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Abstract 

Context: Advanced Measurement Approach (AMA) has been the umbrella to identify the models used for mod-
eling the capital to cover Operational Risk (Total Operational Value at Risk, OpVaR) in financial institutions in 
developed countries. The Loss Distribution Approach (LDA) has been the most popular model used by interna-
tional banks for OpVaR calculation. However, the operational losses frequently have multivariate dependences 
that are not accounted for in the LDA. This paper applies a Gaussian copula to model the multivariate depend-
ences in operational losses. 

Method: Two models were compared to estimate capital requirement for operational risk. Model (i) is the 
standard LDA model (BCBS 2004). Model (ii) incorporates a multivariate Gaussian copula into the LDA to model 
multivariate dependence between operational losses (severities). This research analyzes an operational loss 
data set, SAS® Operational Risk Global Data (SAS OpRisk Global Data), in order to model operational risk at 
financial institutions in emerging markets between 1990 and 2013. 

Results: The impact of Model (ii) was evaluated on the estimates of the total regulatory capital for operational 
risk and compared with the one predicted by (i). The results confirm the existence of diversification benefit up 
to 33%. 

Conclusions: Modeling explicitly the multivariate dependence between operational losses has a clear impact on 
capital requirement for institutions in emerging markets. The implementation of a Gaussian copula into the LDA 
model provides a sophisticated tool to estimate operational risk capital in emerging markets, as well as the 
possibility for diversification benefit.  

Keywords: operational risk, Loss Distribution Approach (LDA), multivariate copulas, emerging markets 
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1. Introduction 

Modeling capital requirements for operational risk via the Advanced Measurement Approach (AMA) (i.e., total 

Operational Value at Risk, OpVaR) has been widely investigated using data from financial institutions in developed 

countries [1]-[3]. However, the estimation of OpVaR across financial institutions in emerging markets1 has received 

little attention. This paper addresses this gap.  

The Basel Committee on Banking Supervision (BCBS) allows banks to estimate the regulatory capital that covers 

their annual operational risk exposure using their own models via the AMA (Basel II/III Capital Accord 2004/2011). 

Among the AMA models, the Loss Distribution Approach (LDA) has been one of the most popular methods used by 

international banks [1], [2]. Among the eligible variants of the LDA, there is a complex and reliable statistical model 

 
1 We follow the definition provided by Antoine van Agtmael, economist of World Bank, emerging markets are 

rapidly growing economies with rapid industrialization [89]. 
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Resumen 

Contexto: Bajo el Enfoque de Medición Avanzad (AMA) se han identificado los modelos utilizados para modelar 
el capital necesario para cubrir el Riesgo Operacional (Valor Operacional Total del Riesgo, OpVaR) en institucio-
nes financieras de países desarrollados. El Enfoque de Distribución de Pérdida (LDA) ha sido el modelo más 
popular usado por bancos internacionales para calcular el OpVaR. Sin embargo, las pérdidas operacionales sue-
len tener dependencias multivariadas que no son tenidas en cuenta en el LDA. Este artículo aplica una copula 
Gaussiana para modelar las dependencias multivariadas en pérdidas operacionales. 

Método: Se compararon dos modelos para estimar el requerimiento de capital para el riesgo operacional. El 
Modelo (i) es el modelo estándar LDA (BCBS 2004). El Modelo (ii) incorpora una copula Gaussiana al LDA para 
modelar la dependencia multivariada entre pérdidas operacionales (severidades). Para modelar el riesgo ope-
racional en instituciones financieras de mercados emergentes se emplearon datos reales de perdidas operacio-
nales  entre 1990 y 2013 provistas por SAS® Operational Risk Global Data (SAS OpRisk Global Data). 

Resultados: El impacto del Modelo (ii) se evaluó con respecto a los estimados del capital total regulatorio para 
el riesgo operacional y se comparó con el predicho por (i). Los resultados confirman la existencia de un beneficio 
de diversificación de hasta 33 %.  

Conclusiones: Modelar explícitamente la dependencia multivariada entre pérdidas operacionales tiene un claro 
impacto sobre el requerimiento de capital para instituciones financieras en mercados emergentes. La imple-
mentación de la cópula Gaussiana en el modelo LDA provee una herramienta sofisticada para estimar el capital 
de riesgo operacional en mercados emergentes, así como la posibilidad de obtener  beneficio por diversifica-
ción.  

Palabras clave: riesgo operativo, Modelo de Distribución de Pérdidas Agregadas (LDA), cópulas multivariadas, 
mercados emergentes 

Agradecimientos: A SAS® por proporcionar la base de datos con la que se realizó este estudio. 
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widely used to model dependence: copula models. The modeling of dependences between losses and the quanti-

fication of the capital to be held for covering operational risk exposure have been essential issues for both financial 

institutions and regulators over the past two decades [2], [4]-[7].  

The importance of understanding, measuring, and modeling operational risk at the multivariate level is given by 

the high dimensions involved when constructing regulatory capital. Therefore, the main objective of this paper is 

to model the multivariate dependence between losses (i.e., severities) using a Gaussian copula and to calculate the 

capital to be held to cover operational risk exposure at financial institutions in emerging markets. The motivation 

for looking at these markets is because they are assuming an increasingly prominent position in global economy 

[8]-[11]. The emerging markets considered in this research are those established by the MSCI Global Investable 

Market Indexes’ (GIMI) Country Classification methodology [12], which are: Brazil, Chile, China, Colombia, Czech 

Republic, Egypt, Greece, Hungary, India , Indonesia, Malaysia, Mexico, Pakistan, Peru, the Philippines, Poland, Qa-

tar, Russia, South Africa, South Korea, Taiwan, Thailand, Turkey, and the United Arab Emirates. 

2. Literature review 

The banking industry has had significant losses due to operational risk over the last three decades. Large-scale 

financial failures such as Barings, Orange County, Allied Irish Banks, Enron, and Banco Popular Español were caused 

for the most widely known sort of operational loss: unauthorized trading, breakdowns of internal controls, meth-

ods, and systems failures, etc. [13]-[17]. Examples of financial failures caused by operational risk are also significant 

in emerging markets. For instance, the Inverlink financial group in Chile reported an operational loss of USD 178 

million in 2003, which was caused by lost documents and privileged information [18]. Brazil is the country with the 

highest cybernetics threats and attacks on financial institutions (17% of total daily threats) [19]. In Mexico, the 

number of credit card frauds was five times greater than Europe in 2018, with financial losses close to USD 250 

million [20]. The National Bank of Punjab in India was accused of internal fraud for USD 2.000 million [21]. In Ma-

laysia, 3.533 fraud cases in online operations were reported, causing losses amounting to USD 44 million in 2019 

[22].  

Although financial institutions in both developed and developing countries are exposed to operational risk, only 

the former are they obligated to comply with the guidelines of the Basel Committee on Banking Supervision (BCBS) 

II/III, as those guidelines are not mandatory for financial institutions in emerging markets [23]. Therefore, there is 

a clear gap in the adoption of regulatory guidelines by financial institutions in said markets.  

BCBS II allows banks and financial institutions to estimate the capital requirements to cover operational risk expo-

sure (OpVaR) using their own mathematical models, such as the Advanced Measurement Approach (AMA). Within 

the AMA approach, the Loss Distribution Approach (LDA) has become the most popular and convenient method to 

estimate the OpVaR [24]-[26]. The LDA convolutes the distribution of frequencies and distribution of severities 

(operational losses) into the loss aggregate distribution. There is an extensive literature in this model, and some 

examples are published in [2], [7], [27]-[30]. However, the LDA standard model suggested by BCBS II has some 
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problems, namely: (1) the model may over-estimate the OpVaR because the total potential losses are calculated 

as the sum of individual losses for every risk [24]; (2) the model assumes that severities are random variables with 

perfect positive dependence (however, substantial literature [2], [6], [31], [32] has questioned such assumption); 

and (3) the model does not include a dependence analysis between operational losses, which produces an overes-

timated and conservative OpVaR calculation [33], [34].  

As a result, the study of dependences between operational losses has received greater attention in the last two 

decades. Some studies found OpVaR reductions when using copulas for modeling dependences. [35] showed 

OpVaR reductions between 20 and 29% using t copula in three dimensions. Other authors found similar reductions 

using Gaussian copulas. [1] and [33] obtained OpVaR reductions between 30 and 50%, while [36] found reductions 

between 7 and 11% using Gaussian, t, and Gumbel copulas.  

However, most of the research has been focused on developed countries, and, as for emerging markets, the liter-

ature is scarce. [23] studied the potential impact of implementing BCBS in emerging markets but did not include 

any modeling for capital estimation. [37] and [38] used copulas for estimating the value at risk in the stock market 

in Brazil and Mexico [37] and Colombia [38], but the OpVaR calculation was out of scope. Conceptual models have 

studied how to manage operational risk and its implication on emerging markets, and studies have discussed the 

scope of the existing methods have not addressed the mathematical estimation [39], [40]. Other researchers stud-

ied AMA models like LDA in emerging markets but did not include the modeling of the dependences between 

operational risks [26], [41], [42]. 

Table 1 shows the literature review carried out in this work. 58 bibliographic references of related topics were 

considered. 88% (52 references) were based on the financial sector, and 81% (48 references) had information on 

the calculation of OpVaR, that is, they focused their studies on operational risk analysis. It is clear that only 29 

references (49%) used Monte Carlo simulation in their calculations, and 25 references (42%) applied copula mod-

els. Out of the 59 articles related to the subject, only 38% (23 articles) focused on emerging markets. 

Table I. Summary of the literature review 
Author FS OpVaR AMA LDA MCS C EM Author FS OpVaR AMA LDA MCS C EM 

[43] x x x  x x  [1] x x x x x   

[44] x x      [45]  x x x x   

[31] x x x x x x  [46] x x x x x x  

[47] x x   x  x [41] x x x x x  x 

[28] x x      [48]  x     x 

[6] x     x  [49] x x  x x x  

[50] x x  x x x  [33] x x    x  

[29] x x x x x   [51] x x x x x  x 

[52] x x x    x [53] x x    x  

[24] x x x x x   [34] x x      

[2] x x x   x  [54] x     x  

[55] x x  x x   [56]  x x  x   

[23] x x     x [42] x x  x x   

[57] x x      [58]  x x x   x 

[59] x x x x   x [60] x x x  x x  

[35] x x x x x x  [61]  x  x x   

[37] x x    x x [62] x x x x   x 
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Author FS OpVaR AMA LDA MCS C EM Author FS OpVaR AMA LDA MCS C EM 

[63] x x x x x x  [64] x x     x 

[32] x x x x x x  [7] x x x x x x  

[25] x x x x x  x [65] x x     x 

[66] x    x x  [67] x x x x x x  

[68] x x     x [3] x x x     

[69] x x x x x  x [70] x     x x 

[71] x x x x   x [72] x     x x 

[73] x x   x x  [74] x     x x 

[26] x x x x x  x [75]  x x     

[76] x     x  [77] x     x x 

[78] x x  x x   [79] x     x x 

[80] x x x x x           

*FS: Financial Sector, OpVaR: Total Operational Value at Risk, AMA: Advanced Measurement Approach, LDA: Loss Distribution Approach, MCS: 

Monte Carlo simulation, C: copula, EM: emerging markets. 

 

As a conclusion, the literature on operational risk applied to emerging markets is scarce. Moreover, we could not 

find literature that address the effect of modeling multivariate dependence between operational losses in capital 

risk estimation. This paper addresses this gap. 

3. Methodology 

 
The structure of this research is outlined in Fig. 1, which facilitates the understanding of the flow throughout dis-

tinct phases and steps. In the first phase, the Standard Model of Loss Distribution Approach (LDA) (Basel II 2004) is 

implemented; in the second phase, the parameters of the Gaussian multivariate copula were modeled; in the third 

phase, the modeling of dependencies between severities was included in the LDA standard model; and finally, in 

the fourth phase, the capital requirement for operational risk and the diversification benefit were estimated for 

each model. The diversification benefit is defined as the OpVaR reduction when a copula is used [35]. This paper 

adds value in the second and third phase, where the Gaussian copula is introduced into the standard LDA model. 

This model was applied to OpRisk Global Data. This database is a worldwide repository that records operational 

loss classification, total loss, occurrence date, country of origin, and type of industry. This paper only considered 

losses that occurred in emerging markets.  

 

Fig. 1. Proposed methodological structure 
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3.1. Phase 1: the LDA model 
 
LDA is the most applied and recommended model in BCBS [4], [29], [71], [80]. In the LDA model, losses are grouped 

into eight business lines (BL) and seven event types or risks (ET), which produces a 56-cell matrix (BL/ET). Table II 

shows the BL/EL matrix structure, including the detail of BL and ET.  

 
Table II. (a) Basel risk matrix of business lines (BL) and event types (ET); (b) Basel II business lines (BL) and Basel II event types 

(ET) - adapted from [4] 

 
 

(a) 

BL/ET 

ET (1) ET (2)  … ET 

(i) 

 … ET (7) 

BL (1)         

BL (2)         

         

:  Annual losses to be predicted over a one-year 

time horizon 
BL (j)  

:         

         

BL (8)         

 

(b) j Business line, 

BL(j) 

i Event Type, ET(i) 

1 Corporate fi-
nance 

1 Internal fraud 

2 Trading and 
sales 

2 External fraud 

3 Retail banking 3 Employment practices 
and workplace safety 

4 Commercial 
banking 

4 Clients, products, and 
business practices 

5 Payment and 
settlement 

5 Damage to physical as-
sets 

6 Agency services 6 Business disruption and 
system failures 

7 Asset manage-
ment 

7 Execution, delivery, and 
process management  

8 Retail broker-
age 

  

 

The LDA model comprises three main steps [4]:  

1. Modeling frequencies: The frequency is a random variable 𝑁𝑗 , which represents the number of loss events 

in a time window (frequently a year) for a BL type j. 𝑁𝑗  is usually modeled using discrete distributions as 

Poisson or negative binomial [28], [35], [50].  

2. Modeling severities: Severity is a random variable 𝑋𝑘𝑗, which represents the total amount of loss in the k 

loss event in the BL j. 𝑋𝑘𝑗 is usually modeled using continuous distributions such as exponential, gamma, 

inverse Gaussian, lognormal, Pareto, generalized Pareto distribution, and Weibull. LDA assumes that 𝑋𝑘𝑗  

are independent of 𝑁𝑗 .  

3. Modeling the distribution of total aggregate losses: The distribution of total aggregate losses 𝐹(𝐿𝑗)  is a 

cumulative density function (CDF) of the random loss 𝐿𝑗  in every BL j. 𝐿𝑗  corresponds to the following 

expression: 

 

 𝐿𝑗 = ∑ 𝑋𝑘𝑗

𝑁𝑗 

𝑘=1

  (1) 
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The analytical representation of 𝐹(𝐿𝑗) is difficult to determine. Therefore, it can be obtained by combining fre-

quency and severity distributions via Monte Carlo simulation (MCS), which is widely accepted in the literature 

[38], [81], [82]. This paper applies MCS to obtain 𝐹(𝐿𝑗). The algorithm to develop a MCS in order to obtain 𝐹(𝐿𝑗) 

can be found in [45]. 

 

Then, a risk measure such as value-at-risk (VaR) is calculated by taking the percentile of 𝐿𝑗  at the desired confi-

dence level, for example, 𝛼 = 99,9%, for a particular business line j. Once the VaRs for each business line are 

estimated, the total operational risk exposure (OpVaR) is computed as 

𝑂𝑝𝑉𝑎𝑅 = ∑ 𝑉𝑎𝑅𝛼(𝐿𝑗)

8

𝑗=1

 (2) 

where 𝛼 is the confidence level. 

Model (2) is the standard approach suggested by the Basel II Accord, which works under the assumption of perfect 

positive dependence. 

3.2. Phase 2: Gaussian copula parameters 
 
Modeling the dependence between distribution functions using copulas allows decomposing joint probability dis-

tributions in their marginals and then joining them with a copula function [83]. To obtain a copula from two or 

more random variables, the marginal distributions should be extracted following the procedure proposed by [84] 

(illustrated for a bivariate copula). Next, a brief description of this procedure is described. Taking two probability 

distributions in a function of two variables 𝐹 (𝑥, 𝑦) with functions of marginal distribution 𝑢 = 𝑔(𝑥), 𝑣 = ℎ(𝑦), g 

and h determine the shape of the distribution 𝐹 (𝑥, 𝑦). Isolating the copula function implies vanishing the effect of 

g and h over the 𝐹 (𝑥, 𝑦). To this effect, the inverse functions 𝑔−1and ℎ−1 are first obtained from 𝑥 = 𝑔−1(𝑢) and 

𝑦 = ℎ−1(𝑣). u and v are the probability for each value on x and y, which means that u and v are distributed in a 

uniform way between [0, 1]. The next step is to obtain 𝐹 (𝑥, 𝑦) = 𝐹 (𝑔−1(𝑢), ℎ−1(𝑣)), which means a copula 

𝐶(𝑢, 𝑣). According to [85], every function F with marginals 𝐹1, … , 𝐹𝑟 could be written as 𝐹(𝑥1, … , 𝑥𝑟) =

𝐶(𝐹1(𝑥1), … , 𝐹𝑟(𝑥𝑟)). Consequently, any copula C could be used to join a set of univariate distribution functions 

like this: 𝐶(𝒖) = 𝐶(𝑢1, … , 𝑢𝑟) = 𝐹(𝐹1
−1(𝑢1), … , 𝐹𝑟

−1(𝑢𝑟)) .  

Following [7] , the r-dimensional Gaussian copula takes the form of  

 𝐶𝑃
𝐺(𝒖) = Φ𝑃

𝑟 (Φ−1(𝑢1), … , Φ−1(𝑢𝑟)) (3) 

where Φ−1 is the inverse of a standard Gaussian univariate CDF, and Φ𝑃
𝑟  is the standardised multivariate Gaussian 

distribution function with a 𝑃 correlation matrix. Thus, the parameter that requires to be estimated for the Gauss-

ian copula is 𝑃. See [86] and  [87]for more information about the properties of the Gaussian copula.  
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3.3. Phase 3: Modelling LDA using the Gaussian Copula 
 

This paper follows [51] to assess the OpVaR when dependence is involved using a Gaussian copula (see the afore-

mentioned reference for details on the algorithm). The algorithm is summarised as follows. 

Algorithm: LDA using Gaussian copulas 

i. Generate a multivariate random uniform vector 𝑼 with marginals which follows a uniform distribution 

between [0, 1] for the specific copula C. C has a CDF called 𝐹𝐶 , and the severity of the BL type j has a 

CDF 𝐹(𝑿𝑗). Then 𝑼𝑗  is calculated as follows: 

𝑼𝑗 = 𝐹𝐶 (𝐹(𝑿𝑗)) for every 𝑗 = 1, … , 8  

ii. Obtain a loss scenario 𝑙𝑠𝑗
′  for every BL. The 𝑙𝑠𝑗

′  is obtained from the inverse of 𝑼𝑗  with the cumulative 

distribution function 𝐹(𝐿𝑗) calculated in Equation (1).  

𝐹(𝐿𝑗)
−1

(𝑼𝑗) = 𝑙𝑠𝑗
′  for every 𝑗 = 1, … , 8  

iii. Obtain a scenario for the total loss 𝑙𝑠
′ , adding all de 𝑙𝑠𝑗

′  in each j, as follows: 

𝑙𝑠
′ = ∑ 𝑙𝑠𝑗

′

8

𝑗=1

   

iv. Repeat the three previous steps K times, for example K=100.000. 

3.4. OpVaR and diversification benefit calculation. 
 
The OpVaR estimation when multivariate dependence is explicitly included (in this case, by implementing a Gauss-

ian copula on the LDA) is calculated as follows: 

 𝑂𝑝𝑉𝑎𝑅𝛼(𝐿) = 𝑉𝑎𝑅𝛼 (∑ 𝑙𝑠𝑗
′

8

𝑗=1

) = 𝑉𝑎𝑅𝛼(𝑙𝑠
′ )  (4) 

To quantify the diversification benefit, the measure proposed by [88] is adopted here. The diversification benefit 

is then calculated as the percentage of variation comparing Eqs. (2) and (4), as follows:  

 𝐷𝛼 =
𝑂𝑝𝑉𝑎𝑅𝛼 (∑ 𝑙𝑠𝑗

′8
𝑗=1 ) − ∑ 𝑉𝑎𝑅𝛼(𝐿𝑗)8

𝑗=1

∑ 𝑉𝑎𝑅𝛼(𝐿𝑗)8
𝑗=1

 (5) 

A diversification benefit would imply that high quantiles of the total annual loss distribution would be less than the 

sum of the corresponding quantiles of the annual loss distribution from each category. In other words, there is a 

diversification benefit if the VaR of the total loss (Gaussian copula model) is smaller than the sum of the individual 

VaR (LDA standard model). 

4. Data 
This paper analyzes the SAS® Operational Risk Global Data loss dataset (SAS OpRisk Global Data). The data contains 
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over 29.000 operational losses greater than USD 100.000 over the period between 1900 and 2013 for firms located 

in emerging markets (Brazil, Chile, China, Colombia, Czech Republic, Egypt, Greece, Hungary, India, Indonesia, Ma-

laysia, Mexico, Pakistan, Peru, the Philippines, Poland, Qatar, Russia, South Africa, South Korea, Taiwan, Thailand, 

Turkey, and the United Arab Emirates). The data was filtered by selecting the NAICS code 52 (financial sector), and 

the business lines-event types included in Table II. The filtered data has 1.320 registers with a total loss value of 

USD 85.000 million. Fig. 2a shows the total frequency and severity by region. The highest total value of losses and 

the highest number of losses are in Asia. A small quantity of frequencies was reported in Europe, America, and 

Africa. Fig. 2b illustrates the annual total losses in thousands of million USD as well as the frequency. It is clear that 

the total number of losses increased in 2009 and then declined. The sharp increase was due to the global financial 

crisis.  

 
  

(a) (b) 

Fig. 2. (a) Registers by region; (b) annually aggregated number of operational risk events and total losses 

Table III shows the total frequency and total losses by business lines and event types. Table III indicates that most 

of the risk events come from the intersection of the business line retail banking with the internal and external fraud 

events (20,23 and 17,35% of the total risk events). Such behavior indicates that fraud events are the most common 

operative risk events in emerging markets. It is observed that internal fraud in retail banking has the greatest im-

pact on total losses (USD 27.200 million), followed by clients, products, and business practices in retail banking 

(USD 21.212 million). Such behavior indicates that the total losses produced by operational risk in emerging mar-

kets stem mainly from fraud or failures in business practices.  

Table III. Matrix of frequency and total losses by business lines and event types (from SAS® OpRisk Global Data) 

 por 

 

Internal fraud 
External 

fraud 

Employ-
ment prac-
tices and 

workplace 
safety 

Clients, prod-
ucts, and busi-
ness practices 

Damage to 
physical as-

sets 

Business 
disruption 

and system 
failures 

Execution, 
delivery, and 

process 
manage-

ment  

Total 

Business 
Lines 

F S F S F S F S F S F S F S F S 

Corporate 
finance 

 7   404       9   314         16   718  

Trading and 
sales 

 8   708   1   0     21   1.027       1   19   31   1.755  

Retail Bank-
ing 

 267   15.409   229   1.269   4   272   108   21.212   
19  

 238   1   0   42   38   670   38.439  

Commercial 
banking 

 203   27.200   124   3.480     72   7.821   7   1.616   2   20   6   2   414   40.139  
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Internal fraud 
External 

fraud 

Employ-
ment prac-
tices and 

workplace 
safety 

Clients, prod-
ucts, and busi-
ness practices 

Damage to 
physical as-

sets 

Business 
disruption 

and system 
failures 

Execution, 
delivery, and 

process 
manage-

ment  

Total 

Business 
Lines 

F S F S F S F S F S F S F S F S 

Payment 
and settle-
ment 

 4   369   3   80     34   54     1   0   1   6   43   510  

Agency ser-
vices 

 3   24   1   11     1   54         5   90  

Asset man-
agement 

 8   510   1   5     7   105       1   2   17   621  

Retail bro-
kerage 

 14   774   1   8   1   0   16   279     1   3   1   0   34   1.065  

Corporate 
finance 

 20   430   11   319     58   1.655     1   125     90   2.528  

Total 
 534   45.828   371   5.173   5   272  326   32.521   

26  
 1.854   6   147   52   68   1.320   85.864  

*F: frequency (number of losses), S: severities of total losses (million US dollars) 

5. Gaussian copula parameters 

 
Table IV shows the parametric distributions and the parameters that fist best the distribution of frequencies and 

severities, respectively.  

Table IV. Results of the fitting process for event frequencies and severities (from SAS® OpRisk Global Data) 

Business lines 

Distribution of frequencies  Distribution of severities  

Discrete distribu-
tion 

Parameters Continuous distribu-
tion 

Parameters 

Lambda R P Theta Tau 

Corporate finance Poisson 1.6      Weibull 5,66539 2,65956 

Trading and sales Poisson 2,81818   Weibull 6,90889 3,86966 

Retail Banking Negative Binomial    0,6949  0.02439 Gamma 0,62002 12,40628 

Commercial banking Negative Binomial   1,1201  0.0542  Weibull 9,79786 9,45488 

Payment and settle-
ment 

Negative Binomial    0,8026 0.1438 Weibull 5,25432 2,61307 

Agency services Poisson 1,7   Weibull 5,49748 3,03618 

Asset management Poisson 2,125     Weibull 5,16663 2,00892 

Retail brokerage Negative Binomial   1,2941 0,1675 Weibull 7,19216 5,07609 
  

 

As it was explained in section 3, the total aggregated losses per business line is obtained using MCS, where the 

distribution of frequencies (discrete distributions) and distribution of severities (continuous distribution) are com-

bined. Fig. 3, which shows the total aggregated losses for the business lines payment and settlement, illustrates 

the typical behavior of the distribution of aggregated operational losses, where high losses have a low probability 

of occurrence, and small losses have a high probability. The aggregated distribution in Fig. 3 was obtained after 

100.000 iterations. 
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Fig. 3. Total aggregate losses distribution, business line payment and settlement 

 

After modeling the distribution of total aggregate losses for each business lines, the inputs for the standard LDA 

model are completed, and the parameters of the Gaussian copula are calculated. Table V shows the parameters 

for the Gaussian copula, the correlation matrix P. Correlation values under 0,3 indicate a low correlation, and values 

higher than 0,5 indicate a high correlation.  

 

Table V. Results of the fitting process for event frequencies and severities (from SAS® OpRisk Global Data) 

  

Corporate  
finance 

Trading  
and sales 

Retail  
Banking 

Commercial  
Banking 

Payment and  
Settlement 

Agency  
services 

Asset  
management 

Corporate finance 
0,06  0,49  0,22  0,53  0,42  0,59  0,49  

Trading and sales 
  0,50  0,51  0,24  0,44  0,03  0,60  

Retail banking     0,54  0,26  0,39  0,33  0,72  

Commercial banking       0,37  0,30  -0,02  0,50  

Payment and settle-
ment         0,47  0,51  0,53  

Agency services           0,24  0,51  

Asset management             0,32  

 
Positive correlations represent direct correlation, and negative values indicate inverse correlation.  

6. Results 

 
Table VI and Fig. 4 show the estimation of the OpVaR using the two discussed models: (i) estimated capital require-

ments for operational risk using the standard LDA model (BCBS 2004) model; (ii) the multivariate analysis of de-

pendences between operational losses (severities) incorporated into the LDA using the multivariate Gaussian cop-

ula.  
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Table VI. OpVaR – Standard LDA and Gaussian copula (from SAS® OpRisk Global Data) al por riesgo operativo OpVaR 

bajo el modelo LDA +  

 90,0% 95,0% 99,0% 99,5% 99,9% 

Standard LDA-OpVaR 1.199,76 1.577,11 2.478,84 2.854,11 3.706,22 

Gaussian copula OpVaR 805,98 1.049,80 1.635,80 1.888,70 2.479,70 
*Data expressed in natural logarithm of million US dollars. 

 

 

Fig. 4. Estimated OpVaR  

From Table VI and Fig. 4, it is clear that modeling multivariate dependence across business lines reduces the capital 

requirement that banks should allocate to cover operational risk exposure. Fig. 4 also shows a sharp capital increase 

between the 99,5 and 99,9% percentiles for both models. Hence, the OpVaR capital difference between the Gauss-

ian copula model and the standard LDA Basel model are more noticeable.  

 

Finally, Fig. 5 shows the diversification benefit obtained from the application of the Gaussian copula model. Since 

the values presented in Fig. 5 are negative, the existence of the diversification benefit is corroborated. Therefore, 

the incorporation of dependency modeling using a Gaussian multivariate copula in the LDA standard model pro-

vides a significant reduction in capital requirement for operational risk in the financial institutions of emerging 

markets in comparison with the capital for operational risk estimated under the standard LDA model. 

 

Fig. 5. Diversification benefit 
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Conclusions 

The main contribution of this paper is the empirical application of the modeling of multivariate dependencies be-

tween operational losses (severities) using the multivariate Gaussian copula in the estimation of operational risk 

capital under the Advanced Measurement Approach (AMA) in the financial institutions of emerging markets. This 

research presents empirical evidence in favor of a more sophisticated technique to estimate capital requirement 

for operational risk. Thus, tools are provided for decision-making [69] and for the management of operational risk 

in financial entities from emerging markets. 

By incorporating the multivariate modeling of the dependency in the calculation of the OpVaR in financial entities 

of emerging markets, a reduction in the capital charge for operational risk was obtained (by up to 34%) in the 

model that uses the Gaussian copula. Therefore, this is an important result in terms of the capital required by the 

financial institution that adopts this approach. 

This paper makes valuable contributions to academia, since the presented results enhance the understanding of 

modeling operational risk in emerging markets, and researchers can use our results as a benchmark or reference 

framework. The results of this research are an important contribution not only for the academic community, but 

also for the financial entities of emerging markets, policy makers, and regulators, as it provides evidence to stride 

towards compliance with international standards. 
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