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by Longtu Zhang

Logographic and alphabetic languages (e.g., Chinese vs. English) have different

writing systems linguistically. Languages of the same writing system share more

similarities, which can facilitate natural language processing tasks such as neural

machine translation (NMT). This paper takes advantage of logographic characters

in Chinese and Japanese by decomposing them into smaller units, thus more op-

timally utilizing the shared information in the training of NMT systems in both

encoding and decoding processes. Experiments show that the proposed method can

improve the NMT performance of both “logographic” language pairs (JA–ZH) and

“logographic–alphabetic” (JA–EN and ZH–EN) language pairs in both supervised

and unsupervised NMT systems and finer decomposition granularities generally
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leads to better performance. The findings suggest that finer granularity data with

a higher portion of shared tokens (share token rate) and smaller vocabulary size

can facilitate both encoding and decoding process in NMT training on the whole

and facilitate each process individually. Meanwhile, longer sequence length can

be a significant counter factor in training, and special multi-layer positional em-

bedding (MPE) is introduced for Transformer NMT systems. We argue that a

higher level of information sharing in the training data is the main reason for the

improvements.



vii

Acknowledgements
First of all, I would like to thank Professor Mamoru Komachi for his lead, guidance,

and support for these four years. Without him, it is not possible for me to start

my Ph.D. journey from a linguistic background and find my research interests that

combined my past study experience and the new area of artificial intelligence and

natural language processing. Especially during those days when I had to absorb so

much new knowledge that I was not at all familiar with, his encouragements were

powerful and had strengthened my confidence and resolution. Professor Komachi

is one of the smartest people I have worked with, and his knowledge and attitude

to research and life will always influence me in future study and career.

Moreover, I would like to thank my classmates: Tomoyuki Kajiwara, Yui Suzuki,

Aizhan Imankulova, Masahiro Kaneko, Zhousi Chen, Yuting Zhao, Tosho Hirasawa,

and many others I can not include here. All of them formed an excellent learning

atmosphere in the lab, and I really appreciated it. It would not be possible for

me to continue my learning and researching without the discussions and help from

them.

Finally, I would like to thank my wife, my parents, and all my family members for

their generous support during my Ph.D. years. I sacrificed so much for this, and I

owe them a lot.





ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Language and Translation . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 History of Machine Translation . . . . . . . . . . . . . . . . . . . . 2

1.3 Current Research and Contributions . . . . . . . . . . . . . . . . . 4

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 11

2.1 Overview of NMT Tasks . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Formulation of NMT Tasks . . . . . . . . . . . . . . . . . . . . . . 13



x

2.3 Leveraging Data in NMT Training . . . . . . . . . . . . . . . . . . 14

2.3.1 Curriculum Learning . . . . . . . . . . . . . . . . . . . . . . 15

Batching Curriculum . . . . . . . . . . . . . . . . . . . . . . 15

Sampling Curriculum . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Sub-word Segmentation . . . . . . . . . . . . . . . . . . . . 17

BPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 NMT Models in General . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 LSTM-based Models . . . . . . . . . . . . . . . . . . . . . . 20

RNNSearch . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

GNMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Transformer Models . . . . . . . . . . . . . . . . . . . . . . 23

2.4.3 Other Non-auto-regressive Models . . . . . . . . . . . . . . 28

Convolutional NMT Models . . . . . . . . . . . . . . . . . . 28

Levenshtein Transformer Models . . . . . . . . . . . . . . . 28

2.5 Unsupervised NMT . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Features of Logographic Languages . . . . . . . . . . . . . . . . . . 35

2.7.1 Two Writing Systems . . . . . . . . . . . . . . . . . . . . . . 35

2.7.2 The Decomposibility of Logographic Characters . . . . . . . 35

3 Method 37

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 NMT Models in this Thesis . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 GNMT model . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Transformer model . . . . . . . . . . . . . . . . . . . . . . . 41



xi

3.2.3 UNMT Model . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Models and Training Hyperparameters . . . . . . . . . . . . . . . . 43

3.4 The Composition and Decomposition of Logographic Characters . . 44

4 Experimental Settings 51

4.1 NMT between Logographic Languages . . . . . . . . . . . . . . . . 51

4.2 UNMT between Logographic Languages . . . . . . . . . . . . . . . 52

4.3 Controlling Shared Tokens . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Experiments and Expected Results . . . . . . . . . . . . . . . . . . 56

4.4.1 NMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 UNMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Control Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Results 59

5.1 NMT between Logographic Language Pairs . . . . . . . . . . . . . 59

5.2 NMT between Logographic and Alphabetic Language Pairs . . . . . 61

5.3 UNMT between Logographic Language Pairs . . . . . . . . . . . . . 62

5.3.1 Sub-character Level UNMT . . . . . . . . . . . . . . . . . . 62

5.3.2 UNMT with Different Share Token Rate . . . . . . . . . . . 62

6 Discussions 65

6.1 Model Trained on Finer, Sub-character Level Data Performed Better 65

6.2 Higher Level of Information Sharing in Finer Granularity Data . . . 68

6.3 Orders within Sub-character Sequence can be Mostly Learned . . . 69

6.4 Character-mapping and Kana Decomposition . . . . . . . . . . . . 70

6.5 IDCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



xii

6.6 Shared Information and Proportion of Shared Tokens in UNMT . . 71

6.7 Translation Quality in UNMT . . . . . . . . . . . . . . . . . . . . . 73

7 Conclusion 77

7.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A List of Publications 79

Bibliography 81



xiii

List of Figures

2.1 The structure of the RNNSearch models using LSTM network. . . . 22

2.2 The structure of GNMT model. The first two layers in the encoder

are forward and backward LSTM layers. . . . . . . . . . . . . . . . 24

2.3 The structure of Transformer network. . . . . . . . . . . . . . . . . 25

2.4 The structure of convolutional NMT network. . . . . . . . . . . . . 29

2.5 The structure of levenshtein Transformer network. . . . . . . . . . . 30

2.6 The structure of unsupervised neural machine translation models. . 32

3.1 Extra positional embedding for sub-character sequence of “风景”. . 42





xv

List of Tables

2.1 WMT corpus sizes. The Chinese (zh) data is tokenized by jieba

tokenizer with default dictionary; the rest of the data are tokenized

by SacreMoses tokenizer. A trend of increasing vocabulary size can

be observed since more data is added through the years, especially

when datasets like WikiTitles is added which contains a lot of

unique vocabularies. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Composition of CJK Characters. Meanings and pronunciations are

given based on simplified Chinese . . . . . . . . . . . . . . . . . . . 36

3.1 Different Granularities of Alphabetic and Logographic Text in ASPEC–

JE Corpus. AWL = “average word length”; ASL = “average sen-

tence length”; MSL = “max sentence length.” . . . . . . . . . . . . 38

3.2 CJK Strokes and Ideographic Description Characters (IDC) . . . . 44

3.3 Examples of sub-character decomposition in ASPEC–JC corpus . . 46

3.4 Vocabulary–frequency graph of English, Japanese data of different

granularities in ASPEC–JE corpus. . . . . . . . . . . . . . . . . . . 48

4.1 Statistics of ASPEC–JC corpus. . . . . . . . . . . . . . . . . . . . . 53

4.2 The details of Japanese–English dataset (ASPEC–JE). . . . . . . . 54



xvi

4.3 The details of Chinese–English dataset (UN corpus). . . . . . . . . 54

5.1 BLEU scores of NMT models using ASPEC–JC data. . . . . . . . . 60

5.2 BLEU scores of NMT models of JA–EN and ZH–EN data. All data

are tokenized by BPE model with vocabulary size of 32, 000. . . . . 61

5.3 The BLEU scores of UNMT model under different granularities. . . 62

5.4 The BLEU scores of different token sharing rate on test set. . . . . 62

6.1 Information sharing of different granularity data of ASPEC–JC corpus. 68

6.2 Performance of Transformer models with/without MPE. BLEU score

reported on ASPEC–JC corpus. . . . . . . . . . . . . . . . . . . . . 69

6.3 BLEU scores (∗ for statistically significant score against baseline

at p < 0.0001) of UNMT (larger fonts) and supervised NMT sys-

tems (Zhang and Komachi, 2018) (smaller fonts in brackets) on test

sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Translation examples from GNMT models. . . . . . . . . . . . . . . 72

6.5 Translation examples from 3 unsupervised NMT models in 6 trans-

lation directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.6 Translation examples from 3 unsupervised NMT models in 6 trans-

lation directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



1

Chapter 1

Introduction

1.1 Language and Translation

Language is a communication system with structures. To use language to con-

vey meanings is an activity that specific to humans. Languages can be used in

forms of spoken language, written langauge, sign language and many other forms.

Spoken language is the basic form of language, using structured sound to express

meanings. Its flexibility allows speakers to express meanings, including emotions,

exaggerations, sarcasm, etc., using different phonemes, syllables, tones, pitches,

and intonations. On the other hand, because the sound is transmitted by air, it

isn’t easy to preserve before the invention of recorders . Written language is in-

vented to represent the spoken language in written forms so that the meanings can

be transmitted through long-distance and long-time. Sign language, on the other

hand, uses gestures to represent meanings expressed by spoken language. There are

also other reduced forms of languages such as programming languages, which are

usually artificially designed for particular purposes. Nowadays, most information
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stored in computers and communicated on the cloud are in written language.

There are thousands of human languages globally, in which 8 of them are spoken

by more than 100 million population. 1 Assuming all the languages can express

all possible meanings in the world, translation is to express the meaning in one

language using another language. The translation is the bridge for communication

between people speaking different languages.

Translators and interpreters are human experts for text translation and speech

translation; moreover, simultaneous interpreters require more expertise to deliver

instant speech translation. However, the training of translators and interpreters

are expensive and time-consuming, and their workloads are usually very intense to

produce high-quality translations. On the other hand, on many occasions, middle-

or even low-quality translations can suffice the demands. Because of human trans-

lators and interpreters’ efficiency and economic bottleneck, people start to look for

novel methods to solve the problem.

1.2 History of Machine Translation

Thanks to the invention of modern computers, text data can be digitalized and

processed more quickly than before. People started to think about how to use ma-

chines to do the translation. Machine translation task was formulated as building

a model that can output a text in target language conditioned on the meaning of

a source-language text.
1According to Wikipedia, these languages are Mandarin Chinese, Spanish, English, Hindi,

Bengali, Portuguese, Russian, Japanese in descending order. https://en.wikipedia.org/wiki/
List_of_languages_by_number_of_native_speakers

https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers
https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers
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Along with the development of Formalism Linguistics, the rule-based machine

translation system first emerged in 1970s (Hutchins, 1986). It utilized syntac-

tic trees to map the surface form and dictionaries to map the meanings between

the source and target languages. It can barely deal with the ambiguity in natural

languages since there is no consideration of context. For example, sentence 1.1 can

be interpreted in two meanings:

The dog saw a man in the park. (1.1)

1. The event of the dog’s seeing a man happened in the park;

2. The man was in the park, and the dog saw him.

Without any context information, the rule-based machine translation system can

not process such sentences. Moreover, it can only work on similar language pairs

because there is no mechanism to guarantee the fluency of the translation.

In the 1990s, the IBM models were raised, representing the new era of statistical

machine translation (Brown et al., 1993). The translation task from source lan-

guage sentence f to target language sentence e is formulated as a noisy channel

model. The translation probability can be written according to Bayes theorem in

1.2:

Pr(e| f ) =
Pr(e)Pr( f |e)

Pr( f )
(1.2)

To find the target translation ê is to maximize the probability:

ê = arg max
e

Pr(e)Pr( f |e) (1.3)
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where Pr(e) is the language model which can be learned from monolingual text and

Pr( f |e) is the translation model which can be learned by parallel text. Statistical

machine translation has been successful within the field for more than two decades.

It became more complex as people try to introduce more sophisticated language

and translation models. Also, another weakness is that it is hard to deal with long

dependencies in the sentence.

Thanks to the revival of neural network techniques starting from 2010s, Sutskever

et al. (2014) and Cho et al. (2014) demonstrated that using recurrent neural

network (RNN) in encoder–decoder (or sequence-to-sequence) architecture is effec-

tive for machine translation task. Bahdanau et al. (2015) proposed the attention

mechanism and significantly increased the translation performance of long sen-

tences and sentences with long-dependencies. Luong et al. (2015) improved the

attention-based NMT. Because the RNN-based NMT with attention significantly

outperformed the traditional SMT and the implementation is straightforward in

most occasions, it became the most popular model for machine translation tasks.

Later in 2017, Vaswani et al. (2017) proposed the Transformer network that pushed

NMT performance to a new level and greatly influenced other NLP tasks such as

natural language understanding, classification, etc.

1.3 Current Research and Contributions

In this research, machine translation (NMT) is formulated as a machine learning

task that predicts the target-language translation text based on the source-language

text. In addition to NMT models based on long short-term memory (Hochreiter and
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Schmidhuber, 1997) (LSTM) and Transformer network (Vaswani et al., 2017), we

also investigate a special type of self-supervised NMT model called “unsupervised

NMT” (Lample et al., 2018) (UNMT) models.

NMT training usually requires a tremendous amount of training text, which ex-

hibits a long-tail distribution with a large vocabulary size (number of types), which

poses a significant challenge for computation. In order to solve this problem, sub-

word algorithms represented by BPE (byte-pair encoding) (Sennrich, Haddow, and

Birch, 2016) are introduced, which breaks up the words into pieces and using sub-

word vocabulary to train the model. BPE significantly alleviates the long-tail

distribution and boosts more shared information.

However, most of these studies are done on alphabetic language pairs and over-

looked the difference between logographic and alphabetic text. We introduce sub-

character level data in NMT training that can further help alleviate the long-tail

distribution in training data and boost the information sharing within the logo-

graphic text and across logographic language pairs. Our research hypothesis is

that sub-character level data can increase NMT models’ performance both in lo-

gographic language pairs and alphabetic-logographic language pairs, and the finer

granularity data can lead to better performance.

Our results suggested that from almost all perspectives, using sub-character level

information in (U)NMT tasks outperform the character level baselines:

1. Under same vocabulary size, models trained on sub-character level data out-

perform those on character level data;



6 Chapter 1. Introduction

2. Because sub-character level data can achieve smaller vocabulary size, the

performance can further increase;

3. Sub-character level data will increase the performance under both logographic-

logographic and alphabetic-logographic language pairs;

4. Although general patterns were found that finer granularity data outperform

bigger granularity data (e.g., stroke level data outperform ideograph level

data), the former will greatly increase the sequence length during training,

which makes the training time longer and harder.

Our contributions are:

1. We propose a simple yet effective character decomposition method to trans-

form character-level data to sub-character level data.

2. We use structural information in our character decomposition method, which

has empirical gain over past sub-character methods in NLP tasks.

3. We demonstrate the generally positive relationship between finer granularity

data and model performance.

4. We showed that our method could work on both NMT and UNMT scenarios.

5. We demonstrate that finer granularity data not only facilitates NMT model

performance between logographic language pairs but also alphabetic–logographic

language pairs. Thus, the proposed method may shed light on other NLP

tasks, such as pre-trained models for natural language understanding (NLU),

which only use the transformer network’s encoder part.
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1.4 Thesis Structure

The following thesis will be organized as follows:

• Chapter 1 provides a general introduction to the sub-character NMT prob-

lem. The organization of the thesis and contributions are also highlighted.

• Chapter 2 reviews the background of NMT and UNMT tasks in general, in-

cluding the task formulation, the decomposability of logographic characters,

and the machine translation models. It reveals that although most NMT

models and popular methods are widely examined, they overlook the dif-

ference between alphabetic languages and logographic languages, which can

further facilitate their performance if the logographic information can be used

wisely. It also discusses the significance of the current study.

• Chapter 3 introduces the research method in detail. It first details the char-

acter decomposition method for logographic languages and then introduces

a method to safely transform the decomposition sequence back to character

sequences. Further, for Transformer models, it describes an extra positional

encoding for the sub-character level sequences.

• Chapter 4 details the experimental settings. We tested our hypothesis on

Chinese–Japanese, Chinese–English, and Japanese–English language pairs,

representing NMT models between logographic languages and between alpha-

betic and logographic languages. We use a character decomposition dictio-

nary (cjkvi-ids) to decompose logographic characters into three granularities:

ideograph level data, finest ideograph level data, and stroke level data. We

modified the dictionary with special markers to make sure the sub-character
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sequence can be converted back safely. Lastly, we added an extra positional

encoding layer to alleviate the problem of long sub-character level sequences.

• Chapter 5 shows the results. Our results suggested that almost from all

dimensions, using sub-character level information in (U)NMT tasks outper-

formed the character level baselines:

– Under the same vocabulary size, models trained on sub-character level

data outperformed those on character level data.

– Finer granularity data usually have better performance.

– Sub-character level data was able to increase the performance under

both logographic-logographic and alphabetic-logographic language pairs.

– Similar tendencies were found in UNMT models trained on logographic

language pairs.

• Chapter 6 discusses the results. The smaller vocabulary size and more shared

information might be reasons for better performance. Extra control exper-

iments have confirmed the benefits of both, which is only possible if sub-

character level data is used. The finer the granularity of sub-character level

data, the better performance the model tends to have. However, the perfor-

mance can drop when the training sequence is too long in “stroke” level data.

Additionally, we compared our results with many other baselines, which also

tried to increase the shared information between source and target text to

boost NMT performance, such as “character mapping” and “kana decom-

position.” The results suggested that our approach performs steadily better
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than these control groups. We also discuss the potential reasons.

• Chapter 7 concludes the dissertation and gives out future research directions.

This dissertation first notices the critical difference between alphabetic lan-

guages and logographic languages in (U)NMT training and uses a simple

character decomposition method to transform character-level data to sub-

character level data, and demonstrated significant and steady improvement

in using sub-character level information in NMT tasks and shed light on

other NLP tasks. In the future, we will try to apply more NMT techniques

to sub-character level data, such as curriculum learning. Also, we will try to

achieve better results in UNMT settings.
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Chapter 2

Background

2.1 Overview of NMT Tasks

Machine Translation (MT) aims to automatically transform from source language

text to target language text accurately and fluently. It is formulated as a machine

learning task that makes sequential decisions on target tokens to form a target sen-

tence conditioned on the source sentence.1 Statistical machine translation (SMT)

that combines phrase-table based translation models and n-gram language models

has been a successful method (Koehn, 2010). With the development of deep learn-

ing techniques and increase of parallel data, modern neural machine translation

(NMT) has achieved much better performance than SMT and became the most

received MT method.

Most NMT models follow the encoder–decoder (or sequence-to-sequence) architec-

ture (Cho et al., 2014; Sutskever, Vinyals, and Le, 2014) with attention mecha-

nisms (Bahdanau, Cho, and Bengio, 2015; Luong, Pham, and Manning, 2015) using
1There are MT tasks in other modalities such as speech-to-text MT, image-to-text MT as well,

however, they are beyond the range of the current dissertation.



12 Chapter 2. Background

recurrent neural networks (RNN) such as long short-term memory (LSTM) (Hochre-

iter and Schmidhuber, 1997) and gated recurrent unit (GRU) (Cho et al., 2014).

The success of RNN-based NMT systems was marked by “Google’s Neural Ma-

chine Translation” (GNMT) system (Wu et al., 2016). Recently, Transformer

network (Vaswani et al., 2017) featured by multi-head attention, self-attention

and positional embedding mechanisms abandoned recurrence and achieved better

performance. Its powerful learning capability made it possible for building unsu-

pervised NMT (UNMT) (Artetxe et al., 2018; Lample et al., 2018) systems using

back-translation circuits. Moreover, its derivatives such as bidirectional encoder

representations from Transformers (BERT) (Gehring et al., 2017), generative pre-

trained Transformer (GPT) (Radford et al., 2019), etc., have pushed the natural

language understanding (NLU) and natural language generation (NLG) task to a

whole new level.

Besides the development of modeling techniques, the better use of training data is

another equally important issue. Various curriculum learning (Bengio et al., 2009)

algorithms help the training better and faster by changing the order of training

data. Sub-word algorithms such as byte pair encoding (BPE) (Sennrich, Haddow,

and Birch, 2016), sentence piece (Kudo, 2018), etc., have contributed to solving the

old puzzling issue of the out-of-vocabulary (OOV) problem and further enhance

the model performance by lowering the data granularity. Although the data sizes

have become larger over time, which is essential to training, the better exploitation

of the data themselves has never been less important.

The sub-word method is a text pre- and post-processing method that further breaks

words into smaller units by discovering shared parts among themselves. The textual
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characteristics of sub-word units can be better exploited during training.

2.2 Formulation of NMT Tasks

Given a parallel corpus D containing N sentence pairs of language 1 (L1) and

langauge 2 (L2), such as:

D = {(X1, Y1), (X2, Y2), · · · , (XN, YN)} (2.1)

where the meaning of Xi is equivalent to the meaning of Yi, when i ∈ 1, · · · , N.

Both Xi and Yi are tokenized sentences (list of tokens) of length m and n respec-

tively, such as:

Xi = [BOS, x(i)1 , x(i)2 , · · · , x(i)m , EOS]

Yi = [BOS, y(i)1 , y(i)2 , · · · , y(i)n , EOS]
(2.2)

for simplicity the superscript (i) will be omitted. The source and target vocabulary

are unique types of source and target tokens:

Vsrc = {v(s)1 , v(s)2 , · · · , v(s)len(Vsrc)
}

Vtrg = {v(t)1 , v(t)2 , · · · , v(t)len(Vtrg)
}

(2.3)

where the superscript (s) and (t) stand for source and target vocabulary and will

be omitted for simplicity reasons.

A machine translation system will use a parallel corpus Dtrain to train and another

parallel corpus of same distribution Dtest to evaluate the performance. By the same
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distribution, we mean they are sampled from the same corpus or the same domain.

Given one translation direction, such as from L1 to L2, the translation system f is

asked to take source sentence Xi as input and output Ŷi as candidate translation,

a.k.a, hypothesis sentence:

Ŷi = f (Xi) (2.4)

During training, the target sentence Yi is taken as the reference sentence. The

system learns to output Ŷi that is as close to Yi as possible. During testing, Ŷi

is predicted by f (·) incrementally. For example, in the first decoding step, only

BOS is inputted to f (·) and get the first decoding output Ŷi. Then the Ŷi will be

concatenated with BOS again in the beginning to input to f (·) for decoding the

next step. The decoding process will end until a pre-defined maximum sequence

lengths is reached, or a EOS token is reached, and hence the full Ŷi is generated.

For evaluation, Ŷi and Yi are first de-tokenized to string form. After translating

all the source sentences in Dtest, a corpus-level metric is computed on collections

of string forms of Dhyp = {(Ŷi, Yi)}, i.e., the hypothesis corpus.

2.3 Leveraging Data in NMT Training

Because parallel training data for NMT tasks are usually very expensive and diffi-

cult to obtain, leveraging such data more efficiently becomes an important question.

Generally speaking, there are two perspectives to better utilize the training data:

through wise curriculum learning and tokenization of finer granularities.

The following sections will discuss these two topics.
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2.3.1 Curriculum Learning

Curriculum Learning (Bengio et al., 2009) refers to the tendency that different

learning order will result in different learning result. By carefully designing the

learning order, i.e., the order that the training batches are feeding into the model,

the model can learn the task faster and/or better.

The basic principle that Bengio et al. raised in their paper was that either filtering

the noisy examples or feeding easy examples first will help the overall training.

For NMT tasks, there are two lines of research. One is on the batch level, that

is how to re-order the batch to put the “easier” ones first to boost training. The

other is on the token level, that is, when and how to use the sampled tokens in

feeding to the next token in training.

Batching Curriculum

Almost directly following Bengio’s idea, researchers looked for different selected

features to decide which batch should go first during training. We call this batching

curriculum.

Kocmi et al. (2017) sorted the batches according to target sentence length and

syntactic complexity. They observed slight overall improvement in BLEU scores

within one training epoch but a sharp drop of perplexity and BLEU scores between

epochs. They believe the curriculum learning for NMT can get over-fitted on

particular features quickly.

Zhang et al. (2017) tries to “boost” the training data in NMT using the perplex-

ity scores during training. Training examples with high perplexity scores will be
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up-sampled because they are considered “difficult” for training. Training exam-

ples with low perplexity scores will be down-sampled because they are considered

“easier” examples. From the second epoch on, the training data is based on the

previous training’s training condition. This method is better at handling feature

over-fitting but worse at stable training since it changes the training data distribu-

tion. In most cases, it has a faster convergence speed, but the overall increase in

BLEU score is small. The author argues that this might be because the training

data distribution will gradually converge to the original distribution.

Platanios et al. (2019) proposed a combinatory method of measuring word difficulty

and learning competency during NMT training and selecting the next batch based

on these measures. The difficulty measures include sentence length, word rareness,

etc.; the competency measures were formulated as a function of learning loss. Thus

the training can better capture the “easy-first” principle during training. Moreover,

the over-fitting was alleviated. However, it could not completely overcome the

feature over-fitting problem and added an extra feature engineering workload.

Sampling Curriculum

The sampling curriculum was proposed as a token level curriculum. The model

will decide whether to use ground truth tokens from the target side to feed in the

model for the next token prediction or use the model’s previous prediction. This

is sometimes referred to as “random teacher forcing” since when using the teacher

forcing training method, the next token will always be the target side ground truth,

regardless of what is the model prediction at this time. Generally speaking, this

method is believed to increase the robustness of training.
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Datasets # Sents. Vocab Size
L1 L2

wmt20.en–zh 39.40M 2.78M 3.23M
wmt20.en–de 45.81M 6.04M 11.17M
wmt19.en–de 38.77M 6.16M 10.02M
wmt19.en–ru 14.26M 3.10M 3.93M
wmt18.en–de 42.28M 6.34M 9.63M
wmt16.en–de 4.56M 1.03M 2.04M
wmt14.en–fr 40.84M 4.23M 4.00M
wmt14.en–de 4.47M 0.82M 1.68M

Table 2.1: WMT corpus sizes. The Chinese (zh) data is tok-
enized by jieba tokenizer with default dictionary; the rest of the
data are tokenized by SacreMoses tokenizer. A trend of increasing
vocabulary size can be observed since more data is added through
the years, especially when datasets like WikiTitles is added which

contains a lot of unique vocabularies.

Bengio et al. (2015) and Zhang et al. (2019) both used similar idea and achieved

very promising results.

2.3.2 Sub-word Segmentation

Another method for efficiently exploiting NMT training data is sub-word algo-

rithms. In the corpus of alphabetic languages, there is usually a large number of

types in the vocabulary, which is difficult for computers to process.

Table 2.1 showed the vocabulary size information of major benchmark datasets.

The word type frequencies in each dataset follow a long-tail distribution. Few

types such as “the,” “a,” “is” in English have extremely high frequencies, and a

more considerable amount of types only have very low frequencies. If the word

type frequencies were plotted in decreasing order, most of the word types are in
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the long-tail.

In order to solve the large vocabulary problem, a heuristic idea is to group the

low-frequency types into one <unk> type so that the overall vocabulary size can be

significantly reduced. Since most words (actual tokens) in the text are also high

frequent ones, the BLEU (Papineni et al., 2002) score will not drop much even if

we use <unk> in the testing hypothesis.

One shortage of this method is that the long-tail types are usually the most in-

formative and important words in the sentence. A translating sentence without

long-tail words is harder to understand, but a sentence without high-frequency

words is relatively more comfortable to understand. Try to compare the following

broken sentences:

1. A man looks through a <unk>. (The missing word is “telescope,” which is a

long-tail word.)

2. A man looks through <unk> telescope. (The missing word is “a,” which is a

high-frequency word.)

We will have almost no difficulty in the second sentence but have no idea about the

first sentence. A good NMT model can not afford to lose too many long-tail words

in order to keep its translation readable. Fortunately, this problem was partially

solved by the application of byte pair encoding (BPE) algorithm in NMT (Sennrich,

Haddow, and Birch, 2016).
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BPE

Byte-pair-encoding was originally an information compression algorithm. When

training a BPE model, it first decomposed all alphabetic words into letters and

merged the most frequent letter sequences step by step until a target vocabulary

size is satisfied. When applied to text, it breaks up the sequences of words into

sequences of smaller pieces. Furthermore, after these sequences are processed by

NMT models, they can be composed back to normal sequences of words. One

analogy for BPE sub-word units is that they are like stems, suffixes, and prefixes

in a word. To break up word-level sentences into sub-word level sentences can

ensure every possible BPE unit get processed by the NMT model and no <unk>

type is needed. The granularity of BPE data is significantly reduced comparing to

word-level data.

To push this idea to the extreme, even character-level NMT is proposed for alpha-

betic language pairs (Cherry et al., 2018).

2.4 NMT Models in General

NMT models use neural networks to model the f (·) function in Equation 2.4.

Assuming the source sentence Xi and the target sentence Yi has already been

transformed into an index based on the source vocabulary Vsrc and the target

vocabulary Vtrg respectively, usually, an NMT model contains the following parts,

which we consider as the basic structure of sequence-to-sequence model:

1. Two embedders that transform the source index and target index into word

embeddings EXi and EYi .



20 Chapter 2. Background

2. A core neural network model learns to output a vector EŶi
based on EXi and

EYi . It usually contains an encoder network and a decoder network.

3. Sometimes an attention function a(·) is applied to EŶi
and output of the

encoder to compare how close they are. This can serve as an analogy to word

alignment scores in SMT. The EŶi
will be updated based on this closeness

information.

4. A projector network and a softmax layer that transform the EŶi
into a dis-

tribution probability PŶi
over target vocabulary size len(Vtrg).

During training, loss is computed over PŶi
and PYi . The most popular loss for NMT

training is cross-entropy (CE) loss. During testing, the beam search algorithm is

done based on the PŶi
scores. It is also possible to add length penalty and coverage

penalty to the scoring function of the beam search algorithm (Wu et al., 2016).

2.4.1 LSTM-based Models

Recurrent neural networks takes the network’s output as input, so that it can

iteratively generating new output based on a initial state. However, naive recurrent

neural networks suffered from gradient vanishing/explosion problem, making it

difficult to model long sequences. The long short-term memory network (LSTM)

was raised by Hochreiter et al. 1997, adding various gate functions and cell state

to alleviate the problem. For quite a long period of time, LSTM is the most

popular sequence modeling network due to its powerful learning ability and stable

performance.
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Let xt be the input to LSTM network at time step t, Ws be the respective weights,

bs be respective biases, the technical details of LSTM network are as follows:

it = σ(Wiixt + bii + Whiht−1 + bhi)

ft = σ(Wi f xt + bi f + Wh f ht−1 + bh f )

gt = tanh(Wigxt + big + Whght−1 + bhg)

ot = σ(Wioxt + bio + Whoht−1 + bho)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

(2.5)

where ct and ht will be input to the same network for the next time step with

new input xt+1. In practice, we usually stack the LSTM cells for many layers

for more powerful learning capability. For a given sequence, we also use LSTM

to process it in the forward order and the backward order (called “bi-directional”

LSTM) for better performance. Attention mechanism and residual connections

were also commonly used in NMT models based on LSTM networks. LSTMs are

good at modeling long sequences. However, due to gradient vanishing and explosion

problems, it is hard to train. And because of this recurrence in c and h, it is difficult

to update the weight in LSTM in parallel during training, which makes it harder

for large scale training scenarios.

Using LSTM networks, there are two majour NMT implementations.
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Figure 2.1: The structure of the RNNSearch models using LSTM
network.

RNNSearch

The RNNSearch model is the most basic LSTM-based NMT model. It just replaces

the core neural network model with two LSTM models. One is the encoder, and

the other one is the decoder. An attention function is applied to the output of the

decoder and the output of the encoder, in order to update the decoder output.

Figure 2.1 shows the structures of RNNSearch model. The solid blue lines indicate

how the tensor flows in the model. The dotted blue lines indicate how the loss

is computed. Luong et al. 2015 studied how different attention mechanism will

affect NMT performance using the RNNSearch model and WMT14 dataset on

English–German language pairs, which is regarded as a critical benchmark for the

subsequent studies.
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GNMT

The GNMT model is named after “Google’s Neural Machine Translation” sys-

tem (Wu et al., 2016). It utilized the following techniques that were regarded as

best practices since its publication.

1. It is trained on sub-word sequence pairs (sentence piece model, which is very

similar to BPE model).

2. It has one bi-directional encoder layer and six uni-directional encoder layers

and eight uni-directional decoder layers.

3. It adds residual connections between LSTM layers.

4. It uses an additive attention network.

5. It uses length penalty and coverage penalty in beam search.

6. It uses learning rate scheduler during training.

Figure 2.2 showed the structure of GNMT models. The model achieved the state

of the art performance at that time and was actually served at Google Translate.

The BLEU scores reported on GNMT systems can approach human performance

on several language pairs such as English–French and English–Spanish. Later, the

model showed great power in multilingual NMT (Johnson et al., 2017) as well,

which also known as zero-shot NMT.

2.4.2 Transformer Models

Transformer models (Vaswani et al., 2017) is another breakthrough for sequence

modeling tasks.
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Figure 2.2: The structure of GNMT model. The first two layers
in the encoder are forward and backward LSTM layers.

1. It abandoned the recurrent structure of RNN networks to enable full paral-

lelism in training.

2. It intensively utilizes the attention mechanism between encoder and decoders

and within encoder and decoder (called “self-attention”).

3. It introduced novel positional encoding to help the model learn positional

information.

4. It uses deep pointwise feed-forward networks at the end of each encoder and

decoder layer.

5. It uses “layer normalization” and residual connections between each layer.

6. It uses learning rate schedules during training.
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Figure 2.3: The structure of Transformer network.

The performance of the model in terms of BLEU scores surpass the GNMT base-

lines in many language pairs. What is more important, the influence of the Trans-

former model has gone beyond the NMT field. The famous pre-training models like

“BERT” and “GPT” are all based on the Transformer network. Their performance

on natural language understanding (NLU) tasks and natural language generation

(NLG) tasks become the new state of the art system.
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There are three novel designs in the Transformer network:

Positional embedding. The positional embedding matrix is computed by two

trigonometric functions given the token position pos and the hidden index i, as

shown in Equation 2.6, and then applied to normal pretrained embeddings by

simple addition:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(2.6)

where dmodel is the model’s dimensions (hidden size).

Multi-head attention. Functioning as an improved version of traditional at-

tention mechanism (Equation 2.8), multi-head attention computes scaled attention

scores on splitted query, key and value pairs according to Equation 2.7 (note QWQ
i ,

KWK
i and VWV

i are Qi, Ki and Vi projected by respective feed-forward networks)

and then concatenates the results together.

MultiHead(Q, K, V) = Concat(h1, ..., hi)Wo

hi = Attention(QWQ
i , KWK

i , VWV
i )

(2.7)

Any single-head attention in the previous formulation uses the following formular

to calculate its output:
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Attention(Q, K, V) = so f tmax(QKT/
√

dk)V (2.8)

where dK is the number of dimensions for a single head.

The multi-head attention (MA) that takes identical hidden states as Q, K and V

is the so-called “self-attention”; and the MA that takes target states as Q, and

source states as K and V are so-called “context attention,” respectively.

Position-wise feed-forward network. The position-wise feed-forward network

is combined by two feed-forward networks with a ReLU activation function in-

between, as shown in Equation 2.9.

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.9)

In real implementation of transformer networks, each encoder layer contains one

“self multi-head attention” and one position-wise feed-forward network; each de-

coder layer contains one “self multi-head attention,” one “context multi-head at-

tention” and one position-wise feed-forward network. Encoders will first embed the

source sequence using source positional encoding and feed the output to a stack of

encoder layers to get the encoder hidden state. The decoders will take the encoder

hidden state as one input, and take the embedded target sequence as another input

using target positional encoding, and then feed both of them to a stack of decoder

layers to get the decoder state. Just like other NMT systems, a linear layer and a
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softmax layer is used to project the decoder state to a probability distribution over

target vocabulary size.

2.4.3 Other Non-auto-regressive Models

The models introduced in previous Sections are called “auto-regressive” models

because they made sequential decisions on the next tokens conditioned on the

previous input. However, there are some non-auto-regressive models for NMT

focusing on parallelism and flexibility that are also worth noting.

Convolutional NMT Models

Figure 2.4 showed the structure of convolutional NMT models proposed by Face-

book AI (Gehring et al., 2017). It is the first model to enable full parallelism on

NMT training and get the stat of the art performance. Another advantage is that

it can borrow ideas from computer vision research, which also extensively used

CNN network in their model, such as how to deal with imbalanced training data,

etc.

Levenshtein Transformer Models

Following the intuition that translation may not be generated in sequential order,

there might be edits and changes before the translation is finalized, Levenshtein

Transformer (Gu, Wang, and Zhao, 2019) modeled the “editing action,” such as

“adding,” “deleting,” just like the actions when calculating Levenshtein distance

between two strings. Thus the NMT task can be formulated as generating a se-

quence of actions based on the source input.
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Figure 2.4: The structure of convolutional NMT network.
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Figure 2.5: The structure of levenshtein Transformer network.

Levenshtein Transformer utilizes 3 actions: “deleting,” “adding placeholder” and

“filling placeholder”. To apply these actions sequentially to a original sequence,

the final hypothesized target sequence can be generated. Figure 2.5 showed the

structure of levenshtein Transformer. It is especially useful if we would like to have

more control of the target vocabulary.

2.5 Unsupervised NMT

One problem for NMT training is that it requires huge amount of parallel training

data. Usually, this parallel alignment is annotated by human annotators, which is

very expensive and time-consuming. Thus only data between major language pairs

are available. It is impossible to directly train NMT models for minor language

pairs simply due to lack of data.
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Because NMT model training usually requires a large amount of training data,

which is expensive and absent in a lot of minor language pairs, people start to

think of a way to only rely on monolingual data to train an NMT model. As a

special kind of self-supervised training method, the unsupervised NMT (UNMT)

model pairs up two NMT models and use back-translation to generate pseudo-data

for training (Lample et al., 2018; Artetxe et al., 2018).

It is formulated as follows that only takes monolingual data during training:

DL1 = {X1, X2, · · · , XM}

DL2 = {Y1, Y2, · · · , YN}
(2.10)

And during testing, when input sentence from one language, the model is asked to

output a sentence from the other language with same meaning. BLEU score is also

used here to evaluate the hypothesis translation with reference sentence as ground

truth. Due to the missing of parallel sentences, the training of UNMT models

usually resorts to self-supervised training, back-translation data augmentation, and

distant supervised training techniques.

The key idea for UNMT’s novel design is that during training, the model can take

sequence from same lanugage as the ground truth of it’s hypothesis in the same

language, therefore, the losses can be calculated without parallel sentences.

Figure 2.6 showed the basics structures of UNMT models, where four training

circuits can be formed. Note that the two ends of each circuits are all from one

language, which we both take as input and ground truth.
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Figure 2.6: The structure of unsupervised neural machine trans-
lation models.
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1. L1 encoder–decoder langauge model: L1 sentence → L1 encoder → L1 de-

coder → L1 projector → L1 sentence

2. L2 encoder–decoder langauge model: L2 sentence → L2 encoder → L2 de-

coder → L2 projector → L2 sentence

3. L1–L2 back translation model: L1 sentence → L1 encoder → L2 decoder →

L2 projector → L2 sentence → L2 embedder → L2 encoder → L1 decoder

→ L1 projector → L1 sentence

4. L2–L1 back translation model: L2 sentence → L2 encoder → L1 decoder →

L1 projector → L1 sentence → L1 embedder → L1 encoder → L2 decoder

→ L2 projector → L2 sentence

2.6 Evaluation Metrics

BLEU (Papineni et al., 2002; Post, 2018) is the most popular corpus-level evaluat-

ing metric in existing machine translation literatures. The BLEU metric considers

the n-gram (n = 1, 2, 3, 4) representations of a sentence as multiset. For exam-

ple, the sentence “to be or not to be .” can be represented as the following

multiset when n = 1, 2:

n = 1 :{to, be, or, not, to, be, .}

n = 2 :{(to be), (be or), (or not), (not to), (to be), (be .)}
(2.11)

Let n-gram(D) denote the n-gram tokens in the multiset of a given corpus D, and

{Yi} and {Ŷi} denote all the tokenized sentences in reference corpus and testing
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corpus, the n-gram precision of a hypothesis corpus is:

precisionn({Yi}, {Ŷi}) =
|n-gram({Yi}) ∩ n-gram({Ŷi})|

|n-gram({Ŷi})|
(2.12)

where {Yi} and {Ŷi} are all the reference and hypothesis sentences in D. When

the length of {Yi} and {Ŷi} are not equal, a length penalty LP is added:

LP = min
(

exp
(

1 − |n-gram({Yi})|
|n-gram({Ŷi})|

)
, 1
)

(2.13)

The BLEU metric is simply the geometric mean of n-gram precision multiplies the

LP:

BLEU({Yi}, {Ŷi}) = GMn=4
1 precisionn({Yi}, {Ŷi}) · LP({Yi}, {Ŷi}) (2.14)

where GM refers to the geometric mean function.

Note that as we defined in Section 2.2, the Dhyp should be a corpus of strings, and

{Yi} and {Ŷi} should be tokenized sentences. The tokenization used by the BLEU

metric is not necessarily the same with tokenization during training. Different

tokenization might lead to different BLEU scores even if the actual translation

string is the same. Therefore, Post et al. 2018 proposed a standard tokenization

method for NMT benchmark comparisons.

Other corpus-level metrics also exist, such as

1. GLEU : (sentence level) the minimum of n-gram recall and precision.

2. chrF : (sentence level) Character n-gram F-score
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3. NIST : (corpus level) arithmetic mean of n-gram precision with brevity penalty

different from BLEU

4. METEOR: (corpus level) unigram F1 score based on exact matching, stem

matching and WordNet matching.

2.7 Features of Logographic Languages

2.7.1 Two Writing Systems

There are two major writing systems, namely, the alphabetic writing system and

the logographic writing system. The former uses letters as its basic unit. Sequential

letters form words. Space-separated words form sentences. The representatives of

alphabetic languages are most of the Western languages such as English, Spanish,

French, etc. The latter uses strokes as its basic unit. Structured strokes form

ideographs. Structured ideographs form characters. Sequential characters form

words and sentences with no space inserted. The representatives of logographic

languages are Chinese and Japanese.

For NMT tasks, most studies and benchmarks focus on alphabetic language pairs.

2.7.2 The Decomposibility of Logographic Characters

One crucial feature of characters in logographic languages is that they are decom-

posable to structured ideographs, and further to structured strokes. Specifically,

strokes as the smallest units of logographic text can construct an ideograph; and
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Unicode Ideo./Char. Composition Meaning Pronunciation

U+4EBB 亻 ⿱丿丨 Side form of the person
(人) radical.

rén

U+95E8 门 ⿲丨丶𠃌 Door. mén
U+4EEC 们 ⿰亻门 Plural marker of person. mén
U+7532 甲 ⿻日丨 Armor. jiǎ
U+95F8 闸 ⿵门甲 Sluice. zhá

Table 2.2: Composition of CJK Characters. Meanings and pro-
nunciations are given based on simplified Chinese

ideographs can further construct a character. Ordered characters put together con-

stitute words, and ordered words constitute sentences. Contrastively, alphabetic

languages use letters as the smallest units in the text. Sequences of letters (only in

left-right order) constitute words, and space-segmented words constitute sentences,

which exhibit a natural boundary for words.

Ideographs usually carry meanings. They can be either semantic components to a

character (or “semantic ideograph,” similar to morphemes) or phonetic components

that give hints on pronunciations (or “phonetic ideograph,” similar to letters).

Table 2.2 showed some examples of how semantic and phonetic ideograph work

together. In Chinese, the ideograph “亻” and “门” combine together side-to-side

to form “们,” which takes the meaning of “亻” and pronunciation of “门,” meaning

“person (plural)”. At the same time, when “门” is combined with “甲” and takes

its sound, the resulting character is “闸,” meaning “sluice.”
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Chapter 3

Method

3.1 Motivation

Data granularity has always been an important factor in the training of NMT

models. Different granularities will result in different distributions in the training

data of a (U)NMT task, which will significantly influence the performance. The

primary motivation of this study is to create a safe alternation of the distribution

of the training data in order to achieve better training performance.

Any natural-language dataset will follow the “Zipf’s Law” that when the overall

word frequency is plotted in descending order, the curve is logarithmic where few

words have the highest frequencies, and the majority of words are in the long tail.

An ordinary English dataset typically has hundreds of thousands of words in its

vocabulary, whereas the English Wikipedia contains millions. For NMT models,

the larger vocabulary size usually means sparser data for the long-tail words and

larger networks, which are difficult to train. Because of this, usually, the low-

frequency words are grouped into one type called “unknown” words (represented
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Language Granularity Vocab Size AWL ASL MSL

JA

Word 188, 253 6.10 78.86 402
Sub-word 32, 000 3.29 70.02 489
Sub-word 4, 000 1.33 85.11 597
Character 3, 083 1.00 99.41 664

EN

Word 361, 590 8.86 152.97 684
Sub-word 32, 000 7.04 176.77 802
Sub-word 4, 000 5.32 187.32 850
Character 216 1.00 299.09 1, 346

Table 3.1: Different Granularities of Alphabetic and Logographic
Text in ASPEC–JE Corpus. AWL = “average word length”; ASL

= “average sentence length”; MSL = “max sentence length.”

by UNK) and let the model focusing on the rest of the common words.

However, rare words in UNK often denote the most important meanings in the con-

text which can not afford to lose too much. Byte pair encoding (BPE) (Sennrich,

Haddow, and Birch, 2016) was introduced first to alphabetic text to break words

into sub-word units as per how likely they are shared across different words. Us-

ing the sub-word vocabulary, no UNK is necessary anymore since all words can be

decomposed to some sub-word sequences, and the NMT model can learn to model

sub-words instead of words. Because sub-word vocabulary usually has a smaller

pre-determined vocabulary size, and less sparse data with shorter tails, it greatly

facilitates training. On the other hand, the sub-word sequence is usually longer

than word sequences, which is inefficient for training. With careful handling of sub-

word vocabulary size, which makes the sequence stay at a reasonable length, the

overall effect can be positive. To push this idea to an extreme, even character-based

(a.k.a., letter-based) NMT was proposed (Cherry et al., 2018).
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Table 3.1 shows the trend that as granularity become smaller, the vocabulary size

is smaller, the sentence length become longer1 in ASPEC–JC corpus (Nakazawa

et al., 2016). However, the phenomena are less significant in logographic languages

than alphabetic languages because logographic words are generally shorter than

alphabetic languages (Shen et al., 2016).

As discussed in Chapter 1, these shortcomings call for sub-character level NLP.

From another perspective, this can be regarded as the trade-off of the gain brought

by the new training distributions.

3.2 NMT Models in this Thesis

We experimented with 3 different models using sub-character level data based on

the following reasons.

1. The LSTM-based GNMT (Wu et al., 2016) model lerned contextual informa-

tion and positional information both by the recurrence of the RNN networks

from character level data. We want to know can it also learn and predict

based on sub-character level data? Also, more importantly, can the predicted

sub-character sequences be safely transformed back to characters?

2. The Transformer (Vaswani et al., 2017) model lerned contextual information

from multi-head attention mechanisms, and positional information from po-

sitional encoding networks. Intuitively, the sub-character level information

can be better captured by the self multi-head attention mechanisms; is it
1The Japanese word level tokenizer is MeCab (https://taku910.github.io/mecab/) with

“IPAdic.”

https://taku910.github.io/mecab/
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Ture? Also, the positional information might be challenging for the nodel to

learn especially when the sub-character sequence becomes longer; is it Ture?

And can Transformer model outperform GNMT model like generally?

3. UNMT model is claimed to work better on similar language pairs. Since

sub-character level data exhibits higher level of shared information, which

can be regared as “more similar” to each other, can UNMT model achieve

better performance using sub-character level data?

The following Sections will introduce our settings on different models one by one.

3.2.1 GNMT model

Standard GNMT settings in the orginal paper were used to form the NMT system.

We use one bi-directional LSTM layer in the first place and stack it with six unidi-

rectional LSTM layers in the encoder. In the decoder, we use eight uni-directional

LSTM layers. We also apply an additive attention network over the output of the

first decoder layer and concatenat the attention output to the input of each of the

rest decoder layers. GNMT models based on LSTM units are known to model

extremely long sequences ineffectively (Stosic et al., 2017; Cherry et al., 2018).

We did not have any special treatment for this. Actually, our results showed that

they are sufficient for the current experiment, and we will discuss this in the next

Chapter.



3.2. NMT Models in this Thesis 41

3.2.2 Transformer model

Transformer model (Vaswani et al., 2017) with “positional encodings” is not able

to process long sequences effectively (Kitaev, Kaiser, and Levskaya, 2020). This is

potentially because for shorter sequences, the vectors at each position can be easily

distinguished. However, at the longer positions, the neighboring positions tend to

be very similar and become more difficulty for the model to learn.

The training sequence can be very long as the granularity becomes finer. In our

pilot experiments, Transformer networks performed poorly on long sequences when

the model needed high accuracy of the sub-character sequence orders to compose

back to characters especially near the end of predictions.

To alleviate this problem, we designed a special treatement for sub-charcter level

Transformer models. We use multi-layer positional embeddings (MPE) for the

Transformer during training.

Since the original positional encoding is not sufficient, one special sub-character-

level position features are added to introduce additional information into the source

and target embeddings. During training, we have a special vocabulary for these

features and add further dimensions to the embeddings for the vocabulary. The

idea is similar to the OpenNMT implementation (Klein et al., 2018) for feature

NMT.

Figure 3.1 showed how the extra positional embedding is added to form the MPE to

alleviate this problem. Within each sub-character sequence decomposed from the

same character, two special tokens “<b>” and “<e>” are added at the beginning and

ending position. The other positions are labeled in a sequential order from “<1>,”
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Figure 3.1: Extra positional embedding for sub-character se-
quence of “风景”.

“<2>” to “<(n − 2)>,” where n is the length of the sub-character sequence. This

embedding is added to the original Transformer positional embedding and finally

added to the sub-character embedding. Therefore, both positions with regard

to the whole sequence and internal positions of a sub-character sequence can be

distinguished more clearly.

3.2.3 UNMT Model

Similar to NMT with Transformer units, we have the sub-character position fea-

tures for each embedding whenever sub-character-level data are processed. In our

implementation, we used a 4-layer unidirectional encoder and a 4-layer unidirec-

tional decoder with an 8-head attention network for both self-attention and context

attention. For simplicity, we do not use an adversarial discriminator.
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3.3 Models and Training Hyperparameters

We trained the GNMT model, Transformer model and UNMT model following the

settings in the original papers (Wu et al., 2016; Vaswani et al., 2017; Artetxe et al.,

2018), except that we use greedy search for decoding in testing and add MPEs for

Transformer. Some important hyperparameters are:

1. GNMT model. We used 8-layer encoder–decoder with both embedding di-

mension and hidden dimension are set to 512. The learning rate was set to

0.0002 with Adam optimizer.

2. Transformer model. We used 6 layer encoder–decoder with 8-head attentions.

Both the embedding dimension and hidden dimension were set to 512. The

MPE dimension was 10. “Noam” learning rate scheme was used with Adam

optimizer. Xavior initialization (Glorot and Bengio, 2010) was applied to the

weight matrix of the Transformer network before training.

3. UNMT model. We used 4-layer encoders and decoders and shared the first 3

layers of the encoders. The word embeddings were pre-trained by FastText.

All the trainings were done on a single GeForce GTX 1080 Ti GPU. The batch

sizes and learning rates were adjusted according to the practice in Goyal et al.

(2017). Character level BLEU scores for Chinese and Japanese, and word level

BLEU scores for English were used as testing metrics, and “early stopping” were

applied if validation BLEU score stops increasing for 500, 000 global steps.
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Strokes

U+31C{0∼7} ㇀ ㇁ ㇂ ㇃ ㇄ ㇅ ㇆ ㇇

U+31C{8∼F} ㇈ ㇉ ㇊ ㇋ ㇌ ㇍ ㇎ ㇏

U+31D{0∼7} ㇐ ㇑ ㇒ ㇓ ㇔ ㇕ ㇖ ㇗

U+31D{8∼F} ㇘ ㇙ ㇚ ㇛ ㇜ ㇝ ㇞ ㇟

U+31E{0∼3} ㇠ ㇡ ㇢ ㇣

IDCs U+2FF{0∼7} ⿰ ⿱ ⿲ ⿳ ⿴ ⿵ ⿶ ⿷

U+2FF{8∼B} ⿸ ⿹ ⿺ ⿻

Table 3.2: CJK Strokes and Ideographic Description Characters
(IDC)

3.4 The Composition and Decomposition of Lo-

gographic Characters

Unicode 12.0 Standard has good representations of all these feathers for logographic

characters, i.e., CJK (Chinese–Japanese–Korean) characters, together with stokes,

ideographs, kana, and hangul (Korean letters). To describe the composition of

characters, “Ideographic Description Character (IDC)” was introduced as sym-

bolic representations of the structural relationship of the following two or three

components (can be strokes, ideographs, or complex structures of ideographs).

For example, “⿰” means two following components are placed side to side; “⿳”

means three following components are placed in the up-middle-bottom structure;

“⿴” refers to a surrounding structure and “⿻” refers to an intersect structure. All

CJK strokes and IDCs are listed in Table 3.2.

In logographic language like Japanese, “kana” (“hiragana” and “katakana”) are

used as syllabaries together with characters to form the writing systems. They are

syllabaries because each of them strictly corresponds to one sound in the Japanese

language and can form syllables when there is no characters to use. Because the
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kana system is a very accurate representation of spoken Japanese, it is often used

to mark the readings of kanji or loan words as well.2

Cross-linguistically, similar characters and words often have similar meanings in

different logographic languages (Chu, Nakazawa, and Kurohashi, 2012), but there

are always many exceptions. For examples, “工程” means “engineering or project”

in Chinese, but “work progress” in Japanese. “保险” in simplified Chinese and

保險” in traditional Chinese are variants of “保険” in Japanese, but in Chinese, it

has several meanings, such as 1) to assure, to guarantee; 2) to be bound to; 3) safe,

secure; 4) insurance; 5) certainly. And only the “insurance” meaning is used in

Japanese. These mismatches add difficulty to the mutual intelligibility of different

logographic languages and machine translation tasks.

In order to do sub-character level NMT/UNMT, logographic characters are first

decomposed into different granularities of sub-characters and used during NMT

and UNMT training. During testing, the sub-character sequences are composed

back to characters.

CHISE3 project offers a CJK character–ideograph mapping based on Unicode 12.0

Standard, which is more received and easy to reproduce4. The mapping con-

tains 88, 939 CJK characters. Each of them is decomposed into a sequence of
2https://en.wikipedia.org/wiki/Kana.
3http://www.chise.org, Character Information Service Environment.
4Comparing to previous methods such as “Wubi” (five-stroke) input method (https://en.

wikipedia.org/wiki/Wubi_method), which is a Chinese input method using radicals as its input
features; CNS11643 charset (http://www.cns11643.gov.tw/AIDB/welcome_en.do), which is
published and maintained by the Taiwan government; and HTTPCN [4] (http://tool.httpcn.
com/Zi/), etc.

https://en.wikipedia.org/wiki/Kana.
http://www.chise.org
https://en.wikipedia.org/wiki/Wubi_method
https://en.wikipedia.org/wiki/Wubi_method
http://www.cns11643.gov.tw/AIDB/welcome_en.do
http://tool.httpcn.com/Zi/
http://tool.httpcn.com/Zi/
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Granularity Chinese Japanese

Word 风景 風景

Character 风 景 風 景

Ideo ⿵几㐅 ⿱日京 ⿵几䖝 ⿱日京

Ideo_finest ⿵几㐅 ⿱日⿳亠口小 ⿵几⿱丿虫 ⿱日⿳亠口小

Stroke ⿵⿰㇓乙⿻丿丶

⿱⿵⿰丨𠃌⿱一一⿳⿱丶一

⿱⿰丨𠃌一⿻亅⿰丿丶

⿵⿰㇓乙⿱丿⿻⿱⿰

丨𠃌一⿺⿱丨一丶⿱⿵⿰

丨𠃌⿱一一⿳⿱丶一⿱⿰丨𠃌一

⿻亅⿰丿丶

Table 3.3: Examples of sub-character decomposition in ASPEC–
JC corpus

ideographs and IDCs. There are 9, 986 ideographs in total, where 457 are stan-

dalone ideographs, which do not have further decompositions. To further extend

our research to finer granularity, we manually decompose these ideographs into 36

Unicode CJK strokes and 12 IDCs. For Japanese Kanas, because linguistically,

they are syllabaries, they should not be further decomposed theoretically. How-

ever, we decomposed it anyway and put it as one of the control groups in our

experiments. Furthermore, the CHISE project uses circled numbers (① to ⑲)

to represent the possible ideograph with this number of strokes when there is no

Unicode glyphs available. There are 911 circled numbers in total, which are also

decomposed.

There are other options for us to use in the character decomposition, such as

CNS11643 charset we used in (Zhang and Komachi, 2018). The shortcomings

comparing to CHISE+UNICODE is that they lack structural information in de-

compositions. In our empirical results, the structural information is important

to distinguish similar characters and reduce the noise when composing the sub-

characters back to characters.
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After the decomposition process, three sub-character level granularities can be

achieved:

1. Ideo. The original ideograph decomposition data in CHISE.

2. Ideo_finest. After further decomposing the data in “ideo” recursively until

all the ideographs in the ideograph data are stand-along ideographs.

3. Stroke. After further decomposing ideographs in “ideo_finest” data to

strokes level.

Table 3.3 showed the decomposition examples. When granularity becomes smaller,

more similar components are shared between Chinese and Japanese language. At

the word level, the Japanese token “风景” and Chinese token “風景” are completely

different tokens. At the character level, they share the character “景” which means

50% of the information are shared. At the sub-character level, more common parts

appeared in the two sequences.

BPE is applied to all granularities of sub-character level data to get proper vocab-

ulary before training, which is a good tool to control data granularity by setting

different vocabulary sizes. The largest granularity is at the word level data, which

has the largest vocabulary size. The finest granularity is at the “character” level

data, which has the smallest vocabulary size5. Every BPE vocabulary size set in

between will have intermediate granularities. If we plot the vocabulary–frequency

curve, the longer tails the data exhibits, the curve will move to the left–bottom

corner, and vice-versa. Figure 3.4 shows the vocabulary-frequency curves that
5This literarily splits every character apart. For alphabetic data, it splits based on letters; for

logographic data, it split based on characters. For sub-character level logographic data, it splits
based on ideographs or strokes.
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English

Japanese

Table 3.4: Vocabulary–frequency graph of English, Japanese data
of different granularities in ASPEC–JE corpus.
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data of different granularities might have. The word frequencies and vocabulary

sizes are normalized to the (0, 1) range. For clearer comparison, we zoom in to

(0, 0.5) at Y-axis for Japanese data. The data set exhibits more long-tail tendency

if the vocabulary-frequency curve is more towards the left-bottom corner, and vice-

versa. For English data, when BPE is applied, the curve is moving right-upper.

With smaller BPE vocabulary size, the curve is even moving further. For Japanese

character level data, the tendency towards right-up corner is not so obvious in

character-level data. However, when apply BPE to sub-character level data, the

curve significantly moves to the right-up corner. We can see that finer granularity

data tend to have less severe long-tail tendencies, and for logographic languages,

sub-character level data further exhibits less severe long-tail tendency.

During testing time, sub-character sequences are composed back to characters dur-

ing testing using the reverse CHISE mappings with the help of IDCs and special

suffixes. IDCs helped to distinguish mappings like “叻 → ⿰口力” and “另 →

⿱口力”. In addition for some minor duplicated cases, we add different number suf-

fixes to the decomposed sequences to distinguish them, e.g., “土 → ⿱十一_0”

and “士 → ⿱十一_1”. Therefore, theoretically, all the decomposed sequences

can be safely composed back. In practice, for those generated sub-character se-

quences that can not be found in the mappings, we replace them with UNK.
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Chapter 4

Experimental Settings

4.1 NMT between Logographic Languages

We first refine our language pairs between logographic languages, such as Chinese

and Japanese.

Asian Scientific Paper Excerpt (ASPEC) (Nakazawa et al., 2016) corpus contains

0.67 million Chinese–Japanese parallel sentences (“ASPEC–JC”) and 3 million

English–Japanese parallel sentences (“ASPEC–JE”). All the ASPEC–JC data were

used to train Chinese–Japanese and Japanese–Chinese NMT models, together with

2, 090 validation and 2, 107 testing sentences. Chinese and Japanese text in these

corpora were pre-processed into character and sub-character levels using the meth-

ods introduced in Section 3.4. Data of all granularities were tokenized by the BPE

algorithm. The vocabulary size varies according to the granularities. In addition,

character level data are tokenized by word tokenizers (the vocabulary is set to the

most frequent 32, 000 words). 1 The maximum training sequence length is set to
1MeCab for Japanese; Jieba for Chinese and NLTK word tokenizer for English.
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“mean(Lengths) + std(Lengths)” heuristically to increase training efficiency.

Table 4.1 shows the vocabulary sizes and lengths information of all the training

data, including the data used by control groups discussed in Section 4.5.

Table 4.2 showed the details of vocabulary sizes and length information of all

training data in different granularity levels in ASPEC–JE dataset.

United Nations (UN) corpus contains 15 million Zh–En parallel sentences, which

were used to train Zh–En and En–Zh NMT models. The size of the validation and

testing set are both 4, 000.

Table 4.3 showed the details of ASPEC–JE datasets.

For Japanese–English data, we also try to apply BPE tokenization of different

vocabulary size as well when necessary. But we have not implemented any data

transformation method as we described in Section 4.5. It will make no sense to use

character mapping between CJK characters when it pairs up with English. Also

the kana decomposition method is not tested for similar reasons.

4.2 UNMT between Logographic Languages

Similar to NMT settings, we use ASPEC–JC dataset to do our experiment on

UNMT settings. Although we are using the same ASPEC–JC parallel dataset

comparing to previous NMT tasks, we disregard all the parallel information when

we use it. We do this because we want to keep a relative fair comparison between

our supervised baselines and try not to attribute our results to the noises in our
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Data Granularity JA EN
Vocab Size Max. Length Vocab Size Max. Length

Char
Word 188253 145 361590 113
BPE 32000 166 32000 180
Character 3000 220 214 594

Ideo BPE 32000 321

32000 180

BPE 3000 397

Ideo_finest BPE 32000 321
BPE 3000 398

Stroke BPE 32000 321
BPE 3000 402

Table 4.2: The details of Japanese–English dataset (ASPEC–JE).

Data Granularity JA EN
Vocab Size Max. Length Vocab Size Max. Length

Char
Word 188253 502 361590 174
BPE 32000 512 32000 202
Character 3080 634 214 489

Ideo BPE 32000 503

32000 180

BPE 3000 995

Ideo_finest BPE 32000 503
BPE 3000 986

Stroke BPE 32000 503
BPE 3000 996

Table 4.3: The details of Chinese–English dataset (UN corpus).
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Algorithm 1: Sharing Rate Sampling
Data: source/target sentences
Input: r, k, N
Output: source/target sentences with r sharing rate (sample)
Init: current_r, vocab, shared_vocab, sample;
while len(sample) < N do

current_sample ∼ randomly sample 8 × k sentences;
calculate sentence level sharing rate sr based on shared_vocab;
sort sample in descending order of sr;
if current_r < r then

select top k sentences;
else

select bottom k sentences;
end
add selected sentences to sample;
update current_r, vocab, shared_vocab;
remove current_sample from datasets;

end

training data. One shortcomings for such usage is that the number of training data

is fewer than that is described in the original paper in Lample et al. 2018.

4.3 Controlling Shared Tokens

Lample et al. (Lample et al., 2018) have successfully made 95% of the BPE tokens

in English–German language pair shared across the training set, indicating that

the more proportion of token sharing, the better the UNMT systems will perform.

This study sampled from same dataset with controlled token sharing rate to get

a better understanding of this notion. Algorithm 1 takes controlled token sharing

rate r, top-k value k and sample size N as parameters.
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4.4 Experiments and Expected Results

Based on the previous settings, the following experiments will be done:

4.4.1 NMT

GNMT and Transformer models with extra positional codings for sub-characters

will be trained on Chinese–Japanese, Chinese–English, and Japanese–English data,

respectively. These experiments will mainly investigate the effectiveness of sub-

characters in NMT tasks between logographic language pairs and alphabetic-logographic

language pairs.

Moreover, within each division of writing systems, different granularities of the data

were tested. We tested from larger granularities, such as word and character-level

data, to smaller granularities, such as ideographic and stroke level data. Under

each granularity, we try first to have a large vocabulary size generated from the

BPE algorithm that ties every granularity, and also a smaller vocabulary size that

approaches to the size of characters in that granularity level. Thus we can try our

best to distinguish the effect brought by sub-character level data: Whether it is

because of the smaller vocabulary size or because of the more shared information?

The expected result would be the finer granularity the data is, the better the perfor-

mance would be. And both smaller vocabulary size and higher shared information

facilitate the training.
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4.4.2 UNMT

Sub-character level UNMT The baseline is a UNMT system trained on Chinese–

Japanese monolingual data, which are first pre-tokenized into words, and then

BPE’ed using fastBPE. 2 We call it character level baseline because no sub-character

level units are involved. The experiments are to compare it against UNMT systems

trained on sub-character level data, which are directly decomposed from character-

level data and then BPE’ed using fastBPE. In sub-character level data, the presence

of structural information was also controlled by adding or removing IDCs.

UNMT with different token sharing We sampled data (N = 300, 000) from

same monolingual corpus using Algorithm 1 with controlled token sharing rate r

of 0.5, 0.7 and 0.9, respectively. This is because UNMT systems trained on stroke

level data with IDCs achieved the best performance in preliminary experiments.

For pre-tokenization of the data: Jieba 3 was applied to Chinese using the de-

fault dictionary; MeCab4 was applied to Japanese using the IPA dictionary. For

BPE training, the vocabulary size was set to 30,000. We use 4-layer standard

Transformer (Vaswani et al., 2017) units as our two encoders and decoders. The

embedding size was 512; the hidden size of the fully connected network was 2048;

the weights of the last 3 layers of the encoders are shared; the number of multi-

attention head was 8. During training, the dropout rate was set to 0.1, and both

vocabularies and embeddings were shared. 10% of input and output sentences were
2https://github.com/glample/fastBPE
3https://github.com/fxsjy/jieba
4http://taku910.github.io/mecab/

https://github.com/glample/fastBPE
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randomly blanked out to add noise to language model training. We used Adam

optimizer with a learning rate of 0.0001.

4.5 Control Groups

To further validate our result, there are three control groups from different per-

spectives:

1. Logographic Language Pairs vs. Alphabetic–Logographic Language Pairs. We

would like to see whether the sub-character information only facilitates logo-

graphic language pairs or even only with one side of the data has logographic

languages; the model can also get some benefit from it. The expected result

would be in both cases, sub-character level data can facilitate the training.

2. Chinese–Japanese Character Mapping (“Charmap”). As we discussed be-

fore, logographic languages often share a large proportion of characters, but

sometime exhibit confusing meanings. We would like to test if we map all

Chinese characters into Japanese counterpart as in Chu et al.( 2012), can

we get better performance or not. The expected result would be no better

performance can be observed from similar experiment settings.

3. Kana Decomposition Data (“kana”). Although kanas are syllabaries in Japanese,

we still decompose them to stroke level for comparison. We would like to test

if the model can learn further longer sequences or not.
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Chapter 5

Results

5.1 NMT between Logographic Language Pairs

Table 5.1 shows the results of the GNMT model and Transformer model on ASPEC–

JC corpus. Almost all scores from Transformer models outperform that of GNMT

models. Models trained on sub-character level data consistently outperform char-

acter level baselines, whenever they have equal or smaller vocabulary sizes. Within

sub-character level data, generally, the finer the granularity, the better the perfor-

mance. Exceptions are mainly found on data with long sequence lengths. Models

trained on character-mapping data do not have a significant performance difference

comparing to character data. Models trained on kana decomposition data do not

have a significant performance difference comparing to stroke data. 1

1Since kana decomposition is only applied to Japanese text, we pair it with Chinese stroke
level data and train our models. Therefore the “N/A” is in the Chinese vocabulary size and
maximum lengths cells.
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Data Granularity
JA–ZH BLEU ZH–JA BLEU

GNMT Transformer GNMT Transformer

Char
Word 38.11 38.96 45.22 47.66
BPE 42.02 44.69 47.01 49.15

Character 45.84 47.02 50.77 52.09

CharMap
Word 34.13 34.79 41.13 42.86
BPE 41.88 43.37 47.15 48.81

Character 45.80 47.73 49.20 51.83

Ideo
BPE 46.30 47.76 50.40 52.98
BPE 46.90 48.57 51.99 53.79

Character 44.93 46.91 51.09 52.75

Ideo_Finest
BPE 46.41 47.61 50.69 52.04
BPE 46.75 49.02 50.80 52.99

Character 44.39 46.72 49.95 51.67

Stroke
BPE 46.57 48.11 50.83 51.16
BPE 46.81 48.45 49.05 53.37

Character 43.26 45.72 48.51 49.70

Kana
BPE 46.43 48.67 50.53 51.25
BPE 45.21 48.19 47.34 48.42

Character 38.64 40.19 42.98 43.90

Table 5.1: BLEU scores of NMT models using ASPEC–JC data.
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Data
JA–EN EN–JA

GNMT Transformer GNMT Transformer

Char 24.47 25.62 37.90 39.18

Ideo 26.22 27.49 38.15 39.17
Ideo_finest 26.45 27.72 38.92 39.98

Stroke 26.22 27.43 38.37 39.94

Data
ZH–EN EN–ZH

GNMT Transformer GNMT Transformer

Char 28.28 29.55 44.12 45.58

Ideo 30.53 32.09 46.33 47.21
Ideo_finest 30.59 32.17 46.45 47.52

Stroke 31.19 31.87 46.75 47.70

Table 5.2: BLEU scores of NMT models of JA–EN and ZH–EN
data. All data are tokenized by BPE model with vocabulary size of

32, 000.

5.2 NMT between Logographic and Alphabetic

Language Pairs

Table 5.2 shows the results of the GNMT model and Transformer model on ASPEC–

JE and UN ZH–EN corpus. Models trained on sub-character level data usually out-

perform models trained on character level data. Within the sub-character groups,

the finer the granularity, the better the performance.
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Data Granularity JA–ZH ZH–JA

Char BPE.32000 32.38 41.02

Ideo_raw BPE.32000 33.22 41.91
BPE.2300 35.60 43.88

Ideo_finest BPE.32000 33.91 42.20
BPE.800 37.54 44.39

Stroke BPE.600 35.82 42.35

Table 5.3: The BLEU scores of UNMT model under different
granularities.

r JA–ZH ZH–JA

0.5 19.72 25.23
0.7 23.60 28.32
0.9 23.04 28.84

Table 5.4: The BLEU scores of different token sharing rate on test
set.

5.3 UNMT between Logographic Language Pairs

5.3.1 Sub-character Level UNMT

Table 5.3 showed the UNMT model’s performance of different granularities. Gen-

erally speaking, the finer granularity the data, the better the performance. Best

performance was observed at “Ideo_finest” level data with BPE vocabulary size of

800.

5.3.2 UNMT with Different Share Token Rate

Table 5.4 shows the results for UNMT systems using data of different share token

rate. When r = 0.5, the system recorded the lowest performance; however, when
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r increased to 0.7 and 0.9, the performance differences become minor. In contrast

with Lample et al. (2018), in our previous sub-character experiments, only 66% to

68% of the tokens are shared and can get a relatively good BLEU score.
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Chapter 6

Discussions

6.1 Model Trained on Finer, Sub-character Level

Data Performed Better

We have experimented on both character and sub-character level data in logographic–

logographic and logographic–alphabetic language pairs using GNMT, Transformer,

and UNMT models. In almost all of these scenarios, we found that finer granularity

data can facilitate training and got higher BLEU scores (despite that the UNMT

model does not converge for logographic–alphabetic language pairs). On one hand,

the results confirmed that on character level, data tokenized by BPE models and

by character outperform the word tokenizers; on the other hand, it showed that

sub-character level data could further improve the performance.

Are the improvements coming from the finer sub-character level granularity or sim-

ply from the reduction of vocabulary size? We believe in both. When controlling
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the vocabulary size to 32, 000 (BPE), sub-character models outperform the charac-

ter models. What’s more, because sub-character data can naturally achieve smaller

vocabulary size, when balancing it with sequence length, the models usually get

even better performance. We also believe that the worse performance of some

finest level data, such as “stroke” data tokenized by character, might be because

the sequence is too long for the model to learn, and the learning took much longer

time. From Table 5.1, roughly when the maximum length of the training sequence

is longer than 130, the performance would be harmed. This is also reported as

“gradient vanishing” problem for LSTM neural networks (Koehn and Knowles,

2017) and smaller distinctive features in latter positions in Transformer positional

embedding (Kitaev, Kaiser, and Levskaya, 2020).

There are different preferences over what level of sub-character level data to gen-

erate the best performance over different models. The best scores are observed

for “ideo_finest” level data when the target language is Chinese or Japanese, and

“stroke” level when it is English. Considering that the Transformer models always

outperform LSTM models on all the tasks, the improvements we achieved are highly

promising. Further, Table 5.2 showed that when only one side of the training data

is at sub-character level, similar patterns of improvements can be achieved. This

suggests that our method can also be used in the BERT (Gehring et al., 2017) or

GPT (Radford et al., 2019) models, where only encoder and decoder networks are

used. Finally, despite good performance on logographic language pairs, our UNMT

models on Japanese–English and Chinese–English did not converge. This confirms

previous observation (Artetxe et al., 2018) that current UNMT models cannot

handle remote languages well because they rely heavily on the shared information
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between two vocabularies.

However, the difference between the “stroke” model and the “ideograph” level

model is that the lengthy sequences of data with finer granularity can complicate

Transformer decoding. Taking Transformer NMT models as examples, when En-

glish is on the target side, the performance of all models increased as the granularity

became finer and the “stroke” level data performed the best. Under this condition,

the decoding sequence is always English sub-word sequences of which the lengths

are not substantial. This enables the model to exploit the finer granularity of the

data fully, resulting in improved learning. On the other hand, when Chinese or

Japanese were on the target side, the model was ineffective on “stroke” level data.

The best performance was obtained with “ideo_finest” level data. This might be

because Transformer units were unable to process long sequences satisfactorily (Dai

et al., 2019); i.e., although “stroke” level data were easier to learn, they were more

difficult to decode.

The improvements could be attributed to the increase in the share token rate

and smaller vocabulary size. As mentioned before, data with finer granularity

naturally exhibit a higher share token rate. Our results appear to suggest a strong

relationship between the share token rate and the performance of the model when

the character level and sub-character level data had the same vocabulary size.

When sub-character level data have smaller vocabulary sizes, they often resulted

in better performance after striking a balance with the deficits of longer sequence

lengths.
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Data JA–ZH Sharing Sharing within JA Sharing within ZH

Char 60.28% 52.70% 30.79%

Ideo 68.76% 48.53% 42.73%
Ideo_finest 81.36% 62.26% 63.82%

Stroke 87.74% 71.14% 75.98%

Table 6.1: Information sharing of different granularity data of
ASPEC–JC corpus.

6.2 Higher Level of Information Sharing in Finer

Granularity Data

The token sharing can happen across different languages, but can also happen

within one language. When we calculate cross-language share token rate, we cal-

culate how many tokens both appearing in both text. When we calculate the share

token rate within one language, we usually focus on specific sentences and look for

the duplicated parts in that sentence.

Finer granularity data exhibit a higher level of information sharing between and

within each training sequence, which might be the reason for better NMT perfor-

mance. Table 6.1 calculates the percentage of information sharing by counting how

many tokens in the sequence are duplicated. For example, in the sequence “[a,

b, c, d, a],” “a” appeared twice, so that the percentage of information sharing

is 2/5 = 40%. As the granularity became finer, both information shared across

the source and target text as well as within source or target text increased. This

seems to suggest a high correlation with the increasing performance of NMT mod-

els. Intuitively, a higher proportion of shared information can facilitate the model

to better learn the mappings between input and output, which may collectively
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Granularity JA–ZH + MPE (difference) ZH–JA + MPE (difference)

Character 48.65 48.45 (−0.20) 55.49 55.32 (−0.17)

Ideo 47.21 50.07 (+2.86) 53.91 56.77 (+2.68)
Ideo_finest 34.56 51.11 (+16.55) 41.88 57.28 (+15.40)

Stroke 23.19 49.06 (+25.87) 29.23 52.49 (+23.26)

Table 6.2: Performance of Transformer models with/without
MPE. BLEU score reported on ASPEC–JC corpus.

contribute to the higher BLEU scores.

6.3 Orders within Sub-character Sequence can be

Mostly Learned

How can we guarantee that all the outputs can be transform back to characters

safely, especially in the sub-character situation? Theoretically, it is possible that

the sub-character sequence produced by the model can not be composed to the

original character for BLEU computing, because just one wrong prediction in the

sub-character sequence can lead to mistakes. However, in real practice we found

that the absolute majority of characters can be recovered, which means the model

learns the sub-character order very well. For example, in the Chinese–Japanese

ideograph level GNMT model using 32000 vocabulary size, 99.57% of the characters

in the hypothesis can be safely converted back to character level data. We think

the BLEU scores itself could be a good indicator of the successful transforming.

But it is still possible that in finer granularities, the successful transforming rate

becomes a little bit lower.

The extra multi-layer positional embedding (MPE) we proposed in Section 3.2.2
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was very important as Table 6.2 showed how the BLEU scores dropped dramatically

without MPE.

6.4 Character-mapping and Kana Decomposition

In statistical machine translation (SMT), character-mapping between Japanese

kanjis and Chinese characters plus a carefully designed dictionary can have better

performance (Chu, Nakazawa, and Kurohashi, 2012). We use the same character-

mapping to pre-process our character level data as one control group in experi-

ments. However, according to Table 5.1, its performance is not significantly differ-

ent to the models trained on the original character-level data. We believe this is

because character-mapping might increase the similarity between the source and

target text, it also introduced uncontrollable noise because the same characters

and words might have different meanings in different languages. Interestingly, the

reduction of character/kanji types increased the vocabulary size of the word-level

data. In SMT systems, a larger phrase table is an advantage, which might be the

reason for its gain in BLEU score but not in NMT. Similarly, kana decomposition

does not help Japanese stroke level NMT much since the training data became

much longer and noisier.

6.5 IDCs

IDCs are also one factor that we can successfully train our models on sub-character

level information. Zhang et al. (Zhang and Komachi, 2018) has pointed out that
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Granularity JA–ZH ZH–JA

Character 24.18 (29.60) 29.79 (40.00)

Ideograph w/ IDCs 25.76∗ 32.61∗

w/o IDCs 25.14∗ (32.00) 32.17∗ (42.60)

Stroke w/ IDCs 26.39∗ 32.99∗

w/o IDCs 24.75∗ (32.10) 30.59∗ (42.20)

Table 6.3: BLEU scores (∗ for statistically significant score against
baseline at p < 0.0001) of UNMT (larger fonts) and supervised
NMT systems (Zhang and Komachi, 2018) (smaller fonts in brack-

ets) on test sets.

without IDCs in character decomposition, there will be many more possible dupli-

cations in sub-character sequence. In our experiments, this point is confirmed and

if we trained on data without IDCs, usually poor performance will be got.

Table 6.3 showed the performance with/without IDCs in Chinese–Japanese Lan-

guage pairs.

6.6 Shared Information and Proportion of Shared

Tokens in UNMT

Zhang et al. (2018) showed that shared information brought by sub-character level

information could help supervised NMT systems; this study found a similar phe-

nomenon, although with different granularity preference.

Table 6.4, Table 6.5 and Table 6.6 showed the examples from all the models that we

tested. From each tables we listed the ground truth parallel sentences, the models
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Type Lang. Sentence

Ground Truth JA 図3に「会」が固有表現であるか否かを

判定する2つの例文を示した.

ZH 图3所示的是2个关于判断“会”是否是

固有表达的例句。

Ideo GNMT JA 図3に,「会」が固有表現であるかどうか

判断する例文を2つ示す.

ZH 图3表示的是判定“会”是固有表现的2

个例句。

Stroke GNMT JA 図3に,「会」が固有表現の有無を判定

する例文を2つ示す.

ZH 图3显示了判断“会”是否是固有表达的2

个例句。

English Figure 3 shows two example sentences that were
used to judge whether “会” is an inherent ex-
pression.

Table 6.4: Translation examples from GNMT models.

translations from both directions and the English translation. For brevity, we only

listed the ideo level models and stroke level models in each experiment settings.

Despite that most of translations are fluent and accurate, we can still see some

differences from the translations. For example, in Table 6.6, the stroke model

was even slightly better than the ideograph model because it translated Japanese

“表現” (“expression”) into Chinese “表达” (“expression”), which was more precise

than ideograph model’s “名词” (“noun”). Also, in Table 6.5, the stroke model

was even correctly translated Japanese “判定する” (“judge”) into Chinese “判断”

(“judge”), ideograph model’s translation “判定” (“determine”).

However, current unsupervised models still perform poorly on distant language

pairs. If the shared information between distant languages can be improved, UNMT
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Type Lang. Sentence

Ground Truth JA 図3に「会」が固有表現であるか否かを判定

する2つの例文を示した.

ZH 图3所示的是2个关于判断“会”是否是固有表达

的例句。

Ideo Transformer JA 図3に,「会」が固有表現であるかどうか否か

を判断する例文を2つ示す.

ZH 图3表示的是2个判定“会”是固有表现的例句。

Stroke Transformer JA 図3に,「会」が固有表現であるかどうか否か

を判定する例文を2つ示す.

ZH 图3显示了2个判断“会”是否是固有表达的例句。

English Figure 3 shows two example sentences that were
used to judge whether “会” is an inherent ex-
pression.

Table 6.5: Translation examples from 3 unsupervised NMT mod-
els in 6 translation directions.

may work for a more general purpose. Additionally, the low proportion of shared

tokens can harm the performance, but the high proportion does not linearly im-

prove the performance either.

6.7 Translation Quality in UNMT

In both translation directions, there are a lot of synonymous expressions produced

which lowered the BLEU score. However, according to native speakers’ judgement,

they tend to be good translations in terms of grammaticality, fluency, and natu-

ralness. For example in Table 6.6, the character-level system’s Chinese translation

“中 显示” (“in which shows”) was very close to the reference “所示” (“as shown

in”) semantically, and was consistent in ideograph- and stroke-level models. A
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Type Lang. Sentence

Ground Truth JA 図3に「会」が固有表現であるか否かを判定

する2つの例文を示した.

ZH 图3所示的是2个关于判断“会”是否是固有表

达的例句。

Ideo UNMT JA 図3に示すように2つの判断「会」が固有表

現であるかどうかについての例文を示す.

ZH 图3中显示了判定“会”是否是固有名词的2个

例句。

Stroke UNMT JA 図3に示すのは,2つの判断について「会」

が固有表現の例文であるかどうかである

ZH 图3中显示了判定“会”是否是固有表达的2个

例句。

English Figure 3 shows two example sentences that were
used to judge whether “会” is an inherent ex-
pression.

Table 6.6: Translation examples from 3 unsupervised NMT mod-
els in 6 translation directions.
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similar example would be “判断” (“judge”) in reference and “判定” (“determine”)

in the hypothesis. This might be due to the encoder-decoder language models,

which successfully grasp the language features and express them in the transla-

tion. Consequently, if semantic metrics could be introduced, the performance of

unsupervised NMT might be better reflected.
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Chapter 7

Conclusion

7.1 Concluding Remarks

This study showed that sub-character level information can be successfully applied

to Transformer NMT models and UNMT models, with sub-word position features

applied to the model. This study also tested the difference between levels of gran-

ularity in the data and found that when the training sequence is not too long, the

models can learn better from finer granularity data. All these improvements might

be attributed to the naturally higher shared information between and within the

source and target text.

The topic of shared information has not yet been studied in detail. A method

capable of increasing the this information should not only be applicable to data

preparation but also to training techniques and model design. Additional future

work in this direction is expected to be promising.
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7.2 Future Works

In the future, we would like to discover more about the share token rate and based

on that find better ways of utilizing the NMT training data. For example, can we

better use share token rate information in designing better learning curriculum?

Also, we would like to find more on how sub-character data can help with the down

stream tasks, such as BERT, in NLU and NLG tasks.
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List of Publications

• Longtu Zhang and Mamoru Komachi (2020), Using Sub-Character Level In-

formation for Neural Machine Translation of Logographic Languages, in ACM

Transactions on Asian and Low-Resource Language Information Processing

(to appear)

• Longtu Zhang and Mamoru Komachi (2019). Chinese-Japanese Unsuper-

vised Neural Machine Translation Using Sub-character Level Information. In

Proceedings of the 33rd Pacific Asia Conference on Language, Information

and Computation, Sep, 2019

• Yuting Zhao, Longtu Zhang and Mamoru Komachi (2019). Application of

Unsupervised NMT Technique to Japanese-Chinese Machine Translation. In

Proceedings of the 33rd Annual Conference of the Japanese Society for Arti-

ficial Intelligence, June 6, 2019

• Longtu Zhang and Yuting Zhao and Mamoru Komachi (2018). TMU Japanese-

Chinese Unsupervised NMT System for WAT 2018 Translation Task. In
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Proceedings of the 5th Workshop on Asian Translation, HongKong, China.

December 3, 2018

• Longtu Zhang and Mamoru Komachi (2018). Neural Machine Translation of

Logographic Language Using Sub-character Level Information. In Proceed-

ings of the Third Conference on Machine Translation, Brussels, Belgium.

October 31 – November 1, 2018 (Acceptance rate 28.7%)

• Longtu Zhang (2016). Short-long/Long-short Preferences in English/Japanese

Processing Revisited. In Young Researchers Symposium on Natural Lan-

guage Processing (YRSNLP) 2016, Osaka, Japan. December 10, 2016
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