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Introduction 

There were some researches concerning mathematical models for the spread of oil spills in high 

seas. Mardiah et al. (2003) studied the spread of oil spills by using a mathematical model derived 

from mass conservations principle to simulate the concentration of oil spills distribution and then 

compare the result with a standard model from Worldwide Oil Spill Modeling (WOSM). Lukijanto 

and Purwandani (2012) discussed the spread of oil spills probably coming in Indonesia exclusive 

economy zone. Salim and Sutanto (2013) investigated the mathematical model for the movement 

of oil spills and then analyzed it by Trajectory Gnome Analysis. Ardi (2017) discussed the spread 

of oil spills influenced by west and east monsoon winds by using linear regression analysis. 

Wibowo (2018) studied the spread and slick thickness of oil spills in Cilacap sea based on an 

arranged scenario. Li et al. (2018) derived the mathematical model for marine oil spills by using 

the Euler-Lagrange method to track the spill location and the position of particles on the edge of 

oil slicks. 

In this paper, we study the derivation of a mathematical model for the spread of oil spills in 

high seas by using random walks theory involving stochastic aspects and employing a probability 

measure on a unit circle. In the random walks process, we consider the waiting time of the oil spill 
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particles to move as a stochastic aspect considered here. By this way, we may derive various 

models depending on the waiting time and the characteristic of the movement direction the 

particles perform. This is the advantage of our way to derive the model that has not been found in 

previous related studies as we know so far. Here, the movement of the oil spills is only influenced 

by an oceanographic characteristic, namely wind velocity. We assume the wind velocity and the 

length of the particle jumps are constants. We then investigate the solution to the model and 

analyzed it. We also make an animation of the spread of the oil spill. 

This paper is composed of four sections. The second section contains of the methods used in 

studying the mathematical model. Our results and discussion concerning the model is given in the 

third section. The last section concludes our study concerning the model. 

Method  

To derive the mathematical model, we use random walks theory and employ a measure 

probability on unit circle. We also apply Laplace and Fourier transforms. The movement of the oil 

particles is only influenced by the speed and direction of wind. 

We solve the model with helps of an ordinary differential equation theory and Fourier 

transform. The simple animation for the oil spills spread pattern is also shown by using 

Macromedia Flash. 

Results and Discussion 

This section discusses the derivation of the mathematical model. The solution of the model and its 

analysis are also given in this section. 

Model Derivation 
The high sea is assumed as ℝ2 plane. We consider an oil particle moving in the high sea as a 

particle in ℝ2 that undergoes a sequence of random jumps. The particle movement is influenced 

by the waiting time and direction of the particle to jump. We suppose 𝜙(𝑡), 𝑡 > 0 is the probability 

of the particle to jump after a waiting time 𝑡 and 𝑇(𝑥; 𝜔) is the probability of the particle to jump 

from a position 𝑥 ∈ ℝ2 in a direction 𝜔 ∈ 𝑆1 where 𝑆1 = {𝜔 ∈ ℝ2 ∶ |𝜔| = 1}. Both probabilities 

satisfy the equations 

∫ 𝜙(𝑡) 𝑑𝑡 = 1
∞

0

 and ∫ 𝑇(𝑥; 𝜔) 𝑑𝜔 = 1
𝑆1

, 

respectively.  

We next assume that the length of the jumps is a constant ∆𝑥. Following Othmer et al. 

(1998), we suppose 𝑄𝑘(𝑥, 𝑡) stands for the conditional probability of the particle to reach a 

position 𝑥 at a time 𝑡 after 𝑘 jumps, namely 

𝑄𝑘(𝑥, 𝑡) = ∫ ∫ 𝜙(𝑡 − 𝜏)𝑇(𝑥 − 𝜔∆𝑥; 𝜔)𝑄𝑘−1(𝑥 − 𝜔∆𝑥, 𝜏)𝑑𝜔𝑑𝜏
𝑆1

𝑡

0

. 

Then, the particle reaches 𝑥 at 𝑡 with the probability 

𝑄(𝑥, 𝑡) = ∑ 𝑄𝑘(𝑥, 𝑡)

∞

𝑘=0

 

= 𝑄0(𝑥, 𝑡) + ∫ ∫ 𝜙(𝑡 − 𝜏)𝑇(𝑥 − 𝜔∆𝑥; 𝜔)𝑄(𝑥 − 𝜔∆𝑥, 𝜏)𝑑𝜔𝑑𝜏
𝑆1

𝑡

0

. 

Since 𝑄0(𝑥, 𝑡) is Dirac Delta function, namely 𝑄0(𝑥, 𝑡) = 𝛿(𝑥)𝛿(𝑡), then 
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𝑄(𝑥, 𝑡) = 𝛿(𝑥)𝛿(𝑡) + ∫ ∫ 𝜙(𝑡 − 𝜏)𝑇(𝑥 − 𝜔∆𝑥; 𝜔)𝑄(𝑥 − 𝜔∆𝑥, 𝜏)𝑑𝜔𝑑𝜏
𝑆1

𝑡

0

. 

We then suppose 𝑞(𝑥, 𝑡) is the probability of the particle to be at  𝑥 at 𝑡 with the initial 

position 𝑥 = 0 and time 𝑡 = 0. It follows that 

𝑞(𝑥, 𝑡) = ∫ Φ(𝑡, 𝜏; 𝑥)𝑄(𝑥, 𝜏)𝑑𝜏
𝑡

0

 

where Φ(𝑡, 𝜏; 𝑥) is the probability of the particle to reach 𝑥 at 𝜏 < 𝑡 and does not jump during the 

time interval 𝑡 − 𝜏. We also assume that 

Φ(𝑡, 𝜏; 𝑥) = Φ(𝑡 − 𝜏) 

where 

                                                             Φ(𝑡) = ∫ 𝜙(𝑟)𝑑𝑟
∞

𝑡

= 1 − ∫ 𝜙(𝑟)𝑑𝑟
𝑡

0

                                                 (1) 

that means that the particle does not jump during the time interval (0,t). Thus, 

𝑞(𝑥, 𝑡) = ∫ Φ(𝑡 − 𝜏)𝑄(𝑥, 𝜏)𝑑𝜏
𝑡

0

 

             = 𝛿(𝑥)Φ(𝑡) + ∫ ∫ ∫ Φ(𝑡 − 𝜏)𝜙(𝜏 − 𝑟)𝑇(𝑥 − 𝜔∆𝑥; 𝜔)𝑄(𝑥 − 𝜔∆𝑥, 𝑟)𝑑𝜔𝑑𝑟
𝑆1

𝜏

0

𝑡

0

𝑑𝜏 

             = Φ(𝑡)𝛿(𝑥) + ∫ ∫ 𝜙(𝑡 − 𝜏)𝑇(𝑥 − 𝜔∆𝑥; 𝜔)
𝑆1

𝑞(𝑥 − 𝜔∆𝑥; 𝜏)𝑑𝜔
𝑡

0

𝑑𝜏.                                         (2) 

Based on the equation (1), the equation (2) can be rewritten as 

𝑞(𝑥, 𝑡) = (1 − ∫ 𝜙(𝑟)𝑑𝑟
𝑡

0

) 𝛿(𝑥) + ∫ ∫ 𝜙(𝑡 − 𝜏)𝑇(𝑥 − 𝜔∆𝑥, 𝜔)𝑞(𝑥 − 𝜔∆𝑥, 𝜏)𝑑𝜔𝑑𝜏.
𝑆1

𝑡

0

 

By using Laplace and Fourier transform, we have 
�̃�(𝑥, 𝑠) = ℒ{𝑞(𝑥, 𝑡)}(𝑠) 

= ℒ {(1 − ∫ 𝜙(𝑟)𝑑𝑟
𝑡

0

) 𝛿(𝑥) + ∫ ∫ 𝜙(𝑡 − 𝜏)𝑇(𝑥 − 𝜔∆𝑥, 𝜔)𝑞(𝑥 − 𝜔∆𝑥, 𝜏)𝑑𝜔𝑑𝜏
𝑆1

𝑡

0

} (𝑠) 

              =  𝛿(𝑥)
1 − �̃�(𝑠)

𝑠
+ �̃�(𝑠) ∫ �̃�(𝑥 − 𝜔∆𝑥, 𝑠)𝑇(𝑥 − 𝜔∆𝑥, 𝜔)𝑑𝜔

𝑆1
. 

Observe that 

ℱ{�̃�(𝑥, 𝑠)}(𝑘) = ℱ {𝛿(𝑥)
1 − �̃�(𝑠)

𝑠
+ �̃�(𝑠) ∫ �̃�(𝑥 − 𝜔∆𝑥, 𝑠)𝑇(𝑥 − 𝜔∆𝑥, 𝜔)𝑑𝜔

𝑆1
} (𝑘). 

Then, 

                                                     �̂̃�(𝑘, 𝑠) −
1

𝑠
= �̃�(𝑠) (−�̂̃�(𝑘, 𝑠) + �̂�(𝑘, 𝑠)),                                                 (3) 

where 

�̃�(𝑠) =
�̃�(𝑠)

1 − �̃�(𝑠)
 

and 

ℱ {∫ �̃�(𝑥 − 𝜔∆𝑥, 𝑠)𝑇(𝑥 − 𝜔∆𝑥, 𝜔)𝑑𝜔
𝑆1

} (𝑘) = �̂�(𝑘, 𝑠). 

By the equation (3) and the inverse of Laplace and Fourier transform, we get 

ℒ−1 {�̂̃�(𝑘, 𝑠) −
1

𝑠
} (𝑡) = ℒ−1 {�̃�(𝑠) (−�̂̃�(𝑘, 𝑠) + �̂�(𝑘, 𝑠))} (𝑡) 
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or 

�̂�(𝑘, 𝑡) − 1 = ∫ 𝐻(𝑡 − 𝜏) (−�̂�(𝑘, 𝜏) + ℒ−1{�̂�(𝑘, 𝑠)}(𝑘, 𝜏)) 𝑑𝜏
𝑡

0

, 

and 

ℱ−1{�̂�(𝑘, 𝑡) − 1}(𝑥, 𝑡) = ℱ−1 {∫ 𝐻(𝑡 − 𝜏) (−�̂�(𝑘, 𝜏) + ℒ−1{�̂�}(𝑘, 𝜏)) 𝑑𝜏
𝑡

0

} (𝑥, 𝑡) 

or 

                            𝑞(𝑥, 𝑡) − 𝛿(𝑥) = ∫ 𝐻(𝑡 − 𝜏) (−ℱ−1{�̂�}(𝑥, 𝜏) + ℱ−1 {ℒ−1{�̂�}} (𝑥, 𝜏)) 𝑑𝜏.
𝑡

0

              (4) 

Consider that 

ℱ−1 {ℒ−1{�̂�}} (𝑥, 𝜏) = ∫ 𝑇(𝑥 − 𝜔∆𝑥, 𝜔)𝑞(𝑥 − 𝜔∆𝑥, 𝜏)
𝑆1

𝑑𝜔. 

Since 𝑞(𝑥, 0) = 𝛿(𝑥), then the equation (4) can be rewritten as 

               𝑞(𝑥, 𝑡) − 𝑞(𝑥, 0) = ∫ 𝐻(𝑡 − 𝜏) (−𝑞(𝑥, 𝜏) + ∫ 𝑇(𝑥 − 𝜔∆𝑥, 𝜔)𝑞(𝑥 − 𝜔∆𝑥, 𝜏)𝑑𝜔
𝑆1

) 𝑑𝜏.
𝑡

0

   (5) 

If the waiting probability 𝜙(𝑡) is Poissonian, that is 

𝜙(𝑡) =
𝑒

−𝑡
𝜆⁄

𝜆
,    𝜆 > 0, 𝑡 > 0, 

Then the Laplace transform of 𝜙(𝑡) is  

�̃�(𝑠) = ℒ{𝜙(𝑡)} = ∫ 𝑒−𝑠𝑡 (
𝑒

−𝑡
𝜆⁄

𝜆
) 𝑑𝑡

∞

0

=
1

𝜆𝑠 + 1
. 

Consequently, 

�̃�(𝑠) =
�̃�(𝑠)

1 − �̃�(𝑠)
=

(1
𝜆𝑠 + 1⁄ )

1 − (1
𝜆𝑠 + 1⁄ )

=
(1

𝜆𝑠 + 1⁄ )

(𝜆𝑠
𝜆𝑠 + 1⁄ )

=
1

𝜆𝑠
. 

Then, 

𝐻(𝑡) = ℒ−1{�̃�(𝑠)} = ℒ−1 {
1

𝜆𝑠
} =

1

𝜆
ℒ−1 {

1

𝑠
} =

1

𝜆
. 

Thus, the equation (5) becomes 

𝑞(𝑥, 𝑡) − 𝑞(𝑥, 0)  =
1

𝜆
∫ (−𝑞(𝑥, 𝜏) + ∫ 𝑇(𝑥 − 𝜔∆𝑥, 𝜔)𝑞(𝑥 − 𝜔∆𝑥, 𝜏)𝑑𝜔

𝑆1
) 𝑑𝜏.

𝑡

0

                        (6) 

 
If both sides of the equation (6) are differentiated with respect to 𝑡 then 

                                  
𝜕

𝜕𝑡
𝑞(𝑥, 𝑡) =

1

𝜆
(−𝑞(𝑥, 𝑡) + ∫ 𝑇(𝑥 − 𝜔Δ𝑥; 𝜔)𝑞(𝑥 − 𝜔Δ𝑥, 𝑡)

𝑆1

𝑑𝜔).                      (7) 

We next assume that  𝑇(𝑥; 𝜔) is a constant or does not depend on the position 𝑥 and jump 
direction 𝜔. It means that the particle in the random walk process moves in a homogeny medium 
or absence of any external force field. Since 

∫ 𝑇(𝑥; 𝜔)𝑑𝜔

𝑆1

= 1, 
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then 𝑇(𝑥: 𝜔) = 1/|𝑆1| where 

|𝑆1| = ∫ 𝑑𝜔

𝑆1

= 2𝜋. 

 
Consequently, the equation (7) is reduced to 

                                               
𝜕

𝜕𝑡
𝑞(𝑥, 𝑡) =

1

𝜆|𝑆1|
( ∫ 𝑞(𝑥 − 𝜔Δ𝑥, 𝑡)

𝑆1

− 𝑞(𝑥, 𝑡)𝑑𝜔).                                   (8) 

We next consider the following lemma. 
  

Lemma 2.1 (Senba & Suzuki, 2010). If  

∫ 𝜔𝑖𝑑𝜔

𝑆1

= 0 

∫ 𝜔𝑖𝜔𝑗𝑑𝜔

𝑆1

= 𝛿𝑖𝑗

|𝑆1|

2
,   𝑖, 𝑗 = 1,2, 

and 𝑓 = 𝑓(𝑥) is a continuously twice differentiable function then  

∫ [𝑓(𝑥 + 𝜔Δ𝑥) − 𝑓(𝑥)]𝑑𝜔

𝑆1

=
1

4
|𝑆1|(Δ𝑥)2∆𝑓(𝑥) + 𝑜((Δ𝑥)2) 

as Δ𝑥 → 0. 

 
By using Lemma 2.1, the equation (8) is reduced to 

                                                           
𝜕

𝜕𝑡
𝑞(𝑥, 𝑡) =

(∆𝑥2)

4𝜆
∆𝑞(𝑥, 𝑡) + 𝑜((∆𝑥)2)                                               (9) 

as Δ𝑥 → 0. If  Δ𝑥 → 0, λ → 0, and 
(∆𝑥2)

4𝜆
 is kept finite then the equation (9) becomes 

                                                                          
𝜕

𝜕𝑡
𝑞(𝑥, 𝑡) = 𝐷∆𝑞(𝑥, 𝑡)                                                             (10) 

where 

𝐷 =
(∆𝑥2)

4𝜆
. 

The equation (10) is well known as diffusion equation and a constant 𝐷 is called by diffusion 
coefficient. 
 We next assume 𝑇(𝑥; 𝜔) is not a constant satisfying the conditions 
                                                                 𝑇(𝑥; 𝜔) − 𝑇(𝑥; −𝜔) = 𝐹(𝑥; 𝜔),                                                     (11) 
                                                                 𝑇(𝑥; 𝜔) + 𝑇(𝑥; −𝜔) = 𝐺(𝑥; 𝜔),                                                     (12) 
where 𝐹(𝑥; 𝜔) ≠ 0 that means the random walk process is influenced by an external force field. 
Note that  

∫ 𝑇(𝑥; 𝜔)

𝑆1

= 1, 

implying 

1

2
∫ 𝐺(𝑥; 𝜔)

𝑆1

= 1. 
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By Taylor series expansion, we obtain 

           𝑇(𝑥 − 𝜔∆𝑥; 𝜔)𝑞(𝑥 − 𝜔Δ𝑥, 𝑡) = 𝑇(𝑥; −𝜔)𝑞(𝑥, 𝑡) − Δ𝑥𝜔 ∙ ∇𝑇(𝑥; −𝜔)𝑞(𝑥, 𝑡)  

                                                                       +
1

2
(Δ𝑥)2{−𝜔 ∙ ∇}2𝑇(𝑥; −𝜔)𝑞(𝑥, 𝑡) + 𝑜((Δ𝑥)2).                (13) 

Similarly, 
           𝑇(𝑥 + 𝜔Δ𝑥; 𝜔)𝑞(𝑥 + 𝜔Δ𝑥, 𝑡) = 𝑇(𝑥; 𝜔)𝑞(𝑥, 𝑡) + Δ𝑥𝜔 ∙ ∇𝑇(𝑥; 𝜔)𝑞(𝑥, 𝑡) 

                                                                       +
1

2
(Δ𝑥)2{𝜔 ∙ ∇}2𝑇(𝑥; 𝜔)𝑞(𝑥, 𝑡) + 𝑜((Δ𝑥)2).                      (14) 

By the equation (11), (12), (13), and (14), we have  
 
 𝑇(𝑥 − 𝜔Δ𝑥; 𝜔)𝑞(𝑥 − 𝜔Δ𝑥) + 𝑇(𝑥 + 𝜔Δ𝑥; 𝜔)𝑞(𝑥 + 𝜔Δ𝑥, 𝑡) 

         = 𝐺(𝑥; 𝜔)𝑞(𝑥, 𝑡) − Δ𝑥𝜔 ∙ ∇𝐹(𝑥; 𝜔)𝑞(𝑥, 𝑡) +
1

2
(Δ𝑥)2{𝜔 ∙ ∇}2𝐺(𝑥; 𝜔)𝑞(𝑥, 𝑡) + 𝑜((Δ𝑥)2).    (15) 

We next consider the formula 

                                                                       𝐹(𝑥; 𝜔) =
∆𝑥

|𝑆1|
𝜔 ∙ 𝑓(𝑥),                                                             (16) 

where 𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥)) ∈ ℝ2 is an external force field influencing the particle jump at 

position 𝑥. Besides, we assume that 𝐺(𝑥; 𝜔) is a constant. Then 

                                                                                 𝐺(𝑥; 𝜔) =
2

|𝑆1|
                                                                    (17) 

since 

1

2
∫ 𝐺(𝑥; 𝜔)

𝑆1

= 1. 

By isotropic conditions 

                                                                        ∫ 𝜔𝑖𝑑𝜔

𝑆1

= 0,   𝑖 = 1,2,                                                              (18) 

                                                             ∫ 𝜔𝑖𝜔𝑗𝑑𝜔

𝑆1

= 𝛿𝑖𝑗

|𝑆1|

2
,   𝑖, 𝑗 = 1,2,                                                     (19) 

where 𝜔 = (𝜔1, 𝜔2) ∈ 𝑆1,  and the equation (15), (16), (17), (18), and (19), we obtain 

−𝑞(𝑥, 𝑡) + ∫ 𝑇(𝑥 − 𝜔Δ𝑥; 𝜔)𝑞(𝑥 − 𝜔Δ𝑥, 𝑡)𝑑𝜔

𝑆1

=
(∆𝑥)2

4
(∆𝑞(𝑥, 𝑡) − ∇ ∙ 𝑓(𝑥, 𝜏)𝑞(𝑥, 𝑡)) + +𝑜((Δ𝑥)2). 

Consequently, the equation (7) is reduced to 

                                 
𝜕

𝜕𝑡
𝑞(𝑥, 𝑡) =

(∆𝑥)2

4𝜆
(∆𝑞(𝑥, 𝑡) − ∇ ∙ 𝑓(𝑥, 𝜏)𝑞(𝑥, 𝑡)) + 𝑜((Δ𝑥)2).                             (20) 

If ∆𝑥 → 0, 𝜆 → 0, and (∆𝑥)2/𝜆 is kept finite then the equation (2.20) becomes 

                                                 
𝜕

𝜕𝑡
𝑞(𝑥, 𝑡) = 𝐷(∆𝑞(𝑥, 𝑡) − ∇ ∙ 𝑓(𝑥, 𝑡)𝑞(𝑥, 𝑡))                                              (21) 

where  

𝐷 =
(∆𝑥)2

4𝜆
. 

The equation (21) is known as Fokker-Planck equation. If 𝑓(𝑥, 𝑡) = 𝑣 where 𝑣 = (𝑣1, 𝑣2) ∈ ℝ2 
with 𝑣𝑖 , 𝑖 = 1,2 are constants then 

∇ ∙ 𝑓(𝑥, 𝑡)𝑞(𝑥, 𝑡) = ∇ ∙ 𝑣𝑞(𝑥, 𝑡) = ∇ ∙ (𝑣1, 𝑣2)𝑞(𝑥, 𝑡) 
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= 𝑣 ∙ (
𝜕

𝜕𝑥1
𝑞(𝑥, 𝑡),

𝜕

𝜕𝑥2
𝑞(𝑥, 𝑡)) = 𝑣 ∙ ∇𝑞(𝑥, 𝑡). 

Consequently, the equation (21) becomes 

                                                          
𝜕

𝜕𝑡
𝑞(𝑥, 𝑡) = 𝐷(∆𝑞(𝑥, 𝑡) − 𝑣 ∙ ∇𝑞(𝑥, 𝑡)).                                              (22) 

The equation (22) is known as advection-dispersion equation that can be used to model the 
concentration of oil spills 𝑞(𝑥, 𝑡) in high sea at 𝑥 and 𝑡 under the influence of wind movement with 
a constant velocity 𝑣 = (𝑣1, 𝑣2). 

Solution 
Consider the equation 
 

𝜕

𝜕𝑡
𝑞(𝑥, 𝑡) = 𝐷(∆𝑞(𝑥, 𝑡) − 𝑣 ∙ ∇𝑞(𝑥, 𝑡)),  𝑥 ∈ ℝ2, 𝑡 > 0 

𝑞(𝑥, 0) = 𝑞0(𝑥),  𝑥 ∈ ℝ2 

𝑞(𝑥, 𝑡) = 0,  𝑡 > 0, |𝑥| → ∞. 
By using Fourier transform, we get 

ℱ [
𝜕

𝜕𝑡
𝑞(𝑥, 𝑡)] (𝑘, 𝑡) = ℱ[𝐷(∆𝑞(𝑥, 𝑡) − 𝑣 ∙ ∇𝑞(𝑥, 𝑡))](𝑘, 𝑡) 

ℱ[𝑞(𝑥, 0)](𝑘, 0) = ℱ[𝑞0(𝑥)](𝑘) 

or 
𝜕

𝜕𝑡
ℱ[𝑞](𝑘, 𝑡) = 𝐷(− |𝑘|2 − 𝑖𝑣 ∙ 𝑘)ℱ[𝑞](𝑘, 𝑡), 𝑘 ∈ ℝ2, 𝑡 > 0 

ℱ[𝑞](𝑘, 0) = ℱ[𝑞0](𝑘), 𝑘 ∈ ℝ2. 
which is solved by 

ℱ[𝑞](𝑘, 𝑡) = ℱ[𝑞0](𝑘)𝑒𝐷(−|𝑘|2−𝑖𝑣∙𝑘)𝑡. 

Since 

ℱ [
1

𝜎√2𝜋
𝑒

−
|𝑥|

2𝜎2

2

] (𝑘) = 𝑒−
𝜎2|𝑘|2

2  

or 

ℱ−1 [−
𝜎2|𝑘|2

2
] (𝑥) =

1

𝜎√2𝜋
𝑒

−
|𝑥|

2𝜎2

2

, 

then, 

ℱ−1[𝑒𝐷( |𝑘|2−𝑖𝑣∙𝑘)𝑡](𝑥) =
1

2𝜋
∫ 𝑒𝐷(−|𝑘|2−𝑖𝑣∙𝑘)𝑡𝑒𝑖𝑘∙𝑥

ℝ2

𝑑𝑘 

=
1

2√𝜋𝐷𝑡
𝑒−

|𝑥−𝐷𝑣𝑡|2

4𝐷𝑡 . 

It follows that 

𝑞(𝑥, 𝑡) = ℱ−1[ℱ[𝑞]](𝑥, 𝑡) = ∫ 𝑞0(𝑥 − 𝑦)

ℝ2

1

2√𝜋𝐷𝑡
𝑒−

|𝑦−𝐷𝑣𝑡|2

4𝐷𝑡 𝑑𝑦. 

If 𝑞0(𝑥) = 𝑐0𝛿(𝑥) then  

𝑞(𝑥, 𝑡) =
𝑐0

2√𝜋𝐷𝑡
𝑒−

|𝑥−𝐷𝑣𝑡|2

4𝐷𝑡 . 
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Analysis 
By using polar coordinate, for 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2, we have  

𝑥1 = 𝑟 cos 𝜃 , 𝑥2 = 𝑟 sin 𝜃 ,   𝑟 > 0,  0 ≤ 𝜃 ≤ 2𝜋, 
implying 

𝑞 =
𝑐0

2√𝜋𝐷𝑡
𝑒−

(𝑟 cos 𝜃−𝐷𝑣1𝑡)2+(𝑟 sin 𝜃−𝐷𝑣2𝑡)2

4𝐷𝑡 . 

The maximum value of 𝑞 is obtained when 
(𝑟 cos 𝜃 − 𝐷𝑣1𝑡)2 + (𝑟 sin 𝜃 − 𝐷𝑣2𝑡)2 = 0. 

Consequently,  
𝑟 cos 𝜃 − 𝐷𝑣1𝑡 = 𝑟 sin 𝜃 − 𝐷𝑣2𝑡 = 0, 

which implies 

𝜃 = tan−1
𝑣2

𝑣1
. 

It means that 

𝜃 = tan−1
𝑣2

𝑣1
. 

gives a direction from the position 𝑥 = (𝑥1, 𝑥2) on a circle with a radius 𝑟 such that 𝑞 attains the 

maximum value at 𝑡 > 0. Observe that the direction is the direction of the wind velocity 𝑣 = (𝑣1, 𝑣2) 

 

 

Figure 1. The graph of 𝑞 values at points lying on a circle with 
the radius 𝑟 = 1 in the movement direction 𝜃 = 0, 𝜋/4, 𝜋, 5𝜋/4 

and 𝑣 = (1,1) along 0 ≤ 𝑡 ≤ 10 
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Figure 1 shows that the point lying on the circle with the movement direction 𝜃 = 𝜋/4 or 

wind velocity 𝑣 = (1,1) gives the largest value of 𝑞 along 0 < 𝑡 ≤ 10. 

 

Animation 
This section provides animations for the spread of the oil spill by using Macromedia Flash. Figure 
2 below describes the spread of the oil spill in absence of wind movement. The spread is 
concentric. 

 

 

Figure 2. Screenshot of the animation when the oil spill is not 
influenced by wind movement 

 

Figure 3 and 4 describe the spread of the oil spill when the wind velocities are 𝑣 = (1,1) and 

𝑣 = (3,3), respectively. It seems that the oil particles tend to move in northeast direction or the 

direction of the wind movement. When the screenshot is taken at the same time, 𝑡 = 2 second, 

there is a difference between Figure 3 and 4. The oil particles in Figure 4 spread faster than that in 

Figure 3 since the wind movement in Figure 4 moves faster than that in Figure 3. 

 

 

Figure 3. Screenshot of the animation when 𝑣 = (1,1). 
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Figure 4. Screenshot of the animation when 𝑣 = (3,3). 
  

Analogous to Figure 3 and 4, Figure 5 and 6 show the screenshot of the animation when the 
spread of the oil spill is influenced by wind velocities 𝑣 = (−1,0) and 𝑣 = (−3,0). There we can 
see that the oil particles tend to move in west direction or the direction of wind movement. The 
screenshot of the animation in Figure 5 and 6 are taken at the same time, 𝑡 = 2 second. The 
spread of the oil particles in Figure 5 is slower than that in Figure 6 since the wind velocities 
influencing the oil particles movements are also different.  
 

 

Figure 5. Screenshot of the animation when 𝑣 = (−1,0). 
 

 

Figure 6. Screenshot of the animation when 𝑣 = (−3,0). 
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Conclusion 

The mathematical model of the spread of oil spill in high seas in presence of wind velocity is 
𝜕

𝜕𝑡
𝑞(𝑥, 𝑡) = 𝐷(∆𝑞(𝑥, 𝑡) − 𝑣 ∙ ∇𝑞(𝑥, 𝑡)), 𝑥 ∈ ℝ2, 𝑡 > 0 

𝑞(𝑥, 0) = 𝑐0𝛿(𝑥), 𝑥 ∈ ℝ2 

𝑞(𝑥, 𝑡) = 0,  𝑡 > 0, |𝑥| → ∞. 
where 𝑞(𝑥, 𝑡), 𝑣 = (𝑣1, 𝑣2), and 𝑐0 stand for the concentration of the oil spill at position 𝑥 ∈ ℝ2 and 

𝑡 > 0, wind velocity, and the concentration of the oil spill at 𝑡 = 0, respectively. 

The solution to the model is 

𝑞(𝑥, 𝑡) =
𝑐0

2√𝜋𝐷𝑡
𝑒−

|𝑥−𝐷𝑣𝑡|2

4𝐷𝑡 ,  𝑥 ∈ ℝ2,  𝑡 > 0. 

Based on the analysis of the solution, we get that 

𝜃 = tan−1
𝑣2

𝑣1
 

gives a direction from the position 𝑥 = (𝑥1, 𝑥2) on a circle with a radius 𝑟 such that 𝑞 attains the 

maximum value at 𝑡 > 0. The direction is the direction of wind velocity 𝑣 = (𝑣1, 𝑣2). 

The animation of the spread of the oil spill shows that the speed and direction of wind 

movement influence the speed and direction of the spread of the oil spill. The larger the speed of 

wind movement, the faster the oil particles movement. 

It is interesting to consider the other factors such as pH, temperature, chemical 

characteristics of oil, and so on to obtain the better model via the random walks process. 
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