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1. Introduction 

Foreign exchange (FOREX) is one type of trading activity that trades a country’s currency to 

others for 24 hours continuously (Nagpure, 2019). FOREX market is the world’s largest financial 

market. The daily trading volume has  been increased six trillion dollars which it’s 45% of the 

transaction volume comes from terminal retail customers (Ni et al., 2019). There are several 

techniques in FOREX trading, one of them is forecasting FOREX. Forecasting on FOREX can be 

done by the method of Statistical Learning (time series analysis), Technical analysis (candle 

stick), and deep learning (Recurrent Neural Network, LSTM). There are some research about 

forecasting FOREX with any method such using deep learning (Czekalski et al., 2015; Korczak & 

Hemes, 2017; Nagpure, 2019; Sezer et al., 2020), ARIMA (Reddy SK, 2015), fuzzy neuron 

(Reddy SK, 2015) and neuro-fuzzy system (Yong et al., 2018). Forecasting provides factors to be 

able to predict further whether there will be a bullish or bearish. Bullish symbolizes the optimism 

of the actors in market conditions whose prices are rising. Bearish symbolizes the pessimism of 

the actors in market conditions whose prices are falling (Ong, 2019). Forecasting is a technique 

that can help in minimizing losses on FOREX transactions. Forecasting techniques that have the 

lowest error rate are the most suitable techniques to use. Another consideration is for ease and 
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speed in using the method. Other paper have discussed about forecasting FOREX using deep 

learning (Czekalski et al., 2015; Korczak & Hemes, 2017; Nagpure, 2019; Sezer et al., 2020).  

In this paper a comparison of forecasting performance between the two methods will be made 

where the method uses time series analysis specifically ARIMA and deep learning (LSTM) 

methods by observing the comparison of the Root Mean Squared Error (RMSE) values of the two 

methods and the speed of forecasting. ARIMA method is statistical learning which discard the 

trend of the data while LSTM is deep learning which able to learn the trend of data. The purpose 

of this paper is to find out which method is the best for making predictions in EUR/USD exchange 

rates. 

2. Literature Review 

Forecasting is done by making a model based on past data. The method used is time series analysis 

and long short-term memory. Broadly speaking, FOREX forecasting processes include data processing, 

finding optimal models and evaluating models. 

2.1 Time Series Analysis 

Time Series is a collection of observations taken sequentially in time (Palma, 2016). Time 

series analysis is important because it is used widely in the real world as an example of population 

growth in a country from the measure of its current population, it is useful to determine the future 

prospects of a population (Konar & Bhattacharya, 2017). This time series prediction believes 

events that have occurred in the past will happen again in the future based on the results of the 

plot of the time sequence (Palma, 2016). 

2.2 Integrated Autoregressive Moving Average (ARIMA) 

ARIMA, namely the Box-Jenkins model is the most common time series prediction model in 

the statistic model. ARIMA model has three basic types which are moving average (MA) model, 

autoregressive (AR) model, and autoregressive integrated moving average model (ARIMA). 

ARIMA generally denoted by ARIMA (p,d,q). p means the autoregressive parameters; q means 

the moving average order and d is the number of times the time series becomes stationary 

through difference. The value of d usually under 2. The p and q parameters are obtained from the 

partial auto correlation function (PACF) and auto correlation function (ACF). Model of ARIMA 

should be kept as small as possible to avoid overfitting to the sample data (Nielsen, 2019; Yang 

et al., 2020) 

2.3 Recurrent Neural Network 

Recurrent neural network (RNN) is a type of artificial neural network that is best suited to 

recognizing patterns in a sequence of data (Manaswi, 2018). The word recurrent comes from how 

this network works. This network applies the same method to each sequence of elements, 

gathering information about previous terms. The recurrent neural network is a very powerful 

algorithm that can classify, cluster, and make predictions about data, especially time series and 

text (Michelucci, 2018; Zheng et al., 2014). 
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2.4 Long Short-Term Memory 

Long Short-term memory (LSTM) is a modification of RNN which deals with the problems of 

vanishing and exploding gradient  also overcomes training problems in a very long sequence and 

retaining memory (Song et al., 2020). It is difficult to use RNN in solving problems that 

require long-term learning of temporal dependencies and long sequence relationships. The 

gradient of the loss function decay exponentially with time at which this causes difficulties in 

training the RNN (Manaswi, 2018). The problem of loss of gradient can be controlled better by 

providing additional gates. Gates LSTM consists of input gate, forget gate and output gate. This 

addition system is able to make a selection of information that needs to be stored and what 

information needs to be forgotten (Goyal et al., 2018; Lecun, et al., 2015). 

LSTM has several types that are used for time series forecast, one of them is vanilla LSTM. 

Vanilla LSTM is the simplest LSTM model. This type has one hidden layer, and an output is used 

to make predictions. Figure 1 is a vanilla RNN. Vanilla LSTM has the same concept as vanilla 

RNN but different on the gate. 

 

Figure 1. Vanilla RNN (Ming et al., 2017) 

Where xt-1,xt,xt+1 is a sequential matrix input. ht-1,ht,ht+1 is the hidden layer that will be used 
in the next period. y

t-1
,y

t
,y

t+1
 is the output from the input xt-1,xt,xt+1. When time t input xt updates 

the value of ht-1 to ht (Ming et al., 2017). 

3. Research Methodology 

FOREX is the trading of currencies across foreign market. FOREX market is a place for people 

to buy, sell or exchange currencies (Rigters, 2019). Nowadays, FOREX trading can be done 

anywhere and easily accessed because it can be done online. Even now there are several 

applications that are used to do FOREX trading so that it can be accessed by using a gadget. 

With this easy access, people need a quick consideration to make a decision. Therefore, this 

research is needed to help traders not to get a lot of losses. 

In a paper made by piotr (Czekalski et al., 2015) using ANN in making forex predictions. ANN 

was then developed into RNN and developed again into LSTM. This paper will compare the 

results of ARIMA and LSTM. The result will showed which method will produce accurate 

predictions that can help people related to this expertise and traders in making decisions about 

buying or selling in FOREX trading so that they can minimize the loss. 

This research step starts with collecting historical data through http://www.investing.com. The 

historical data used is the daily closing exchange rates of the EUR/USD currency with a period 
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from January 2014 to April 2020. Data that has been collected will be used to make a model using 

2 methods, namely ARIMA and LSTM. This process will produce the best model of each method. 

The best model of ARIMA and LSTM will use to make prediction. Prediction results will be 

compared with the actual which will produce RMSE value that is used to find out which method is 

best in this case. Finally, we could find the conclusions about which method is better and has a 

lower RMSE value. RMSE value indicates the error that the prediction results have. In this case 

when the RMSE value is small, it means that the error or different of the prediction result is small 

than the actual price. 

4. Results and Discussion 

This section will discuss the result of the research. Each method will be explained in detail on 

how to get the model. In brief, this section will tell the best models of ARIMA and LSTM obtained 

in this study and the comparison of ARIMA and LSTM results. 

4.1 Time Series Analysis 

Time Series Analysis is a statistical method for prediction data that taken based on time 

series. Forecasting models used in this study are autoregressive (AR), moving average (MA), 

autoregressive moving average (ARMA) and integrated autoregressive moving average (ARIMA). 

The model is chosen based on the characteristic of the data processed (Hyndman et al., 2008; 

Wang et al., 2006). 

AR, MA, and ARMA can only be used in time series that are stationary, while for time series 

that nonstationary using ARIMA. Globally steps in making predictions with ARIMA are input data, 

check stationary data, difference, identification of AR and MA, optimal model checking. Making 

ARIMA manually with the first step is to plot data that will be used to check stationarity of data. 

Modelling uses a moving window where the way it works is there is a window which the size 

will be determined by the researcher in making the ARIMA and after that this window will move to 

predict the next day. The window size used is 4 types of amount of data that is 100 data using 

data from 2014 to March 2020, 100 data from 2014 to April 2020, 80% of total data (1304 data) 

using data from 2014 to 31 March 2020 and 80% of total data (1321 data) using data from 2014 

to 31 April 2020. Stationarity of data is checked on each window size, for example 100 data. 

Figure 2. Plot 100 Data 
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Data is said to be stationary if it has a fixed mean and constant variance. The graph in Figure 

2 visually can be seen the data has a mean and variance are not constant so that the data is not 

stationary. This is true since the forex market has asymmetric volatility (Baruník et al., 2017). 

Stationarity test other than look at the plot data can also be able to use augmented dicky 

fuller (ADF) test (Diebold and Kilian, 2000). The hypothesis of this test are: 

H0: Data is not stationary 

H1: Data stationer  

ADF Test results found that the ADF value is -2.04 and p-value = 0.27. This states that failed 

to reject the initial hypothesis, so the data is not stationary. The model used is ARIMA model 

(p,d,q). The value of d will be obtained from the number of times the difference in data until the 

data is stationary. 

The data is stationary, so the next step is to look for the parameters of p and q using partial 

autocorrelation (PACF) and autocorrelation (ACF). The previous step is a manual step in making 

the ARIMA model. Modeling uses a moving window, therefore it is impossible to make it manually 

so the auto_ arima algorithm is used. The work of this algorithm is same as with manually process 

the difference is the algorithm will be searching model with the best AIC and BIC value from the 

guessed model optimal which get from plot the ACF and PACF. If the AIC and BIC values are 

minimal, the ARIMA (p,d,q) is obtained. 

The results of this algorithm have obtained a model with the value of Akaike information 
criterion (AIC) and Bayesian information criterion (BIC). The model results from the first 100 data 
obtained the ARIMA (0,1,0). The prediction results show 2 window sizes namely 100 and 80% of 
the amount of data or 1304 data and 1321 data. 

Table 1 shows the results of forecasting with ARIMA for the period March 23th 2020 to March 

31st 2020 using historical data until March 2020. The forecasting result of ARIMA consists of 2 

window sizes, 100 data and 1304 data. 

Table 1. Prediction Using Historical Data until March 2020 

DATE ACTUAL 
PREDICTION 

100 1304 

Mar 23th 2020 1.0723 1.0712 1.0695 

Mar 24th 2020 1.0789 1.0739 1.0723 

Mar 25th 2020 1.0882 1.0804 1.0789 

Mar 26th 2020 1.1030 1.0893 1.0882 

Mar 27th 2020 1.1142 1.1100 1.1030 

Mar 30th 2020 1.1048 1.1196 1.1142 

Mar 31st 2020 1.1031 1.1079 1.1048 

Table 2 is the result of forecasting by ARIMA for the period of April 1st 2020 to April 10th 

2020 using data until April 2020. The results of this forecasting consist of 2 window sizes namely 

100 data and 1321 data. This prediction uses historical data from November 13th 2019 to April 

30th 2020. 
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Table 2. Prediction Result for April 

DATE ACTUAL 
PREDICTION 

100 1304 

APRIL 1st 2020 1.0964 1.0996 1.1031 
APRIL 2nd 2020 1.0858 1.0960 1.0964 
APRIL 3rd 2020 1.0809 1.0842 1.0858 
APRIL 6th 2020 1.0793 1.0788 1.0809 
APRIL 7th 2020 1.0891 1.0996 1.1031 
APRIL 8th 2020 1.0858 1.0931 1.0891 
APRIL 9th 2020 1.0929 1.0917 1.0858 

APRIL 10th 2020 1.0936 1.0943 1.0929 

 

4.2 Long Short-Term Memory 

Long short-term memory (LSTM) is a modification of the Recurrent Neural Network (RNN) which 

with the addition of gates can overcome the problem of vanishing and exploding (Moore and Roche, 2015). 

The model used is adapted to the pattern of historical data obtained by trying various combinations such 

as the number of neurons, the number of hidden layers, the number of lookbacks, then number of epochs, 

activation functions, optimizer, the amount of output (step out), batch size, dropout. In brief, the process of 

finding a model in LSTM is started with the initialization of the parameters that will be used then load the 

data that will be used. The data needs to be prepared to make LSTM model consisting of supervised, 

divide data to train and test, scale. After the data is prepared it will enter the LSTM process which will 

repeat as many iterations. LSTM process contain of initialization LSTM, fitting and model evaluation. Fitting 

will repeat as many as the number of epochs. After the model search process, the model is stored then 

look for the lowest RMSE value. If the RMSE is not yet minimal, another parameter combination will be 

tried, and the process return to initialization. RMSE value when it is minimal then the model is selected. 

After model selected is doing prediction. The step in making this prediction is first load the data that will be 

used for the prediction and the selected model which have the lowest RMSE. Data needs to be prepared 

before entering the prediction process. Data preparation includes supervised and scale processes. The 

data that is ready will be used to make predictions. After that the results of the prediction will be inverted 

so that the value returns to before the scale or not worth between 0 to 1.  

Supervised learning is done by shifting the data where it means the data will learn to do the 

forecasting for example if the value of t is x and the value of t+1 is y then the system will learn if the value 

of x then the value will be y. This study divides data into 80% of train and 20% of test. Train data is data 

used by the system for learning so that it can find the right weight for that data. Test data is used to 

test models with different data from those already studied. 

Table 3. Fixed Parameters 

PARAMETER VALUE 

OUTPUT (STEPOUT) 1 

BATCH SIZE 1 

OPTIMIZER Adam 

DROPOUT 0.0 

ACTIVATION FUNCTION Sigmoid 

ITERATION 3 
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The data is scaled according to the activation function used. This research uses sigmoid, the data 

will be scaled to 0 to 1. Finding the lowest RMSE by trying a combination of parameters from the 

LSTM. The fixed parameters in this study can be seen in Table 3 while the parameters which are not fixed 

and the combination will be tried can be seen in Table 4. 

Table 4. Non-fixed Parameters 

PARAMETER VALUE 

NEURON 8 10 15 27 

EPOCH 2000 4000 6000  

HIDDEN LAYER 1 2   

LOOKBACK 1 2 3  

The first step of LSTM process is initialization the parameter that will use in LSTM. Afterward, 

compiling model which input the type of loss and optimizer will used. Type of loss will use mean square 

error (MSE) and the optimizer will use Adam. After that fitting model as the number of epochs. This process 

will result loss value which indicate the performance of the weight that machine get it. After that evaluating 

the model. RMSE value will result in evaluation model process. This process will loop as many as iteration. 

The combination of these parameters obtained the lowest RMSE value on the combination of epoch 4000, 

neuron 10, hidden layer 1 and lookback 1 with an RMSE test value of 0.0042 . This combination will be 

used to make forecasting.  

4.3 LSTM and ARIMA Analysis 

Analysis is done by comparing the predicted results of the two methods by looking at the RMSE 

value and the predicted value. This analysis is done using the same data and time period. ARIMA have 2 

types of window size which 100 data and 80% of all data. 

Table 5. RMSE Values of ARIMA and LSTM  

DATA PERIOD 

METHOD 

ARIMA 
LSTM 

100 80% 

JAN 2014 - MARCH 2020 0.0045 0.0044 0.0042 

APRIL 2020 PREDICTION 0.0053 0.0055 0.0051 

 

The RMSE of the ARIMA and LSTM methods can be seen in Table 5. The LSTM has the smallest 

RMSE value. This is because in LSTM there is a learning process in the past data so that it can produce 

better predictive results than ARIMA. The results of forecasting the ARIMA and LSTM models in the data 

from 2014 to March 2020 for the period 2 January 2019 to 15 January 2019 can be seen in Table 6. 

Table 6. Prediction Result Using Historical Data until March 2020 

DATE ACTUAL 
ARIMA 

PREDICTION 

LSTM 

PREDICTION 

JANUARY 2nd 2019 1.1343 1.1464 1.1458 

JANUARY 3rd 2019 1.1394 1.1343 1.1348 

JANUARY 4th 2019 1.1395 1.1394 1.1389 
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DATE ACTUAL 
ARIMA 

PREDICTION 

LSTM 

PREDICTION 

JANUARY 7th 2019 1.1476 1.1395 1.1397 

JANUARY 8th 2019 1.1442 1.1476 1.1467 

JANUARY 9th 2019 1.1543 1.1442 1.1440 

JANUARY 10th 2019 1.1500 1.1543 1.1523 

JANUARY 11th 2019 1.1469 1.1500 1.1491 

JANUARY 14th 2019 1.1477 1.1469 1.1458 

JANUARY 15th 2019 1.1417 1.1477 1.1465 

 

Forecasting results from ARIMA are the same as the previous day while the LSTM is not the same. 

This is because ARIMA is not suitable when used on data with a long period of time which will produce an 

ARIMA (0,1,0) so that it is the same as the previous day's data. LSTM results do not follow previous data, 

which means that LSTM is better for a fairly long period of time. This is one of the advantages of LSTM. 

Another advantage of LSTM is LSTM able to learn the pattern of the data supplied, while the ARIMA 

trends and patterns in data is ignored. This is caused by data needs to fulfill the assumption of stationarity 

on ARIMA which causes loss of trends and patterns in data. LSTM can also look for maximum results (the 

lowest error value) while ARIMA can not find the maximum model but LSTM requires a long time for the 

process of finding a model compared to ARIMA. 

Table 7. Prediction Result for April 

DATE ACTUAL 
ARIMA 

PREDICTION 

LSTM 

PREDICTION 

APRIL 1st 2020 1.0964 1.0996 1.0964 

APRIL 2nd 2020 1.0858 1.0960 1.0858 

APRIL 3rd 2020 1.0809 1.0842 1.0809 

APRIL 6th 2020 1.0793 1.0788 1.0793 

APRIL 7th 2020 1.0891 1.0806 1.0891 

APRIL 8th 2020 1.0858 1.0931 1.0858 

APRIL 9th 2020 1.0929 1.0917 1.0929 

APRIL 10th 2020 1.0936 1.0943 1.0936 

APRIL 13th 2020 1.0915 1.0980 1.0915 

APRIL 14th 2020 1.0981 1.0915 1.0981 

 

Table 7 shows the results of forecasting in April 2020 for the period April 1st 2020 to April 14th 2020. 

LSTM can make predictions without having to fitting the model again where the process of fitting the model 

need time quite a long while in the ARIMA need to look for a model again. The time needed to find 

predictions using LSTM is 2 seconds while ARIMA takes 1 minute 4 seconds in forecasting this April where 

the data used totals 122 data. The specification of the computer being used have Intel Core i7-6500U 

CPU 2.50 GHz and the memory RAM of 8 GB. Forecasting time depends on the amount of data entered 

and the speed of the computer being used. The period of use of the selected LSTM model depends on 

the RMSE value generated from the prediction. The limits of this RMSE value are determined by each 

user (trader). 
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5. Conclusion 

The results obtained by the RMSE values of ARIMA and LSTM while making model in 

sequence are 0.0044 and 0.0042 while when predicting in April 2020 the RMSE ARIMA and 

LSTM values are respectively 0.0053 and 0.0051. The RMSE used in ARIMA is the lowest RMSE 

value between 2 windows. LSTM produces lower RMSE values than ARIMA. LSTM has better 

prediction result,it is because the LSTM has the ability to learn so that it can utilize when given a 

growing amount of data while the ARIMA cannot use it. ARIMA does not have learning ability 

even though given a large amount of data for example 6 years provides the same forecasting 

results as the previous day compared to using the amount of data that is not too long for example 

100 data. 
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