ZCU104 Evaluation Kit are
shown in Table 3.

Initially, the TCL “reset_project” command is issued
to clear all the outputs of previous runs and then
synthesis and implementation commands are issued. In
1st run the total time needed to have the design up and
running is 15 minutes and 52 seconds. After applying a
modification to PicoBlaze program the current synthesis
becomes out of date and a resynthesis is necessary. The
Vivado suite is intelligent enough to recognize the intact
submodules and excludes them from resynthesis process.
That is why the time elapsed for submodule runs in 2nd
run is zero.

Notice that the total required time to setup the
design is reduced from 15:52 to 08:26 in 2nd run and
07:49 in 3rd run. The time reduction in 3rd run is due to
system caching. From Table 3. It can be seen that
designers must wait for about 8 minutes to synthesize

and implement their design into development board
every time a line of PicoBlaze code changes.

9. Conclusion

In this paper an improved development cycle for

PicoBlaze is proposed. It integrates a simulator with
assembler and eliminates the FPGA resynthesis
whenever programmer changes the source code of
soft-core. The proposed method supports multi-core
PicoBlaze architecture and does not rely on BSCAN
primitives and JTAG communication, but AXI
interconnect IP core. Additionally, a verification
mechanism is proposed which enables designers to verify
their PicoBlaze code against already established libraries
or hardware units. Another proposed improvement is the
expansion of PicoBlaze SPM size through introducing a
4KB shared memory controlled by an address generator
circuitry.

Acknowledgment

This research is supported financially by “The

Chulalongkorn Academic Advancement into Its 2nd
Century Project”. The student is awarded a joint
scholarship, composed of “The 100th Anniversary
Chulalongkorn University Fund for Doctoral Scholarship”
and “The 90th Anniversary of Chulalongkorn University,
Rachadapisek Sompote Fund”.

References

[1] S. P. Morse, B. W. Ravenel, S. Mazor, and W. B.

Pohlman, “Intel Microprocessors–8008 to 8086,”
Computer, vol. 13, no. 10, pp. 42–60, Oct. 1980.

[2] J. Yiu, “Software based finite state machine (FSM)
with general purpose processors,” ARM - White
Paper, Jan. 2013.

[3] “Application ideas for 8-bit low-pin-count
microcontrollers,” Aug 2011. [Online]. Available:
https://www.fujitsu.com/downloads/MICRO/fma
/formpdf/LPC-TB_071009.pdf

[4] Y. Yang, “Implementation of a colorful RGB-LED
light source with an 8-bit microcontroller,” in
20105th IEEE Conference on Industrial Electronics and
Applications, Jun. 2010, pp. 1951–1956.

[5] C. . Hsu, I. . Chung, C. . Lin, and C. . Hsu,
“Selfregulating fuzzy control for forward DC-DC
converters using an 8-bit microcontroller,” IET
Power Electronics, vol. 2, no. 1, pp. 1–12, Jan. 2009.

[6] D. He and R. M. Nelms, “Peak current-mode
control for a boost converter using an 8-bit
microcontroller,” in IEEE 34th Annual Conference on
Power Electronics Specialist, PESC ’03, June 2003, pp.
938–943, vol. 2.

[7] H. S. Khan and M. B. Kadri, “DC motor speed
control by embedded PI controller with hardware-
in-loop simulation,” in 2013 3rd IEEE International

https://www.fujitsu.com/downloads/MICRO/fma/formpdf/LPC-TB_071009.pdf
https://www.fujitsu.com/downloads/MICRO/fma/formpdf/LPC-TB_071009.pdf

DOI:10.4186/ej.2021.25.12.21

ENGINEERING JOURNAL Volume # Issue #, ISSN 0125-8281 (https://engj.org/) 33

Conference on Computer, Control and Communication
(IC4), Sep. 2013, pp. 1–4.

[8] R. Mukaro and X. F. Carelse, “A
microcontrollerbased data acquisition system for
solar radiation and environmental monitoring,”
IEEE Transactions on Instrumentation and Measurement,
vol. 48, no. 6, pp. 1232–1238, Dec. 1999.

[9] S. Oprea, M. Rosu-Hamzescu, and C. Radoi,
“Implementation of simple MPPT algorithms using
low-cost 8-bit microcontrollers,” in Proceedings of the
2014 6th International Conference on Electronics,
Computers and Artificial Intelligence (ECAI), Oct. 2014,
pp. 31–34.

[10] Z. Liu, T. Pöppelmann, T. Oder, H. Seo, S. S. Roy,
T. Güneysu, J. Großschädl, H. Kim, and I.
Verbauwhede, “High-performance ideal lattice-
based cryptography on 8-bit AVR microcontrollers,”
ACM Trans. Embed. Comput. Syst., vol. 16, no. 4, pp.
117:1–117:24, Jul. 2017. [Online] Available:
http://doi.acm.org/10.1145/3092951 (accessed
Mar. 4, 2021).

[11] S. C. Seo and H. Seo, “Highly efficient
implementation of NIST-compliant Koblitz curve
for 8-bit AVR-based sensor nodes,” IEEE Access,
vol. 6, pp. 67 637–67 652, 2018.

[12] A. Dunkels, “Full TCP/IP for 8-bit architectures,”
in Proceedings of the 1st International Conference on Mobile
Systems, Applications and Services,ser. MobiSys ’03, New
York, NY, USA, ACM, 2003, pp. 85–98. [Online].
Available:
http://doi.acm.org/10.1145/1066116.1066118

[13] I. Kuon, R. Tessier, and J. Rose, FPGA Architecture:
Survey and Challenges. Now, 2008. [Online]. Available:
https://ieeexplore.ieee.org/document/8187326

[14] I. Kuon and J. Rose, “Measuring the gap between
FPGAs and ASICs,” IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, vol. 26,
no. 2, pp. 203–215, Feb. 2007.

[15] B. Fawcett, “FPGAs as reconfigurable processing
elements,” IEEE Circuits and Devices Magazine, vol.
12, no. 2, pp. 8–10, Mar. 1996.

[16] A. Zanikopoulos, P. Harpe, H. Hegt, and A. Van
Roermund, “A flexible ADC approach for mixed-
signal SoC platforms,” in 2005 IEEE International
Symposium on Circuits and Systems, May 2005, pp.
4839–4842, vol. 5.

[17] S. Ahmad, V. Boppana, I. Ganusov, V. Kathail, V.
Rajagopalan, and R. Wittig, “A 16-nm
multiprocessing system-on-chip field-programmable
gate array platform,” IEEE Micro, vol. 36, no. 2, pp.
48–62, Mar. 2016.

[18] S. Anvar, O. Gachelin, P. Kestener, H. Le Provost,
and I. Mandjavidze, “FPGA-based system-on-chip
designs for real-time applications in particle physics,”
IEEE Transactions on Nuclear Science, vol. 53, no. 3,
pp. 682–687, Jun. 2006.

[19] P. Zhang, “Programmable-logic and application-
specific integrated circuits (Plasic),” in Advanced
Industrial Control Technology, P. Zhang, Ed. Oxford:

William Andrew Publishing, 2010, ch. 6, pp. 215–
253. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/
B9781437778076100063

[20] R. C. Cofer and B. F. Harding, Rapid System
Prototyping with FPGAs: Accelerating the Design Process.
Newton, MA, USA: Newnes, 2005.

[21] R. Lysecky and F. Vahid, “A study of the speedups
and competitiveness of FPGA soft processor cores
using dynamic hardware/software partitioning,” in
Design, Automation and Test in Europe, March 2005,
vol. 1, pp. 18–23.

[22] “Picoblaze 8-bit Microcontroller,” Xilinx, 2019.
[Online]. Available:
https://www.xilinx.com/products/intellectual-
property/picoblaze.htm (accessed Mar. 4, 2021).

[23] “Lattice Mico8 Open, Free Soft Microcontroller,”
Lattice, 2019. [Online]. Available:
http://www.latticesemi.com/Products/DesignSoft
wareAndIP/IntellectualProperty/IPCore/IPCores0
2/Mico8.aspx

[24] “Navré avr clone (8-bit risc),” OpenCores,2019.
[Online]. Available:
https://opencores.org/projects/navre (accessed
Mar. 4, 2021).

[25] “pavr,” OpenCores, 2019. [Online]. Available:
https://opencores.org/projects/pavr (accessed Mar.
4, 2021).

[26] “MCL86, MCL51, and MCL65,” MicroCore Labs,
2019. [Online]. Available:
http://www.microcorelabs.com/home.html
(accessed Mar. 4, 2021).

[27] J. Gomez-Cornejo, A. Zuloaga, U. Bidarte, J.
Jimenez, and U. Kretzschmar, “Interface tasks
oriented 8-bit soft-core processor,” in Proceedings of
the Annual FPGA Conference, ser. FPGAworld ’12.
New York, NY, USA, ACM, 2012, pp. 4:1–4:5.
[Online]. Available:
http://doi.acm.org/10.1145/2451636.2451640
(accessed Mar. 4, 2021).

[28] A. Zavala, O. Camacho, J. Huerta-Ruelas, and A.
Carvallo-Domínguez, “Design of a general purpose
8-bit risc processor for computer architecture
learning,” Computación y Sistemas, vol. 19, pp. 371–
385, 2015.

[29] C. Ortega-Sanchez, “Minimips: An 8-bit MIPS in an
FPGA for educational purposes,” in 2011
International Conference on Reconfigurable Computing and
FPGAs, Nov. 2011, pp. 152–157.

[30] F. Martinez Santa, W. Sáenz Rodríguez, and F.
Rivera Sánchez, “8-bit softcore microprocessor
with aual accumulator designed to be used in
FPGA,” Tecnura, vol. 22, pp. 40–50, 2018.

[31] “Pauloblaze,” GitHub.com, 2019. [Online].
Available:
https://github.com/krabo0om/pauloBlaze
(accessed Mar. 4, 2021).

http://doi.acm.org/10.1145/3092951
http://doi.acm.org/10.1145/1066116.1066118
https://ieeexplore.ieee.org/document/8187326
https://www.xilinx.com/products/intellectual-property/picoblaze.htm
https://www.xilinx.com/products/intellectual-property/picoblaze.htm
http://www.latticesemi.com/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores02/Mico8.aspx
http://www.latticesemi.com/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores02/Mico8.aspx
http://www.latticesemi.com/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores02/Mico8.aspx
https://opencores.org/projects/navre
https://opencores.org/projects/pavr
http://www.microcorelabs.com/home.html
https://github.com/krabo0om/pauloBlaze

DOI:10.4186/ej.2021.25.12.21

34 ENGINEERING JOURNAL Volume 25 Issue 12, ISSN 0125-8281 (https://engj.org/)

[32] K. Chapman, “Picoblaze for Spartan-6, Virtex-6, 7-
Series, Zynq and Ultrascale Devices (KCPSM6) -
Release 9,” Xilinx, Sept. 2014.

[33] “Silicon Labs - 8-bit Microcontrollers
(mcus),”Silicon Labs, 2019. [Online]. Available:
https://www.silabs.com/products/mcu/8-bit
(accessed Mar. 4, 2021).

[34] “Embedded World - Fidex IDE,” 2019. [Online].
Available: https://www.fautronix.com/en/en-fidex
(accessed Mar. 4, 2021).

[35] K. Chapman, “KCPSM3 8-bit micro controller for
Spartan-3, Virtex-Ii and Virtex-Iipro, Rev.7,” Xilinx
Ltd., Oct. 2003.

[36] P. P. Chu, FPGA Prototyping by VHDL Examples:
Xilinx Spartan-3 Version. John Wiley & Sons, 2008.

[37] D. Antonio-Torres, D. Villanueva-Perez, E.
Sanchez-Canepa, N. Segura-Meraz, D. GarciaGarcia,
D. Conchouso-Gonzalez, J. A. MirandaVergara, J.
A. Gonzalez-Herrera, A. L. R. d. Ita,B. Hernandez-
Rodriguez, R. C. d. l. Monteros,F. Garcia-Chavez,
V. Tellez-Rojas, and A. BautistaHernandez, “A
PicoBlaze-based embedded system for monitoring
applications,” in 2009 International Conference on
Electrical, Communications, and Computers, Feb. 2009,
pp. 173–177.

[38] V. N. Ivanov, “Using a PicoBlaze processor to
traffic light control,” Cybern. Inf. Technol., vol. 15, no.
5, pp. 131–139, Apr. 2015. [Online]. Available:
https://doi.org/10.1515/cait-2015-0023 (accessed
Mar. 4, 2021).

[39] P. Zaykov, “MIMD implementation with PicoBlaze
microprocessor using MPI functions,” in Proceedings
of the 2007 International Conference on Computer Systems
and Technologies, ser. CompSysTech ’07. New York, NY,
USA, ACM, 2007, pp. 4:1–4:7. [Online]. Available:
http://doi.acm.org/10.1145/1330598.1330604
(accessed Mar. 4, 2021).

[40] V. Mandala, “A study of multiprocessor systems
using the PicoBlaze 8-bit microcontroller
implemented on field programmable gate arrays,”
Master’s thesis, Department of Electrical
Engineering, The University of Texas at Tyler, 2011.

[41] R. D. Mattson, “Evaluation of PicoBlaze and
implementation of a network interface on a FPGA,”
2004. [Online]. Available: https://www.diva-
portal.org/smash/get/diva2:19730/FULLTEXT01.
pdf (accessed Mar. 4, 2021).

[42] L. Claudiu, S. Sebastian, and B. Cristian, “Smart
sensor implemented with PicoBlaze multiprocessors
technology,” in 2012 IEEE 18th International
Symposium for Design and Technology in Electronic
Packaging (SIITME), Oct. 2012, pp. 241–245.

[43] S. M. Borawake and P. G. Chilveri,
“Implementation of wireless sensor network using
MicroBlaze and PicoBlaze processors,” in 2014
Fourth International Conference on Communication Systems
and Network Technologies, April 2014, pp. 1059–1064.

[44] H. Pham, S. Pillement, and S. J. Piestrak,
“Lowoverhead fault-tolerance technique for a

dynamically reconfigurable softcore processor,”
IEEE Transactions on Computers, vol. 62, no. 6, pp.
1179– 1192, Jun. 2013.

[45] M. N. Hassan and M. Benaissa, “Embedded
software design of scalable low-area elliptic-curve
cryptography,” IEEE Embedded Systems Letters, vol.
1,no. 2, pp. 42–45, Aug 2009.

[46] T. Good and M. Benaissa, “Very small FPGA
application-specific instruction processor for AES,”
IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 53, no. 7, pp. 1477–1486, Jul. 2006.

[47] “ISE Design Suite,” 2019. [Online]. Available:
https://www.xilinx.com/products/design-
tools/ise-design-suite.html (accessed Mar. 4, 2021).

[48] “Vivado Design Suite – HLx Editions,” 2019.
[Online]. Available:
https://www.xilinx.com/products/design-
tools/vivado.html (accessed Mar. 4, 2021).

[49] “ISE Tutorial, Using Xilinx Chipscope Proila Core
with Project Navigator to Debug FPGA
Applications UG750 (v14.5),” Xilinx,Mar 2013.
[Online]. Available:
https://www.xilinx.com/support/documentation/s
w_manuals/xilinx14_6/ug750.pdf (accessed Mar. 4,
2021).

[50] “Xilinx Zynq Ultrascale+ MPSoC ZCU104
Evaluation Kit,” Xilinx, September 30, 2014.
[Online]. Available:
https://www.xilinx.com/products/boards-and-
kits/zcu104.html (accessed Mar. 4, 2021).

[51] “Open PicoBlaze Assembler,” Kevin Thibedeau,
2017. [Online]. Available:
https://kevinpt.github.io/opbasm/ (accessed Mar.
4, 2021).

[52] “Xilinx KCPSM6 Assembler,” Xilinx, September 30,
2014. [Online]. Available:
https://www.xilinx.com/products/intellectual-
property/picoblaze.html#design (accessed Mar. 4,
2021).

[53] “Homepage of m6 - kpicosim,” Xilinx, Oct 2 2009.
[Online]. Available:
https://marksix.home.xs4all.nl/kpicosim.html

[54] M. Szymaniak, “Picoblaze Simulator – GitHub
project,” Jul 31, 2017. [Online]. Available:
https://github.com/sc0ty/picoblaze (accessed Mar.
4, 2021).

[55] “Sed, a stream editor,” 2019. [Online]. Available:
https://www.gnu.org/software/sed/manual/sed.ht
ml (accessed Mar. 4, 2021).

[56] “Improved Development Cycle for Picoblaze -
GitHub Website - Xilinx Vivado 2018.3 Project.”
[Online]. Available: https://github.com/ehsan-ali-
th/picoblaze_dev (accessed Mar. 4, 2021).

[57] B. H. Thacker, S. W. Doebling, F. M. Hemez, M. C.
Anderson, J. E. Pepin, and E. A. Rodriguez,
“Concepts of model verification and validation,”
Los Alamos National Laboratory, Sep. 2004.

https://www.silabs.com/products/mcu/8-bit
https://www.fautronix.com/en/en-fidex
https://doi.org/10.1515/cait-2015-0023
http://doi.acm.org/10.1145/1330598.1330604
https://www.diva-portal.org/smash/get/diva2:19730/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:19730/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:19730/FULLTEXT01.pdf
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_6/ug750.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_6/ug750.pdf
https://www.xilinx.com/products/boards-and-kits/zcu104.html
https://www.xilinx.com/products/boards-and-kits/zcu104.html
https://kevinpt.github.io/opbasm/
https://www.xilinx.com/products/intellectual-property/picoblaze.html#design
https://www.xilinx.com/products/intellectual-property/picoblaze.html#design
https://marksix.home.xs4all.nl/kpicosim.html
https://github.com/sc0ty/picoblaze
https://www.gnu.org/software/sed/manual/sed.html
https://www.gnu.org/software/sed/manual/sed.html
https://github.com/ehsan-ali-th/picoblaze_dev
https://github.com/ehsan-ali-th/picoblaze_dev

DOI:10.4186/ej.2021.25.12.21

ENGINEERING JOURNAL Volume # Issue #, ISSN 0125-8281 (https://engj.org/) 35

[58] Guide for the Verification and Validation of Computational
Fluid Dynamics Simulations, AIAA G-077-1998(2002),
Sep. 2014.

[59] P. Knupp and K. Salari, Verification of Computer Codes
in Computational Science and Engineering, 1st ed.
Chapman and Hall/CRC, 2002.

[60] S.-L. Tsao and S.-Y. Lee, “Performance evaluation
of inter-processor communication for an embedded
heterogeneous multi-core processor,” Journal of
Information Science and Engineering, vol. 28, pp. 537–
554, 2012.

[61] E. Ali and W. Pora, “Implementation and
verification of IEEE-754 64-bit floating-point

arithmetic library for 8-bit soft-core processors,” in
2020 8th International Electrical Engineering Congress
(iEECON), 2020, pp. 1–4.

[62] P. Yu and P. Schaumont, “ Executing hardware as
parallel software for picoblaze networks,” in 2006
International Conference on Field Programmable Logic and
Applications, 2006, pp. 1–6.

[63] B. M. Gonultas, I. Yaman and T. T. Sari,
“PicoTETRIS.” GitHub.com. [Online]. Available:
https://github.com/gonultasbu/PicoTETRIS
(accessed Nov. 5, 2021).

Ehsan Ali was born in Tehran, Iran in 1983. He received the B.Eng. degree in computer
systems from Assumption University of Thailand in 2015.

He is a full-time lecturer at the Computer Engineering Department, Assumption University of
Thailand since 2015 and a Ph.D. candidate at Electrical Engineering Department, Chulalongkorn
University of Thailand. His research interests include data centers, digital circuits, microprocessor
design, reconfigurable computing, and compiler design. He is the author of several conference and
journal papers with the latest article published in 2020 in International Journal of Embedded
Systems.

Mr. Ali was the recipient of the 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship in
2015.

 Wanchalerm Pora was born in Bangkok, Thailand in 1970. He received the B.Eng. and M.Eng.
degrees in Electrical Engineering from Chulalongkorn University in 1992 & 1995 respectively. He
received the Ph.D. degree from Imperial College, London in 2000.

He has joined the faculty of Engineering, Chulalongkorn University since 1994, and now
working as assistant professor at the Department of Electrical Engineering. He has also served as
a deputy head of the department. His research interests are in reconfigurable circuits, intelligent
devices & systems for smart grid & healthcare. He has supervised many master and PhD graduate
students and has 50 publications in local and international journals.

Dr. Pora is a recipient of the Chulalongkorn Academic Advancement into Its 2nd Century Project Fund.

