
Rose-Hulman Undergraduate Mathematics Journal Rose-Hulman Undergraduate Mathematics Journal 

Volume 22 
Issue 2 Article 3 

A Proof of a Generalization of Niven's Theorem Using Algebraic A Proof of a Generalization of Niven's Theorem Using Algebraic 

Number Theory Number Theory 

Caroline Nunn 
University of Maryland, College Park, jnunn@umd.edu 

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj 

 Part of the Algebra Commons, and the Number Theory Commons 

Recommended Citation Recommended Citation 
Nunn, Caroline (2021) "A Proof of a Generalization of Niven's Theorem Using Algebraic Number Theory," 
Rose-Hulman Undergraduate Mathematics Journal: Vol. 22 : Iss. 2 , Article 3. 
Available at: https://scholar.rose-hulman.edu/rhumj/vol22/iss2/3 

https://scholar.rose-hulman.edu/rhumj
https://scholar.rose-hulman.edu/rhumj/vol22
https://scholar.rose-hulman.edu/rhumj/vol22/iss2
https://scholar.rose-hulman.edu/rhumj/vol22/iss2/3
https://scholar.rose-hulman.edu/rhumj?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol22%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol22%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/183?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol22%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol22/iss2/3?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol22%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages


A Proof of a Generalization of Niven's Theorem Using Algebraic Number Theory A Proof of a Generalization of Niven's Theorem Using Algebraic Number Theory 

Cover Page Footnote Cover Page Footnote 
This paper is the result of independent research conducted under the supervision of Larry Washington, 
without whom this paper would not have been possible. I especially appreciate the many helpful 
comments he gave during the editing process. Thank you to the whole MMDG Math Discussion Group for 
helping to motivate me; specifically, thanks to Jason Lee for help with combinatorics and Jamie 
Jorgensen for introducing me to Niven's theorem. 

This article is available in Rose-Hulman Undergraduate Mathematics Journal: https://scholar.rose-hulman.edu/rhumj/
vol22/iss2/3 

https://scholar.rose-hulman.edu/rhumj/vol22/iss2/3
https://scholar.rose-hulman.edu/rhumj/vol22/iss2/3


Rose-Hulman Undergraduate Mathematics Journal
VOLUME 22, ISSUE 2, 2021

A Proof of a Generalization of Niven’s Theorem
Using Algebraic Number Theory

By Caroline Nunn

Abstract. Nivens theorem states that the sine, cosine, and tangent functions are rational
for only a few rational multiples of π. Specifically, for angles θ that are rational multiples
of π, the only rational values of sin(θ) and cos(θ) are 0, ±1

2 , and ±1. For tangent, the only
rational values are 0 and ±1. We present a proof of this fact, along with a generalization,
using the structure of ideals in imaginary quadratic rings. We first show that the theorem
holds for the tangent function using elementary properties of Gaussian integers, before
extending the approach to other imaginary quadratic rings. We then show for which
rational multiples of π the squares of the sine, cosine, and tangent functions are rational,
providing a generalized form of Nivens theorem. We end with a discussion of a few
related combinatorial identities.

1 Introduction

The identity
(1+ i )4 =−4 (1)

gives an example of a complex number (specifically, a Gaussian integer) which, when
raised to an integral power, gives a real number. This is, by itself, rather unremarkable;
however, a search for other examples shows that, aside from trivial cases, multiples, and
conjugates, this number appears to be the only Gaussian integer with this property. In
fact, this is true:

Theorem 1.1. Let α ∈Z[i ] be a nonzero Gaussian integer such that there exists n ∈Z+ and
c ∈Zwith αn = c.1 Then α is an integer multiple of either a unit or an associate of 1+ i .

This result follows from a classic theorem on trigonometric functions that was in-
cluded in Ivan Niven’s famous book Irrational Numbers [6]. This theorem can be stated
as follows:

Mathematics Subject Classification. 11R04
Keywords. Number Theory, Algebraic Number Theory, Trigonometry

1Here and throughout this paper, Z+ denotes the positive integers. In particular, 0 ∉Z+.
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2 Niven’s Theorem Using Algebraic Number Theory

Theorem 1.2 (Lehmer, Olmsted, Niven).

sin(πQ)∩Q= cos(πQ)∩Q= {
0,±1

2 ,±1
}

(2)

and
tan(πQ)∩Q= {0,±1}. (3)

Theorem 1.1 follows easily from eq. (3): let α= a +bi be a Gaussian integer. For α to
have the desired property, we must have that θ= arctan(b/a) is a rational multiple of π.
This is because α may be written in polar form as ±|α|e iθ, so for αk = (±|α|)k e i kθ to be
real, kθ must be an integer multiple of π, meaning θ is a rational multiple of π. However,
this method of proof requires trigonometry, while our original question was purely
algebraic and did not make any reference to trigonometric functions. This suggests that
there might be a method of proving this result without reference to trigonometry.

In fact, as we will see in Corollary 2.5, Theorem 1.1 is equivalent to Niven’s theorem,
at least in the case of the tangent function. This means that an algebraic proof of
Theorem 1.1 gives a new approach to proving the tangent part of Niven’s theorem.
Finding such an algebraic proof is the focus of section section 2.

In section 3 we generalize the method of section section 2 to quadratic rings other
than the Gaussian integers. This can be seen to imply a generalized form of Niven’s
theorem. Specifically, we are able to classify when the tangent of a rational multiple of π
is the square of a rational number. The Pythagorean trigonometric identities allow us
to extend this result to the other trigonometric functions. Section 4 gives a few related
combinatorial identities.

Niven’s original proof [6] also uses algebraic number theory, but the approach is
different. Niven first proves a result of D. H. Lehmer [5]; namely, that for integers k ≥ 0,
n > 2 with gcd(k,n) = 1, the number 2cos(2πk/n) is an algebraic integer of degree
φ(n)/2, where φ(n) is Euler’s φ–function. Niven’s theorem then follows for cosine noting
that φ(n) = 2 if and only if n = 3, 4, or 6. Niven then extends this result in a modified
form to the sine and tangent functions, thus proving the full theorem.

For other proofs, see [1, 3, 7, 8].

2 Proof of Niven’s theorem for the tangent function

The Gaussian integers Z[i ] = {α ∈C | α= a +bi , a,b ∈Z} are a special subset of the com-
plex numbers with properties similar to the regular integers. To distinguish between
regular integers and Gaussian integers, we will always refer to Z[i ] as “Gaussian”, reserv-
ing “integer” for Z. Note that Z[i ] is a ring and recall the following definitions from ring
theory:

Definition 2.1. A unit is an element of a ring whose multiplicative inverse is also in the
same ring. Two numbers α and β are called associates if there exists a unit u such that
α= uβ.
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Caroline Nunn 3

The units of Z[i ] are {1, i ,−1,−i }. So for any α ∈Z[i ], the set of associates of α is given
by {α, iα,−α,−iα}.

Lemma 2.2. Let α 6= 0 be a Gaussian integer that is an associate of its complex conjugate.
Then α is an integer multiple of 1, i , or 1± i .

Proof. Let α = a +bi . The associates of α are {a +bi ,−b + ai ,−a −bi ,b − ai }, and the
conjugate of α is a −bi . If a −bi = a +bi , then b = 0, so α= a is an integer. If a −bi =
−a −bi , then a = 0, so α= bi is an integer multiple of i . Finally, if a −bi =±b ∓ai , we
find by comparing real and imaginary parts that b =±a. Then α= a ±ai is an integer
multiple of 1± i .

An analogue of unique factorization holds in Z[i ]. However, because of the fact that
any element can be trivially factored, for example, as α = −i (iα), we must be careful
about what we mean by “unique factorization”.

Definition 2.3. An element α of a ring is called irreducible if α is not a unit and for all
β and γ in the ring with α = βγ, one of β or γ must be a unit. A prime element is an
irreducible element π with the following property: if π | αβ, then π | α or π | β.

Proposition 2.4. All irreducible elements of Z[i ] are prime. Furthermore, each nonzero
element of Z[i ] may be written in the form π1 · · ·πn , where π1, ...,πn are prime. This
factorization is unique up to reordering and replacement by associates.

For a proof, see [4], Corollary 18.10 and Theorem 18.12. Now we are ready to prove
Theorem 1.1.

Proof (of Theorem 1.1). Let α = a +bi , where a and b are integers with gcd(a,b) = 1.
Suppose there exists a positive integer n and an integer c such that αn = c. Let π be a
prime factor of α. Then since α | c, we have π | c. This means that there exists a ρ such
that πρ= c. Taking conjugates, we find π̄ρ̄= c̄ = c. Therefore, π̄ | c. Since c = αn and π̄ is
prime, π̄ | α. Suppose for a contradiction that π and π̄ are relatively prime. Then ππ̄ | α.
But ππ̄ is an integer, and since gcd(a,b) = 1, α has no integer factors. Therefore π and
π̄ are not relatively prime and so, since they are both primes, must be associates. By
Lemma 2.2, π is an associate of 1+ i (note that 1− i =−i (1+ i ) is an associate of 1+ i ).
Therefore, α must be a unit times a power of 1+ i . However, since 2 | 2i = (1+ i )2 and α is
assumed to have no integer factors, we find that α is either a unit or an associate of 1+ i .

For α where gcd(a,b) > 1, the result follows from the previous result using α′ =
α/gcd(a,b).

Corollary 2.5. tan(πQ)∩Q= {0,±1}.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021



4 Niven’s Theorem Using Algebraic Number Theory

Proof. Suppose tan(πm/n) = b/a, where a,b,m,n ∈ Z. Let α = a + bi . Note that α
is a Gaussian integer, so any positive power of α is also a Gaussian integer. Then
α = ±r e iπm/n , where r =

p
a2 +b2, so αn = (±r )ne iπm = (−1)m(±r )n . Then αn is a real

number and a Gaussian integer, so is an integer. This means that α is an integer multiple
of either a unit or 1+ i , i.e., α is either a +0i or a ± ai . Then tan(πm/n) is either 0 or
±1.

3 Niven generalized

The Gaussian integers can be generalized as follows:

Definition 3.1. A quadratic field is a field extension of the rational numbers given by
Q(

p
d) = {x+ y

p
d | x, y ∈Q}, where d is a square-free integer. If d > 0, the quadratic field

is said to be real, otherwise, it is imaginary. The ring of algebraic integers in Q(
p

d),
denoted Od , is defined as the intersection ofQ(

p
d) with the algebraic integers, that is,

roots of polynomials over the integers with leading coefficient 1. As the name implies,
this set is a ring.

For example,Q[i ] is a quadratic field with d =−1, and its ring of algebraic integers
is the Gaussian integers. We will describe the ring of algebraic integers for arbitrary
quadratic fields later in Proposition 3.4. Again, we will always refer to algebraic integers
as algebraic integers and refer to regular integers as “integers”.

Proposition 3.2. Let α 6= 0 be an element of a real quadratic field K =Q(
p

d) such that
there exists n ∈Z+ and c ∈Qwith αn = c. Then α is rational or a rational multiple of

p
d.

Proof. Suppose for contradiction that α= (a +b
p

d) for rational a 6= 0, b 6= 0. It suffices
to show that αn is irrational for positive a and b, since if α is rational so are −α, ᾱ, and −ᾱ.
Let an +bn

p
d = (a +b

p
d)n . Expanding the right hand side with the binomial theorem,

we find that bn > 0, since it is a sum of positive numbers. Since αn was assumed to be
rational, we have found that

p
d = (αn −an)/bn is rational, a contradiction. Hence, one

of a or b must equal 0.

For imaginary quadratic fields, we can extend the argument used to prove Theo-
rem 1.1. However, the argument must be modified to account for the failure of unique
factorization in arbitrary quadratic rings. Recall that a set a is called an ideal of a ring
R if a is an additive subgroup of R with the property that if α ∈ a, we have αβ ∈ a for all
β ∈ R. If there exists an α ∈ R such that a= {αr : r ∈ R}, we say that a is principal and write
a= 〈α〉. We denote by N(a) the index of a as a subgroup of the additive group of the ring,
that is, N(a) = [Od : a].

Ideals can be multiplied; for ideals a and b, the ideal ab is defined to be the smallest
ideal containing products of elements of a and b. We have N(ab) = N(a)N(b). Note that in

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021



Caroline Nunn 5

a quadratic ring, 〈N(a)〉 = aā, where ā is the ideal obtained by conjugating each element
of a. For ideals a and c, if there exists an ideal b such that ab= c, we say a | c. Equivalently,
a | c if c⊆ a. When c= 〈γ〉 is a principal ideal, we write a | γ. An ideal p is said to be prime
if it has the property that p | ab implies p | a or p | b. While factorization of elements is
not unique in general, an ideal of Od can always be uniquely factored into prime ideals.
For a proof, see [9, 2].

Lemma 3.3. Let α 6= 0 be an algebraic integer in a quadratic field K with no integer factors
other than ±1 such that there exists n ∈Z+ and c ∈Zwith αn = c. Then any prime ideal
factor p of 〈α〉 satisfies p= p̄.

Proof. Let Od be the ring of algebraic integers in the quadratic field K =Q(
p

d), and let α
be an element of Od with no nontrivial integer factors (i.e., the only integer factors are
1 and −1) such that αn = c for some positive integer n and integer c. Let p be a prime
ideal factor of 〈α〉. Since p | α and α | c, we have p | c. Taking conjugates, we find p̄ | c̄ = c.
Since c = αk and p̄ is prime, p̄ | α. Suppose for a contradiction that p 6= p̄. Then p and
p̄ are distinct prime ideal factors of 〈α〉 and pp̄ | α. Since pp̄ = 〈N(p)〉, we have N(p) | α.
Then N(p) is a nontrivial integer factor of α, a contradiction. Therefore, all prime ideal
factors of 〈α〉 satisfy p= p̄.

To pin down exactly which α have the desired property, we need to know a little bit
more about the ring of algebraic integers in quadratic fields. Recall that d is a square-free
integer.

Proposition 3.4. Let K =Q(
p

d) and let Od be the ring of algebraic integers in K. Then

(a) Od =Z[θ], where θ=p
d if d 6≡ 1 (mod 4) or θ= 1+pd

2 if d ≡ 1 (mod 4).

(b) For d < 0, the group of units in Od is generated by i if d =−1, by 1+p−3
2 if d =−3, or

by −1 otherwise.

(c) For a principal ideal 〈α〉, N(〈α〉) = |N(α)| = |αᾱ| = |x2 −d y2|, where α= x + y
p

d.

For a proof, see [9, 2].

Lemma 3.5. Let p 6= 0 be a prime ideal of the ring of algebraic integers in a quadratic
field K =Q(

p
d). If p= p̄, then either p= 〈p〉 for a rational prime p, or N(p) = p for some

rational prime p with either p | d or p = 2. If N(p) = p and d ≡ 1 (mod 4), then p 6= 2.

For a proof, see Theorem 8.3 and Table 3 of [2]. We remark that a prime ideal p is said
to be ramified if p2 = 〈p〉 for some prime integer p. These are exactly the ideals with p= p̄
and N(p) = p that occur in the second part of Lemma 3.5. We are now ready to classify
exactly which prime ideals can appear in the factorization of 〈α〉, where α is an algebraic
integer with the desired property.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021



6 Niven’s Theorem Using Algebraic Number Theory

Lemma 3.6. Let 〈β〉 = p1 · · ·pr with r ≥ 1 be a principal ideal in the ring of algebraic
integers of an imaginary quadratic field K =Q(

p
d) where p1, . . . ,pr are distinct ramified

prime ideals. Then β is an associate of
p

d or, when d =−1, an associate of 1+ i .

Proof. Let Od be the ring of algebraic integers in the imaginary quadratic field Q(
p

d).
Let pi = N(pi ). Since pi is ramified, pi is prime and either divides d or equals 2 by
Lemma 3.5. If d ≡ 1 (mod 4), then pi 6= 2. Since each prime pi = N(pi ) = pi p̄i = p2

i and
pi 6= p j when i 6= j , unique factorization gives pi 6= p j .

Because the norm is multiplicative, N(β) = N(p1 · · ·pr ) = p1 · · ·pr . In particular, by
the above, the prime factors of N(β) are contained in the prime factors of d and do not
repeat. Therefore, N(β) is at most 2|d |, or |d | in the case that d ≡ 1 (mod 4).

When d 6≡ 1 (mod 4), we have β= m +n
p

d for some integers m and n. Then N(β) =
m2 +|d |n2 = p1 · · ·pr . Note that n 6= 0 since otherwise m2 would be a nonempty product
of distinct primes, which is impossible. So |d | ≤ N(β) ≤ 2|d |. Because the prime factors of
N(β) are contained in the prime factors of d and 2, N(β) is either |d | or 2|d |. If N(β) = d ,
we must have m = 0, so 〈β〉 = 〈pd〉. For N(β) = 2|d |, we must have n2 = 1 (otherwise N(β)
is too large). Then m2 +|d | = 2|d | implies that |d | = m2. Since d is square-free, d =−1.
Then 〈β〉 = 〈1+ i 〉.

In the case d ≡ 1 (mod 4), a similar analysis may be carried out, but with β = m +
n 1+pd

2 . Again, n 6= 0, so N(β) = (m +n/2)2 + |d |n2/4 ≥ (1+ |d |)/4, since either |n| ≥
2 or |n| = 1 and |m +n/2| ≥ 1/2. The only odd prime less than 4 is 3, so, since (1+
|d |)/4 ≤ N(β) ≤ |d |, we have N(β) = |d | or N(β) = |d |/3. If N(β) = |d |, we know from size
considerations that |n| is at most 2. If n =±2, we must have m =∓1, so we find 〈β〉 = 〈pd〉.
If n = ±1, let k = 2m +n = 2m ±1. Then N(β) = (k2 + |d |)/4 = |d |, so k2 = 3|d |. Since

d is square-free, we must have d = −3 and k = ±3, meaning 〈β〉 =
〈
±3±p−3

2

〉
= 〈p−3〉.

If N(β) = |d |/3, we must have n2 = 1 (again, because otherwise N(β) is too large). Let
k = 2m +n = 2m ±1. Then N(β) = (k2 + |d |)/4 = |d |/3, meaning |d | = 3k2. Since d is

square-free, we have d =−3, in which case the corresponding ideal
〈

1+p−3
2

〉
=O−3 is the

entire ring, and is therefore not a nonempty product of prime ideals.

Thus we have found that there is exactly one principal ideal 〈β〉 in each imaginary
quadratic ring Od satisfying the hypotheses of Lemma 3.6. Figure 1, Figure 2, and
Figure 3 illustrate this ideal for a few values of d . In each diagram, the ring of algebraic
integers forQ(

p
d) is represented by points in the complex plane. The ideal 〈β〉 is shown

with blue + symbols, with the generators as green ∗ symbols. The units of the ring are
shown with magenta × symbols.

The two exceptional cases, Z[i ] and Z
[

1+p−3
2

]
, are shown, along with the ring

Z[
p−2], which is intended to represent the general case.
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Figure 1: Z[i ]
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Figure 2: Z
[

1+p−3
2

]

Theorem 3.7. Let α 6= 0 be an element of a quadratic field K =Q(
p

d) such that there exists

n ∈ Z+ and c ∈Q with αn = c. Then α is a rational multiple of one of 1, i , 1± i , 1±p−3
2 ,

3±p−3
2 , or

p
d.

Proof. In the case of real quadratic fields, the theorem follows from Proposition 3.2.
For imaginary quadratic fields, it suffices to show that the theorem is true for algebraic
integers, since every element of a quadratic field is a rational multiple of an algebraic
integer. In this case, since c is a power of an algebraic integer, it is an algebraic integer. It
is also rational, so c ∈Z.

Let Od be the ring of algebraic integers in the imaginary quadratic field K =Q(
p

d)
in which α is an element. Let a be the largest integer factor of α and let β = α/a. If β
is a unit, we are done, since the units of β are given by Proposition 3.4. Otherwise, by
Lemma 3.3, we know that 〈β〉 factors as p1 · · ·pr , where each pi is a distinct prime ideal
satisfying pi = p̄i . Since a is the largest integer factor of α, pi cannot be a principal ideal
generated by a rational prime and is therefore ramified. Thus 〈β〉 satisfies the conditions
of Lemma 3.6, so β is an associate of

p
d or, in the case that d =−1, an associate of 1+ i .

In summary, 〈α〉 must factor as either 〈a〉, 〈a〉〈pd〉, or 〈a〉〈1+ i 〉, with a an integer.

Thus, α/a is a unit times 1,
p

d , or 1+i . The units of Od are ±1, ±i for d =−1, and ±1±p−3
2

for d =−3. The theorem follows (note that 3±p−3
2 is an associate of

p−3).

In Figure 1, Figure 2, and Figure 3, the points α lying along a black line are exactly the
points that satisfy αn = c for some n ∈Z+ and c ∈Z.

Theorem 3.8 (Generalized Niven’s theorem). Let θ ∈πQ. If tan2θ is rational, then θ is an
integer multiple of π/6 or π/4. The same result holds for sin2θ and cos2θ.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021



8 Niven’s Theorem Using Algebraic Number Theory
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Figure 3: Z[
p−2]

Proof. Suppose tan2θ is rational, where θ = πm/n is a rational multiple of π. Then
tanθ = b

p
d/a, with a,b,d ∈ Z and d > 0 square-free. Let α = a + i b

p
d . We have

α=±r e iπm/n where r =
p

a2 +db2, so αn = (±r )ne iπm = (−1)m(±r )n . Then αn is a real
number and is in O−d and is therefore an integer. By Theorem 3.7, α is a rational number
times one of 1, 1± i , 1±p−3, or 3±p−3. Thus θ is an integer multiple of π/6 or π/4.

This result can be extended to sin and cos using the identity tan2θ+ 1 = sec2θ.
Suppose cos2θ is rational with θ ∈ πQ. Then tan2θ= 1−1/cos2θ is rational, so θ is an
integer multiple of π/6 or π/4. (Note that this argument does not work for θ that are
odd multiples of π/2; however, cos(π/2) = 0 is rational.) The result holds for sin since
sin(π/2−θ) = cosθ.

4 Combinatorial Identities

We end with a discussion of certain combinatorial identities that may be derived from
our result. Specifically, the equations

(1+ i )4 =−4,(
1+p−3

)3 =−8,(
3+p−3

)6 =−1728,

together with the binomial theorem (taking real and imaginary parts of the resulting
sum) provide the following six combinatorial identities:

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021
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(1+ i )4n
2n∑

k=0

(
4n

2k

)
(−1)k = (−4)n

2n−1∑
k=0

(
4n

2k +1

)
(−1)k = 0(

1+p−3
)3n b3n/2c∑

k=0

(
3n

2k

)
(−3)k = (−8)n

d3n/2e−1∑
k=0

(
3n

2k +1

)
(−3)k = 0(

3+p−3
)6n 3n∑

k=0

(
6n

2k

)
(−1)k 36n−k = (−1728)n

3n−1∑
k=0

(
6n

2k +1

)
(−1)k 36n−k−1 = 0

This suggests a general method of deriving combinatorial identities from complex
identities; however, Theorem 3.7 shows that these are essentially the only examples.
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