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1. Introduction

Numerous studies suggest that heatwaves cause the highest number of weather-related mortalities in North 

America (Braga et al., 2002; Chestnut et al., 1998; Curriero et al., 2002; El Morjanil et al., 2007; Klinen-

berg, 2015; Mastrangelo et al., 2007; Patz et al., 2000). Hence, the need for understanding these relation-

ships is important due to the continued changes in the frequency, intensity, and duration of heatwaves 

(Ganguly et al., 2009; Meehl & Tebaldi, 2004; Mishra et al., 2015; Rennie et al., 2019; Stewart & Oke, 2012; 

Abstract Heatwaves cause excess mortality and physiological impacts on humans throughout the 

world, and climate change will intensify and increase the frequency of heat events. Many adaptation and 

mitigation studies use spatial distribution of highly vulnerable local populations to inform heat reduction 

and response plans. However, most available heat vulnerability studies focus on urban areas with high 

heat intensification by Urban Heat Islands (UHIs). Rural areas encompass different environmental and 

socioeconomic issues that require alternate analyses of vulnerability. We categorized Nebraska census 

tracts into four urbanization levels, then conducted factor analyses on each group and captured different 

patterns of socioeconomic vulnerabilities among resultant Heat Vulnerability Indices (HVIs). While 

disability is the major component of HVI in two urbanized classes, lower education, and races other 

than white have higher contributions in HVI for the two rural classes. To account for environmental 

vulnerability of HVI, we considered different land type combinations for each urban class based on 

their percentage areas and their differences in heat intensifications. Our results demonstrate different 

combinations of initial variables in heat vulnerability among urban classes of Nebraska and clustering of 

high and low heat vulnerable areas within the highest urbanized sections. Less urbanized areas show no 

spatial clustering of HVI. More studies with separation on urbanization level of residence can give insights 

into different socioeconomic vulnerability patterns in rural and urban areas, while also identifying 

changes in environmental variables that better capture heat intensification in rural settings.

Plain Language Summary Heat waves are known as periods of abnormally high 

temperatures that can cause health problems, even deaths. The 2003 heat wave in Europe and the 

Chicago heat wave of 1995 are well known examples that are well-documented and caused thousands of 

mortalities and morbidities. Scientific studies show that climate change will cause more frequent, more 

extreme, and longer lasting heat waves in the future all over the world. Additionally, more people are 

expected to live in urban areas in the future, that are known to experience higher temperatures compared 

to their surrounding non-urban areas, because of concrete, asphalt, steel, and similar materials that 

absorb energy and return it as heat. Because of this issue, known as the Urban Heat Island (UHI) effect, 

and because more people live in urban areas, most studies tracking the most heat-threatened people are 

focused on urban areas, or use the same findings for rural areas, too. In this study, we separate the state 

of Nebraska into four levels of urbanizations from highest metropolitan to most rural and found that the 

socioeconomic variables combined differently based on urbanization.
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Stone,  2007). Specifically, developing local mitigation strategies and adaptation plans are important for 

reducing casualties and hospitalizations of heatwaves (Ahmed Memon et al., 2008; Bell et al., 2018; Lowe 

et al., 2011; Rosenfeld et al., 1993; Williams et al., 2019). The goal of mitigation strategies is to reduce the 

heat exacerbation of Urban Heat Islands (UHI) (Ahmed Memon et al., 2008). UHIs are local urban areas 

that experience higher temperatures because of the greater storage and more gradual release of heat by 

pavement, concrete, bricks, and similar materials compared to more natural materials found in surrounding 

less developed areas (Asaeda et al., 1996; Oke, 2002). A range of mitigation strategies might be employed to 

reduce UHI effect. These strategies may include using green spaces, light colored pavements or roofs, and 

increasing vegetation or tree canopies. Adaptation solutions may involve establishing early heat warning 

systems, designing cooling centers, creating heatwave action plans, and preparing healthcare providers for 

heatwave events (Boyson et al., 2014; Ebi et al., 2020; Nastar, 2020; Smoyer-Tomic & Rainham, 2001). Suc-

cessful research, solution development, and application of solutions require interdisciplinary collaboration 

among scientists, urban planners, policy makers, health care systems, and communities.

Typically, effective mitigation and adaptation strategies target neighborhoods with the largest temperature 

intensification and highest number of vulnerable people. Calculating Heat Vulnerability Index (HVI) as a 

composition of Social Vulnerability Index (SVI), and Environmental Vulnerability Index (EVI) and map-

ping it over the study region is the preferred method for identifying such vulnerabilities (Méndez-Lázaro 

et al., 2018; Reid et al., 2009). Epidemiological research has distinguished several SVI components that are 

indicators for high risk of heat-health issues. However, different communities with equal SVI values may 

experience distinct health outcomes due to changes in heat exposure (Gronlund, 2014; Schwartz, 2005). This 

variability in vulnerability due to differences in exposure is added to the model by EVIs (Reid et al., 2009). 

These environmental effects have been considered through a range of variables related to landcover type 

and population density. Some studies use Normalized Difference Vegetation Index (NDVI) during a heat-

wave as an EVI proxy, representing the density of green space, to determine different levels of heat intensifi-

cation (Bradford et al., 2015). Land Surface Temperature (LST) during a heatwave has also been used for this 

purpose (Johnson et al., 2009; Méndez-Lázaro et al., 2018). Other studies have used percent imperviousness 

and/or percent tree canopy as measures of EVI (Conlon et al., 2020). Soil Adjusted Vegetation Index (SAVI), 

as a proxy for vegetation density, and percentage of land lacking vegetation have also been used in creating 

EVI (Harlan et al., 2006; Reid et al., 2009). HVI variables can then be defined as linear combinations of SVI 

and EVI sets and be estimated and mapped within the study area (Reid et al., 2009).

Most studies using HVI mapping focus on urban areas, as higher levels of EVI and population densities lead 

directly to higher number of poor heat-health outcomes in urban communities compared to rural. As such, 

rural areas are overlooked in these types of studies resulting in a barrier to mitigate against health impacts 

(Kang et al., 2020; Sheridan & Dolney, 2003; Xu et al., 2019). Nebraska is defined by continental climate type 

with hot summers (Shulski et al., 2015). Days with a high temperature greater than 38°C are more common 

in the arid west than the humid east. Some years have few high temperature events while extreme summers, 

such as the warmest on record of 2012, can have greater than 10 days. The multi-year warm and dry period 

of the 1930s is anomalous in the climate record (Frankson et al., 2017). Summer minima show a long-term 

(since 1895) warming trend while maxima show little change (Shulski et al., 2015).

In recognition of this issue and knowledge of our area of study, Nebraska - being mostly rural and agricul-

tural communities–was classified into urban and non-urban areas with distinct EVIs, so that HVI variables 

and the resulting mapping could be developed separately. Subsequently, we assessed the hypothesis that 

the structure of SVIs in resultant HVIs is different among various urbanization levels, so that considering 

a range of urban classes for HVI mapping is a necessity for better future planning. We also investigated 

the potential differences in EVIs that best capture heat intensification levels through land cover type, and 

finally investigated different potential clustering of high and low vulnerabilities in each urbanization level.

Software: Babak Jalalzadeh Fard
Supervision: Jesse E. Bell
Visualization: Babak Jalalzadeh Fard
Writing – original draft: Babak 
Jalalzadeh Fard, Azar M. Abadi, Jesse 
E. Bell
Writing – review & editing: Babak 
Jalalzadeh Fard, Rezaul Mahmood, 
Michael Hayes, Clinton Rowe, Azar M. 
Abadi, Martha Shulski, Sharon Medcalf, 
Rachel Lookadoo, Jesse E. Bell



GeoHealth

JALALZADEH FARD ET AL.

10.1029/2021GH000478

3 of 18

2. Materials and Methods

2.1. Variable Selection and Data Sources

2.1.1. Socioeconomic Variables

Socioeconomic variables were chosen by conducting a literature review. We specifically looked into works 

by Johnson et al. (2012), Nayak et al. (2018), Maier et al. (2014), and Reid et al. (2009). These studies have 

used a range of 6–25 mostly similar demographic variables. We chose seven demographic variables, in-

cluding: age over 60, age over 60 living alone, below poverty line, race other than white, English language 

barrier, between 18 and 64 with disability, and education of less than high school diploma. Different ep-

idemiological studies show each of these groups are susceptible to higher degrees of heat vulnerabilities. 

The elderly group (age >65 years) is usually the foremost group affected, which is due to their lower ability 

to adapt to extreme weather, as well as their higher rates of preexisting medical conditions compared with 

other age groups (Curriero et al., 2002; Lin et al., 2009). This situation becomes more challenging for iso-

lated elderly individuals (age >65 years, living alone) who do not have immediate access to help and care 

during a hazard (such as a heatwave.) English language deficiencies can affect understanding of heatwave 

warnings, therefore immigrants and groups for whom English is not the first language are more at-risk 

(Aubrecht & Özceylan, 2013; Shiu-Thornton et al., 2007). Disabled populations are also at-risk because of 

several reasons: missing warning messages due to vision and hearing impairments or difficulty in relocating 

to cooling shelters (Abrahamson et al., 2008; Nayak et al., 2018). Poor economic status (measured by the 

percentage of individuals below the poverty line) is found to reduce the ability of a community to adapt to 

heatwave events (Curriero et al., 2002; Nayak et al., 2018). In addition, groups with lower levels of education 

(measured by below high school diplomas for individuals of age 25 or more) have shown to have higher 

rates of death caused by heatwaves compared to groups with higher levels of education (Medina-Ramón 

et  al.,  2006). Several studies have shown that races other than white are more susceptible to heatwave 

events and this metric is therefore included in most HVI studies (Gronlund, 2014; O’Neill et al., 2005; Uejio 

et al., 2011).

We have obtained the data for our selected variables within Nebraska from the American Community Sur-

vey five-year 2012−2016 surveys at census tract level and calculated the ratio of each of these vulnerable 

groups for each of the 532 census tracts of Nebraska (Burea, 2016).

2.1.2. Urban Categorization and Environmental Variables

Studies have shown the considerable effect of developed areas in exacerbating heatwaves, known as UHI ef-

fect (Ahmed Memon et al., 2008). To measure the effect of UHI, researchers use different variables, such as: 

percent impervious surface, tree canopy percentage, NDVI, population density, or different combinations 

of them (Bradford et al., 2015; Conlon et al., 2020; Harlan et al., 2013; Reid et al., 2009; Uejio et al., 2011). 

Most variables are related to the surface types, with a few incorporating population or building density. 

For this study, we chose the 2016 National Land Cover Database (NLCD) (Dewitz, 2019). NLCD is a map 

of 30 × 30 m resolution over the United States that distinguishes four different developed land types and 

10 different natural land types. Table 1b shows the descriptive statistics of the area percentage of each land 

type in Nebraska compared to the total area of state and within census tracts.

Nebraska is considered an agricultural state with a majority of agricultural and grass lands, and few urban-

ized areas. Therefore, HVIs are not identical for different parts of the state. For this study, we applied and 

compared two different urban-rural classification schemes of 2013 National Center for Health Statistics 

(NCHS)-county-level — and the 2010 rural-urban commuting area (RUCA)-census-tract level- (Center for 

Health Statistics, 2013; U.S. DEPARTMENT OF AGRICULTURE, 2020). Subsequently, we used judgment 

from Nebraskan experts to reclassify the RUCA scheme, considering the best matches with NCHS classes, 

into a four-level urban-rural classification that best suits Nebraska. The NCHS urban-rural scheme was 

developed to study the association between urbanization level and health of the residents and is offered 

on a county level or county-equivalent entities with six urbanization levels of four metropolitan and two 

nonmetropolitan classes. RUCA codes classify U.S. census tracts into 10 classes using measures of popula-

tion density, urbanization, and daily commuting. Nine out of 10 NCHS classes and four out of six RUCA 

classes are present in Nebraska. To capture the heterogeneity in the sociodemographic, land types, area, 

and population characters in Nebraska, we opted for the higher resolution tract-level RUCA urbanization 
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classification. We used Nebraskan expert judgment and regrouped RUCA classes into four groups of “Me-

dium Metro.” “Small Metro.” “Micropolitan.” and “Rural.” to then be used in separate HVI analyses and 

mappings (Table 2).

We used percentage area of the four developed land cover types in NLCD — developed open space, devel-

oped low density, developed medium density, and developed high density-within each census tract to differ-

entiate levels of heat exacerbation. We then calculated their summary statistics within each of four urban 

classes of Nebraska. If the maximum percentage area is below 10% for all developed types, we switched to 

grouped land types with similar summer NDVI values (Eastman et al., 2013). In this case the choice of 10% 

is an arbitrary threshold below which we consider the effect of heat exacerbation by urban landcover types 

to be negligible and happens only in the vicinity of paved roads that are unlikely to affect residents. Previous 

studies show that NDVI can also be used as an indicator for LST and UHI effects (Yue et al., 2007). Different 

land types can also be grouped into four classes based on their summer NDVI values (Kong et al., 2016). 

We considered these four NDVI based classifications as follows: Class1 (consists of the four developed land 

types and Barren Land), Class 2 (includes Deciduous Forest, Evergreen Forest, Mixed Forest, and Cultivated 

Crops), Class 3 (composed of Shrub/Scrub, Grassland/Herbaceous, and Pasture/Hay), and Class 4 (includes 

Woody Wetlands and Open Water). These groupings represent landcover types with most similar summer 

NDVI values within a group and considerable differences among different groups (Kong et al., 2016). For 

tracts with scarcities of developed land percentage, we used the land percentage of any of the constructed 

land classes that had above 10% maximum in tract areas.

(a) Socioeconomic variables (b) Land cover type variables

Variable (percent of population) Mean sd Min. Max. Land cover type

Area over the 
state

Percent area over census 
tracts

Total percentage Mean sd Min. Max.

18–64 years, with disability 9.77 4.47 0.50 38.26 Barren land 0.07 0.14 0.44 0.00 4.67

Low education (below high school diploma for age 
over 25)

9.24 8.60 0.00 55.33 Cultivated crops 38.18 27.44 30.29 0.00 90.92

Language 1.41 2.86 0.00 26.76 Deciduous crops 1.34 1.84 3.66 0.00 37.04

Over age 60 15.80 6.58 0.00 32.71 Deciduous forest 0.21 12.66 13.04 0.00 75.06

Over age 60, living alone 41.28 13.83 0.00 100.00 Developed high 
intensity

0.09 5.95 9.66 0.00 84.95

Under poverty level 11.91 8.66 0.00 52.66 Developed open space 2.11 8.32 7.57 0.00 43.13

Race other than White 12.53 14.66 0.00 87.25 Developed low 
intensity

0.76 24.12 23.06 0.02 82.85

Emergent herbaceous 
wetlands

1.93 0.68 1.51 0.00 13.40

Evergreen forest 0.41 0.06 0.40 0.00 6.58

Grassland/
Herbaceous

52.08 15.48 21.92 0.00 97.65

Mixed forest 0.14 0.04 0.15 0.00 1.80

Open water 0.90 1.29 2.91 0.00 33.77

Pasture/Hay 0.89 0.98 2.02 0.00 18.75

Shrub/Scrub 0.13 0.04 0.17 0.00 2.22

Woody wetlands 0.77 0.94 2.25 0.00 31.15

Note. (a) Applied socioeconomic variables, as percentage of the vulnerable population within 532 census tracts of Nebraska. (b) Area percentage of 15 different 
NLCD 2016 land cover types (right) within Nebraska.

Table 1
Summary Statistics of Variables



GeoHealth

JALALZADEH FARD ET AL.

10.1029/2021GH000478

5 of 18

2.2. Factor Analysis With Varimax Rotation to Create HVIs

Exploratory Factor Analysis (EFA) was used to extract HVIs as the underlying unobserved variables to 

capture the covariance structure of our observed socioeconomic and environmental vulnerability variables 

(Costello & Osborne, 2005). We first standardized all data sets into ratios containing values between zero 

and one. Four data matrices were created–one for each urban type–with different land type classes as ex-

plained before. Parallel analysis on each matrix suggested the number of factors that can adequately capture 

the covariance structure among observed variables (Horn, 1965; Revelle, 2017). The initial results of EFA 

were then rotated using varimax rotation to improve the interpretation of results by simplifying the HVIs 

through redistribution and separation of initial variables among different resulted factors.

2.3. Mapping HVI Values

For mapping HVI, we categorized values into five ordinal groups. To find appropriate break values for classi-

fications, we calculated absolute deviation around class medians (ADCM) for five mostly used classification 

methods for creating choropleth maps (Coulson, 1987). ADCM provides a comparison variable of alterna-

tive classifiers for the same value of number of levels (k). We subsequently chose the classification method 

of minimum ADCM value and changed each factor score into its vulnerability level (a value between 1 and 

5), with 1 representing the lowest and 5 the highest vulnerability. Then ArcGIS Pro software was used to cre-

ate choropleth maps of vulnerability factors with five levels (Corbin, 2015). In the next step, we calculated 

total vulnerabilities by summing up the ordinal values of different factors in each census tract.

2.4. Cluster and Outlier Analysis of Total Vulnerability Values

Local Indicators of Spatial Association (LISA) was used to analyze the hotspots, cold spots, and outlier 

census tracts of total vulnerabilities in each urban class of Nebraska (Anselin, 1995). This method compares 

the difference of the desired variable in each tract with its neighboring tracts with a distribution of permu-

tations of randomly assigned values to the tracts. We used Anselin Local Moran's I analysis in ArcGIS Pro 

software with 500 permutations and significance level of 0.95.

RUCA 
code Classification description

Median land area (square 
miles) Median population This study

1 Metropolitan area core: primary flow within an urbanized area 
(UA)

1.0 3,440 Medium Metro

2 Metropolitan area high commuting: primary flow 30% or more to 
a UA

15.3 3,965 Small Metro

3 Metropolitan area low commuting: primary flow 10%–30% to a 
UA

4 Micropolitan area core: primary flow within an urban cluster of 
10,000 to 49,999 (large UC)

5 Micropolitan high commuting: primary flow 30% or more to a 
large UC

85.1 3,319 Micropolitan

6 Micropolitan low commuting: primary flow 10%–30% to a large 
UC

7 Small town core: primary flow within an urban cluster of 2,500 to 
9,999 (small UC)

8 Small town high commuting: primary flow 30% or more to a 
small UC

9 Small town low commuting: primary flow 10%–30% to a small UC – – Not in Nebraska

10 Rural areas: primary flow to a tract outside a UA or UC 439.9 2538 Rural

Table 2
Reclassification of RUCA Over Nebraska Used for This Study
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3. Results

More than 90% of total land area in Nebraska consists of Grassland or Cultivated Crops (Table 1). While 

total percentages of the four developed land types (NLCD, 2016) contains 3.17% of total land, their tract lev-

el distribution shows a maximum and mean percentages of 43.14% and 8.32% for Open Space; 82.85% and 

24.12% for Low Density; 75.06% and 12.66% for Medium Density; and 84.95% and 5.95% for High Density. 

This is the result of high concentration of urban areas in a few small regions of the state and shows the 

necessity of grouping these tracts into groups with similar urbanization levels.

We reconfigured the RUCA tracts in Nebraska to combine classes (Table 2). The revised RUCA classification 

renders 280, 85, 72, and 95 census tracts into Medium Metro, Small Metro, Micropolitan and Rural classes, 

respectively (Figure 1b). Medium Metro, Small Metro, Micropolitan and Rural classes had median areas 

of 2.59, 39.6, 220.46, and 1139.59 square kilometers and median populations of 3,734, 3,996, 3,441, and 

2469, respectively. While only about 18% of tracts are considered as rural in our classification (95 out of 532 

as in Figure 1b), they contain 73% of total area and 13% of total population. The largest tracts population 

resides in Medium Metro section with 56% of total population (ACS 5-year 2016) while it contains 0.85% 

of total land area. The same transition can be tracked in the percentage of urban land types (Figure 1c). 

Medium Metro consists of the highest percentages of all developed land types that gradually decrease in 

Small Metro, Micropolitan, and Rural tracts (Figure 1c), from an average of 84% of total developed areas in 

Medium Metro to 4% in Rural areas. We, therefore, used combinations of the four NDVI-based classes as our 

environmental variables for Small Metro, Micropolitan, and Rural groups of tracts. Figure 2 shows the per-

centages of the four NDVI-based classes in three Non-Urban groups (Figure 1b). We distinguish a gradual 

shift from highest developed land types (class1) in Small Metro tracts to the lowest in Rural types (Figure 2). 

In construction of input matrices for EFA, we added class1 and class2 for the Small Metro tracts, therefore 

ending with a total of nine observable variables (seven socioeconomic and two environmental). From Fig-

ure 2, class1 and class4 land types have a very small share of land area in Micropolitan and Rural areas, we 

therefore included percentages of class2 and class3 land types in each census tracts as the environmental 

variables in the respective data matrices.

Pairplots of socioeconomic and environmental variables for urban and non-urban areas show considerable 

difference in the correlations (Figures 3 and 4). There is a high correlation among poverty, race other than 

white, education and language in Medium metro tracts, while this was not seen for the three non-urban ar-

eas (Figure 4). The ordering of these values, however, is nearly similar with poverty-disability with highest 

correlation values.

The results of factor analyses show differences in the combinations and coefficients of variables for each 

urban classification (Tables 3 and 4). Medium Metro area and Rural areas are captured by four factors, 

while parallel analysis shows the adequacy of three factors for the other two urban types. Medium Metro 

contains the most populated and developed areas of Nebraska. The first factor explains 18% of the variation 

that is mostly defined by socioeconomic variables (Figure 5a). The four variables in this factor generally 

show highest correlations in Figure 2. The second factor in Medium Metro areas contains the two higher 

density developed land types (High Density and Medium Density percentage), and the percent of age over 

60, living alone. The total variance explained by these four factors are 0.53 (Table 3). In Small Metro area, 

three factors capture 59% of the variability of observed variables, with the most important factor being the 

two land type classes (Table 3). The second factor captures three of the socioeconomic factors with highest 

loading of disability. The three captured variables seem related, therefore finding them in one factor seems 

to be reasonable, although the same variables do not contain in the same factor for the case of Medium Met-

ro. The last factor for Small Metro areas captures education, language, and race other than white. (Table 3). 

The first factor in Micropolitan group (Table 4) captures 20% of the variation and is loaded highly on four 

related socioeconomic variables: education, language, and race show nearly similar coefficients (0.67, 0.64, 

and 0.67 respectively) while Over60 has a less value. But compared to the two more urbanized categories 

Over60 is opposite to other socioeconomic variables captured by this factor. This is in contrast with Medium 

Metro and Small Metro (Table 3), but in line with Rural areas (Table 4). Here we have captured a change 

of pattern in the relationship of Over60 with other socioeconomic variables while urbanization category 

changes. Land cover types of class2 and class3 load highly in second factor of Micropolitan group (Table 4) 

and the last factor is made of the remaining socioeconomic variables (disability, Over60 and alone, and 
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poverty). Four factors capture 63% of total data variation in Rural areas (Table 4). Although, the third factor 

contains only one observed variable with a very high correlation of 0.99. Table S1 in Supporting Informa-

tion S1 shows the result of an EFA analysis with all tracts involved and the percentages of four developed 

land types as EVIs. It clearly shows how urban areas have overshadowed less urbanized areas, as the first 

factor is highly dependent on two of developed land types.

The results of the highest urbanized areas were mapped separately for clarity. Mapping values of each HVI 

for each tract shows patterns of high vulnerabilities in Omaha area (Figure 5). Vulnerabilities are catego-

rized from lowest to highest on a scale from 1 to 5. The highest vulnerable tracts within Greater Omaha 

Figure 1. Classification of Nebraska’s tracts (a) The four classes of urban type considered for the Environmental Vulnerability Index mapping of Nebraska. (b) 
The number of tracts in each considered class, and average developed area, (c) Boxplots of percentages of the four types of developed land types in each of the 
considered classes.
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area are concentrated in east central, near the border with Iowa (Figure 5). Distribution of Socioeconomic 

HVI variable (Figure 5a) shows a clear concentration of high vulnerability in the eastern side of the state 

compared to the west. While for urbanization (Figure 5b), this concentration is mostly around a central east-

west line in the east half of area. A nearly similar pattern can be recognized for Age variable (Figure 5d). 

The variable representing minority populations is more toward north-east tracts.

The spatial distribution of three HVI values in Small Metro tracts do not appear to follow any specific pat-

tern and are not similar in any of the three (Figure 6). Even areas closer to Medium Metro group of tracts 

are not high in any of the three factors. However, the smaller and more urbanized tracts generally show 

higher vulnerability levels in all three factors. This can be an indication of the transition from more into less 

urbanized tracts within this group. The distribution of three vulnerability factors in Micropolitan areas do 

not show a specific concentration of low or high values (Figure 7). The socioeconomic factor (Figure 7a) has 

its highest vulnerable area in northeast Nebraska and southcentral Nebraska north of the Platte River. HVI 

values seem to be randomly distributed for all three SVI related variables in Rural tracts (Figure 8). The first 

-and most prominent- HVI (Figure 8a) is related to the land cover type and has the highest level of vulnera-

bility concentrated on the northwest part of the state. This is where there are grassland areas as included in 

our class3 group of land covers. Compared to class2, with croplands as its major landcover type, this group 

represents lower NDVIs, therefore higher values of LST and more intensification of heat.

Figure 9 depicts spatial patterns of Total HVI in four urban classes. In the Omaha area (Figure 9a), we see a 

clear radial pattern starting with the highest values in the eastern part of the city. Considering the four HVIs 

with possible values of 1–5 for each, the total vulnerability can be a value between 4 and 25. No single tract 

is least vulnerable in all four factors, nor do any have the highest value in all factors. The minimum total vul-

nerability is 5 for several of the outer tracts, and the maximum is 17 for 5 tracts around the downtown area 

of Omaha. Total HVI values in Small Metro group do not show specific patterns (Figure 9b), following the 

similar trend in three individual HVIs (Figure 6). The possible range of total vulnerability values can be 4 to 

20 in Medium Metro and Rural Areas, and for Small Metro and Micropolitan groups these values can be 3 

and 15. The two highest vulnerable tracts are on the northeast section of the state. Considering three vulner-

ability factors with levels of 1–5, the total vulnerability can be a value between 3 and 15. There are 2 tracts in 

the east side of this area (immediately west of Omaha area) that have a total vulnerability of 3. It means that 

they fall into the lowest vulnerable groups in all three categories for Micropolitan areas. Rural areas seem to 

be randomly distributed in different parts of the state. Western Nebraska seems more toward higher values 

compared to the east. This can potentially be attributed to the effect of first vulnerability factor (Figure 8a). 

Figure 2. The distribution of area percentage of four land type classes in three Non-Urban groups of tracts (Figure 1). 
Classes are composed of land cover types in National Land Cover Database 2016 that have similar Normalized 
Difference Vegetation Index summer values. Class1 consists of the four developed land types and Barren Land. Class2 
includes Deciduous Forest, Evergreen Forest, Mixed Forest, and Cultivated Crops. Class3 consists of Shrub/Scrub, 
Grassland/Herbaceous, and Pasture/Hay. Finally, Class4 includes Woody Wetlands, and Open Water.
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Considering four vulnerability factors with possible ranges of 1–5 in this urban class, a minimum of 4 and 

maximum of 25 is expected for these tracts which has not occurred in any of the tracts in this group. No 

tract is lowest or highest in all vulnerability categories in this urban class. Figure S1 in Supporting Infor-

mation S1 shows the resulting map of total vulnerabilities from a “one solution fit all model." It illustrates 

that all high vulnerabilities are just focused on the highest urbanized areas and rural areas are overlooked.

Figure 3. Exploratory data plots for variables used in Heat Vulnerability Index analysis of Medium Metro tracts (n = 280). Below the diagonal show 
scatterplots of each variables. Above the diagonal presents the correlation values, and the density plots are on the diagonal. Top left box contains 
sociodemographic variables. Bottom-right box contains considered environmental factors, and the other two box areas contain plots of socio-demographic 
versus environmental variables.
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The results of LISA analysis for Omaha area shows clusters of High-High and Low-Low total HVI (Fig-

ure 10). This could be expected from similar patterns of individual HVIs, then leading into a radial pattern 

of concentrated high HVIs in Figure 9.

LISA analysis for Rural class did not show any significant classification of clustering or outlier that could be 

expected from Figure 9d. For other two groups (Small Metro and Micropolitan), we did not consider LISA 

analysis useful, due to the scattered and disconnected groups of tracts without any pattern in their distribu-

tion. Therefore, distinguishing any clustering or outlier tracts can be misleading.

Figure 4. Same as Figure 3, but for Non-urban tracts (n = 252 tracts). Upper left boxes contain environmental variables, lower right boxes are socioeconomic 
variables, and the two other boxes contain information of socioeconomic-environmental interactions.
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4. Discussion

To our knowledge, this is the first study to show that separating census tracts into different categories based 

on urbanization levels results in different combinations of socioeconomic variables in calculated HVIs. For 

example, disability contributes highest in HVI factors in both more urbanized groups- Medium Metro and 

Factors I II III IV I II III

Disability 0.81 0.18 0.13 0.14 Class1/Land 0.92 0.21

Low education 0.60 0.20 0.22 −0.26 Class2/Land −0.93 −0.20

Language 0.12 0.68 disability 0.89

Over 60 −0.20 −0.10 −0.20 0.60 Low education 0.29 0.73

Over60/alone 0.22 0.56 0.17 0.36 language −0.18 0.78

below poverty 0.66 0.46 0.40 Over 60 −0.27 −0.30

Race/noWhite 0.56 0.75 Over60/alone 0.35 0.59

Developed/Open −0.15 −0.40 0.24 below poverty 0.30 0.60 0.31

Developed/Low 0.12 −0.16 0.35 Race/noWhite 0.13 0.50

Developed/Med 0.19 0.50 0.10 −0.22

Developed/High 0.78 −0.19

Medium metro (n = 280)

Small metro (n = 85)

I II III

SS loadings 1.94 1.66 1.35 0.86 1.99 1.71 1.59

Proportion Var 0.18 0.15 0.12 0.08 0.22 0.19 0.18

Cumulative Var 0.18 0.33 0.45 0.53 0.22 0.41 0.59

Note. Top tables show the factor loadings of each variable. Bottom tables contain sum of the squared loadings on first row (SS loading), The variance captured 
by each factor in the second row, and cumulative captured variances in the third row. Absolute values > 0.49 are the most significant loadings on that factor. 
All models show p-value < 0.0001 for model-based χ2 test.

Table 3
Results of Factor Analysis for Medium Metro and Small Metro Urban Types

I II III I II III IV

Class2/Land −0.86 −0.25 Class2/Land −0.97 0.21

Class3/Land 0.92 −0.23 Class3/Land 0.98 −0.19

Disability −0.16 0.54 disability 0.54

Low education 0.67 0.16 Low education −0.12 0.52 0.27

language 0.64 language 0.31

Over 60 −0.57 −0.12 Over 60 0.27 −0.57 0.18 0.31

Over60/alone 0.23 0.54 Over60/alone 0.11 0.99

below poverty 0.30 0.72 below poverty 0.36 0.41 0.12 0.78

Race/noWhite 0.67 0.22 Race/noWhite 0.64 0.29

Micropolitan (n = 72)

Rural (n = 95)

I II III IV

SS loadings 1.79 1.65 1.26 2.13 1.36 1.10 1.09

Proportion Var 0.20 0.18 0.14 0.24 0.15 0.12 0.12

Cumulative Var 0.20 0.38 0.52 0.24 0.39 0.51 0.63

Table 4
Same as Table 3, But for Micropolitan and Rural Urban Types
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Figure 5. Map of four vulnerability mappings of Omaha urban area as part of the Medium Metro classification (zoomed out of Figure 1a) (n = 196). 
Four factors of vulnerabilities are named based on the variables that highly participate in each factor loading (Table 3). Higher values represent higher 
vulnerabilities.

Figure 6. Map of three Heat Vulnerability Index variables for Small Metro group of census tracts.
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Small Metro-, while it only appears in the last HVI factors for the two higher rural areas–Micropolitan and 

Rural with the lowest coefficients compared to other variables. On the other hand, race other than white is 

the most contributing socioeconomic variable in two higher rural areas, which is not the case for two more 

urbanized classes. We also found that both the structure of land cover types used as environmental varia-

bles–and their contributions in HVI factors vary for different urban classes, suggesting different potential 

mitigation strategies for each group. And finally, our hotspot analysis showed clusters of high HVI and low 

HVI concentration in the highest urban level class, but no such pattern was distinguished in the other three 

classes.

Reid et al. (2009) suggest that different regions experience different levels of vulnerability with highest vul-

nerabilities in the most populated urban areas. Our study confirms this finding and extends these differenc-

es into the combination of the initial variables in final HVI factors. To measure environmental vulnerability 

Figure 7. Heat Vulnerability Index levels in Micropolitan tracts (n = 72).

Figure 8. Heat Vulnerability Index variable distribution for Rural tracts (n = 95).
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through heat intensification, different studies include measures of lack of green spaces, or the abundance 

of impervious surfaces, or building intensity in their HVI model (Bradford et al., 2015; Nayak et al., 2018; 

Reid et al., 2009). A large part of our study area mostly contains crop and grassland land cover types that 

are categorized as green areas in mentioned studies. These land cover types dominate the two higher rural 

Figure 9. Total Heat Vulnerability Index level values in each of the four urban classes. (a) Omaha area as the most 
populated Medium Metropolitan area. (b) Part of Small Metro area (Eastern Nebraska as in Figure 1a). (c)Micropolitan 
areas. (d) Rural areas.
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areas. For our study, we have used summer NDVI differences of these land types as surrogates to differ-

entiate their LST, therefore grouping them based on their different levels of heat intensification. Previous 

studies show that there is a negative correlation between summer NDVI and LST, however this correlation 

varies by season and region (e.g., Kaufmann et al., 2003; Marzban et al., 2018). We therefore suggest that a 

future study focusing on this relationship within Nebraska may increase the accuracy of our environmental 

vulnerability variables for rural areas.

We suspect that rural areas may contain socioeconomic variables that were used in a limited fashion in 

similar studies focusing on urban areas. For example, we investigated the percentage of outdoor workers in 

our different urban types but could not find any significant differences, therefore we did not include it in our 

study. Another example can be inclusion of tribal communities as sources of increased adaptive capacities 

due to the support they provide to their vulnerable population in rural areas that include such social ties.

Sheridan and Dolney (2003) found comparable mortality rates in suburban and rural areas of Ohio to its 

urban areas, and Maier et al. (2014) found that half the counties with highest HVI in Georgia are rural. As a 

future step to the current study, after acquiring related health data, we suggest verifying these maps with re-

lated mortality and morbidity levels in Nebraska. Heatwaves Early Warning Systems (HEWS) are among top 

priorities in heatwave preparation plans in different countries (Lowe et al., 2011; Matzarakis et al., 2020). 

The results of this study can increase the effectiveness of regional HEWS system for Nebraska through in-

forming communication and dissemination strategies, as well as recommended prevention strategies. Com-

munication and dissemination of information should be tailored to the target audiences at the local level. 

Prevention strategies such as HEWS can include targeted infrastructure, to ensure transportation to cooling 

facilities, by targeting the identified most vulnerable audiences. For longer term planning, projected popu-

lation change and potential urban development plans needs to be implemented in the presented framework 

with considerations for uncertainty quantification for more accurate, future informed long-term planning.

Figure 10. Cluster and Outlier analysis of Total Vulnerabilities for Omaha Area (zoomed from Figure 1a). In part (b) 
instead of Moran’s scatter plot include Rural areas.
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5. Conclusion

Heatwaves are expected to become increasingly dangerous for human health. Many studies focus on the 

effect of heatwaves in urban areas or use one model to map related vulnerabilities in urban areas and their 

surrounding less urbanized regions. We showed that separating heterogeneous study areas into different 

groups can reveal different structures of socioeconomic variables in the development of HVIs, so that in-

cluding them in one model may be misleading and neglecting less urbanized areas. In our analysis, we have 

considered these groups based on their urbanization levels and the expert suggestions on how they can fit 

into groups. These results can better help decision makers at various levels to focus on customized solutions 

for each urbanization level of residence. This study focuses on Nebraska as a state with large rural areas and 

a small percentage of urban systems. We suggest that similar frameworks can be applied to other regions 

that contain similar heterogeneity.
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