Technical Disclosure Commons

Defensive Publications Series

December 2021

CONTAINERIZED DEPLOYMENT OF WEBRTC-SIP INTERWORKING
FUNCTION TO INTEROPERATE WITH LEGACY SIP LINE-SIDE
EDGES

Faisal Siyavudeen
Ram Mohan R
Sachin Mehrotra

Krishna Kumar Rai

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation

Siyavudeen, Faisal; R, Ram Mohan; Mehrotra, Sachin; and Rai, Krishna Kumar, "CONTAINERIZED
DEPLOYMENT OF WEBRTC-SIP INTERWORKING FUNCTION TO INTEROPERATE WITH LEGACY SIP LINE-
SIDE EDGES', Technical Disclosure Commons, (December 23, 2021)
https://www.tdcommons.org/dpubs_series/4802

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F4802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/4802?utm_source=www.tdcommons.org%2Fdpubs_series%2F4802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Siyavudeen et al.. CONTAINERIZED DEPLOYMENT OF WEBRTC-SIP INTERWORKING FUNCTION TO |

CONTAINERIZED DEPLOYMENT OF WEBRTC-SIP INTERWORKING
FUNCTION TO INTEROPERATE WITH LEGACY SIP LINE-SIDE EDGES

AUTHORS:
Faisal Siyavudeen
Ram Mohan R
Sachin Mehrotra
Krishna Kumar Rai

ABSTRACT

Conventional Session Initiation Protocol (SIP) line-side edges are not always
distributed, and they require that registrations and calls be handled by the same entity.
Servers that support Web Real-Time Communication (WebRTC) clients do not require a
hard state and with cloud deployments they are increasingly being deployed as
containerized workloads. Containerized deployments (such as Kubernetes) are typically
stateless, and even with stateful implementations special handling is required to ensure that
registrations and calls are consistently sent to the same SIP edge node, with high
availability, in the face of frequent pod failures. To address such challenges, techniques
are presented herein that enable a browser (that is stateless) to register via a Kubernetes
cluster of pods (which are, again, stateless) but still connect as a SIP line side to a legacy
SIP system that requires stickiness in terms of using the same Transmission Control
Protocol (TCP) or Transport Layer Security (TLS) connection for SIP registrations and

calls.

DETAILED DESCRIPTION
Conventional Session Initiation Protocol (SIP) line-side edges are not always
distributed, and they require that registrations and calls are handled by the same entity.
Typical examples include a unified border element, collaboration gateway solutions, etc.
Servers that support Web Real-Time Communication (WebRTC) clients do not require a
hard state and with cloud deployments they are increasingly being deployed as
containerized workloads. Containerized deployments (such as Kubernetes) are typically

stateless, and even with stateful implementations special handling is required to ensure that

1 6704
Published by Technical Disclosure Commons, 2021

Defensive Publications Series, Art. 4802 [2021]

registrations and calls are consistently sent to the same SIP edge node, with high
availability, in the face of frequent pod failures.

Techniques are presented herein that ensure that WebRTC-SIP interworking with
legacy SIP edges will correctly route traffic while running in container platforms such as
Kubernetes. Aspects of the presented techniques (which will be described an illustrated in
the narrative that is presented below) support, among other things, a unique way of joining
browser devices that can move across pods to still be able to associate with the same user
and register or deregister accordingly. For example, when a browser that was initially
registered with Pod1 moves to Pod2 such a move will trigger a replacement of the previous
registration with the current one. Aspects of the techniques presented herein allow various
call features like hold and resume, transfer, call forward, call park and pickup, etc. to work
seamlessly across browser endpoints within a SIP ecosystem even when a browser is
moving across various pods. Such support is accomplished by, for example, check pointing
the context.

Figure 1, below, presents an exemplary overall architecture using Kubernetes.

Deployment

webRTC-SIP-Gateway statefulset cluster PODs
[Namespace]

i webrtc2sip_gateway_pod3

ConsistentHash(device_url) —

Istio Ingress \
m.mngm] \ | Calling System

> — = SP| (]
—> T T
A" ConsistentHash(device, url) R ypr SIP Edge 1
— webrtc2sip_gateway_pod1 N\

_|_consistentHash(device_url) J [(m] a
T ——— SIP{ | SIPEdge2 Call Control

NG) s | | P =
o - T r'i
- T T T el

HTTP
_user, _[APKS)

User clientalias

webrtc2sip_gateway_pod2 S’p
webrtc2sip_gateway_pod4
Figure 1: Exemplary Architecture
2 6704

https://www.tdcommons.org/dpubs_series/4802

Siyavudeen et al.. CONTAINERIZED DEPLOYMENT OF WEBRTC-SIP INTERWORKING FUNCTION TO |

The WebRTC to SIP Gateway pod cluster that is depicted in Figure 1, above,
performs WebRTC Hypertext Transfer Protocol (HTTP) to SIP line side interworking and
provides a rich feature set. The WebRTC to SIP Gateway can be a gateway that acts as a
line side edge to allow browsers to register as a SIP line to legacy SIP system or can be a
gateway that allows browsers to call a SIP system device via a trunk as a guest caller. Some
of the supported flows include the registration of a browser as a SIP line side to a SIP cloud
calling or legacy SIP enterprise ecosystem, the ability to make inbound or outbound calls,
the ability to trigger various supplementary services (such as hold, resume, transfer, call
forward, park or resume, etc.), and the ability to perform any of the above-described actions
when a browser moves across pods.

Aspects of the techniques presented herein support a number of functionalities. For
example, a specific pod will contain the WebRTC-SIP interworking instances. These may
be deployed in a single container or they may be separate. During operation of the system
as illustrated in Figure 1, a client device will send a Device identifier (ID) in a custom
header or body in all of the application programming interface (API) calls that are invoked
by the client. The device ID will be subjected to consistent hashing (through, for example,
a hash ring or MagLev) to load balance requests across different pods. Since a Device ID
does not change, all of the requests from a given device will always be routed to the same
pod.

Pods will be created (as, for example, a Kubernetes StatefulSet) such that each pod
may be specifically named. Every device that is created on a given pod will result in a SIP
REGISTER request from that pod to the destination legacy SIP edge. All of the calls to
and from the corresponding client device will use the same Transmission Control Protocol
(TCP) connection between that same pod and SIP edge, thereby satisfying the SIP edge
requirement for stickiness between registrations and calls and ensuring that all of the
messages in a call are carried over the same TCP connection. The SIP REGISTER message
will contain a unique identifier (which is a Device ID) that will ensure that any pod that
handles the API registration call from a browser will end up registering the same device
(essentially replacing the previous registration). Figure 2, below, presents an exemplary

flow of the techniques of this proposal.

3 6704
Published by Technical Disclosure Commons, 2021

Defensive Publications Series, Art. 4802 [2021]

¥0L9 4

mop] Lavjdwoxsy 7 24n31,]

foauodied abp3-dis JanagBuILoISIAOlg MO-dIS-OLYGaM femareossaibu| Iasmoig
NQ pue pn [3)/dis buiaey sassaippe
2e-0466-0859-6E T =
linaaiap ‘ppasn
(aomapyrandey I iy 01) %0 002 [11]

NG PUE [N [91/d1S DUney Sassaippe
109898B0JGL4-RZHE-QY66-0BG9-BETZEGE=QI0aD
1iNBoap ‘pliasn
(aomapandewod Kemared diszaugavirsdiy o1) %0 00z [oT)

3151934 0 002 (6]

43151934 X0 002 (8]

09 EIeNe BUNEs-oGam=GNa

00, =19900NS UDWAD-PPIRMIOS-X Sy
siapeay/sbe) dis Jayio

wioo Buepe Tabpadisaugam dis Y3513y (2]

LGOEIZROS LI-BZYE-0J66-TBS9-BETZESIEUIS Sy 108IU0D Sty 10RIU0Y
WOORIRNLIIMBANE:dIS:0)
wod"BjuRRR UMD 3R dIS W0l
W0 BIUEE TASSIUGN dIS YI1SI93Y [9]

-

NS % NO SEpIennes STL0 >

1suRBe NYS Suassefaiepien

[3018AIBS ST1L Ul Urewop (xo1d punoqino) Ay aBp3-dis
a6p3-0is jm S1LW dnjas

"URRWIOP AYS Pana0aJ ay) Lo dnyoo| “sdis™ A¥S 0p
01193UU09 0) 3bpa dis ay) Ja0asIp :

A

UFeWi0p W0 Elveqe abpa-ai5-ouaam 1050 AYS
<wodBIUR[e UGIMBE:dIS> WMay [r]

-

35N POEIIUAYINY 10}
#xoid punoging Yoy dis dnxoo [g]

1350 [0 341 10f
¥OY IS 24} AP)

1d¥dO HO 12 djoo) e s30q
o«

QiBunyel Tiasnjuan0 YNyO “PN3ASP pussn
aonapTAdenuoo-Aemared diszouqanrsdny 150d [2)

(319ey9ea1 Jou sy ssajun pod awes)

Pod MO-dIS-OL4qa & 0} 52101 pue

(inaowap uoissas e uo paseq

%___.mn_snmmsoa_a% Tey) XNION / 00| 4l MO SALLH ‘1Y 2q uea)g e isanba

@ibunjoen (l3sn)uaxo] INyQ PN@dap puasn
saumapTjide/wod femared diszougamrsany 1504 (1]

BHIED dIS LGN Ik
(2B 1012¥005qaM 2In2as 153y 8 Lea) [auUeY? dn Sias aswoIg

u £13A02S(D Jao Je[IS 10 15BIALE 'SNQ ‘AYS Buisn
a6pa Kemaleo diS D 14U SI3N0ISIP JasHoIg

101U0DIRD abp3-dis Janagbuluoisinold MO-dIS-OLHGEM femareossaibul Jasmolg

10410 (123 diS KoeB3] © 0} 3pIS au DLyqaM o} uonensifoy

https://www.tdcommons.org/dpubs_series/4802

Siyavudeen et al.. CONTAINERIZED DEPLOYMENT OF WEBRTC-SIP INTERWORKING FUNCTION TO |

As shown in Step 5 of the flow that is presented in Figure 2, above, a Contact header
will contain a unique Device ID that is generated for each browser session and such a value
will be used in the reverse direction as well to map the browser.

The failover design as proposed herein ensures that devices can failover at any point
in a call. This includes the failover of a WebRTC to SIP Gateway pod during registration,
in an active call state, during call transit (e.g., hold, transfer, park, etc.), etc. Figure 3,
below, presents an example of how registration and call failover (on call keep-alive) may

be performed from one pod to another pod.

5 6704
Published by Technical Disclosure Commons, 2021

Defensive Publications Series, Art. 4802 [2021]

Registration - Call
WebRTC App Registration App Ca
Client - Table - Tal:l)la
|, Call Status | : '
. (/devices/{id}/calls/{callid}/status) | sl
: : Call not found
. i in local cache
; ; 2 Query i
i i 3 Active call(s) found
| 4 Registration Takeover
5 Query i
6 Registration found |
Update Owner 0

Start Registration
and Call takeover

]

11 Success

Registration Takeover Complete E"

|

12Call Takeover

8 Registration Request 1 SipEdge Host

i sin st R

1 3 Update Owner

Recreate call(s) context l}]

1 4 Recreate call(s) contbxt
]

SIP
App | SipEdge

| T

| [}

|]

| [

| 1

| [}

|]

| [

| 1

| [}

|]

| [

| 1

i i

I i

| 1

i i

I i

| 1

i i

| :
- '
9 REGISTER _

10200 OK

..)Tl'h

| Recreate call(s) context I}}

]
BE A !
I
16 OK !
L s . :
Call Takeover Complete b‘ i
I
]
17 Success (Registration Takeover) | :
18 200 OK |
1 - : | |
WebRTC Registration Call
F Registration Call
Client App Table App Table

____________ l]

SIP
App

| SipEdge

Figure 3: Exemplary Registration and Call Failover

https://www.tdcommons.org/dpubs_series/4802

6704

Siyavudeen et al.. CONTAINERIZED DEPLOYMENT OF WEBRTC-SIP INTERWORKING FUNCTION TO |

Aspects of the techniques presented herein support a number of capabilities. A first
capability encompasses a method whereby a browser inserts a unique Device ID (e.g., that
is unique to a login) into a HTTP header or a body which in turn is used in the SIP Contact
header of a REGISTER request to uniquely identify a registration session of a user. The
unique Device ID (e.g., a random universally unique identifier (UUID)) is mapped to a
legacy SIP user (e.g., a SIP Address of Record (AOR)) for that device type.

A second capability encompasses a method whereby the unique Device ID is used
to map all of the (stateless) HTTP requests to the same pod (e.g., using StatefulSets) and
wherein that pod ensures that it reuses a directed SIP line side connection to a legacy SIP
edge. The pod in turn ensures that it takes over the registration (effectively replacing the
registration on the SIP side) if the consistent hash routes the API call to a new pod (e.g.,
due to failover of another pod).

A third capability encompasses a method whereby the pods ensure that call context
is stateless on the HTTP side allowing browser clients to move across pods or connect to
different pods (when, for example, a pod that setup a call fails over) but ensuring the call
is stateful on the SIP leg. This is done by check pointing the minimal call context in a
shared database which in turn may be used by any pod to reconstruct the call state and
ensure that the SIP peer on other side still sees the same call.

A fourth capability encompasses a method whereby various supplementary calling
services (such as hold, resume, call park or retrieve, transfer steps) may be done such that
pod failures during an operation still ensure that functionality does not fail. For example,
a browser may place a call on hold through PODI1 and then get it retrieved through POD2.

In summary, techniques have been presented herein that enable a browser (that is
stateless) to register through a Kubernetes cluster of pods (which are, again, stateless) but
still connect as a SIP line side to a legacy SIP system that requires stickiness in terms of
using the same TCP or Transport Layer Security (TLS) connection for SIP registrations

and calls.

7 6704

Published by Technical Disclosure Commons, 2021

	CONTAINERIZED DEPLOYMENT OF WEBRTC-SIP INTERWORKING FUNCTION TO INTEROPERATE WITH LEGACY SIP LINE-SIDE EDGES
	Recommended Citation

	Microsoft Word - 1520367_1

