
Journal homepage http://revistas.unitru.edu.pe/index.php/SSMM

SELECCIONES MATEMÁTICAS
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Abstract
The generalized QR factorization, also known as GQR factorization, is a method that simultaneously trans-
forms two matrices A and B in a triangular form. In this paper, we show the application of GQR fac-
torization in solving linear equality-constrained least square problems; in addition, we explain how to
use GQR factorization for solving quaternion least-square problems through the matrix representation of
quaternions.
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Resumen
La factorización QR generalizada, también conocida como factorización GQR, permite descomponer dos
matrices A y B simultáneamente a una forma triangular. En este artı́culo, se muestra como aplicar la
factorización GQR para resolver problemas de mı́nimos cuadrados con restricciones de igualdad; además,
se emplea esta factorización para resolver problemas de mı́nimos cuadrados sobre cuaterniones.

Palabras clave. Factorización QR generalizada, problema de los mı́nimos cuadrados con restricciones de igualdad,
cuaterniones.

1. Introduction. The QR factorization is a decomposition of A into a product of an orthogonal matrix
Q and an upper triangular matrix R, i.e. A = QR. The generalized QR factorization, known as GQR
factorization, was introduced in [3] and has been widely studied as a method that simultaneously transform
two matrices Am×n and Bm×p in a triangular form.

QR factorization approaches has been successfully used to solve linear least-square problems (LS) and
linear equality-constrained least square problems (LSE), cf. [2]. The GQR factorization allows us to solve
LSE problems more efficiently, in terms of computation, providing information on the conditioning of these
generalized problems just as QR factorization [1]. Least square methods can be used to solve quaternion
linear equations AX ∼ B [5].

Recently, quaternion least-squares problems (QLS) and linear equality-constrained quaternion least-
square problem (QLSE) and its applications have been studied [9]. In this paper, we use GQR factorization
to solve LSE problems; in addition, we show that QLS and QLSE problems can also be solved by GQR
factorization through the matrix representation of quaternions.

2. The generalized QR factorization. The generalized QR factorization simultaneously transform
two matrices A and B to triangular form. Following [1], we present the generalized QR and RQ factoriza-
tions as follows.
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†Universidad ECCI, Bogotá, Colombia. (jtrianal@ecci.edu.co).

437

http://revistas.unitru.edu.pe/index.php/SSMM
https://orcid.org/0000-0002-8126-8521
https://orcid.org/0000-0003-2991-6082
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.17268/sel.mat.2021.02.20


438 Cabrera S, Triana J. - Selecciones Matemáticas. 2021; Vol. 8(2): 437-443

Proposition 2.1. Let A ∈ Rm×n and B ∈ Rm×p, then
1. GQR factorization: If m ≥ n, there are orthogonal matrices Q and V such that QTA = R and

QTBV = S, where R and S are upper trapezoidal.
2. GRQ factorization: If m < n, there are orthogonal matrices Qm×m and Un×n such that QTAU =

R and QTB = S.
Proof: Here we prove 1.; 2. can be similarly proved. If m ≥ n, by QR factorization, there exist Q

orthogonal and R upper trapezoidal matrices such that A = QR, therefore

R = QTA =

 R1

0m−n,n

 where R1 has n rows and columns.

By RQ factorization, there are S and W such that QTB = SW , where S is upper triangular and W is
orthogonal, so [QTB]WT = S. Let V = WT , then [QTB]V = S.

• If m ≤ p, [QTB]V = S = [S1 0m,p−m] with S1 ∈ Rm×m.

• If m > p, [QTB]V = S =

S1

S2

. Where S1 has m− p rows and S2 has p rows.

In the above proof, for the case m ≤ p, S can be expressed in the form S = [0m,p−m S2] with
S2 ∈ Rm×m, cf. [1]. The GQR and GRQ factorization can be defined with pivoting, in this paper we use
these decompositions without pivoting.

Example 2.1. Let A and B be matrices given by

A =


1 2 3

−3 2 1

2 0 −1

3 −1 2

 , B =


1 2 3 4 5

−3 2 −2 1 2

2 3 4 −2 −1

1 3 −2 2 1

 .

A GQR factorization for A and B, presented in [1], is given by the following matrices

Q =


−0.2085 −0.8792 0.1562 −0.3989

0.6255 −0.4147 0.1465 0.6444

−0.4170 −0.2322 −0.7665 0.4296

−0.6255 0.0332 0.6054 0.4910

 , R =


−4.7958 1.4596 −0.8341

0 −2.6210 −2.7537

0 0 2.5926

0 0 0



V =



0.3375 −0.0791 −0.2690 −0.6363 0.6345

−0.8926 −0.2044 0.1635 −0.2770 0.2407

−0.0534 −0.5118 −0.5793 −0.2833 −0.5651

−0.1584 −0.1280 −0.6087 0.6280 0.4401

−0.2478 0.8208 −0.4413 −0.2091 −0.1626



S =


0 −3.431 2.8692 −1.8585 0.1388

0 0 7.0240 2.1937 0.1571

0 0 0 −5.9566 1.0776

0 0 0 0 3.9630

 .

Another GQR factorization is given by Q and R as above, and V and S given by

V =



−0.8926 −0.2044 0.1635 −0.2771 0.2407

−0.0534 −0.5118 −0.5793 −0.2833 −0.5651

−0.1584 −0.1280 −0.6087 0.6280 0.4401

−0.2478 0.8208 −0.4413 −0.2091 −0.1626

0.3375 −0.0791 −0.2689 −0.6363 0.6345
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S =


3.4311 2.8692 1.8585 0.1388 0

0 7.0240 −2.1937 0.1571 0

0 0 5.9566 1.0776 0

0 0 0 3.9630 0

 .

3. Linear equality-constrained least-squares problems. Linear equality-constrained least-squares
problems, also known as LSE problems, consist in find a vector x ∈ Rn satisfying

min
x
‖Ax− b‖, subject to Bx = d, (3.1)

where A ∈ Rm×n, B ∈ Rp×n, b ∈ Rm and d ∈ Rp. It is assumed that m ≥ n, the most frequently case.
LSE problem is abbreviated in the following form

min
Bx=d

‖Ax− b‖. (3.2)

LSE problems can be solved by means of QR factorization cf. [10], here we use a more efficient method
based on the decompositions presented in Proposition 2.1.

By GRQ factorization there are Q and U orthogonal matrices such that AT = QRU and BT = QS,
with S ∈ Rp×n and R ∈ Rn×m upper triangular matrices, then

min
Bx=d

‖Ax− b‖ = min
Bx=d

‖[QRU ]Tx− b‖.

By taking y = QTx, the problem is rewritten as

min
[QS]T [Qy]=d

‖[UTRTQT ]x− b‖.

Since U is an unitary matrix we have

min
[STQT ][Qy]=d

‖U(UTRTQTx− b)‖ = min
ST y=d

‖RTQTx− Ub‖ = min
ST y=d

‖RT y − Ub‖.

Since m ≥ n, S =

S1

0

, and ST y = [ST
1 0]

y1
y2

, then ST
1 y1 = d. Assuming that C = Ub and

R =

R11 R12 0

0 R22 0

, we obtain

min
ST y=d

‖RT y − Ub‖ = min
ST y=d

∥∥∥∥∥∥∥∥∥


RT

11 0

RT
12 RT

22

0 0


y1
y2

−

c1

c2

c3


∥∥∥∥∥∥∥∥∥

In terms of y1 and y2 we have

min
y2

‖RT
12y1 +RT

22y2 − c2‖ = min
y2

‖RT
22y2 − (c2 −RT

12y1)‖.

Solving the problem ST
1 y1 = d we get y1. On the other hand, we obtain that y2 = [RT

22]
−1(c2−RT

12y1),
therefore we get y. Hence x = Qy = Q1y1 + Q2y2 is the solution. R can also be considered in the form

R =

0 R11 R12

0 0 R22

 but it does not affect the solution of the problem.

We generate a program for solving linear equality-constrained least-squares problems through GQR
factorization, with A, B, b and d as parameters. Here we present a comparison, in terms of the residuals,
among several methods for solving LSE problems; simulations were performed with n = 100 random
problems with m = 50 rows.

Thus, we verify that the GQR factorization is a stable method for solving LSE problems.
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Figure 3.1: Residuals values were obtained by solving random problems through R via direct elimination,
GQR factorization, Lagrange method, and nullspace method.

Example 3.1. Solve the LSE problem

min
x1+x2=1

∥∥∥∥∥∥∥∥∥


1 2

3 4

5 6


x1

x2

−

7

1

3


∥∥∥∥∥∥∥∥∥ .

Let A =


1 2

3 4

5 6

, b =


7

1

3

, B =
[
1 1

]
, d = [1], by GQR factorization we get

Q =

−0.7071 −0.7071

−0.7071 0.7071

 , R =

4 8.5732 0

0 −1.2247 0



U =


0.7071 0 −0.7071

−0.5773 −0.5773 −0.5773

0.04082 −0.8165 0.4082

 , S =

−1.4142
0

 .

Thus, the solution is x1 = 0.33333 and x2 = 0.66667.

Example 3.1 was presented in [12], and it was solved by several methods.

4. Quaternion least squares problems. The study of quaternion least-squares problems, also known
as QLS problems, and the different ways to solve them have gained continued interest [7]. Here we present
a method for solving quaternion least-squares problems through GQR factorization.

For the quaternion q = a+ bi+ cj + dk, there is a matrix representation [11], given by
a −b d −c

b a −c −d

−d c a −b

c d b a

 .

For instance, q = −1 + j is represented as the matrix


−1 0 0 −1

0 −1 −1 0

0 1 −1 0

1 0 0 −1

.
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Example 4.1. Solve the problem

min
x

∥∥∥∥∥∥
−1 + j −k

i 1 + j

x−

−1
i

∥∥∥∥∥∥ .
In [8] a technique of quaternion least squares problem was presented, and this problem was solved by this

technique. Here we will use the GQR factorization to solve the equivalent problem min
x
‖Ax−b‖. It is easy

to check that

A =



−1 0 0 −1 0 0 −1 0

0 −1 −1 0 0 0 0 1

0 1 −1 0 1 0 0 0

1 0 0 −1 0 −1 0 0

0 −1 0 0 1 0 0 −1

1 0 0 0 0 1 −1 0

0 0 0 −1 0 1 1 0

0 0 1 0 1 0 0 1



, b =



−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0



.

Since we do not have any constraints, we use B = A and d = b. Therefore we have the solution of the
least squares problem

X =



2
3 0 0 − 1

3

0 2
3 − 1

3 0

0 1
3

2
3 0

1
3 0 0 2

3

0 − 1
3 0 0

1
3 0 0 0

0 0 0 − 1
3

0 0 1
3 0



.

Thus, the solution of the QLS problem is

 2
3 + 1

3j

1
3 i

.

Following the Examples 3.1 and 4.1, we solve the following equality-constrained quaternion least-
square problem, known as QLSE problem [6], through GQR factorization.

Example 4.2. Solve the problem

min
∥∥∥[3j −3i

]
x− 2j

∥∥∥ subject to

−1 + j −k

i 1 + j

x =

−1
i



Let B and d be the matrices

−1 + j −k

i 1 + j

 and

−1
i

, respectively, thus we have
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B =



−1 −0 0 −1 0 0 −1 0

0 −1 −1 0 0 0 0 1

0 1 −1 0 1 0 0 0

1 0 0 −1 0 −1 0 0

0 −1 0 0 1 0 0 −1

1 0 0 0 0 1 −1 0

0 0 0 −1 0 1 1 0

0 0 1 0 1 0 0 1



, d =



−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0



.

On the other hand,
[
3j −3i

]
and 2j are represented by the following matrices

A =


0 0 0 −3 0 3 0 0

0 0 −3 0 −3 0 0 0

0 3 0 0 0 0 0 3

3 0 0 0 0 0 −3 0

 , b =


0 0 0 −2

0 0 −2 0

0 2 0 0

2 0 0 0

 .

By GQR factorization we obtain Q8×8, R8×4, S8×8 and V8×8, some blocks of these matrices can be

rewritten by quaternions. Thus, the solution of the QLSE problem is

 2
3 + 1

3j

1
3 i

.

As an interesting fact, AT and B can be written by quaternionic matrices in the form

AT =

 0.7071j 0.2357i+ 0.6667k

−0.7071i 0.6667− 0.2357j

−4.2426
0

 ,

B =

−0.5774 + 0.5774j 0.5774k

0.5774i −0.5774− 0.5774j

1.7321 0

0 −1.7321

 .

Conclusions. The GQR factorization is an efficient method for solving linear equality-constrained
least square problems, it can be extended to solve quaternion least square problems through matrix repre-
sentation of quaternions.

It is necessary to establish the theoretical conditions to guarantee that in a QLSE problem, when we
consider the problem through decompositions of the matrix representation of the quaternions, the solution
is a quaternionic matrix.

In order to obtain an efficient method for solving QLS and QLSE problems, based on matrix factoriza-
tion, structure-preserving quaternion QR algorithm could be considered [4].
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