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Abstract: In this work, the use of a portable Raman spectrometer is evaluated for the 

non-invasive analysis of two types of pre-ignited improvised incendiary devices (IIDs), 

the classic Molotov cocktails and the chemical ignition Molotov cocktails (CIMCs). The 

most common ignitable liquids (ILs) used to make classic Molotov cocktails (gasoline, 

diesel fuel, kerosene and ethanol) were measured in seven different clear and colored 

glass bottles to evaluate if the container features could hamper the Raman 

measurements. The results showed that the portable Raman spectrometer can be 

employed to detect ILs in glass bottles without disturbances. Chemical changes on the 

ILs are produced when they are mixed with acid; therefore, to evaluate the use of the 

portable Raman spectrometer for the analysis of CIMCs required an investigation of how 

time and movement influence the measurements. Thus, two different IL–sulfuric acid 

mixtures commonly used to make CIMCs (gasoline–sulfuric acid and diesel fuel–sulfuric 

acid) were measured over time under static and motion conditions. In spite of the intense 

fluorescence encountered in both CIMCs, it was possible to identify the acid and the 

gasoline for the first hours of the reaction both in the static and motion experiments. 

Concerning the diesel fuel present in the CIMC, it underwent instantaneous chemical 

changes under both measurement conditions, showing high fluorescence that impeded 

its identification. In view of the results achieved, the portable Raman spectrometer can 

be a useful instrument for the rapid, non-invasive and safe analysis of pre-ignited IIDs. 
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1. Introduction 

The improvised incendiary devices (IIDs) are a group of homemade devices adapted to 

cause physical harm to persons, environment, or property by means of fire [1], [2], [3], 

[4]. These devices are easy to make with readily available and cheap compounds. In 

most cases, IIDs consist of one or more ignitable liquids (ILs) (i.e., gasoline, diesel fuel, 

ethanol or kerosene), a container and an ignition source. The most popular IID is the 

classic Molotov cocktail [5], which consist of a glass bottle filled with IL and a wick that 

is lighted just before being hurled. An advanced and more dangerous version of this 

device is the chemical ignition Molotov cocktail (CIMC) [6], [7], [8]. CIMCs are usually 

closed glass bottles containing gasoline or diesel fuel and concentrated sulfuric acid [5], 

[7]. Taped to the bottle, a chlorate salt is wrapped in a folded sheet of paper. When the 

bottle breaks after been thrown at a target, the contact between chlorate salt and sulfuric 

acid produces a strong exothermic reaction that ignites the IL. 

The IIDs samples submitted to the forensic laboratories can be pre-ignited 

samples (i.e., failed or seized devices) or post-ignited samples (i.e., fire debris or 

container fragments). Their analysis may provide useful information contributing to the 

forensic investigation. Nowadays, gas chromatography–mass spectrometry (GC–MS) is 

the technique commonly used to analyze these samples at the laboratory [9]. Recently, 

capillary electrophoresis (CE) with a diode array detector was used to detect anions in 

post-ignited remains of CIMCs [6], [7]. The anions detected provide guidance about the 

initial composition of the CIMC ignition system. However, there is a lack of specific 

methods to confirm the presence of ILs and/or strong acids in pre-ignited IIDs, both in 

the laboratory and on the field, in order to manage the hazards and their associated 

safety measures. For example, the current methodologies to confirm the presence of 

sulfuric acid in CIMCs (i.e., litmus paper or a pH-meter) involve the bottle 

aperture/manipulation exposing the analyst to the acid and hazardous gases (i.e., the 

reaction between sulfuric acid and some ILs generates hydrogen sulfide) [7], [10]. 

Therefore, it would be very useful for laboratory technicians and for the first attendees of 

law enforcement agencies to have fast and non-invasive techniques that can be directly 

used to identify the above mentioned compounds through transparent containers. 

Raman spectroscopy complies with these requirements. Raman spectroscopy 

was employed to analyze several ILs used in IIDs [11], [12], [13], [14], [15], [16]. Quality 

indicators as well as the physicochemical properties of gasoline [11], [12], diesel fuel [13] 

or kerosene [14] were determined using Raman spectroscopy either alone or in 



combination with Attenuated Total Reflection Fourier Transform Infrared spectroscopy 

(ATR-FTIR) or statistical techniques. Other proposed applications of the combined used 

of Raman spectroscopy with chemometrics are the identification of adulterated gasoline 

with kerosene [15], methyl tert-butyl ether (MTBE) and benzene [11], or to measure the 

ethanol proportion in ethanol–gasoline mixtures [16]. However, the use of Raman 

spectroscopy to analyze pre-ignited IIDs was not evaluated to date. 

This article aims to evaluate the use of a portable Raman spectrometer for the 

non-invasive analysis of pre-ignited classic Molotov cocktails and CIMCs. Field portable 

Raman spectrometers are rugged, handheld, lightweight tools that allow users without 

extensive chemistry training to perform rapid raw material verification. In fact, these 

systems have been used to analyze samples of forensic interest such as gasoline, 

explosives or abuse drugs [11], [17], [18]. However, various factors may influence the 

results such as the focalization of the laser beam, the daylight and artificial light sources 

(i.e., neon light), and the color and thickness of the container [19]. In fact, the color of the 

glass represents a challenge due to the fluorescence originated from some surface 

materials [20]. Additionally, it should be considered that chemical modifications are 

produced over time in the gasoline and diesel fuel due the presence of sulfuric acid [8]. 

Therefore, in this work, compounds present in IIDs were measured in different glass 

bottles to assess if the container features hamper the Raman measurements. 

Additionally, two different types of CIMCs were analyzed over time under static and 

motion conditions to investigate how time and movement influence the measurements. 

 

 

2. Materials and methods 

 

2.1. Reagents and containers 

Gasoline 98 and 95 Research Octane Number (RON), and diesel fuel were acquired in 

a local petrol station (Alcalá de Henares, Madrid, Spain). Charcoal starter (trading name: 

barbecue liquid) made of kerosene 100% (v/v) was obtained in a supermarket (Alcalá de 

Henares, Madrid, Spain). Ethanol 96% (v/v) was purchased from Panreac (Barcelona, 

Spain), sulfuric acid of analytical grade 95–98% (m/v) was acquired from Labkem 

(Mataró, Barcelona, Spain), and potassium chlorate and sodium chlorate were 

purchased from Sigma-Aldrich (St. Quentin, Fallavier, France). 



 

Seven clear and colored glass bottles were used as containers for Molotov cocktails and 

CIMCs devices. The type, color and wall thicknesses of the bottles are summarizes in 

Table 1. The wall thickness of the bottle was measured with a hand-held caliper. 

 

Table 1. Types of bottles used. 

Bottle type Glass color Wall thicknesses (mm) 

Tonic water Clear 20 

Mineral water Clear 30 

Sparkling wine Dark blue 22 

Beer Brown 15 

Beer Dark brown 22 

Cough medicine Amber 28 

Beer Green 15 

 

2.2. Instrumentation 

Raman spectra were acquired using a portable CBEX Raman spectrometer (size 

9.14×7.11×3.81 cm3 and 0.333 kg weight) from Bonsai Advanced Technologies 

(Alcobendas, Madrid, Spain) equipped with a 785 nm laser. The laser power was 100 

mW (70 mW at sample) and the measurement range was 400–2300 cm−1. 

 

2.3. Sample preparation and data acquisition 

The reference spectra of gasoline 98 and 95 RON, diesel fuel, kerosene, ethanol, 

chlorate salts, and sulfuric acid were collected in quartz cuvettes that were hold in close 

contact against the Raman spectrometer. Then, the ILs and the sulfuric acid were poured 

in the seven glass bottles and the Raman spectra were measured through the glass, 

placing the Raman spectrometer as close as possible to the wall bottle. Acquisition times 

between 0.6 and 3 s and 8 scans were selected. The measurements were taken under 

illumination (daylight and artificial light) and darkness conditions. 

A mixture of 400 mL gasoline 98 RON and 200 mL sulfuric acid and a mixture of 

400 mL diesel fuel and 200 mL sulfuric acid were prepared in duplicate in clear glass 

bottles (mineral water bottles). Clear bottles were selected in order to easily visualize 



changes in the physical appearance of the mixture. A total of 5 measurement points at 

different heights were set (see Fig. 1). The first two points were set on the lower third of 

the bottle where the sulfuric acid was present. The first point of measurement was taken 

near the bottom of the bottle and the second one some centimeters above. The other 

three points of measurement were set on the two-thirds of the upper part of the bottle, 

where there was IL. The third point of measurement was set near the sulfuric acid, and 

the fourth and the fifth points of measurement some centimeters above, being the fifth 

point of measurement the nearest to the bottleneck. For the static experiments, two of 

the bottles remained motionless until the end of the experiment. They were measured 

for approximately 10.5 days (each 5 min for the first 8 h and each 8 h for the next 245 

h). The second pair of bottles remained under constant motion using an orbital shaker 

GFL 3005 from GFL Gesellschaft für Labortechnik mbH (Burgwedel, Germany) at 200 

rpm. All the bottles remained closed during the measurement period and exposed to 

daylight and artificial light. The measurements were performed each 5 min for the first 

12 h, and after 24 and 48 h at the 5 previously mentioned measurement points. The 

times for the static and dynamic measurements were different because under the 

dynamic conditions chemical changes occurred faster. After every measurement, 

pictures of the bottles were taken. 

 

 

Fig. 1. Scheme of the five points (red arrows) set for the measurement of the CIMCs devices.  

 



2.4. Safety concerns 

Under the experimental conditions applied (785 nm laser, 70 mW), sample burning was 

not observed in any of the samples. Additionally, Harvey et al. analyzed several ILs 

(gasoline, toluene, hexane, acetone, isooctane, diethyl ether and diesel) with a Raman 

spectrometer equipped with a 785 nm laser (300 mW) concluding that the safety risks 

were low [21]. To minimize the risk of laser accidents, especially those involving eye 

injuries laser safety goggles are recommended to use. Chemical resistance gloves to 

avoid the skin contact to the acid should be used. 

 

 

3. Results and discussion 

 

3.1. Analysis of classic Molotov cocktails 

Thirty-five classic Molotov cocktails were prepared in seven different glass bottles using 

gasoline 98 and 95 RON, diesel fuel, kerosene and ethanol. The tip of the Raman 

spectrometer was initially placed in close contact to the wall bottle. Then, it was moved 

back several millimeters to evaluate to which extent the distance between the wall bottle 

and the tip of the Raman spectrometer affected the quality of the spectra obtained. Only 

the measurements taken in close contact produced good spectra. The measurements 

performed under illumination (daylight and artificial light) and darkness conditions 

indicated that both conditions did not affect the spectra obtained. Fig. 2 compares the 

spectra obtained for neat gasoline 95 RON in several glass bottles (clear, blue, green 

and brown) and in a quartz cuvette. The Raman bands present in the 1800–600 cm−1 

region of the gasoline spectrum are predominantly a mixture of C–C skeletal vibrations 

and C–H deformations [12]. The bands at about 1609, 1380, 1207, 1031, 1004, 788 and 

518 cm−1 are attributed to the presence of aromatics such as toluene and xylenes [15]. 

The broad band at about 1450 cm−1 can be attributed to a combination of CH2 scissoring 

and CH3 bending [12], [15]. The broad band at about 741 cm−1 is a combination of 

several bands including, very possibly, the band at 724 cm−1 assigned to C–C symmetric 

stretching of the tert-butyl group of the MTBE, which is an oxygenate additive present in 

gasoline [15]. Although the glass contribute to the spectra with some fluorescence, 

especially in the case of the green bottle, this effect did not hinder the visualization of the 

above mentioned bands, allowing the identification of the gasoline. Also the thickness of 



the bottles (15–30 mm) did not represent a major stumbling. Fig. 3 shows the spectra of 

different ILs in some bottles, proving once again that the identification of the ILs can be 

performed even when they are in colored glass bottles. Ethanol shows bands at 1450 

cm−1 (CH3 and CH2 bending vibrations), 1094 cm−1 (CH3 rock vibrations), 1052 cm−1 

(C–O stretching vibrations), 883 cm−1 (C–C stretching vibrations) and 535 cm−1 (bending 

vibrations of C–O–C) [22]. Gasoline 98 RON, as was expected, shows bands in the same 

positions as gasoline 95 RON (cf. Fig. 2). The most intense bands of diesel fuel are 

present at about 1610, 1450, 1300 and 1004 cm−1. The band at 1610 cm−1 corresponds 

to the ring stretching of benzene derivatives, the band at 1450 cm−1 with C–H 

deformations of CH2 and CH3 groups, the band at 1300 cm−1 is related with twist and 

rock vibration of alkanes and the band at 1004 cm−1 arose from the symmetrical (trigonal) 

ring breathing mode of monocyclic aromatic components in the fuel [13]. Kerosene 

shows several bands in the 1500–450 cm−1 region, being the band at about 1450 cm−1 

the most intense, which is attributed to the CH2 and/or CH3 deformation in n-alkanes 

[14]. 

 

Fig. 2. Raman spectra of gasoline 95 RON in four different glass bottles and in a quartz cuvette. 

(a) Gasoline 95 RON in clear bottle, (b) gasoline 95 RON in blue bottle, (c) gasoline 95 RON in 

green bottle, (d) gasoline 95 RON in brown bottle and (e) gasoline 95 RON in a quartz cuvette. 

Raman conditions: laser at 785 nm, 100 mW, 0.6 s×8 acquisitions (clear and blue bottles) and 3 

s×8 acquisitions (quartz cuvette, and green and brown bottles). Several bands are labeled for 

clarity.  



 

Fig. 3. Raman spectra of (a) ethanol in clear bottle, (b) gasoline 98 RON in green bottle, (c) diesel 

in blue bottle and (d) kerosene in brown bottle. Raman conditions: laser at 785 nm, 100 mW, 2 

s×8 acquisitions (blue bottle), 1 s×8 acquisitions (clear bottle), and 3 s×8 acquisitions (green and 

brown bottle). Several bands are labeled for clarity.  

 

3.2. Analysis of CIMCs 

The mixtures most commonly used to make CIMCs (IL–sulfuric acid) were prepared in 

clear glass bottles. Clear glass bottles were selected to visualize appearance changes 

of the mixtures. Two bottles contained gasoline with sulfuric acid while the other two 

contained diesel fuel with sulfuric acid. Both types of mixtures were measured over time 

under static and motion conditions in order to evaluate the effect of the time and the 

bottle movement on the measurements. Pictures were also taken over time to compare 

the CIMCs appearance with the analytical results. 

Fig. 4 depicts some images of the bottles with gasoline–sulfuric acid and diesel 

fuel–sulfuric acid mixtures under static conditions. The bottle with the gasoline–sulfuric 

acid mixture showed visual changes in the mixture even at an early stage. As expected, 

the organic and the inorganic phases formed a two-phase solution. Approximately 15 

min after the start of the reaction, a black layer was observed at the top of the inorganic 

phase. The black layer grew over time and showed great fluorescence hindering the 

Raman identification of the sulfuric acid. Thus, only the spectra collected at the bottom 



of the bottle (first point of measurement) offered good spectra. Fig. 5a depicts several 

spectra corresponding to the spectrum of the sulfuric acid (spectra taken over time on 

the first point of measurement). Sulfuric acid shows bands at 1363, 1156 and 561 cm−1 

which are respectively attributed to asymmetric and symmetric stretching, and bend 

bending mode of the SO2 group. The band at 912 cm−1 is attributed to symmetric 

stretching of the S[OH(D)] group and the band at 1044 cm−1 is attributed to the  ion [23]. 

After 250 h (~10.5 days), only the spectra collected closer to the bottom of the bottle 

showed weak bands at 1044 and 912 cm−1 due to increasing presence of the black layer. 

The presence of these bands could be a red flag in CIMCs screening, indicating the 

presence of sulfuric acid. Fig. 4 also depicts how the organic phase (top phase) of the 

gasoline–sulfuric acid mixture becomes turbid and darker over time. Additionally, 

blackish-brown droplets gathered on the internal walls of the glass bottle were present 

at top phase from the start, probably derived from insoluble by-products. These droplets 

can be clearly observed in the picture taken after 5 h 30 min. When the laser beam was 

focused on these droplets, fluorescence was observed. Fig. 5b summarizes the gasoline 

spectral changes observed. The spectra collected in the upper part of the organic phase 

clearly show the gasoline spectrum during the first 10 min. However, due to the 

increasing fluorescence, after 40 min only the bands at 1450, 1004 and 741 cm−1 were 

clearly observed. After approximately 2 h, these bands were not visualized anymore due 

to fluorescence. 

 

Fig. 4. Pictures over time of ILs–sulfuric acid mixtures under static conditions (gasoline–acid 

mixture at top and diesel fuel–acid mixture at bottom). The bottles at t=0 min only contains 

gasoline (top) and diesel (bottom). 



 

Fig. 5. Raman spectra over time of a gasoline–sulfuric acid mixture measured under static 

conditions: (a) sulfuric acid and (b) gasoline. Raman conditions: laser at 785 nm, 100 mW, 1 s×8 

acquisitions. Several bands are labeled for clarity. 

 

Concerning the bottle with the diesel fuel–sulfuric acid mixture under static 

measurement conditions, the organic phase became black at the same moment at the 

diesel fuel was poured to the bottle (Fig. 4). This black layer showed high fluorescence 

impeding the identification of the diesel fuel from the beginning. On the other hand, as in 

the case of the gasoline–sulfuric acid mixture, a black layer that grew over time was 

observed at the top of the inorganic phase. Only the sulfuric acid present at the bottom 

of the bottle remained transparent. Measurements taken from this clear layer showed 

the spectrum of the sulfuric acid, even after 29 h. The spectra collected afterwards did 

not allow the identification of sulfuric acid due to the presence of the above mentioned 

black layer. 

Fig. 6 depicts some images of the bottles with gasoline–sulfuric acid and diesel 

fuel–sulfuric acid mixtures under motion conditions. As in the above mentioned case 

(gasoline–sulfuric acid mixture), visual changes can also be observed in the mixture from 

the start. However, it is possible to observe several differences between both 

experiments. First, the constant motion of the bottle results in a turbid inorganic phase 

and a shorter detection time for the sulfuric acid. In fact, the characteristic sulfuric acid 

bands (1156, 1044, 912 and 561 cm−1) were detected for the first 5 h after the start of 

the reaction (see Fig. 7a). Secondly, the organic phase became turbid from the beginning 

and the blackish-brown droplets above mentioned were not observed. The spectra 



collected at the organic phase showed the most intense bands of the gasoline spectrum 

(1450, 1004 and 741 cm−1) and other smaller bands (Fig. 7b) even after 10 h. Then, 

spectra overwhelmed by fluorescence were obtained. The continuous motion of the 

mixture could lead to the incorporation of the droplets into the aqueous phase resulting 

in a longer detection time for the gasoline. 

 

 

Fig. 6. Pictures over time of ILs–sulfuric acid mixtures under motion (gasoline–acid mixture at top 

and diesel fuel–acid mixture at bottom). The bottles at t=0 min only contains gasoline (top) and 

diesel (bottom). 

 

 



Fig. 7. Raman spectra over time of a gasoline–sulfuric acid mixture under motion conditions: (a) 

sulfuric acid and (b) gasoline. Raman conditions: laser at 785 nm, 100 mW, 1 s×8 acquisitions. 

Several bands are labeled for clarity. 

 

In the case of the bottle with the diesel fuel–sulfuric acid mixture under motion, 

as was expected, the organic phase also became black at the same moment both liquids 

contacted (see Fig. 6). The main difference between the diesel fuel–sulfuric acid mixture 

under motion with regard to the same mixture under static conditions was the fact that in 

the motion experiment both inorganic and organic phases became totally black. Thus, 

spectra overwhelmed by fluorescence were obtained in both phases. After approximately 

19 h, the organic phase became transparent. However, the compounds present could 

not being identified due to high fluorescence. 

Finally, it is important to considerer that, apart from the IL and the sulfuric acid, 

the presence of chlorate salts is necessary to ignite the CIMCs. Therefore, in real cases 

it will be necessary to identify these compounds. As an example, Fig. 8 shows the Raman 

spectra of the two chlorate salts most used for the preparation of CIMCs, potassium 

chlorate and sodium chlorate. Potassium chlorate shows bands at 978, 936, 615 and 

490 cm−1 while sodium chlorate was clearly determined by the bands 1028, 987, 938, 

624 and 487 cm−1. 

 

 

Fig. 8. Potassium and sodium chlorate Raman spectra. Raman conditions: laser at 785 nm, 100 

mW, 3 s×8 acquisitions. Several bands are labeled for clarity. 



 

4. Conclusions 

The use of a portable Raman spectrometer (785 nm laser wavelength) for a fast and 

non-invasive analysis of pre-ignited IIDs was evaluated. The measurements taken on 

ILs in different glass bottles showed that the bottle color or the wall thickness (~15–30 

mm) did not impede the identification of the content. Therefore, the portable Raman 

spectrometer used can be employed to detect ILs commonly used to make classical 

Molotov cocktails (gasoline, diesel fuel, ethanol and kerosene). 

The mixtures of IL–sulfuric acid under static and motion conditions showed 

several chemical modifications over time. These modifications led to the production of 

compounds that showed intense fluorescence impeding the identification of the content 

at certain time. Despite this shortcoming, in the gasoline–sulfuric acid mixtures, it is 

possible to identify the acid and the gasoline whether the analysis are carried out for the 

first hours of the reaction and the devices are not exposed to intensive motion. Regarding 

to the diesel–sulfuric acid mixtures, the sulfuric acid only remained clear under static 

conditions allowing its identification for the first hours. However, when the diesel fuel was 

poured in the bottle it became immediately black not allowing its identification even at 

the beginning. 

These findings indicate that portable Raman spectrometers are useful 

instruments to carry out safe and fast analysis of suspected pre-ignited IIDs both in the 

laboratory and in the field. The information obtained with these tools could also assist in 

the decision-making process that first attendees of law enforcement agencies deploy on 

operational level (intelligence serving security and policing issues). However, in CIMCs 

the fluorescence is a limiting factor that should be taken into account. Finally, further 

investigation would be necessary to perform by analyzing other ILs–sulfuric acid mixtures 

and proportions and its use should be evaluated for the analysis of post-ignited samples. 
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