
RESEARCH ARTICLE

Chromium induced changes in growth and physiological attributes of
Chicory (Cichorium intybus L), an important medicinal plant

Ashyana Kouser* & Athar Ali Khan
Environmental Botany Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202 002 (U.P.), India
*Email: ash.phd.amu@gmail.com

ARTICLE HISTORY

Received: 06 February 2021
Accepted: 13 April 2021
Available online: 01 July 2021

KEYWORDS
Chicory; Chromium toxicity; 
Accumulation; Antioxidant enzymes;
Proline content

ABSTRACT

This study was conducted to determine the impact of different concentrations (25, 37.5 and 50 mg kg -1

soil) of chromium (Cr) on growth, photosynthetic pigments, protein content, proline content, activities
of antioxidant enzymes and seed yield of Cichorium intybus in a pot experiment. The results revealed
that  all  the  Cr  treatments  significantly  (P ≤  0.05)  reduced  the  growth,  photosynthetic  pigments
(chlorophyll a, chlorophyll b and total chlorophyll and carotenoids contents), protein content and seed
yield in C. intybus. The activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and
proline  content  in  C.  intybus  leaves  increased  significantly  (P ≤  0.05)  with  increasing  levels  of  Cr
treatments. Cr accumulation was found greater in the roots than in the shoots and enhanced with
increasing Cr concentrations. Hence, C. intybus may serve as a bio-meter of Cr in Cr contaminated soils.

Introduction

Heavy  metals  are  the  elements  having  a  specific
gravity of more than 5g/cm-3 that often accumulate in
the  soil  because  of  uncontrolled  waste  dumping,
mining,  widespread  use  of  pesticides  and  chemical
fertilizers  (1,  2).  Heavy  metals  such  as  cadmium,
arsenic,  chromium,  lead,  mercury,  vanadium  and
cobalt are non-essential and toxic to plant; in contrast,
metals, such as copper, iron, manganese, zinc, copper
and iron (3). Accumulation of heavy metals in plants,
aquatic animals, human and micro-organisms poses a
serious threat to biota and the environment (4). Due to
the  extensive  release  from  domestic,  chemical,
agricultural, industrial and technological sources, the
toxicity from heavy metals is continuously increasing,
which in turn contaminate the soil, water and air (3). 

In  recent  years,  chromium  (Cr),  especially
hexavalent Cr, has become a major area of concern in
environmental  contamination.   Among  the  most
hazardous substances, Cr has been ranked 17th by the
agency  for  toxic  substances  and  disease  registry
(ATSDR) and also the number one carcinogen (5).  In
plant  physiology,  Cr  does  not  have  any  known
biological  role  to  date  (6).  It  is  believed  that  the
accumulation  of  excessive  Cr  levels  in  plant  tissues
affects  plant  growth  and  impedes  various  plant
morpho-physiological and biochemical processes (7, 8,
9). Typically, the toxicity of Cr affects plant growth by
inducing  ultrastructural  changes  of  the  chloroplast

and cell  membrane,  damaging  root cells,  decreasing
photosynthetic  pigments,  affecting  mineral  nutrition
and water relations,  disturbing nitrogen assimilation
and transpiration and altering the activities of various
enzymes  (10,  11).  All  these  toxic  effects  of  Cr  have
been  attributed  to  the  overproduction  of  a  massive
amount  of  reactive  oxygen species  (ROS),  ultimately
disrupting  the  redox  balance  in  plants  (11).  The
translocation  and  distribution  of  Cr  within  plants
depend on its  concentration in the  growth medium,
the oxidation state of the Cr ions and also on the plant
species (12). 

Cichorium  intybus L.  (Chicory)  belongs  to  the
family  Asteraceae  and  is  widely  distributed  in  Asia
and Europe (13). This is an introduced species in the
present  Indian  Territory.  It  is  a  rich  source  of
compounds  like  sesquiterpene  lactones,  flavonoids,
unsaturated  sterols, insulin,  alkaloids,  tannins,
saponins, vitamins and coumarins (14, 15). The fresh
chicory typically contains inulin (68%), sucrose (14%),
cellulose  (5%),  protein  (6%),  ash  (4%)  and  other
compounds  (3%),  while  dried  chicory  contains
approximately  98% inulin  and 2% other compounds
(13,  16).  It  has  been  traditionally  used  for  the
treatment of fever, diarrhea, jaundice and gallstones
(17) and has been found as a useful bio-monitoring of
heavy metals such as Pb, Cd, Cu and Zn (18). 

The aim of the present study was to investigate
the  effects  of  different  doses  of  Cr  on  growth,
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photosynthetic  pigments  and  protein  and  proline
contents,  as  well  as  the  activities  of  antioxidant
enzymes (SOD, CAT and POD) in C. Intybus L.

Materials and Methods

Plant material and growth conditions

Before starting the experimental work, soil samples
were collected randomly from different field beds for
analyzing the characteristics of the soil. The samples
were  analyzed  in  the  Soil  Testing  Laboratory,
Government Agriculture Farm, Quarsi, Aligarh, India.
The physicochemical  properties of the soil  used for
the experiment are given in Table 1. Seeds of chicory
(Cichorium  intybus L.)  procured  from  the  central
institute  of medicinal  and aromatic  plants  (CIMAP),
Lucknow, were surface decontaminated with 0.01%
HgCl2 solution, followed by three times washing with
double distilled water (DDW). Earthen pots of 25 x 25
cm were  autoclaved  at  20  1b  pressure/inch2  for  20
minutes  after  filling  with  4  kg of  soil  and compost

mixture (3:1).  Ten seeds of nearly uniform size and
weight were sown with uniform distance in each pot.
After germination,  three plants  of equal height and
leaf number were maintained in each pot. The pots
were kept in the naturally illuminated greenhouse of
the  Department  of  Botany,  Aligarh  Muslim
University,  Aligarh,  India  with  average  day/night
temperatures 20 ± 3 and 10 ± 2 oC, respectively. Plants
were treated with 0,  25,  37.5 and 50 mg kg -1 soil of
chromium (Cr) and was applied in the form of dilute
aqueous  solution  of  Chromium  nitrate  [(Ni
(NO3)24H2O].  Each  treatment  was  replicated  three
times.  Irrigation  was  done  with  tap  water  as  and
when required. The experiment was conducted in a
randomized complete block design. The plants were
cultivated until full maturity (120 days). Sampling of
plants was done 60 days after sowing (DAS) and at
maturity  (120  DAS)  to  record  different  parameters.
All  decreases  or  increases  described  in  the  results
section are in comparison to control. 

Estimation of growth attributes

Growth parameters viz.,  root and shoot length, root
and shoot fresh mass and root and shoot dry mass
were studied.  Plants were harvested and cut at  the
root-shoot junction and the length of their shoot and
root  were  determined  with  a  metric  scale  and
expressed  in  centimeters.  The  fresh  mass  of  shoot
and root were recorded on an analytical balance and
expressed in gm per plant.  To determine plant  dry
mass, samples were dried in an oven at 60 °C for 48
hrs.

Estimation  of  chlorophyll  and  carotenoids
contents

The  photosynthetic  pigments  (chlorophyll  and
carotenoid) in the fresh leaf samples was determined
according  to  the  methodology  of  (19).  One  gm  of
freshly  cut  leaves  was ground to  fine  pulp  in  80%
acetone using a mortar and pestle. The mixture was
centrifuged  at  5000  rpm  for  5  minutes.  The
supernatant  was  collected,  and  the  residue  was
washed thrice, using 80% acetone. The absorbance of
the  sample  was  read  on  spectrophotometer
(Shimadzu UV-1700, Tokyo, Japan) at 645 and 663 nm
for chlorophyll and 480 and 510 nm for carotenoids
against the blank (80% acetone). 

Assay of antioxidant enzymes

To determine the activities of SOD (EC 1.15.1.1), CAT
(EC 1.11.1.6), and POD (EC 1.11.1.7), fresh leaf tissue
was ground in liquid nitrogen and homogenized on
ice bath in 3 ml of a solution containing 0.1 mM EDTA
(Ethylene  diamine  tetraacetate),  50  mM  potassium
phosphate  buffer  (pH  6.8)  and  1%
polyvinylpyrrolidone (PVP). For ascorbate peroxidase
assay  extraction buffer  was supplemented with  1.0
mM ascorbic acid. The homogenate was centrifuged
at 15000×gm for 15 min at 4  0C and the supernatant
was used as a crude enzyme extract. 

Estimation  of  superoxide  dismutase  (SOD)
activity 

SOD activity was determined by its ability to catalyze
nitro blue tetrazolium (NBT) to formazan at 560 nm
according to the method of (20). Five ml of reaction
mixture containing 75 mm NBT, 13 mm methionine,
50 mm phosphate  buffer (pH 7.8),  0.1 mm EDTA, 2
mm  riboflavin  and  the  enzyme  extract.  The
absorbance of the sample was read at 560 nm using a
UV-visible  spectrophotometer  (UV-1700,  Shimadzu,
Japan).  The  difference  of  percentage  reduction  of
color  development  in  blank  and  the  sample  was
calculated.  Fifty  percent reduction in the color was
taken  as  one  unit  of  enzyme  activity  and  was
expressed  in  enzyme units  per  mg protein  (U  mg-1

protein).

Catalase (CAT) activity 

With  slight  modifications,  catalase  activity  was
assayed  according  to  the  method  of  (21)  by
monitoring the H2O2  disappearance at 240 nm. The 3
ml reaction mixture consisted of 3 mM EDTA, 0.1 mM
of  H2O2,  0.1M  potassium  phosphate  buffer  and
enzyme extract. The reaction was allowed to run for
3 min. The enzyme activity was calculated by using
extinction  coefficient  0.036  mM–1 cm-1 at  25  oC and
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Table 1. Physiochemical characteristics of experimental soil.

Characteristics Soil

Soil texture Sandy loam

CEC (meq 100 g-1 soil) 2.87

Ph 7.7

Porosity (%) 40.67

Water holding capacity (%) 35.78

Organic carbon (%) 0.756

NO3-N (g kg-1 soil) 0.293

Chromium (mg kg-1) 0.46

Phosphorus (g kg-1 soil) 0.135

Potassium (K) 21.00

Magnesium (Mg) 31.44

Calcium (Ca) 19.33

Sodium (Na) 11.92

Bicarbonate 19.22

Carbonate 78.43

Sulphate 17.58

Chloride 28.18



expressed  as  enzyme  units  per  ml protein  (U  mg-1

protein)  in  which  one  unit  enzyme determines  the
amount  necessary  to  decompose  one  μmol  of  H2O2

per minute.

Peroxidase (POD) activity

The  POD  activity  was  assayed  following  the
methodology  described  by  (22),  with  slight
modifications. The 3 ml reaction mixture contained
20 mM pyrogallol,  20 mM H2O2,  25 mM potassium
phosphate  (pH  6.8)  and  enzyme  extract.  The
reaction  was  started  after  the  addition  of  the
enzyme  extract  and  the  enzyme  activity  was
determined  through  the  absorbance  of  colored
purpurogallin  recorded  at  420  nm  using  a  UV-
visible  spectrophotometer  (UV-1700,  Shimadzu,
Japan) for 1 min at 25 oC. An extinction coefficient
of  2.47  mM-1 cm-1 250C  was  used  to  calculate  the
POD  activity  and  was  expressed  as  enzyme  units
per milligram protein (U mg-1 protein).

Estimation of proline content

The  proline  content  in  fresh  leaves  was  estimated
following the method of (23), Fresh leaf sample (300
mg) was homogenized in 3 ml of 3 % sulphosalicylic
acid.  The  homogenate  was filtered,  and the filtrate
was then reacted with 1 ml each of  ninhydrin and
glacial acetic acid for 1 hr in a test tube placed in a
water  bath  at  100  oC.  Finally,  the  sample  was
transferred  to  the  ice  bath  and  the  mixture  was
extracted with toluene and read at 520 nm using L-
proline as a standard.

Protein estimation

The  estimation  of  protein  was  done  using  the
method of (24). One gm of leaf sample was weighed
and macerated in 5 ml of phosphate buffer (0.1 M,
pH 7.5)  using mortar and pestle.  The homogenate
obtained was centrifuged at 8000 rpm for 20 min.
and  the  supernatant  collected  was  extracted  the
process was repeated 4-5 times. Supernatants were
then combined and the final volume was made to
50 ml with phosphate buffer. To 1 ml of the above
extract, 1 ml of 20% trichloroacetic acid (TCA) was
added  and  centrifuged  again  at  8000  rpm  for  20
min.  Pellet  was  washed  twice  with  acetone  and
centrifuged again.  The supernatant  was discarded
and  the  pellet  was  dissolved  in  1  ml  of  NaOH
(0.1N). To 1 ml of aliquots, 5 ml of Bradford reagent

was added and mixed thoroughly. Absorbance was
recorded  at  595  nm  against  blank.  The  standard
curve was plotted using varying concentrations of
Bovine  Serum  Albumin.  Soluble  protein  content
was expressed as mg g-1 DW.

Heavy metal analysis

Metal levels in root and shoot were determined at 60
DAS and 120 DAS. Root and shoot samples were dried
at 80  oC for 48 hrs in an oven, and the dried tissue
was weighed, ground to a fine powder. The powdered
samples were then digested with concentrated HNO3/
HClO4 (3:1,  v/v).  The  Cr  content  was  estimated
through atomic absorption spectrophotometer (GBC,
932  plus;  GBC  Scientific  Instruments,  Braeside,
Australia).

Statistical analysis 

Data were subjected to one-way analysis of variance
(ANOVA) using R (3.6.1) statistical software (package
library,  agricolae).  Duncan's  multiple  range  test
(DMRT) was performed to determine the significance
of the difference of means at P ≤ 0.05.

Results 

Plant growth parameters

All  treatments  except  25  mg kg-1  caused  significant
reduction  in  shoot  and  root  length,  shoot  and  root
fresh and dry  weight  both at  60 DAS and 120 DAS
(Table  2). 50 mg kg-1 treatment highest reduction of
28.96% and 39.26% in root length, 20.02% and 17.03%
in  shoot  length,  29.01%  and 37.74%  in  root  fresh
weight,  29.07%  and 23.20%  in  shoot  fresh  weight,
29.01%  and 37.74% in root  dry  weight  and 29.07%
and 23.20% in shoot  dry  weight  over control  at  60
DAS and 120 DAS respectively (Table 2).

Photosynthetic  pigments,  protein  and  proline
content

All  treatments  caused  significant  reduction  in
photosynthetic  pigments  (chlorophyll  a,
chlorophyll  b,  total  chlorophyll,  carotenoid,)  and
protein  content  and  increase  in  proline  content
both  at  60  DAS  and  120  DAS  (Fig.  1).  50  mg  kg -1

treatment highest reduction of 48.15%  and 38.94%
in chlorophyll a, 39.53% and 62.28% in chlorophyll
b, 46.67%  and 48.60% in total chlorophyll content,
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Table 2. Effects of different doses of chromium (25, 37. 5 and 50 mg kg-1 soil) on the growth attributes of Cichorium intybus at 60 and 120 DAS.

Treatments
Root length

(cm)
Shoot length

(cm)
Root fresh

weight (gm)
Shoot fresh
weight (gm)

Root dry
weight (gm)

Shoot dry
weight (gm)

60
DAS

Control 10.11 ± 0.31a 29.86 ± 0.62a 2.98 ± 0.08a 36.45 ± 0.79a 0.24 ± 0.01a 2.95 ± 0.06a

25 mg kg -1 soil 8.91 ± 0.30b 26.4 ± 0.59b 2.16 ± 0.08b 34.55 ± 0.71a 0.17 ± 0.01b 2.80 ± 0.05a

37.5 mg kg -1 soil 6.63 ± 0.29c 23.63 ± 0.62c 1.62 ± 0.08c 27.62 ± 0.69b 0.13 ± 0.01c 2.24 ± 0.05b

50 mg kg -1 soil 4.71 ± 0.33d 18.9 ± 0.54d 1.15 ± 0.08d 19.59 ± 0.69c 0.09 ± 0.01d 1.59 ± 0.05c

LSD p ≤ 0.05 1.03 1.98 0.27 2.41 0.02 0.19

120
DAS

Control 21.11 ± 0.49a 44.21 ± 0.77a 8.12 ± 0.16a 73.48 ± 1.18a 0.66 ± 0.01a 5.95 ± 0.09a

25 mg kg -1 soil 18.23 ± 0.44b 39.69 ± 0.60b 7.81 ± 0.15a 70.67 ± 1.19a 0.63 ± 0.01a 5.63 ± 0.10a

37.5 mg kg -1 soil 15.74 ± 0.47c 31.47 ± 0.69c 5.67 ± 0.16b 53.71 ± 1.17b 0.46 ± 0.01b 4.35 ± 0.09b

50 mg kg -1 soil 9.56 ± 0.44d 26.11 ± 0.69d 3.53 ± 0.15c 41.25 ± 1.10c 0.29 ± 0.01c 3.34 ± 0.08c

LSD p ≤ 0.05 1.54 2.29 0.52 3.89 0.04 0.31
Data are presented as treatments mean ± SE (n = 3). Mean values within a column followed by different letters are statistically significant
at p ≤ 0.05 by Duncan's multiple range test.



37.84%  and 33.70%  in  carotenoids  content,  and
34.72% and 41.15% in protein content over control
at  60  DAS  and  120  DAS  respectively.  Same
treatment  caused  highest  increase  of  69.92  and
75.89% in  proline  content  over  control  at  60 DAS
and 120 DAS (Fig. 1).

Antioxidative defense enzymes

All  treatments  caused increase in the  activities  of
SOD, CAT and POD at 60 DAS and 120 DAS (Fig. 2).
50  mg kg-1 caused  maximum increase  of  179.23%
and 124.1% in SOD activity, 21.88%  and 32.53% in
CAT activity and 39.28% and 68.44% in POD activity
over  control  at  60  DAS  and  120  DAS  respectively
(Fig. 2).

Seed yield per plant

Plants treated with 37.5 and 50 mg kg -1 Cr showed a
significant  (P ≤  0.05)  reduction  in  seed  yield  per

plant as compared to control (Fig. 3). Plants treated
with  25  mg kg-1 Cr  resulted  in a  statistically  non-
significant  (P ≤  0.05)  reduction  in  seed  yield  per
plant  compared to control.  Plants  treated  with 50
mg kg-1 Cr caused a maximum significant (P ≤ 0.05)
reduction  of  54.76%  in  seed  yield  per  plant  over
control (Fig. 3).

Cr uptake in root and shoot under Cr stress

As  compared  to  the  control,  Cr  concentrations  in
roots and shoots of  C. intybus were significantly (P
≤ 0.05) increased with increasing levels of Cr both
at 60 DAS and 120 DAS (Fig 4). Accumulation of Cr
was  higher  in  roots  of  C.  intybus as  compared to
shoots. Plants treated with 50 mg kg -1 Cr showed a
maximum significant (P ≤ 0.05) increase of 620.41%
and 746.88% in root and 378.57%  and  621.62% in
the shoot of  C. intybus over control at 60 DAS and
120 DAS, respectively (Fig. 4).
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Fig. 1. Effects of different doses of chromium (Cr) on chlorophyll a  (a) chlorophyll b  (b) total chlorophyll  (c) carotenoids content  (d),
protein content (e) and proline content (f) of Cichorium intybus at 60 and 120 days after sowing (DAS), treated with 25, 37. 5 and 50 mg kg-1

soil of Cr. Data are presented as treatments mean ± SE (n=3). The different letter above the bars shows that data are significantly different
at P ≤ 0.05 by Duncan's multiple range test.



Discussion

Plant  growth  parameters  showed  a  significant
decline in response to all treatments of Cr. Previous

studies  demonstrated  that,  Cr  at  low concentration
promotes the  growth and yield  of  crop plants  (25).
Our different results could be due to the genotypes
differences, as this study wild plant was used, which
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Fig. 2. The activity of SOD (a) CAT (b) and POD (c) in Cichorium intybus treated with 25, 37. 5 and 50 mg kg-1 soil of Cr at 60 and 120 DAS.
Data are presented as treatments mean ± SE (n=3). The different letter above the bars shows that data are significantly different at P ≤ 0.05
by Duncan's multiple range test. SOD = superoxide dismutase, CAT = catalase, POD = peroxidase, Cr = chromium, DAS = days after sowing.

Fig. 3. Seed yield of Cichorium intybus treated with Cr at 25, 37. 5 and 50 mg kg-1 soil. Data are presented as treatments mean ± SE (n=3).
The different letter above the bars shows that data are significantly different at P ≤ 0.05 by Duncan's multiple range test. Cr = chromium.



may respond differently to Cr stress than crop plants
(7). In contrast, a linear reduction in maize biomass
was recorded with increasing Cr concentrations (26),
which  is  in  accordance  with  the  findings  of  this

investigation.  Cr  toxicity  is  reported  to  impede  the
essential metabolic processes which affect the growth
of  plants  (9).  Moreover,  Cr  toxicity  induces
ultrastructural  modifications  of  the  chloroplast  and
cell membrane, affecting transpiration and nitrogen
assimilation,  damaging  root  cells,  altering  the
activities  of  several  enzymes,  disturbing  water
relations and mineral nutrition and hence, reducing
plant growth (11, 27). These Cr-induced toxic effects
may  be  attributed  to  the  massive  production  and
release  of  reactive  oxygen  species  (ROS),  which
ultimately interrupt the plant's redox balance (11).

In  the  present  study,  all  the  Cr  treatments
significantly  reduced  chlorophyll  and  carotenoids
contents in C. intybus. The decrease in photosynthetic
pigments due to Cr-induced toxicity has been reported
in various plant  species such as Ocimum tenuiflorum
(28),  Pistia  stratiotes (29),  Camellia  sinensis (30), Zea
mays (31) and  Citrus limonia and  C. reshni (32).  The
decrease in photosynthetic pigments under Cr toxicity
could  be  due  to  the  impairment  of  biosynthetic
enzymes of chlorophyll (27,  33) and degradation of δ-
aminolevulinic acid dehydratase (ALAD), leading to a
decrease  in  photosynthetic  pigments  (34).  Therefore,
the  photosynthetic  performance  of  plants  is
compromised under Cr stress as a result of interaction
with the biosynthesis of chlorophyll molecules.

In the current investigation, all the treatments of
Cr  reduced  the  leaf  protein  content.  It  has  been
reported that Cr toxicity induces the degradation of
proteins which also results in the inhibition of nitrate
reductase activity (35). In response to Cr toxicity, the
activities  of  various  antioxidative  enzymes  change
drastically.  Numerous  reports  are  available
concerning  the  response  of  plant  antioxidative

defense system to various abiotic stresses (36). It has
been  reported  that  heavy  metal-induced  oxidative
stress  enhances  SOD,  CAT,  POD  and  free  proline
contents of the plant (7,  37). In the present study, in

response to Cr toxicity, the activities of SOD, CAT and
POD increased.  These results  are in line with (38),
who observed an increase in SOD and POD activity
with increasing concentrations of Cr. However, under
any stress condition, the activities of these enzymes
may vary with the duration, crop species and tissues
(11). For instance,  Echinochloa colona plants showed
enhanced  activities  of  CAT  and  POD  in  tolerant
calluses  than  in  non-tolerant  ones  (39).  Similarly,
during  stress,  proline  makes  a  metal-poly-chelatins
complex which induces the tolerance to heavy metal
stress in plants  (37). An increase in the contents of
proline  upon  Cr  stress  has  been  attributed  to
enhanced uptake of  certain  elements like Cl  (7).  At
higher Cr levels, an increase in proline was recorded,
which  correlates  with  enhanced  activity  of  POD in
leaves  of  C. intybus,  suggesting a  strong interaction
between proline content and POD.

In this study, Cr accumulation was found higher in
roots  than  in  shoots.  Higher  concentrations  of  Cr  in
roots  may  be  due  to  the  presence  of  Cr  exclusion
strategy in C. intybus, as reported previously in Elodea
canadensis (40). It has been reported earlier that plants
accumulate more Cr in roots as compared to shoots (41).
The  minimum  aerial  translocation  of  Cr  has  been
reported in maize (42), cauliflower (43),  pea (44) and
Solanum nigrum and Parthenium hysterophorus (7). Cr
is accumulated in the roots, possibly through the action
of the reductase enzyme, which causes the reduction of
Cr  (VI)  to  Cr  (III)   (7,  42).  Moreover,  the  higher
accumulation of Cr in the roots than in shoots could be
due  to  Cr  immobilization  in  root  cortex cells  (45)  to
prevent the higher Cr translocation to the aerial parts,
which may be a natural toxicity response of C. intybus
(46).
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Fig. 4. Root Cr content (a) and shoot Cr content (b) in C. intybus treated with 25, 37. 5 and 50 mg kg-1 soil of Cr at 60 and 120 DAS. Data are
presented as treatments mean ± SE (n=3). The different letters above the bars show that data are significantly different at P ≤ 0.05 by
Duncan's multiple range test. Cr = chromium, DAS = days after sowing.



Conclusion

All  the  Cr  treatments  significantly  reduced  the
growth  and  various  physiological  attributes  of C.
intybus.  The  activities  of  antioxidative  defense
enzymes  and  proline  content  in  C.  intybus  leaves
increased substantially  with  increasing  levels  of  Cr
treatments. The accumulation of Cr was found higher
in  the  roots  than  in  the  shoots  of  C.  intybus.
Therefore,  C.  intybus from  Cr  contaminated  soils
should  not  be  used  for  medicinal  purposes  due  to
higher Cr content.
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