
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

December 2021

CONTAINERIZED DEPLOYMENT OF WEBRTC-SIP INTERWORKING CONTAINERIZED DEPLOYMENT OF WEBRTC-SIP INTERWORKING

FUNCTION TO INTEROPERATE WITH LEGACY SIP LINE-SIDE FUNCTION TO INTEROPERATE WITH LEGACY SIP LINE-SIDE

EDGES EDGES

Faisal Siyavudeen

Ram Mohan R

Sachin Mehrotra

Krishna Kumar Rai

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Siyavudeen, Faisal; R, Ram Mohan; Mehrotra, Sachin; and Rai, Krishna Kumar, "CONTAINERIZED
DEPLOYMENT OF WEBRTC-SIP INTERWORKING FUNCTION TO INTEROPERATE WITH LEGACY SIP LINE-
SIDE EDGES", Technical Disclosure Commons, (December 23, 2021)
https://www.tdcommons.org/dpubs_series/4802

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F4802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/4802?utm_source=www.tdcommons.org%2Fdpubs_series%2F4802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 6704

CONTAINERIZED DEPLOYMENT OF WEBRTC-SIP INTERWORKING
FUNCTION TO INTEROPERATE WITH LEGACY SIP LINE-SIDE EDGES

AUTHORS:

Faisal Siyavudeen
Ram Mohan R

Sachin Mehrotra
Krishna Kumar Rai

ABSTRACT

Conventional Session Initiation Protocol (SIP) line-side edges are not always

distributed, and they require that registrations and calls be handled by the same entity.

Servers that support Web Real-Time Communication (WebRTC) clients do not require a

hard state and with cloud deployments they are increasingly being deployed as

containerized workloads. Containerized deployments (such as Kubernetes) are typically

stateless, and even with stateful implementations special handling is required to ensure that

registrations and calls are consistently sent to the same SIP edge node, with high

availability, in the face of frequent pod failures. To address such challenges, techniques

are presented herein that enable a browser (that is stateless) to register via a Kubernetes

cluster of pods (which are, again, stateless) but still connect as a SIP line side to a legacy

SIP system that requires stickiness in terms of using the same Transmission Control

Protocol (TCP) or Transport Layer Security (TLS) connection for SIP registrations and

calls.

DETAILED DESCRIPTION

Conventional Session Initiation Protocol (SIP) line-side edges are not always

distributed, and they require that registrations and calls are handled by the same entity.

Typical examples include a unified border element, collaboration gateway solutions, etc.

Servers that support Web Real-Time Communication (WebRTC) clients do not require a

hard state and with cloud deployments they are increasingly being deployed as

containerized workloads. Containerized deployments (such as Kubernetes) are typically

stateless, and even with stateful implementations special handling is required to ensure that

2

Siyavudeen et al.: CONTAINERIZED DEPLOYMENT OF WEBRTC-SIP INTERWORKING FUNCTION TO I

Published by Technical Disclosure Commons, 2021

 2 6704

registrations and calls are consistently sent to the same SIP edge node, with high

availability, in the face of frequent pod failures.

Techniques are presented herein that ensure that WebRTC-SIP interworking with

legacy SIP edges will correctly route traffic while running in container platforms such as

Kubernetes. Aspects of the presented techniques (which will be described an illustrated in

the narrative that is presented below) support, among other things, a unique way of joining

browser devices that can move across pods to still be able to associate with the same user

and register or deregister accordingly. For example, when a browser that was initially

registered with Pod1 moves to Pod2 such a move will trigger a replacement of the previous

registration with the current one. Aspects of the techniques presented herein allow various

call features like hold and resume, transfer, call forward, call park and pickup, etc. to work

seamlessly across browser endpoints within a SIP ecosystem even when a browser is

moving across various pods. Such support is accomplished by, for example, check pointing

the context.

Figure 1, below, presents an exemplary overall architecture using Kubernetes.

Figure 1: Exemplary Architecture

3

Defensive Publications Series, Art. 4802 [2021]

https://www.tdcommons.org/dpubs_series/4802

 3 6704

The WebRTC to SIP Gateway pod cluster that is depicted in Figure 1, above,

performs WebRTC Hypertext Transfer Protocol (HTTP) to SIP line side interworking and

provides a rich feature set. The WebRTC to SIP Gateway can be a gateway that acts as a

line side edge to allow browsers to register as a SIP line to legacy SIP system or can be a

gateway that allows browsers to call a SIP system device via a trunk as a guest caller. Some

of the supported flows include the registration of a browser as a SIP line side to a SIP cloud

calling or legacy SIP enterprise ecosystem, the ability to make inbound or outbound calls,

the ability to trigger various supplementary services (such as hold, resume, transfer, call

forward, park or resume, etc.), and the ability to perform any of the above-described actions

when a browser moves across pods.

Aspects of the techniques presented herein support a number of functionalities. For

example, a specific pod will contain the WebRTC-SIP interworking instances. These may

be deployed in a single container or they may be separate. During operation of the system

as illustrated in Figure 1, a client device will send a Device identifier (ID) in a custom

header or body in all of the application programming interface (API) calls that are invoked

by the client. The device ID will be subjected to consistent hashing (through, for example,

a hash ring or MagLev) to load balance requests across different pods. Since a Device ID

does not change, all of the requests from a given device will always be routed to the same

pod.

Pods will be created (as, for example, a Kubernetes StatefulSet) such that each pod

may be specifically named. Every device that is created on a given pod will result in a SIP

REGISTER request from that pod to the destination legacy SIP edge. All of the calls to

and from the corresponding client device will use the same Transmission Control Protocol

(TCP) connection between that same pod and SIP edge, thereby satisfying the SIP edge

requirement for stickiness between registrations and calls and ensuring that all of the

messages in a call are carried over the same TCP connection. The SIP REGISTER message

will contain a unique identifier (which is a Device ID) that will ensure that any pod that

handles the API registration call from a browser will end up registering the same device

(essentially replacing the previous registration). Figure 2, below, presents an exemplary

flow of the techniques of this proposal.

4

Siyavudeen et al.: CONTAINERIZED DEPLOYMENT OF WEBRTC-SIP INTERWORKING FUNCTION TO I

Published by Technical Disclosure Commons, 2021

4

67
04

F
ig

ur
e

2:
 E

xe
m

pl
ar

y
F

lo
w

5

Defensive Publications Series, Art. 4802 [2021]

https://www.tdcommons.org/dpubs_series/4802

 5 6704

As shown in Step 5 of the flow that is presented in Figure 2, above, a Contact header

will contain a unique Device ID that is generated for each browser session and such a value

will be used in the reverse direction as well to map the browser.

The failover design as proposed herein ensures that devices can failover at any point

in a call. This includes the failover of a WebRTC to SIP Gateway pod during registration,

in an active call state, during call transit (e.g., hold, transfer, park, etc.), etc. Figure 3,

below, presents an example of how registration and call failover (on call keep-alive) may

be performed from one pod to another pod.

6

Siyavudeen et al.: CONTAINERIZED DEPLOYMENT OF WEBRTC-SIP INTERWORKING FUNCTION TO I

Published by Technical Disclosure Commons, 2021

 6 6704

Figure 3: Exemplary Registration and Call Failover

7

Defensive Publications Series, Art. 4802 [2021]

https://www.tdcommons.org/dpubs_series/4802

 7 6704

Aspects of the techniques presented herein support a number of capabilities. A first

capability encompasses a method whereby a browser inserts a unique Device ID (e.g., that

is unique to a login) into a HTTP header or a body which in turn is used in the SIP Contact

header of a REGISTER request to uniquely identify a registration session of a user. The

unique Device ID (e.g., a random universally unique identifier (UUID)) is mapped to a

legacy SIP user (e.g., a SIP Address of Record (AOR)) for that device type.

A second capability encompasses a method whereby the unique Device ID is used

to map all of the (stateless) HTTP requests to the same pod (e.g., using StatefulSets) and

wherein that pod ensures that it reuses a directed SIP line side connection to a legacy SIP

edge. The pod in turn ensures that it takes over the registration (effectively replacing the

registration on the SIP side) if the consistent hash routes the API call to a new pod (e.g.,

due to failover of another pod).

A third capability encompasses a method whereby the pods ensure that call context

is stateless on the HTTP side allowing browser clients to move across pods or connect to

different pods (when, for example, a pod that setup a call fails over) but ensuring the call

is stateful on the SIP leg. This is done by check pointing the minimal call context in a

shared database which in turn may be used by any pod to reconstruct the call state and

ensure that the SIP peer on other side still sees the same call.

A fourth capability encompasses a method whereby various supplementary calling

services (such as hold, resume, call park or retrieve, transfer steps) may be done such that

pod failures during an operation still ensure that functionality does not fail. For example,

a browser may place a call on hold through POD1 and then get it retrieved through POD2.

In summary, techniques have been presented herein that enable a browser (that is

stateless) to register through a Kubernetes cluster of pods (which are, again, stateless) but

still connect as a SIP line side to a legacy SIP system that requires stickiness in terms of

using the same TCP or Transport Layer Security (TLS) connection for SIP registrations

and calls.

8

Siyavudeen et al.: CONTAINERIZED DEPLOYMENT OF WEBRTC-SIP INTERWORKING FUNCTION TO I

Published by Technical Disclosure Commons, 2021

	CONTAINERIZED DEPLOYMENT OF WEBRTC-SIP INTERWORKING FUNCTION TO INTEROPERATE WITH LEGACY SIP LINE-SIDE EDGES
	Recommended Citation

	Microsoft Word - 1520367_1

