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Abstract

The focus of this thesis is on new development of the Randic and Sum Connec­
tivity Indices of certain molecular and symmetric trees representing acyclic alkanes, 
or aliphatic hydrocarbons. The Randic Connectivity Index is one of the most used 
molecular descriptors in Quantitative Structure-Property and Structure-Activity Re­
lationship modeling because of the relation that the isomers have between their prop­
erties and their structure. The structure-boiling point relationship models of aliphatic 
alcohols have been studied using the Sum Connectivity Index and compared to the 
Randic Connectivity Index. A  specific type of tree Tnj0, well-known in graph theory 
as a double star, was studied by Zhou and Trinajstic. In this thesis, Tnjfl trees are 
investigated. The tree Tn,2 which has the third smallest Sum Connectivity Index 
value among all the trees with n vertices is found to be interesting and thereby is 
further explored. Some alkane trees are symmetric, which is the concentration of 
this thesis. The symmetric double star trees are denoted by Jn. The tree Jn has n 
vertices and is built on the path P2 with (n — 2)/2 leaves from each vertex of the 
path. The Randic and Sum Connectivity Index formulas of the symmetric tree Jn 
are developed. Also, estimations of the Randic and Sum Connectivity Indices of Jn 
are given. Relationships and comparisons between the Randic and Sum Connectivity 
Indices are analyzed in respect to the tree Jn. The ratio and difference of the Randic 
and Sum Connectivity Indices are further discussed.

The thesis starts with the history of the indices of molecular trees in Chemistry 
and Biology (Chapter 1). Chapter 2 provides a list of observations of the properties 
of both connectivity indices of the related trees. The symmetric tree Jn is discussed 
in Chapter 3, in which formulas and properties of the Randic and Sum Connectivity 
Indices are given. The main results of the thesis are reported in Chapter 4, where 
the graphs which have the maximal or minimal Randic and Sum Connectivity values 
among all Tn̂a graphs with n vertices are identified. The closeness of the two indices 
of Tn,a trees is also discussed. The paper concludes with a similar tree, denoted 
Tn,a x Pm > extended from the tree Tn>a by replacing the middle path P2 with the path 
Pm (ra >  2). The Randic and Sum Connectivity Index formulas are given for this 
tree (Chapter 5). This topic will be investigated more in future work.
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Chapter 1

Introduction

1.1 Introduction

In this paper, we explore the ideas of molecular trees used in scientific studies, the 
properties of the Randic connectivity index and the sum connectivity index, and re­
lationships between molecular trees and the corresponding indices. We also analyze 
relationships between the Randic connectivity index and the sum connectivity in­
dex. The connectivity indices of specifically selected trees with biology and chemistry 
backgrounds, such as double star trees, are examined to provide valuable information 
about the trees and the underlying data structure. The graphs of these special trees 
are studied and formulas are developed to compute the indices using Linear Algebra, 
Discrete Math, Graph Theory, and ideas from Combinatorics.

1.2 History of the Indices of Molecular Trees

Milan Randic, one of the leading experts in the field of Computational Chemistry, 
first developed the Randic connectivity index (formerly known as branching index [5, 
1975]). For simplicity, we call it RCI. Suppose G is a simple graph with vertex-set 
V(G) and edge-set E{G). In graph theory, the degree dv of a vertex v is the number

_i /o
of edges connecting to it. Each vertex is assigned an index value of dv , where dv 
is the valency of the considered vertex. In chemistry, valency means vertex degree. 
For an edge e =  uv connecting two vertices u and u, the Randic connectivity index of 
e is given by (dudv)~ 1̂ 2. The Randic connectivity index, also known as the product 
connectivity index, of G is defined as R{G) =  YluveEiG)^^)*1̂2 (see Definition 
3) [5].

The RCI was developed for the purpose of ordering the boiling points of alkane 
isomers easily. Isomers are two different compounds with the same molecular formula. 
For example, butane and isobutane are isomers because they have the same number of
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vertices. The boiling points of isomers decrease with branching because of decreased 
surface areas [8]. The relative values of the boiling points of smaller alkanes were in 
fact used in the construction of the connectivity index [7]. The relative magnitudes of 
the boiling points have a correlation with the RCIs of molecular trees. The remark­
able aspect of the Randic paper [6] is that a pure number, encoding alkane skeletal 
branching, also correlates with a physical property, the boiling point [3]. The RCI is 
inversely related to the rank order of the boiling points of the corresponding alkane 
isomer and directly related to the rank order of the corresponding heat of formation 
of the alkane isomers [3,11]. All of these facts can be seen in Table B .l in Appendix 
B. Burch, Wakefield, and Whitehead [2] have also studied the boiling points of alka­
nes. They developed single variable models to calculate the boiling points of special 
families of alkanes and multivariable boiling point models for all alkane isomers up 
to and including 12 carbon atoms.

The Randic connectivity index is one of the most used molecular descriptors in 
Quantitative Structure-Property Relationships (QSPR) and Quantitative Structure- 
Activity Relationships (QSAR) because of the relation of properties to structure. 
These relationships can represent chemical compositions, connectivities of atoms, and 
potential energy surface of compounds [5].

Proposed by Bo Zhou and Nenad Trinajstic in 2009 is the sum connectivity index, 
for simplicity we call it SCI, of a graph G, defined as S(G) =  YlUveE(G)(^ +  ¿4)-1/2 
(see Definition 3) [12]. The RCI and SCI are highly intercorrelated quantities [12] 
and are used for molecular graphs (see Definition 2) in Chemistry and Biology. Like 
the RCI, the SCI has also been studied and applied in QSPR and QSAR modeling. 
The structure-boiling point models of aliphatic alcohols have been studied using SCI 
and compared to the RCI. Similarly, the structure-water solubility models of aliphatic 
alcohols have been studied using SCI and compared to the RCI [14].

1.3 Motivation and Statement of the Problem

Having studied discrete mathematics as an undergraduate, I have always held an 
interest in trees and graph theory. The relationships among chemistry, biology, and 
mathematics truly show when dealing with molecular trees and analyzing specific 
graphs. Not only is it amazing to see from where these trees derive, but it is also 
interesting to discover what type of information can be gathered and learned from 
studying these trees.

In this research I will answer the following questions:

1. What type of unknown relationships between the sum and product connectivity 
indices can we find?

2. Among a special type of graph with the same number of vertices, which one has 
the maximum RCI/SCI and which one has the minimum?
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3. What type of information about the graph structure can be gathered from 
investigating the maximum and minimum of the RCI and SCI of special trees?

4. What type of estimation of the RCI and SCI values can be found for a specific 
type of tree, like the double star?

5. Where do the two values of the RCI and SCI meet?

6. Can we use the information we gather from examining the indices of specially 
selected trees to analyze other trees?

1.4 Useful Definitions, Theorems, and Properties

Throughout the paper, we apply the following commonly used definitions from graph 
theory, discrete mathematics, linear algebra, chemistry, and biology which come from 
numerous sources [8-10,12,16]. All the graphs are connected and simple. A  simple 
graph is an undirected graph that has no loops and at most one edge connecting any 
two vertices.

Definition 1 Denote a simple graph by G=(V,E), where V =  V(G ) is the vertex-set 
and E =  E (G ) is the edge-set. For a vertex v in G, the degree dv of v is the number 
of edges connecting to it. A pendant vertex is a vertex of degree one.

Definition 2 Let G=(V,E).

1. A path Pn is a sequence of vertices such that from each of the vertices there is 
one edge to the next vertex in the sequence.

2. The graph G is called a tree if it is connected and contains no cycle as a subgraph.

3. A molecular tree is a tree of maximum degree at most four. It models the skeleton 
of an acyclic molecule.

When we talk about simple graphs, we must consider the number of vertices and 
edges. The following definitions are well known in graph theory.

Definition 3 Let G=(V,E), u, v E V(G), and e =  uv E E(G).

1. The vertex index for v is dv 1//2.

2. The end degrees of e are labeled by (du,dv).

3. The edge index for e = uv is (dudv) ~ f o r  the RCI and (du +  dv)~1//2 for the 
SCI.
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4 . The Randic Connectivity Index of G is defined as

R{G) = Y
uveE(G)

5. The Sum Connectivity Index of G is defined as

S(G) =  Y  (du + dv)- 'l\
uv€E(G)

The structure that the graphs or trees in this paper will mimic is the Lewis 
structure. The Lewis structures are not meant to imply any three-dimensional ar­
rangement [7]. When drawn out, the Lewis structure looks similar to Figure 1.1. In 
this paper, we observe the connectivity indices for all alkanes Cn, C being carbons. 
Here n represents the number of vertices and when we talk about alkanes, n repre­
sents atoms. For our example shown in Figure 1.1, we have C2 where 2 represents 
the number of carbon atoms or vertices as shown in Table A .l in Appendix A for the 
chemical ethane.

H H
I I

H - C - C - H

H H

Figure 1.1: Lewis Structure of Ethane

Defin ition 4 The adjacency matrix of G=(V,E), sometimes called the connection 
matrix, is a matrix with rows and columns labeled by the vertices in G and the (i, 
j)-entry equals 1 if ViVj G E, 0 otherwise.

Remark: For G, the adjacency matrix must have Os on the diagonal and is symmetric.

Theorem  1 Let G=(V,E) be a graph. Then

1. The sum of the degrees of all vertices is twice the number of edges:

Y dv = 2 I E(G ) I .
vev(G)
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2. If G is a tree, then \ E (G ) |—| V(G) | —1.

Example 1 Please refer to the following tree G for detailed description of Definitions 
1 -3  and Theorem 1.

It shows that

• The tree above can be described as a molecular tree.

• A path P5 can be described as V\ ~  v2 ~  v3 ~  V4 ~  ^5-

• The degree of the vertices v\, v§, v7, and vs is one. These vertices are called
pendant vertices. The degree of the vertices v2, v3, and v4 is two and v5 is a 
vertex of degree four.

• The vertex index for Vi is =  1. The vertex index for v3 is

• The edges of G are labeled as (1, 2), (2,2), (2,4), and (1,4). There are two edges
labeled as (2,2) and three edges labeled as (1,4).

• For e =  V\V2, the RCI edge index is and the SCI edge index is

• R(G)= ^  = 3-3272 and S(G )= ^s + I + 7e + 7 E =  3-5607-

• The sum of the degrees of all the vertices, 14; is twice the number of edges, 7.

• | E(G) |=7-|  V{G) | -1 .

1.5 Existing Results

The SCI is relatively new. It is known that Zhou and Trinajstic are the first who 
have studied it [11]. They classified the graphs which have the largest SCI value, the 
second largest, and the third largest values among all simple graphs of n vertices. 
They claim that for n >  4, the path Pn has the maximum SCI value among all trees, 
which is 2=2 -p JL (see Figure 1.3). For n =  4 the maximum graph P4 correlates to a 
Butane tree.

V6
V\ v 2 V3 V\ 1

•------•------•------•------ * - •  v 7 (1,4)
(1,2) (2, 2) (2, 2) (2,4) \

^  (1,4) 

V8
Figure 1.2: Graph G - An Example for Definitions and Theorem

5



( 1,2) (2,2) (1,2)

Vi V2 Vm ^ m + 1 ^71—1

Figure 1.3: Path Pn (maximum)

Figure 1.4: Second largest Figure 1.5: Third largest

Figure 1.4 represents the graph with the second largest SCI which is ^  ^
for n >  7. When n =  7 it is a tree with a single vertex of degree three adjacent to 
three vertices of degree two. The graph with the third largest SCI, shown by Figure 
1.5, is a tree with a single vertex of degree three adjacent to two vertices of degree 
two and one vertex of degree one. The index is ^  (n >  5).

The results of the largest, second largest, and third largest SCI values also relate 
to that of the RCI. Among all the trees with n vertices, the path Pn for n >  4 has the 
maximum RCI of ^  +  4*. This was observed while examining specific trees. The 
path Pn has the largest SCI and RCI value because they are highly intercorrelated 
quantities, as stated before.

Similarly, Zhou and Trinajstic also classified the trees which have the smallest 
SCI value, the second smallest, and the third smallest values among all molecular 
trees with n vertices. For n >  5, the tree with the smallest SCI is the star graph, as 
shown in Figure 1.6. Bollobas and Erdos [1] studied the star graph and obtained the 
following result. Among simple connected graphs with a fixed number of vertices, the 
star has minimal connectivity index.

(1,71 - 1 ) 3

Figure 1.6: Star Sn (minimum)

The SCI index of the star graph can easily be found by using for n >  5. The 
second smallest and third smallest are represented by Figures 1.7 and 1.8 below.

Figure 1.7: Second smallest Figure 1.8: Third smallest

The indices for the second and third smallest trees respectfully are ? j j  +  71

for n > 5 and -?M= +  4= +  1 for n >  6. In Chapter 3 of this paper, we use a variation— yJn—2 vn

6



of the third smallest graph to calculate the SCI and RCI of trees similar to those of 
the third smallest.

It was shown in [3] that the smallest, second smallest, and third smallest RCI 
values among all trees with n vertices are, respectively, for n > 5, +

7 ^ 4  +  72 for n -  5’ and t A  +  vA q +  73 for n ^  6-

Corresponding to the above work, this research investigates the maximum and 
minimum for double star trees. A  specific type of tree Tn>a, well-known in graph 
theory as the double star, is the concentration of this thesis. The main results show 
that the symmetric double star tree Jn, has the maximal SCI and RCI values among 
all trees on n vertices. The double star tree Tn;2, which has the minimal SCI and RCI 
values and the third smallest Sum Connectivity Index value among all the trees with 
n vertices, is found to be interesting and thereby is further explored. Please note that 
if the graph is not connected then the indices will have different properties and all 
the graphs studied in this research are connected.

7



Chapter 2

Observations and Examples

In Chemistry, the largest RCI and SCI values among isomers belongs to unbranched 
linear alkanes [5], for example Figure 1.3 (above) or Figure 2.1 (below). Alkanes are 
aliphatic hydrocarbons having only C — C and C — Her bonds [7]. We only observe 
the connectivity indices for all C2 — Cn alkanes, C being carbons. For n-alkanes 
the RCI increases with the number of carbons, the increment being 0.5 per carbon 
atom [5]. Our n represents the number of vertices, but when we talk about alkanes, 
we refer to n as atoms. The RCI list of all C2 -  C8 alkanes expressed in terms of 
contributions from ten kinds of CC bonds can be found in Randic’s paper in [5]. At 
the end of this thesis, in Appendix A, there is a table of RCI and SCI values, along 
with the graphs of all the alkanes referenced in Randic’s paper.

We have examined many simple graphs and found that the decimal parts of these 
graphs are the same or show specific patterns. The decimal parts in Table 2 of all the 
figures that correlate with each other are the same. The reason that this happens is 
because of the long path that can be shortened by taking out some of the (2,2) edges. 
When n is odd, the decimal part for the SCI value of Pn is 0.1547. When n is even, 
the decimal part is 0.6547. For example, if we take a look at Figures 2.1 and 2.2, we 
see that for n =  4 the RCI and SCI equal 1.914214 and 1.654701, respectively. Now if 
we set n =  5 the RCI and SCI equal 2.414214 and 2.154701, respectively. It is easily 
seen that the index increases by 0.5.

Another observation that was made is that the integer part of the connectivity 
index in Figures 2.1 - 2.6 are well related to The integer part of the connectivity 
index in Figures 2.7 and 2.8 are very close to this value, but it is not exact because 
the graph has many branches. The more branches the graph has, the smaller (less) 
the connectivity. This concept is examined in more depth in the next section.



Figure 2.1: Dodecane/Pi2 Figure 2.2: Butane/P4 

/• v5Vn

vi v2 v3 v4 v5 v6 v7 v8 v9 vì0 *  v12 Vi v2 v8 v4 ve

Figure 2.3: 2-Methylundecane Figure 2.4: 2-Methylpentane

n RCI SCI
Figure 2.1 12 5.914214 5.654701
Figure 2.2 4 1.914214 1.654701
Figure 2.3 12 5.770056 5.524564
Figure 2.4 6 2.770056 2.524564
Figure 2.5 12 5.625900 5.394427
Figure 2.6 8 3.625900 3.394427
Figure 2.7 12 5.207107 4.999778
Figure 2.8 10 4.207107 3.999778

Table 2.1: Connectivity Index

1̂0

v2 v8 vA ve Ve v7 v8 v9 ^  vì2 

Figure 2.5: 2,9-Dimethyldecane Figure 2.6: 2,5-Dimethylhexane

vl0 . V2 v3 v4 v5 Ve v7 , Vi2

Figure 2.7: 2,2,7,7-Tetramethyloctane Figure 2.8: 2,2,5,5-Tetramethylhexane

One obvious pattern is that the integer part of the graphs shown above increases 
as the number of vertices gets larger and more branches get added on.

In the next section, graphs similar to Figure 2.6, Figure 2.8, and the third mini­
mum (Figure 1.8) are analyzed and formulas are developed. If we look at Figure 2.6, 
we notice that it is a symmetric graph. Our main basis for the next chapter is the 
symmetric graphs with a =  ^  branches on each side, where a >  2.



Chapter 3

Symmetric Double Star Trees

3.1 Introduction to the Double Star Tree Tna and

In this section, we investigate a specific type of tree Tn>OJ also known as a double 
star, (see Definition 5) studied by Zhou and Trinajstic in their paper On a novel 
connectivity index [11]. In this paper, the authors analyze the largest and smallest 
SCI values for molecular trees representing hydrocarbons. The tree that was found 
to be interesting from this paper, specifically, is the tree Tnj2 which has the third 
smallest SCI value among all the trees with n vertices. The motivation to study 
this type of graph comes from the previous section where we analyzed the graphs of 
various alkanes.

Definition 5 For n >  6 and 2 <  a <  2=2, the graph Tn,a is a tree with n vertices, 
n — 2 leaves, and a center edge with the shape:

corresponding symmetric tree as Jn. In other words, the tree Jn has n vertices and 
is built on the path P2 with (n — 2)/2 leaves from each vertex of the path. Shown in 
Figure 3.2.

Example 2 T8)3 and T i2>5 are symmetric trees.

Figure 3.1: Double Star Tree THja

We say the graph TUia is symmetric if a = n — a — 2, that is, a =  I~ .  Denote the

10



Figure 3.2: Symmetric Double Star Tree Jn

In chemistry, the graph in Figure 3.2 represents (2,3)-Dimethylbutane (Tg^) when 
n — 6 and (2,2,3,3)-Tetramethylbutane (T8j3) when n =  8, where both of these trees 
are symmetric. These trees can be found in the table in Appendix A.

In the following two sections, the SCI and RCI of the symmetric tree Jn are inves­
tigated. We analyze how close the SCI value S(Jn) and y/2n +  4 are, and similarly, 
how close the RCI value R(Jn) and y/2n are. To do this, the derivative is taken and 
the critical point is found. A  lower bound is given for both S(Jn) and R(Jn).

3.1.1 Estimating the SCI of Jn

Theorem  2 Let Jn be a symmetric tree with n >  6, defined in Definition 5. Then 
the SCI value S(Jn) satisfies the following properties:

1. S(Jn) =
y/2(n-2) 
\J n+2 +  ^  -  y/2 n +  4 - 4v/2 , J _

y/n+2 y/n '

2. For every fixed real number M  >  1 and all n >  M , 0 <  \/2n +  4 — S(Jn) <
4 \/2 _______ l _

VM+2 Vm '

3. Given e > 0, there exists Me > 0 such that \y/2n +  4 -  S(Jn)\ < e provided 
n > Me.

P r o o f :

1. The graph Jn has n—2 leaves labeled by (1, n/2) and one edge labeled by (ra/2, n/2), 
as shown in Figure 3.2. By the definition of SCI,

S(Jn) =
n - 2 1 y/2 {n -  2)

^ / fT T  y/n 2

y/2n +  4 —
4\/2 1

—, H— 1=-
\/n T  2 \/n

V2(n +  2 - 4 )  1

yfn~-i“~2 \/rï

2. To determine how close S(Jn) and v/2nT+_4 are, we define a real function /(x) as 
follows:

/(^)
4V2

\ /W 2

11



Then f (x ) > 0 for x > 0, f{n ) =  y/2n + A -  S(Jn) for positive integers n, and

1 /4^a :3/2 -  (x +  2)3/2\
} ( X ) -  2 V z 3/2(z  +  2)3/2 /'

It follows that f '(x ) =  0 only at x ~ 1W- -  or more simply x ~  0.9196239. 
Furthermore, /(0.9196239) is the absolute maximum of f (x )  on (0, oo) and f (x )  is 
decreasing on (0.9196239, oo). See Figures 3.3 and 3.4. Thus, for every real number 
M  > 1, / (M ) is the maximum value of f (x )  on the interval [M, oo). Therefore, for 
all integers n >  M,

_______  4ŵ 2 1

Figure 3.3: Graph of f (x )

3. Given a small positive integer e, we want to find a lower bound M e such that when 
n >  M e, ______

\j2n -f- 4 — €.

From expression (1), it is sufficient to solve the inequality / (M ) < e. However,

4\/2

Thus, we take

1 4\/2 1 _  4\/2 -  1

^  ~  V M  +  2 _  x/M V m  V m ~ V m

w  33 — 8\/2 
M, = ------------.

If n > M e, then \/2u +  4 — S^J™) <  / (M c) < e. QED

Theorem 2 provides an explicit formula for S(Jn), an estimation of it by y/2n +  4, 
and error bounds of the estimation.

12



Exam ple 3 Let e =  0.001.

By Theorem 2, if n > Me, then yj2n +  4 -  S(Jn) < 0.001. It is easy to check that if 
we take n =  22,000,000 >  Me, then

which confirms the theorem.

3.1.2 Estimating the RCI of Jn

Similarly, as was done above for the SCI values of Jn, we give corresponding results 
for the RCI of Jn.

Theorem  3 Let Jn be as above. Then

2. For every fixed real number M  >  1 and all n >  M , 0 <  \fTn — R(Jn) <  2-

3. Given e > 0, there exists Me > 0 such that \y/2n-R(Jn)\ < e provided n >  Me.

P r o o f :

1. Similarly as in the proof of Theorem 2(1),

4\/2 1
0.0009928 <  0.001

yjn T~2 \fn

2. How close are R(Jn) and y/2n? To answer this question, we define g(x) as:

2y/2x — 2

One can check that g(x) > 0 when x > 1. Further,

13



with a unique root of n =  2. Also, g(2) equals the absolute maximum of g(x) on the 
interval (1, oo) and g(x) is decreasing on (2, oo). Thus, on [M, oo) with M  >2

0 < V 2 ^ -R {J n)< g {M ).  (2)

See Figures 3.5 and 3.6.

Figure 3.5: Graph of g(x) Figure 3.6: Graph of g'(x)

3. Given a small positive integer e, we want to find a lower bound Me such that when 
n >  M e,

y/2n — R(Jn) <  €•

From equation (2), it is sufficient to solve the inequality g(M ) < e. While, 

g(M ) = ~^ ir7 — “  <  e e2n2 +  (4e -  8)n +  4 >  0.

There are two solution intervals, but we are only interested in the one that is 
reasonable for our problem, when

. -2e +  4 +  4 v T ^ c  n/f 
n > ------------5---------- =  M e.

Since g(Me) is the absolute maximum on [Me, oo), then for every n > M c, it is 
true that y/2n — R(Jn) < e. QED

Exam ple 4 Let e =  0.001. Take

-2(0-001)+ 4 +  4 ^ X 0 0 1  =

6 0.0012

If n > Me, then y/2n — R(Jn) < 0.001. For example, if we take n =  8,000,000, which 
is greater than Me, then

~  0.0009997 <  0.001.

14



3.2 Comparison of S(Jn) and R(Jn)

In this section we examine how close the two values S(Jn) and R(Jn) are by consid­
ering the limit situation of the ratio of the values and by estimating the difference. 
The result is very similar to those referenced by Zhou and Trinajstic in their papers 
about the correlation coefficient of the alkane trees that they examined [11-15]. As 
mentioned before, the SCI and RCI are highly intercorrelated quantities or highly in- 
tercorrelated molecular descriptors. The correlation coefficient between the product- 
connectivity index and the sum-connectivity index for 137 alkane-trees is 0.9996 [15]. 
In [11], Zhou and Trinajstic claim that the value of the correlation coefficient being
0.991 for trees representing lower alkanes. Both numbers are close to 1.

Theorem  4 As n —>• oo the ratio S(Jn)/R(Jn) approaches 1.

P r o o f :

lim
n—> oo

S(Jn)
R(J„)

limn—>oo
y/2n +  4 — 

\ /2n —

4y/2 
\/ n+2
2V2 , 
Vi

2
n

=  lim
n—»00

QED

For all the alkanes and special trees that have been looked at, the RCI values 
are always larger than those of SCI and the differences are always greater than zero. 
Table 2 and Table A  given in Appendix A  show that all the RCI values are greater 
than the SCI values. The following theorem assures the truth of this fact.

Theorem  5 Let Jn be a symmetric tree as above, with n >  6. Then,

1. R(Jn) > S(Jn).

2. For every e > 0, R(Jn) ~ S(Jn) < e provided n >  2/e2 — 2.

3. limn—> 00 R(Jn) ~ S(Jn) =  0 .

15



PROOF: We first examine the following difference:

R(Jn) -  S{Jn)
y/2(n -  2) 2

''n n

=  V 2 ( n - 2 ) 0

>/2( n - 2) | 1
\/n V "2 \/n
1 1\ 2
+  2 )  n \/n

By Mean Value Theorem, y/n-\-2 — y/n — ^  for some c G (n, n +  2), thus 

y/n + 2 -  y/n — - j i>  7=^-

1 1 y/n + 2 -  y/n 7̂ +2 _  1
y/n +  2 y/n(n +  2) +  2) V^(n  +  2)

Thus

, ,  * 0 / t \  ̂ \/2(n — 2) 2 1 \/2(n — 2 ) 7 ^  +  2 (n +  2) -  y/re(n +  2)
H(Jn) - b ( J n) >  ^ ( n  +  2) +  n n(n +  2)

1
n2 +  2n

n y/n ( \/2 — 1) +  2^n +  2 — (v̂ 2 +  l^y/n ĵ
> 0

1. To show R(Jn) > S(Jn) for all positive integers n, we need to find conditions for 
n so that n +  2 — (y/2 + 1 )y/n >  0. By examining the minimal value of the quadratic 
function x2 -  (y/2 +  l)x  +  2, we find that the curve of the parabola is completely above 
the rr-axis since the x-coordinate of the vertex is x — >  0 and the parabola opens
up. Thus n +  2 — (y/2 +  1 )y/n >  0 for all positive integers n and R(Jn) is always 
greater than S(Jn). The graph of R(Jn) -  S(Jn) can also be seen in Figure 3.8.

_ 4 r

y

■. ,1.. j.......

0 ) 15 20-t

Figure 3.8: RCI — SCI > 0

2. Next we give some upper bounds for the difference R(Jn) — S(Jn). Let e be any 
positive real number.

16



Same as the above, by Mean Value Theorem, y/n — y/n + 2 =  

(n, n +  2) =>• y/n -  y/n +  2 <  Thus

1 y/ ti T 2 — -\/n
<

l
\/n

\/n -y/n T  2 -̂ /n{n -f- 2) -y/71(71 +  2) ny/n -f- 2

which implies

_  S(J. ) ,  + a  _ _ l  <  ^ 2 .  < ,
ny/n +  2 Ti y/n y/Ti +  2

for all n > \  — 2.C"2

For 3, it is straightforward from 2.

for some c E

QED
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Chapter 4

General Double Star Trees

4.1 Double Star Trees with the Maximum and Min­
imum SCI and RCI

In this section, we investigate the general double star tree Tn̂x. The definitions, 
theorems, lemmas, and propositions shown hereafter are developed from Definition 5 
shown in Section 3.1. Note that Tn>a was used in the previous section.

Consider the set V =  {T n,x|n >  6,2 <  x < n -  4}. We are interested in knowing 
which tree in this set has the maximum or minimum SCI/RCI value. The maximum, 
discussed a little later, corresponds to the symmetric case, the tree Jn, as shown in the 
previous chapter. This result is true for both SCI and RCI. We begin first with the 
formulas of the SCI and RCI of the tree Tnx. For convenience we make the following 
definition.

Definition 6 Define Sn(x) =  5(Tn>x) and Rn{x) =  R{Tn,x)-

Proposition 1 Let Tn̂x, Sn{x), and Rn(x) be as above. Then

x n — x — 2 1
Sn(x) =  7 H-----7 — I— t=

y/x + 2 aJn — x \fn
x n — x — 2 1

Rn{x) — —7 =  -i----7 = = =  H-----7= =
\]x +  1 y/n — x — 1 y/(x +  l)(n  — x — 1)

PROOF: The SCI and RCI formulas are clearly developed from the tree graph 
of Tn,x in Figure 4.1 below. There are x edges labeled by (1, x +  1), n — x — 2 edges 
labeled by (n — x -  1,1), and 1 edge labeled by (x +  1, n — x —  1).

18



X n — x — 2

Figure 4.1: General Double Star Tree Tn,x

QED

One can refer to the tree in Figure 4.1 and clearly see that the branches on the 
left and right can be switched and still obtain the same value for the appropriate 
index. The following lemma shows the graphs of Sn(x) and Rn(x) are symmetric 
with respect to the vertical line x =

Lemma 1 The following is true:

1. Sn(x) =  Sn(n -  x -  2)

2- S'n(x) =  - S '„ ( n - x -  2)

3. Rn(x) =  Rn(n ~ x — 2)

4- K ( x ) = - # » ( « - z - 2)-

PROOF: For 1, by definition of Sn(x),

2) +  2 yjn — (n — x — 2) y/n
2 n — in — x — 2) — 2 1
--- =  +  — 7= , +  ~7

y/n — X y/x +  2 y fn
H---7= — Sn{x)-

Therefore
Sn{x) =  Sn(n -  x -  2).

For 2, by 1,

Therefore
S'n(x) =  -S 'n( n - x -  2).

19



For 3, by definition of Rn(x)

Rn(n — x — 2)
n — x — 2 n — (n — x — 2) — 2

+  v

+

y/{n -  X -  2) +  1 y /n - ( n - x - 2 ) -  1
________________ 1________________
y/((n — x — 2) +  1) (n — (n — x — 2) — 1)
n — x — 2 a; 1

+  ;------- +
a/r — x — 1 \/x +  1 y/(n — x — l)(a; +  1)

=  Rn(x).

Therefore
Rn{x) =  Rn(n -  x -  2).

For 4, by 3,

-  x -  2) -  K (n  -  * -  2)(—1) = -  — -  £ -  2).

Therefore

KOd = -  K (.n-2 )'
QED

4.2 Maximum and Minimum of the SCI

Now we investigate the behavior of the graph Tn;X. It is interesting to see that the 
symmetric tree Jn =  Tn>(„_2)/2 has the maximum RCI and SCI values.

Theorem  6 Consider the set T =  {T n!X|n > 6 , 2 < a ; < n  — 4}. Then

1. Jn has the maximum SCI among all the graphs in T with

m ax{S (G )} =
\/2(n-2) | 1

yjn +~2 yjn

2. Tn,2 /ids the minimum SCI among all the graphs in T with

n — 4 1
min{S(<3)} =  Sn( 2) =  1 +  = +  —¡=.
Ger y/n — 2 v n

P r o o f : We observe that the graph of Sn(x) has the maximum in the middle of 
the interval and decide to look at the derivative. Below we show that the derivative 
has a unique real root. The derivative of Sn(x) is

S '(x )=  x +  4 1
n W  2{x +  2 f ! 2 2 ( n - x f l 2'
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By factorization

x + 4 n +  2 — x _
(x +  2)3/2 (n — x )3/2 

(x +  4 )2(n — x )3 — (x +  2)3(n +  2 — x )2 =  0 

(n -  2x -  2)[(x +  2)2(n -  x )2 +  4(x +  2)(n  -  x )(n  +  2)

+4(n — x )2 +  4(n — x )(x  +  2) +  4(x +  2)2] =  0
n — 2

n — 2x — 2 =  0 <==> x =  —-— ,
A

since

(x +  2)2( n - x ) 2 +  4(x +  2){n -  x)(n  +  2)

+  4[(n — x )2 +  (n — x )(x  +  2) +  (x +  2)2] >  0.

Thus x0 =  is a unique real root of S'n(x).

Now we check the signs of S'n(x) at each side of x0 =  We pick two points 
Xi =  x0- l  =  f -  2 and x2 =  x0 +  1 =  f . Then

S'n(^  -  2) >  0 and < 0.

Thus the function is increasing from 2 to x0 and decreasing from x0 to n -  4. Sn(x) 
reaches its maximum value at Xq and its minimum value at 2 and n — 4.

S'n(x) =  0

maxjSYG)}
Ger

minlSYG)}
Ge r

/n-2\ V2 (n -2 )  1
'  ' H  2 i  v/iT+2 VS

= S„(2) = 1 + 4 ^ 4  + 4 = = & ( n - 4). 
vn  -  2 Vn

The two corresponding graphs are isomorphic as shown below.

QED

Figure 4.2: 5n(2) Figure 4.3: Sn(n — 4)

Figure 4.4 and Figure 4.5 are an example when n — 8. The maximum value of 
58(x ) occurs at x=3, as shown in Figure 4.4.
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Figure 4.4: Graph of S8(ar) Figure 4.5: Graph of S'8(x)

4.3 Maximum and Minimum of the RCI

Now that the SCI has been proven, we look at the RCI which has similar results. 

Theorem  7 Consider the set T = {Tn̂x\n > 6,2 < x < n — 4}. Then 

1. Jn has the maximum RCI among all the graphs in T with

r r, ( n ~ 2\ y/2(n-2) 2
max{R(G)} =  * » ( — )  =  C  +  -■

2. Tn,2 has the minimum RCI among all the graphs in T with

2 n - 4 1
min{ii(G)} = W )  = -rs + J =  + ^ = 1

P ro o f :

. . x n — x — 2
Rn(x) =  , H----, +

\Jx +  1 y/n — x — 1 ^(a; +  l) (n  — x — 1)

k w  =
x +  2

+
x — n

2(x +  l ) 3/2 2(n — x — l ) 3/2
+

2x — n +  2 

(a: +  l) (n  — x — 1)
1 3 /2

(x +  2)(n — £ — 1)3/2 +  (x — n)'(x +  1)3/2 +  2x -  n +  2

(x +  l)(r i — x — 1)
3/2

Similar as for Sn(x), we want to show that the graph of Rn(x) is increasing on the 
interval [2, (n — 2)/2) and decreasing on the interval [(n — 2)/2, n — 4]. We first show 
that £0 =  ( n -  2)/2 is the only zero of jR ^ x), that is, x0 = (n -  2)/2 is the only critical 
number for Rn(x) on [2, n -  4]. Obviously, R'n(x) =  0 if and only if the numerator of 
the last expression above is zero. Because of the complexity of the function involved, 
we introduce the following notations:

A  =  (x +  2)(n — x — 1)3/2 +  (x — n )(x +  1)3/2 +  2x -  n +  2
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a — y/x +  1 and b = y/n — x — 1.

The following relationships are useful later:

on the interval [2, n — 4],

a2 =  x +  1 >  3, b2 = n -  1 -  x >  3, ab >  3, a +  6 <  a2 +  b2 
a2 +  b2 =  n, a2 — b2 =  2x — n +  2.

Thus

A  =  (x +  2)(n -  x -  1)3/2 +  (x -  ra)(x +  1)3/2 +  2x -  n +  2

=  [(x +  1) +  1]63 +  [(x -  n +  1) -  l]a3 +  (2x -  n +  2)

-  a2b3 +  b3 -  b2a3 -  a3 +  a2 -  b2 =  (a2b3 -  b2a3) +  (b3 -  a3) +  (a2 -  b2)
=  (b — a) [a2b2 +  (b2 +  a2 +  ab) — (b +  a )].

It implies that a =  b gives a solution to A  =  0 or R'n(x) =  0. By definition of a, 6, 
a =  b x — (n — 2)/2 =  x0. So i?^(x0) =  0. Next we claim that x0 is the only 
zero of R!n{x) on the interval [2, n -  4]. It is equivalent to show that A  ^  0 for all x 
where 2 <  x <  n — 4 and x ^  x0. Note that

Thus x0 is the only zero of A, thus the only zero of R'n{x).

Now we check the signs of R!n(x) at each side of x0 =  Similarly we use the 
two points Xi = X q — 1 =  | — 2 and X2 =  Xq +  1 =  f . Then

Thus it is easily seen that the function is increasing from 2 to x0 and decreasing from 
Xo to n — 4. Rn (x) reaches its maximum value at xo and its minimum value at 2 and 
77 — 4.

QED

Similarly, Figure 4.6 and Figure 4.7 are an example when n =  8. The maximum 
value of Rg(x) occurs at 3, as shown in Figure 4.6.

a2b2 +  (b2 +  a2 +  ab) -  (b +  a)] >  a2b2 +  ab > 12 >  0.

- 2)  > 0 and k { ^ )  <  °-

V3 V « - 3  y3 (n  -  3)
=  # «(»* — 4).
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Figure 4.6: Graph of Rs(x) Figure 4.7: Graph of Rg(x)

4.4 Intersection of the Sn(x) and Rn(x)

Theorem 8 The graphs Rn{x) and Sn(x) have exactly one intersection point when 
x > 0. The intersection point occurs when n — 2 < x < n — 1.

Figure 4.8: Intersection of SCI and RCI

P r o o f : Notice that the graphs of Rn(x) and Sn(x) are symmetric with respect 
to the vertical line x =  n̂ L. It is sufficient to consider x > In this case the
graphs Rn(x) and Sn(x) are both decreasing. Thus, Rn(x) and Sn(x) can have at 
most one intersection point. Set x — n — 2 +  e, where 0 <  e < 1.

. / . n — 2 + e n — 2 +  e e
Rn(x) ~ Sn{x) =  , ------ 7------- +

+

\Jn — 1 +  e s/n -f- e \/2 — e \J 1 — e
_________ 1______________

y/(n — l +  e )(l -  e) y/n

When x — n — 2, e =  0 and

/ . ^ . n — 2 n — 2 1
Rn(n -  2) -  Sn(u - 2 )  =  - 7 = = ------—  +

y/n — 1 yfn \]n — 1 \/n
> 0.

As 6 —̂ 1 ,

lim Rn(n -  2) -  5„(n -  2)
e—>1

n - 1  n — l . 1------------  —: -j- 1
\/n \/7i -f" 1 v n
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+
1

lim ------
c—>1“ y/l — e

=  —  00 .

Thus, /^ (z ) -  Sn(cc) <  0 when x is close to n -  1. There exists x0 £ (n — 
such that Rn(xo) =  Sn(x0).

2, n — 1) 
QED
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Chapter 5 

Tn,a x Pm Trees

5.1 Introduction to the tree Tn̂a x Pm

If we look at the tree Tn>a and extend the length of the middle to a path Pm of length 
m, we derive the following definition.

Defin ition 7 The tree Tn>a x Pm with n >  6 and 2 < a < n — m — 3; is a tree with 
n vertices, n — m — 1 leaves, and a path of length m in the middle with the shape:

Figure 5.1: Tree Tn>a x Pm

We say the graph Tn̂a x Pm is symmetric if a =  n — m — a — 1, that is, a — .
Denote the corresponding symmetric tree as Jn,m■ In other words, the tree Jn>m has 
n vertices and is built on the path Pm with (n — m — l)/2 leaves from each end vertex 
of the path. Shown in Figure 5.2.

Figure 5.2: Tree Jn,m

Exam ple 5 Tg^ x P3 is a symmetric tree and in Chemistry it is known as 2,5 — 
Dimethylhexane.
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5.2 The SCI and RCI of Jn and Comparison Study

Theorem  9 For n >  6 and 2 <  m < n -  5, let Tn,a x ? m =  Jn,m be a symmetric tree 
where a =  Then

S(Jn ,m)

R(Jn ,m)

\/2(n  — m  —  1) 2\/2  ^  m  —  2
y/n — m +  3 m +  5 2

y/2(n — m — 1) +  2 m — 2 
y/n — m +  1 2

P r o o f :

The graph Jn>m has ra -  m -  1 leaves labeled by ( l ,w~™+1), two edges labeled by (2, 
and the path in the middle, separating the two stars, labeled by as

shown in Figure 5.2. By the definition of SCI,

n m — 1
+

n—m+1 + 1
+

n—m+1 | 2

+
2y/2y/2 (n — m — 1) 

y/n — m +  3 y/n — m +  5

m — 2
Y ~

m — 2 
+  —w—

and by the definition of RCI,

R (Jn,m)
n — m — 1

n—m+1 
2

+ +
m — 2

n—m+1 
2

\/2(n — m — 1) +  2 m — 2 
y/n — m +  1 2

QED

Theorem 10 Lei Jn)Tn 6e a symmetric tree as above, with n >  6. Then for every 
fixed m with 2 < m < n — 5,

1• l i m n _^oo Tt(Jn,m) R(Jn,m) d -

P  l i m  5 C n ,m) 1Hindoo H(Jri m) 1

P R O O F :

lim R(JnrJ/) S(Jrî rn)n—>oo
=  lim y/2(n — m — 1) ( , —

n—>oo \ y/n — 'I

+
2 2a/2

Vn — m +  1 a/tt, — m +  5

m +  1

=  0 .

a/u — m +  3
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lim
n—¥ oo R ( J n  , m )

lim
n—>oo

^2(71 — 772 +  3) +  

y/2(n — 772 +  1) +  m2 2
=  1.

QED
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Chapter 6

Future Directions

In the future, I hope to continue working on Chapter 5 and work to get results for 
the symmetric case of the RCI. I would like to get similar results to Chapter 4 and 
compare the indices of the tree Tn̂a with a path of length 2 and the tree Tn̂a x Pm 
with a path of length m.

I also would like to find different applications in which the indices can be used 
and how they can relate outside of Chemistry and Biology.

Lastly, I hope to answer the following open questions:

1. Do trees with long branches show special characteristics in reference to their 
index values?

2. What special properties does a tree have if it has many copies of the same 
subtree?

3. In practice, what do the indices mean, for example, what can the indices tell 
about tetramethyl- trees in Chemistry?

4. For a given positive integer a, what graph can have RCI and SCI equal to a or 
very close to al

5. For a given graph with RCI a and given a positive integer e, can we find another 
graph whose RCI is within (a — e, a +  e)?
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Appendix A

Alkane Tree Connectivity Indices

Molecule Graph SCI RCI
Ethane •----•

(i,i)
0.7071 1

Propane •----•----•
(1,2) (1,2)

1.1547 1.4142

Isobutane •--- *^2(1,3)
(1,3) N,

1.5000 1.7321

n-Butane •----•----•----•
(1,2) (2,2) (1,2)

1.6547 1.9142

2,2- Dimethylpropane
" 7  (1,4)

•■■■ V *  ^ ’4)(M )\
^ {lAl

1.7889 2

2-Methylbutane •----•--- <̂ 2(1,3)
(1,2) (2,3) X

2.0246 2.2701

n- Pentane •----•----•----•----•
(1,2) (2,2) (2,2) (1,2)

2.1547 2.4142

Table A .l: Connectivity Indices of Alkane Trees with 2 — 5 vertices
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Molecule Graph SCI RCI

2,2- D imet hylbut ane
S (1,4)

•--- •----V *  (1,4)
(1,2) (2,4) \

^  (1,4)

2.3272 2.5607

2,3- D imet hylbut ane
y / 2 ( i . 3 )

/ ( 3 , 3 ) \

2.4082 2.6427

2-Methylpentane . --- .----•--- ^ 2 ( 1 , 3 )
(1,2) (2,2) (2,3) X

2.5246 2.7701

3-Methylpentane
>  (1,3)

•----•--- •<-—•--- •
(1,2) (2,3) (2,3) (1,2)

2.5491 2.8081

n- Hexane •----•----•----•----•----•
(1,2) (2,2) (2,2) (2,2) (1,2)

2.6547 2.9142

2,2,3-Trimethylbut ane
\  /  ( M )  2(1,3) >  \  * (1,4)

(1,4)

2.7200 2.9434

2,2-Dimethylpentane
> ( 1 , 4 )

•--- *----•----V *  (1,4)
(1,2) (2,2) (2,4) \

^  (1,4)

2.8272 3.0607

3,3-Dimethylpentane
(1,4)

•----•------------- • (1,2)
(1,2) (2,4) \

»  (1,4)__________

2.8656 3.1213

2,4-Dimethylpentane
>  « <^2(1,3)  

S  : 2 , 3 ) ( 2 , 3 ) \

2.8944 3.1259

2,3-Dimethylpentane
( 1 ,3 > *  A ,  ,

.—
(1,2) (2,3) (3,3) X ,

2.9328 3.1807

2-Methylhexane •___.___.----•----<^2(1,3)
(1,2) (2,2) (2,2) (2,3) N*

3.0246 3.2701

3-Methylhexane
( 1 3 )

•----•--- •--- —•------ •
(1,2) (2,2) (2,3) (2,3) (1,2)

3.0491 3.3081

3-Ethylpentane
(2 ,3 ) /*  * 

(1,2) (2,3)
3.0737 3.3461

n- Heptane 3.1547 3.4142
(1,2) (2,2) (2,2) (2,2) (2,2) (1,2)

Table A. 2: Connectivity Indices of Alkane Trees with 6 or 7 vertices



Molecule Graph SCI RCI
2,2,3,3-Tetramethylbutane (1.4) P  (1,4)

(1.4) •  /  \  * (1,4)
/ ( 4 , 4) \

(1.4) < P  (1,4)

3.0368 3.2500

2,2,4-Trimethylpentane
\  / <M) 

(1'4)
^  (1,4)

3.1971 3.4165

2,2,3-Trimethylpentane
( 1 ,3 ) /*  >  (1,4)

• ------♦------S  \  *  (1,4)
(1,2) (2,3) (3,4) X

_______________  ' ^  (1,4)____

3.2442 3.4814

2,3,3-Trimethylpentane
( M > *  >  ,

. ------.  2 <1’3)
(1,2) (2,4) X . N »

3.2580 3.5040

2,3,4-Trimethylpentane

X  (1^ X (1’3)
* / ( 3 , 3 ) ( 3 , 3 ) N *

3.3165 3.5534

2,2- D imet hy lhexane
>  (1,4)

•— ♦— ♦— ♦— v *  O ’4)
(1,2) (2,2) (2,2) (2,4) \

^  (1,4)

3.3272 3.5607

3,3- D imet hy lhexane
y  a , 4)

• ------• ------♦------< — • ------ •  (1,2)
(1,2) (2,2) (2,4) X

N  ( I - 4)

3.3656 3.6213

2,5-Dimethylhexane

> ----- . ----- . ----- < X (1,3)
S  (2’3) (2.2) (2,3) X

3.3944 3.6259

2,4-Dimethylhexane
“ W  ^

.  .  X . ....- X 1'3)
(1,2) (2,3) (2,3) (2,3)

3.4190 3.6639

Table A.3: Connectivity Indices of Alkane Trees with 8 vertices

34



Molecule Graph SCI RCI

2,3-Dimethylhexane . . . V - <
(1,2) (2,2) (2,3) (3,3) X .

3.4328 3.6807

3,3-Methylethylpent ane
(i,4y

•--- •----•— •
(1,2) (2,4) X^1’2!

3.4040* 3.6819

2-Methyl-3-ethylpentane 3.4574 3.7187

3,4-Dimethylhexane 3.4574 3.7187

2-Methylheptane •----♦--- •--- •--- ♦--- ^2(1,3)
(1,2) (2,2) (2,2) (2,2) (2,3) X

3.5246 3.7701

3-Methylheptane
>  ( 1 3 )

•--- •--- •----•--- —•------ •
(1,2) (2,2) (2,2) (2,3) (2,3) (1,2)

3.5491 3.8081

4-Met hy lhept ane
(b 3 )

•----•----•--- —•------ •--- •
(1,2) (2,2) (2,3) (2,3) (2,2) (1,2)

3.5491 3.8081

3-Ethylhexane
( 2 , 3 ) / — «“  

(1,2) (2,2) (2,3) X 1,2^
3.5737 3.8461

n- Oct ane 3.6547 3.9142
(1,2) (2,2) (2,2) (2,2) (2,2) (2,2) (1,2)

Table A.4: Connectivity Indices of Alkane Trees with 8 vertices (cont.)
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Appendix B

Relation of RCI/SCI Values to the 
Structure Properties of Hexane 
Isomers

The number in the parenthesis is the rank order of the property values. The abbre­
viations in the table BP is Boiling Point and HF is Heat of Formation. When the 
RCI and SCI values increase, the boiling point increases and the heat of formation 
decreases. Part of this table was taken from [2].

Molecule Graph SCI RCI BP HF

2,2-Dimethylbutane
f  (1,4)

•--- * V  (1,4)
(1,2) (2,4) \

^  (1,4)

2.3272 2.5607 49.7 (5) 44.35 (1)

2,3-Dimethylbutane
> -V 2 (l,3 )

s :3>3) %

2.4082 2.6427 58.0 (4) 42.49 (2)

2-Methylpentane •--- .--- .--- « ( 2 ( 1 ,3 )
(1,2) (2,2) (2,3) X

2.5246 2.7701 60.3 (3) 41.66 (3)

3-Methylpentane
>  (1,3)

•--- •----— •------ •
(1,2) (2,3) (2,3) (1,2)

2.5491 2.8081 63.2 (2) 41.02 (4)

n- Hexane 2.6547 2.9142 68.7 (1) 39.96 (5)
(1,2) (2,2) (2,2) (2,2) (1,2)

Table B.l: Relation of RCI/SCI Values to the Structure Properties of Hexane Isomers
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