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Abstract: Acute inflammation is a key component of the immune system’s response to pathogens,
toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing
pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory
response may lead to chronic inflammation, which is involved in the development of many diseases,
including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the
worldwide scientific interest to study the marine environment. Specifically, microalgae are considered
rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with
important beneficial effects for health due to their biological activities. Carotenoids are essential
nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these
compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such
as α- and β-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin,
fucoxanthin, lutein, α- and β-cryptoxanthin, and canthaxanthin. This review summarizes the present
up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids
both in vitro and in vivo, as well as the latest status of human studies for their potential use in
prevention and treatment of inflammatory diseases and cancer.
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1. Introduction

Microalgae are a vast group of prokaryotic and eukaryotic, mainly photoautotrophic,
microorganisms that can be found individually or forming colonies. Moreover, these
photosynthetic microorganisms make up the major group of living organisms in terms of
species diversity on Earth, having colonized every type of ecological niche in both marine
and terrestrial waters [1]. Currently, 50,000 species of microalgae have been described, but
the number of new species is increasing yearly, being estimated up to 800,000. In this regard,
although only a few of these aquatic microorganisms are able to grow in large-scale settings,
microalgae have become an economically promising feedstock for bulk chemicals [2,3].
Moreover, the emergence of biotechnology in the 1960s led to the development of new
laboratory and industrial methodologies to grow different species of microalgae. Since then,
the worldwide research trends in the microalgal field have increased. In the last 20 years, a
multitude of scientific publications have emerged around these aquatic microorganisms
since they are a tremendously important source of bioactive molecules, being more diverse
than those found in the terrestrial environment.

Firstly, microalga studies showed their potential to be considered by the biodiesel/bio-
ethanol industry due to their high lipid content [4,5], besides promoting an ecological and
socio-economic impact [6–8]. Although microalgae have been less studied than macroalgae,
their advantages are associated with simple requirements, rapid generation times, and
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a higher capacity to modulate their metabolism in response to changing environmental
conditions. Currently, microalgae remain attractive for the biodiesel industry but also for
other sectors such as food, pharmaceuticals, or cosmetics. In this regard, many important
drugs have traditionally been provided by terrestrial plants, fungi, and bacteria, but
microalgae have become a sustainable resource for these biocomponents. Indeed, there is a
current need to find new potential chemical structures for therapeutic use. Additionally,
microalgae have raised the worldwide scientific interest since their capacity to synthetize
new molecular structures according to seawater composition is widely known [9].

Many studies support microalgae as excellent sources of metabolites such as lipids,
carbohydrates, proteins, phenolic compounds, vitamins, and carotenoids, which play
physiological roles for themselves and their environment, with real applications in pharma-
ceutical and nutraceutical industries [10–12]. In this regard, only a few of these compounds,
such as n-3 polyunsaturated fatty acids (PUFAs), phycobilins (phycoerythrin and phyco-
cyanin), and carotenoids, including β-carotene, astaxanthin (ATX), zeaxanthin (ZX), and
lutein (LUT), have been produced at an industrial scale. However, their low production
yield in native microalgae and the difficulty in isolating by economically feasible means
may be considered a production problem [2]. Nowadays, biotechnology considers microal-
gae as producers for a wide range of novel high-value products that have good market
opportunities. However, the main challenges to obtain potential microalgal components
are the high cost of operation, infrastructure and maintenance, selection of strains, de-
watering, and commercial-scale harvesting. The manufacture and commercialization of
microalgal products depend on market and financial affairs, among others. Furthermore,
the study of their actual potential is limited by the lack of reliable statistical data of the
microalga market. For this reason, the current scientific efforts are focused on basic tech-
nologies controlling several abiotic conditions to produce microalgal biomass, including
different production methods such as open water, greenhouse ponds, and closed photo-
bioreactors. Additionally, chemicals or certain culture conditions such as ultrasonic use
by sonication [13–15] and genomic technologies [16] are currently being used in microalga
cultivation to obtain high-value-added products [17]. These conditions are aimed in many
cases at the food sector as nutritional supplements for vegetarian type diets but also as
nutraceuticals. Hence, long-term research is needed to develop systems to create sustain-
able microalga-based products, since sustainability is a key concern, especially in today’s
industrial environment. In this way, a multitude of recent international patent licenses [18]
are focused on the optimization of microalga growth conditions as well as the system-level
optimal yield to produce different bioproducts such as lipids for fuel, proteins for animal
feed, or recombinant proteins for purposes of basic research, as well as biotechnological or
dermatological/cosmeceutical use [19–23].

Carotenoids, which are one of the most abundant components in microalgae, have
shown significant therapeutic potential due to their biological activities. In this context, the
advances in biotechnology of microalgae have led to development of methods to increase
their production. For example, the outdoor cultivation of Muriellopsis sp. (Chlorophyta)
has been developed in order to produce high LUT and low metal content, to provide a
product with antioxidant properties that may be used for animal feed and human consump-
tion as a dietetic ingredient [24]. More recently, a method was carried out to efficiently
extract eicosapaentanoic acid (EPA) and fucoxanthin (FX) from the microalga Phaeodacty-
lum tricornutum (Bacillariophyta) [25]. Furthermore, in the last few years, a multitude of
studies have shown the industry and academic interest in the potential of carotenoids
from microalgae in different industrial sectors. In this regard, a variety of patents and
scientific publications in which microalgae, or part of them, are used as functional food or
nutraceuticals providing therapeutical potential have been developed. Recently, a patent
has been licensed for a microalga-derived carotenoid mixture, which contains diatoxan-
thin from the microalga Euglena (Euglenozoa) as the main component, besides ZX and
alloxanthin. This diatoxanthin-rich product prevents diabetes by suppressing the incre-
ment in blood glucose through ingestion along with a high-glycemic index food [26]. In
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addition, Chlorella sorokiniana (Chlorophyta), a microalga rich in glutathione, α-tocopherol,
and carotenoids, was reported to have beneficial effects in counteracting oxidative stress
preserving mitochondrial liver function in an experimental model of hyperthyroidism
in rats [27]. Additionally, anti-inflammatory, antioxidant, and anticancer properties of
microalgal carotenoids have been widely demonstrated in different experimental models,
but to date there are only a few studies in humans.

The present review summarizes the major findings on microalgal carotenoids with
a potential role in inflammation, oxidative stress, and cancer since carotenoids are one
of the most abundant compounds in microalgae and they can represent an important
commercial outlet.

2. Microalgal Carotenoids

Carotenoids are tetraterpenes obtained from dimerization of geranylgeranyl pyrophos-
phate in photosynthetic organisms such as plants, including macro- and microalgae, bacte-
ria, some fungi, or some invertebrates [28]. They make up the most abundant lipid-soluble
pigments in nature, being responsible for the white, yellow, orange, or red range of colors.
There are two types of carotenoids: carotenes, which are hydrocarbon carotenoids such
as α- and β-carotene, and xanthophylls, which are oxygenate derivatives, including ZX,
ATX, FX, LUT, α- and β-cryptoxanthin (BCX), and canthaxanthin (CX). Carotenoids are
essential nutrients for mammals, since they are unable to synthesize them. For this reason,
a dietary intake of these compounds is required. The major dietary sources of carotenoids
are fruits and vegetables, legumes, cereals, egg yolk, and mammals’ milk, as well as micro-
and macroalgae [29].

Currently, lycopene, β-carotene, CX, ZX, ATX, and LUT are the main carotenoids
produced on a large scale for food products, animal feeds, cosmetics, and pharmaceutical
sectors. Their increasing commercial applications have led to a growing market demand
of these bioactives. Thus, microalgae have emerged as a rich biosustainable source of
carotenoids, with Arthrospira (formerly Spirulina) (Cyanobacteria), Chlorella, Dunaliella, and
Haematococcus (Chlorophyta) being the most common producers of β-carotene, LUT, ATX,
FX, ZX, and violaxanthin, among others [30].

2.1. β-Carotene

β,β-carotene, or more commonly named β-carotene (Figure 1A), is the most well-
known carotenoid found in many fruits and vegetables [29]. This tetraterpenoid is a
vitamin A precursor when consumed and digested. Currently, β-carotene is used as a
natural colorant and antioxidant in the food industry [31]. The main microalgal source of β-
carotene for the market is Dunaliella salina (Chlorophyta), which is able to accumulate up to
8% of dry weight [32]. In addition, the microalgae Arthrospira platensis (formerly Spirulina
platensis) (Cyanobacteria) [33], Chlamydomonas reinhardtii (Chlorophyta) [34], Isochrysis
galbana (Haptophyta), Phaeodactylum tricornutum (Bacillariophyta), and Tetraselmis suecica
(Chlorophyta) have also shown high levels of this carotenoid in large-scale systems [35].

2.2. Lutein

3R,3′R,6′R-βε-carotene-3,3′-diol or LUT (Figure 1B) is a natural carotenoid synthetized
in plants as well as algae. It is an orange-yellow xanthophyll widely used as a feed additive
and a food coloration agent in industry [36]. Despite being present in a multitude of
vegetables and fruits, its low content has led to the search for new sources of this carotenoid
such as in microalgae [37]. In this regard, LUT is accumulated on a large scale in several
species of Chlorella such as C. sorokiniana, Chromochloris zoofingiensis (formerly Chlorella
zoofingiensis), and Auxenochlorella prothecoides (formerly Chlorella protothecoides) [38], as
well as in Dunaliella salina [39], the strain Chlamydomonas sp. JSC4 [40], and Tetraselmis
suecica [41].
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Figure 1. Chemical structures of the main functional carotenoids found in microalgae. Carotenes: β-Carotene (A) and
xanthophylls: Lutein (B), Zeaxanthin (C), Astaxanthin (D), Fucoxanthin (E), Violaxanthin (F), β-Cryptoxanthin (G) and
Canthaxanthin (H).

2.3. Zeaxanthin

β,β-carotene-3,3′-diol or ZX (Figure 1C) is a yellow-orange xanthophyll found mainly
in dark green leafy vegetables and egg yolks. It has been reported that, like LUT, ZX is
accumulated in the central retina and has photoprotective effects against damage by intense
light. Regarding microalgae, this xanthophyll has been obtained from the cyanobacteria
Synechocystis sp. and Microcystis aeruginosa [42], as well as the microalgae Nannochlorop-
sis oculata (Ochrophyta, Eustigmatophyceae) [43], Chloroidium saccharophilum (formerly
Chlorella saccharophila) [44], and Dunaliella sp. [45], and red algae such as Porphyridium
purpureum (formerly Porphyridium cruentum) (Rhodophyta) [35], Phaeodactylum tricornutum
(Bacillariophyta) [46], or Heterosigma akashiwo (Ochrophyta, Raphidophyceae) [47].

2.4. Astaxanthin

3,3′-dihydroxy-β,β′-carotene-4,4′-dione or ATX (Figure 1D) is a xantophyll mainly
found in microalgae, marine invertebrates, some fishes like salmon and trout, and even in
the feathers of some birds, contributing to their red-orange pigmentation [48]. However,
the main source of AXT is Haematococcus lacustris (formerly Haematococcus pluvialis) (Chloro-
phyta), whose content may represent up to 3% of dry weight [49], but this xantophyll
can also be found in other microalgae such a Chromochloris zofingiensis [50], Chlorococ-
cum sp. [51], Dunaliella salina, Tetraselmis suecica [41], Scenedesmus quadricauda PUMCC
4.1.40. (Chlorophyta) [52], and Asterarcys quadricellulare PUMCC 5.1.1 (Chlorophyta) [53].

2.5. Fucoxanthin

(3S,3′S,5R,5′R,6S,6′R,8′R)-3,5′-dihydroxy-8-oxo-6′,7′-didehydro-5,5′,6,6′,7,8-hexahydro-
5,6-epoxy-β,β-caroten-3′-yl acetate, also named FX (Figure 1E), is an orange-colored xan-
thophyll mainly found in marine environments. This carotenoid is present in a variety of
macroalgae, but also in a multitude of species of microalgae such as Isochrysis sp. (Hap-
tophyta), Odontella aurita [54,55], Nitzschia laevis (formerly Nitzschia amabilis) [56], and
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Chaetoceros neogracili (formerly Chaetoceros gracilis) (Bacillariophyta), the coccolithophore
Pleurochrysis carterae (Haptophyta, Coccolithophyceae) [57], Phaeodactylum tricornutum
(Bacillariophyta) [46], and the microalga strain Pavlova sp. OPMS 30543 (Haprophyta) [58].

2.6. Violaxanthin

5,6,5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene-3,3′-diol, also called violaxanthin
(Figure 1F), is a natural orange xanthophyll, which may enzymatically be transformed into
ZX when the light energy absorbed by plants exceeds the photosynthesis capacity [59]. It is
a pigment found in different plants as well as macro- and microalgae such as Nannochloropsis
oceanica (Ochrophyta, Eustigmatophyceae) [60], Jaagichlorella luteoviridis (formerly Chlorella
luteoviridis) [61], the strain Tetraselmis striata CTP4 (Chlorophyta) [62], and Eustigmatophyte
strains such as Chlorobotrys gloeothece, Chlorobotrys regularis, and Munda aquilonaris (formerly
Characiopsis aquilonaris) [63].

2.7. β-Cryptoxanthin

(1R)-3,5,5-trimethyl-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,
6,6-trimethylcyclohexen-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]cyclohex-3-en-1-ol, also
called BCX (Figure 1G), is a natural orange xanthophyll mainly found in fruits of plants,
including in orange rind, papaya, or apples, besides egg yolk and butter. This carotenoid
is also found, but in a lower concentration than other carotenoids, in different species
of microalgae such as Phaeodactylum tricornutum (Bacillariophyta) [64], Auxenochlorella
pyrenoidosa (formerly Chlorella pyrenoidosa) (Chlorophyta) [65], and Porphyridium purpureum
(Rhodophyta) [66,67].

2.8. Canthaxanthin

β,β-carotene-4,4’-dione or CX (Figure 1H) is a red-orange xanthophyl widely used as
a cosmetic and food colorant as well as in poultry as a feed additive. This carotenoid was
firstly isolated from the edible mushroom Cantharellus cinnabarinus. Moreover, this pigment
is present in bacteria, algae, crustacea, some fungi, and various species of fish including
carp and golden mullet [68]. Regarding microalgae, this xanthophyll has been found in
Haematococcus lacustris [69], Chromochloris zoofingiensis [70], Chlorococcum sp. [51], Dunaliella
salina [71], Chlorella vulgaris (Chlorophyta) [72], Scenedesmus quadricauda PUMCC 4.1.40. [52],
Asterarcys quadricellulare PUMCC 5.1.1 [53], Picochlorum sp. SBL2. [73], and Dactylococcus
dissociatus MT1 (Chlorophyta) [74].

3. Inflammation and Cancer

Acute inflammation is a key component of the response of the immune system to
injury and infection that involves the stimulation of defense systems against foreign com-
ponents and organisms, and the healing and/or repair of damaged tissue. This process
is recognized by some cardinal signs, including heat, redness, pain, or swelling. It is
characterized by the activation of immune cells, synthesis of proinflammatory mediators,
is usually localized and self-limited, and normally returns to homeostasis [75]. Acute
inflammation requires suppression of proinflammatory mediators and induction of anti-
inflammatory/proresolution mediators as well as the disappearance of leukocytes from
the damage area, and the restoration of tissue functionality [76]. However, if the acute
inflammatory process is excessive and is not resolved, it may lead to tissue damage, re-
sulting in chronic inflammation, and ultimately fibrosis, with loss of tissue functionality.
Consequently, the failure of the resolution of inflammation is strongly associated with the
development of many chronic disease states of complex evolution: arthritis, neurodegener-
ative diseases, metabolic syndrome and associated pathologies, allergy, and periodontal
diseases, as well as tumoral processes, among others [77–79]. It has been reported that
an adequate diet, a healthy lifestyle, or the establishment of certain preventive strategies,
including drugs, nutraceuticals, or components of functional foods, may contribute to the
control of inflammatory processes. This section summarizes the main mediators and cells
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involved in acute and chronic inflammatory responses, as well as describes the link between
inflammation and cancer and the main molecular pathways implicated in these processes.

The defense systems of the body are mediated by sequential and coordinated responses
called innate and adaptive immunity. The innate immune system is the first line of defense
against microbes; it is mediated by cellular elements, including macrophages, neutrophils,
dendritic cells, natural cytolytic lymphocytes, or mast cells, as well as by biochemical mech-
anisms involving agglutinins, the complement system, and many types of lectins, which
circulate and provide rapid responses [80]. Macrophages play a pivotal role in all phases of
inflammation: in the initiation, help to neutralize and remove pathogens and damaged cells
through phagocytosis, and later lead to the termination of inflammation by tissue repair
and remodeling responses [81]. Based on responses to different in vitro stimuli appears
the macrophage polarization concept of M1/M2 differentiation [82]. M1 macrophages are
induced by proinflammatory factors, such as lipopolysaccharide (LPS), cytokines through
granulocyte–macrophage colony-stimulating factor, and tumor necrosis factor-α (TNF-α),
among others. Later, interleukins (IL), such as IL-1β and IL-6, reactive oxygen species
(ROS), and nitric oxide (NO) are released, acting as inducers of a polarized Th1 response.
M2 macrophages present a characteristic phagocytic ability of scavenging molecules, as
well as produce suppressive mediators, including mannose or galactose receptors and
polyamines [83]; they are activated by exposure to Th2-related cytokines (IL-13, IL-4),
or anti-inflammatory mediators, including IL-10 and transforming growth factor beta
(TGF-β). Accumulating data indicate that M2 macrophages play an important role in
microorganism clearance, tissue repair, and inflammation resolution. Nevertheless, some
evidence has also shown that M2 macrophages may enhance tumor growth depending on
the microenvironmental conditions of this cell population [84].

Adaptative immunity is a response that increases in magnitude and capabilities with
each successive exposure to an antigenic stimulus; it is mediated by lymphocytes T and B
(cellular immunity and humoral immunity, respectively) and their products. Several types
of T cells are detected in the blood, at different stages: effector T lymphocytes can differ-
entiate into T helper (Th) and cytotoxic effector lymphocytes (Tc), which act against cells
infected by cytoplasmic intracellular pathogens. Th lymphocytes are differentiated into Th1,
which are involved in the elimination of intracellular pathogens (viruses) or phagocytable
extracellular organisms (bacteria and fungi), and into Th2, which characteristically act
against helminths. In addition, Th cells can differentiate into Th17, T follicular helper cells
(Tfh), and T regulatory (Treg) lymphocytes, which exert their activity against commensal
bacteria. Regarding B lymphocytes, unmatured cells migrate from bone marrow to spleen
and are transformed into B T1 and B T2 lymphocytes; B T2 could be transformed into
follicular B cells depending on the signals received through their receptors. In any case, B
lymphocytes are T cell-dependent antigen-presenting cells [85].

From a different point of view but complementary to the previous classification, the
activation of immune cells regulates two basic effector systems aimed to eliminate potential
offending agents: phagocytosis (cellular response) and cytotoxicity [86,87]. Phagocytosis
is an effective mechanism of elimination of infectious agents. Although most immune
cells are capable of phagocytosis, the most characteristic phagocytes are macrophages
and polymorphonuclear neutrophils, which provide a powerful oxidative system and a
wide variety of proteolytic enzymes to degrade the phagocytosed material. On the other
hand, cytotoxicity is cell-mediated toxicity, and an alternative defense mechanism when
phagocytosis cannot resolve the problem: tumor cells, response to viruses, infections by
intracellular or large pathogens. These functions are performed by different cell types:
(1) eosinophilic and basophilic polymorphonuclear cells that actively participate in the
defense against helminths and protozoa by using a receptor for immunoglobulin IgE,
which recognizes the pathogen. These cells produce substances with high cytotoxic activity
(neurotoxin, cationic protein, or histamine) capable of blocking or killing microorganisms
much larger than them. Mast cells also perform this function, as well as participate in the
activation of the inflammatory reaction and in allergic processes [88]. (2) Natural cyto-
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toxic cells (NK) that are especially active against tumor cells and cells infected by viruses.
These cells are of lymphoid lineage, but do not possess a variable antigen receptor like
lymphocytes. They recognize their targets through non-polymorphic receptors, or by using
receptors for immunoglobulin–Fc fragment, a process known as antibody-dependent cell
cytotoxicity. NK cells kill their targets by activating apoptosis programs [89]. (3) -CD8+, or
cytotoxic lymphocytes (T-CTL): when a T-CTL lymphocyte recognizes an antigen–major
histocompatibility complex (Ag-MHC), it kills the cell that presents it in a similar way
to the NK cell, secreting cytotoxic factors (perforins and granzymes), or interacting with
membrane proteins of the target cell. Regarding CD8+ cells, they attack virus-infected cells,
where they activate pathways of apoptosis (TNFR1 or Fas, among others). (4) T-CD4 +
or Th lymphocytes: although their cytotoxic capacity is much lower than that of T-CTL,
and their main function is the activation of other cell types of the immunity response, Th
lymphocytes can kill other cells by secreting granzymes or by expressing proapoptotic lig-
ands, including Fas-L or TNF-related apoptosis-inducing ligand, which activate apoptosis
programs. (5) Finally, the complement system, which is particularly capable of opsonizing
particles to be removed by phagocytes but can also damage membranes and cause cell
necrosis [86].

As mentioned above, after the active phase of inflammation, coordinated resolution
responses are initiated to prevent chronic inflammation establishment and restore home-
ostasis [76]. During the initial phase of the acute inflammatory response, the well-known
proinflammatory mediators comprising prostaglandins (PGs) and leukotrienes are synthe-
sized from arachidonic acid (ARA) by cyclooxygenases (COXs) and lipoxygenases. Later,
in the resolution phase of inflammation, another pathway involving ARA metaboliza-
tion, via cytochrome P450, is initiated, leading to the production of epoxyeicosatrienoic
acids (EETs). These partially oxidized lipidic compounds, oxylipins, may participate
in the activation of anti-inflammatory processes and the clearance of cellular debris as
well as inhibit numerous proinflammatory cytokines [90]. Additionally, EET, and other
epoxy fatty acids, stimulate the production of specialized proresolving mediators (SPMs),
such as lipoxins, by shifting ARA metabolism, to support inflammation resolution [91].
In addition to omega-6 arachidonic acid-derived lipoxins, n-3 PUFA-derived SPMs are
synthesized from EPA and docosahexaenoic acid and encompass resolvins, protectins,
and maresins [76,92]. These lipid autacoids are involved in down-regulation of proin-
flammatory cytokines/chemokines, inhibition of neutrophil infiltration, and induction of
macrophage phagocytosis [93]. Dietary sources of PUFA include fish and algae, and more
recently, microalgae [94].

It has been reported that chronic non-resolving inflammation increases the risk of
developing cancer. Epidemiological data have evidenced that more than 20% of detected tu-
mors have in their origin, or in their evolution, an important inflammatory component [95].
Inflammation-associated cancer is a long-term process that requires the transformation
of normal cells to tumor cells through premalignant lesions. In the inflammation–cancer
connection, extrinsic and intrinsic pathways are involved; the extrinsic pathway comprises
microbial infections, such as Helicobacter pylori and its relationship with gastric cancer,
tobacco and lung cancer development, or ultraviolet exposure and its association with skin
tumors. Intrinsic factors include mutations in oncogenes and suppressor/repair genes and
epigenetic defects, as well as modifications in the immune system [28,96].

Nevertheless, it has also been described that in a previously detected tumor, not
linked to a previous inflammatory process, inflammation is present in the surrounding area
of the tumor, promoting cancer progression to achieve the malignant phenotype, tissue
remodeling, metastasis, and angiogenesis, or the suppression of immune response [97].
Regarding microenvironmental components, it has been reported that macrophages are
the most abundant cells in tumor environments and their function in cancer is contradic-
tory. In some types of cancer, these cells have a crucial role in cancer progression and
evasion of immune response, which has been correlated to poor prognosis. However, in
some gastrointestinal cancers, a large number of macrophages has been related to good
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prognosis [98]. These findings may be explained by the presence of different macrophage
populations in tumor tissues and suggest that macrophage assessment could be used as an
innovative prognostic marker.

Given the tumor-promoting effects of macrophages, the development of compounds
to target these cells may be a promising strategy for cancer treatment. In this line, dif-
ferent approaches are being considered to inhibit their recruitment, such as inhibition
of chemoattractants (C-C chemokine receptor type 2/CCL2 signaling) [99], reduction in
macrophages number with bisphosphonates, and inhibition of differentiation and survival
(colony stimulating factor 1 (CSF-1)/CSF-1R axis) [100]. However, these types of strategies
that focus on general selection have shown limited clinical success [101]. Interestingly, new
approaches are being directed to reprogramming macrophages towards an anticancer phe-
notype. In this line, it has been reported that CD40 agonist antibodies activate antitumor
macrophages [102] and other antibodies inhibit the CD47 surface molecule in tumor cells,
leading to macrophage-mediated tumor cell phagocytosis [103]. Ongoing studies will let
to know the diversity of macrophages in cancer tissues and their clinical interest for cancer
prognostic and treatment.

From a molecular and intracellular point of view, during the inflammatory process, a
coordinated activation of several signaling pathways is triggered, including phosphatidyli-
nositol 3-kinase/protein kinase B (PI3K/Akt), mitogen-activated protein kinase (MAPK),
Janus kinase/signal transduction and activator of transcription (JAK/STAT), or the key
transcriptional element nuclear factor-kappa B (NF-κB) that interacts with different nuclear
or cytoplasmic elements, including PPAR-γ, which is capable of inhibiting NF-κB activation
and the consequent production of numerous cytokines [104–106]. The activation through
the innate immune system occurs by pattern recognition receptors (PRRs) and NOD-like
receptors (NLRs). Some of these receptors are associated with a multiprotein complex,
called the inflammasome, with NOD-LRR and pyrin domain-containing 3 (NLRP3) being
the best characterized and involved in the activation of caspase-1 and proteolytic matu-
ration of IL-1β and IL-18 [107]. It has been reported that ROS, produced primarily at the
mitochondrial level, are involved in NLRP3 activation [108,109]. Furthermore, exposure
to ROS can also activate nuclear factor erythroid 2-related factor 2 (Nrf2), which migrates
into the nucleus and induces the expression of genes with antioxidant response element-
like sequences in their promoter, such as heme oxygenase-1 (HO-1), peroxiredoxins, and
glutamate-cysteine ligase [110,111]. Nrf2 protects normal cells against ROS-induced DNA
damage as well as malignant cells against chemotherapy [112]. Nrf2 also stimulates sev-
eral oncogenes unconnected to antioxidant activity, including matrix metalloproteinase-9
(MMP-9), TNF-α, and vascular endothelial growth factor A (VEGF-A) [113]. Addition-
ally, the aryl hydrocarbon receptor (AHR) is a ubiquitously expressed ligand-activated
transcription factor with remarkable physiological roles; it is a key component that can
integrate infective or environmental signals into innate and adaptive responses. AHR
activity seems to regulate barrier organs, such as the skin, lung, or gut. The liver is exposed
to gut-derived alimentary or microbial AHR ligands and, additionally, generates AHR
ligands, including metabolic enzymes, such as cytochrome P450, which produces toxic
metabolites and increases ROS production [114]. In contrast, AHR ligands from intestinal
microbiota are involved in the maintenance of epithelial integrity as well as the generation
of the anti-inflammatory IL-22 [115].

On the other hand, necroptosis has been described as programmed necrotic cell death
induced by cytokines, Toll-like receptors (TLR), or ROS. After a necroptotic stimulus, the
receptor-interacting protein kinase 1 (RIP1)/RIP3 complex phosphorylates and activates
the mixed lineage kinase domain-like protein (MLKL), which oligomerizes and translocates
to the plasma membrane, forming pores and leading to cell lysis [116]. Additionally, it
is interesting to highlight the sirtuin (SIRT) family in the inflammation context. Many
of them are histone deacetylases involved in cellular pathways related to the structure
and function of tissues, and with capacity to control processes, including inflammation
or cancer. Between them, the SIRT1 isoform has a special role in ROS-induced cell death,
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and SIRT6 has an interesting function in cancer and autophagy. Moreover, SIRT3 shows
a potential therapeutic role in different pathologies, including cardiovascular diseases,
where a SIRT3 deficiency has been associated with necroptosis, and NLRP3 activation in a
diabetic cardiomyopathy [117].

Regarding the role of ROS in the inflammatory response, it has been reported that min-
imal ROS concentrations may be essential in many intracellular signal processes connected
with cell proliferation, apoptosis, or defense against microorganisms. However, high doses
or inadequate removal of ROS generate oxidative stress, which cause macromolecular
damage and metabolic dysfunctions [118]. Lipid peroxidation is a serious consequence
of oxidative stress since the derived products, epoxides, can interact with nucleophilic
structures of the cell or with nucleic acids and cause structural damage and mutations.
Consequently, an adequate equilibrium between antioxidants and oxidants to maintain
cellular homeostasis is necessary [119]. In aerobic organisms, there are a variety of an-
tioxidant, enzymatic, and non-enzymatic systems with protective properties; enzymes
include glutathione peroxidase, superoxide dismutase (SOD), and catalase, which are
present in various cell sites, such as the cytosol, endoplasmic reticulum, peroxisomes, and
mitochondria. This latter organelle is able to generate almost 90% of ROS, mainly through
coenzyme Q [120]. In addition, there are substances capable of neutralizing ROS, such
as alpha-tocopherol (vitamin E), ascorbic acid (vitamin C), vitamin A, glutathione (GSH),
flavonoids, phenolic acids, and carotenes.

As regards cancer, it is known that malignant cells can maintain elevated intracellular
ROS levels due to different causes, including mitochondrial damage, rapid metabolism,
lipid peroxidation, or metal ion formation, such as copper and iron, as well as reduction
in endogenous antioxidants [121]. In cancer cells, the role of ROS is controversial since
they have been shown to have both pro- and antitumorigenic functions, depending on the
concentrations. In this line, moderate ROS levels can induce cell survival, angiogenesis,
and metastasis through activation of the MAPK pathway, which in turn stimulates NF-κB
and the subsequent up-regulation of MMPs and VEGF [118]. Nevertheless, regarding its
antitumorigenic role, high intracellular ROS levels can induce apoptosis of cancer cells by
activation of the proapoptotic proteins Bax, p21, and p27, among others, and a decrease
in the antiapoptotic Bcl-2 and Bcl-xL [121]. Therefore, these proapoptotic properties of
ROS can serve as a crucial therapeutic strategy to destroy tumor cells. In this line, it is
interesting to highlight the role of carotenoids in cancer since these compounds can serve
as pro-oxidants in cancerous cells, leading to ROS-induced apoptosis. Furthermore, when
they are administered with ROS-stimulating cytotoxic drugs, carotenoids can decrease the
dangerous effects of these drugs on normal cells by their antioxidant properties, as well as
increase cytotoxicity of drugs towards cancer cells by a pro-oxidant mechanism. Therefore,
this synergistic effect of carotenoids with anticancer drugs may be an innovative strategy
for cancer treatment [121,122]. Figure 2 shows a diagram of the main targets and signaling
pathways in which microalgal carotenoids have shown a direct or indirect ability to modify
different signaling pathways.
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Figure 2. Carotenoids’ interaction on major signaling pathways implicated in inflammation or cancer. The figure shows
the bioactivity of the carotenoids for different type of cells. Red arrows show the effect of the presence of ROS on several
activities in the cell; dashed orange arrow refers to the detoxification pathway that is triggered when ROS are produced;
pink arrows show the interconnections of different mediators; orange arrows refer to the bioactivities produced by the
different microalgal carotenoids.

4. Anti-Inflammatory Activity of Carotenoids

Sections 4 and 5 summarize the recent up-to-date studies (since 2010 up to June 2021)
reporting the anti-inflammatory and anticancer activities of microalgal carotenoids both
in vitro and in vivo, as well as the latest status of human studies for their potential use in
the prevention and treatment of different inflammatory diseases and cancer. In addition,
the molecular mechanisms underlying these effects are described. The most relevant
anti-inflammatory and anticancer activities of carotenoids, as well as the main microalgal
sources, are summarized in Table 1.

4.1. β-Carotene
4.1.1. In Vitro Studies

Different preclinical in vitro studies have evidenced that β-carotene can prevent and
reduce diabetes, which is a chronic low-grade inflammatory disease associated with com-
mon complications. In this respect, this compound was evaluated in human endothelial
cells isolated from umbilical cord veins (HUVECs) of women suffering from gestational
diabetes. The results evidenced that β-carotene prevented vascular inflammation and
reduced the nitro-oxidative state induced by TNF-α in HUVECs. These effects were re-
lated to an attenuation of vascular cell adhesion molecule 1 and intercellular adhesion
molecule 1 (ICAM-1) expression, reduction in NF-κB activation, and suppression of perox-
ynitrite levels. These findings suggest that a carotenoid-rich diet could play an important
role in the prevention of cardiovascular complications of diabetes [123]. Similar findings
were obtained in TNF-α-stimulated HUVECs of healthy women after treatment with
β-carotene [124]. It has been reported that oxidative stress produced in adipose tissue
results in dysregulated production of proinflammatory adipokines by adipocytes, which
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is related to the pathogenesis of diabetes and obesity. β-Carotene attenuated oxidative
stress-induced inflammation via a decrease in the adipokines monocyte chemoattractant
protein-1 (MCP-1) and RANTES and an increase in adiponectin in 3T3-L1 adipocytes. The
mechanisms underlying these effects were linked to the inhibition of the activation of
NF-κB, activator protein-1 (AP-1), and signal transducer and activator of transcription
3 (STAT3) transcription factors [125]. In the same line, the cardioprotective role of a low
dose of β-carotene in the prevention of ROS-induced atherosclerosis has been reported in
cardiomyoblasts through up-regulation of Nrf2, activation of autophagy, and inhibition of
NF-κB and apoptosis [126].

In addition, it has been demonstrated that β-carotene suppressed NLRP3 inflamma-
some activation in mouse bone marrow macrophages [127] as well as inhibited JAK2/STAT3
and c-Jun N-terminal kinase (JNK)/p38 MAPK signaling pathways in LPS-stimulated
macrophages [128]. Similarly, this compound suppressed the pseudorabies virus-induced
inflammatory response, which mimics human herpes simplex virus inflammation, in RAW
264.7 macrophages, via reductions in NF-κB and MAPK activation [129].

4.1.2. In Vivo Studies

A number of in vivo models have evidenced the anti-inflammatory effects of β-
carotene. Regarding gastrointestinal disorders, oral treatment with this carotenoid at the
doses of 5, 10, and 20 mg/kg for 28 days suppressed dextran sodium sulfate (DSS)-induced
experimental colitis in mice. Its anti-inflammatory actions were related to a decrease in the
transcription factors NF-κB and STAT3 and the subsequent release of IL-17, IL-6, TNF-α,
and COX-2. Moreover, β-carotene exerted an antioxidant activity through an increase
in Nrf2 and NADPH:quinone oxidoreductase-1 in the colon tissue [130]. Likewise, the
attenuations of NF-κB and STAT3 pathways as well as autophagy inhibition were reported
after oral administration of this carotenoid (50mg/kg) in a rat model of LPS-induced
intestinal inflammation [131]. In addition, it has been reported that intake of β-carotene
(40 and 80 mg/kg) for two weeks inhibited NF-κB pathway activation in a model of
weaning-induced intestinal inflammation. The authors proposed a new anti-inflammatory
mechanism for this carotenoid involving the modulation of microbiota imbalance as a
consequence of weaning in piglets [132]. Regarding liver diseases, β-carotene exhibited a
hepatoprotective effect in chemically induced hepatic fibrosis by down-regulating NF-κB
and its target gene inducible nitric oxide synthase (iNOS) [133]. In the same line, this
carotenoid, administered at a dose of 70 mg/kg every other day or combined with rosuvas-
tatin, attenuated hepatic steatosis and the inflammatory response as well as enhanced the
lipid profile in a model of non-alcoholic fatty liver induced by a high-fat diet in rats [134].

In relation to cardiovascular disorders, the role of a powder of the microalga Dunaliella
bardawil, containing 6% β-carotene isomers, was examined in a model of atherosclerosis
in apolipoprotein E (apo E)-deficient mice, and fed with a vitamin A-deficient diet. These
findings evidenced the formation of atheromas due to lack of vitamin A; nevertheless,
β-carotene supplementation decreased levels of plasma cholesterol and prevented atheroge-
nesis [135]. Apo E-/-mice were also used for investigating the actions of dietary β-carotene
(800 mg/kg of feed, for 150 days) on angiotensin II-induced chronic renal damage. The
results reported a protective effect of this carotenoid by down-regulating the expression
of proinflammatory genes related to kidney diseases, including renin 1 and peroxisome
proliferator-activated receptor gamma (PPAR-γ) [136].

The beneficial role of β-carotene against skin inflammation has been demonstrated
in different animal models. Oral administration of this carotenoid at 0.6 mg/day for
4 weeks attenuated skin inflammatory response in a model of low zinc/magnesium diet-
induced atopic dermatitis (AD) in hairless mice. These effects were associated with a
down-regulation of the cytokines IL-6, IL-1β, IL-4, and IL-5, a suppression of MMP-9 activ-
ity, and an up-regulation of filaggrin levels, a protein involved in skin barrier function [137].
Likewise, the anti-inflammatory activity of β-carotene administered orally (20 mg/kg) for
8 weeks was also reported in a mouse model of oxazolone-induced AD [138]. Furthermore,
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β-carotene and LUT were evaluated in a mouse model of acute neurogenic inflammation in
the ear induced by capsaicin or mustard oil. These carotenoids administered topically at the
dose of 100 mg/kg attenuated edema formation; nevertheless, a reduction in myeloperoxi-
dase (MPO) activity and neutrophilic infiltration in the mouse ear was only demonstrated
after LUT treatment [139].

In relation to central nervous system disorders, the neuroprotective role of this
carotenoid was evaluated for the first time in a rat model of acute spinal cord injury.
β-Carotene administered intraperitoneally at different doses (10, 20, 40, and 80 mg/kg)
suppressed NF-κB pathway activation and exerted a marked antioxidative effect by de-
creasing ROS, NO, and malondialdehyde (MDA) levels and up-regulating SOD, Nrf2,
and HO-1 [140]. In addition, β-carotene has been demonstrated to have protective effects
in other inflammatory diseases such gouty arthritis or asthma. In this line, β-carotene
administered orally (30 mg/kg) inhibited NLRP3 inflammasome activation in a model of
gouty arthritis in mice, as well as suppressed levels of IL-1β in synovial fluid cells isolated
from gout patients [127]. Oral treatment with this carotenoid at 30 mg/kg demonstrated
a therapeutic effect in a rat model of ovalbumin-induced asthma via reduction in the
proinflammatory cytokines IL-β, IL-6, and TNF-α and an increase in the anti-inflammatory
cytokines IL-4 and IL-13 [141].

4.1.3. Human Studies

Regarding clinical studies, a randomized, double-blind, and placebo-controlled clinical
trial evaluated the role of Lactobacillus brevis KB290 and β-carotene in diarrhea-predominant
irritable bowel syndrome-like symptoms in healthy people. The intake of this combination
for 12 weeks improved the abdominal pain, reduced stool frequency, and decreased colon
inflammation through up-regulation of the cytokine IL-10 [142]. Likewise, a double-blind
controlled crossover clinical trial in type 2 diabetes mellitus (T2DM) patients demonstrated
that supplementation with a β-carotene-fortified symbiotic food (containing Lactobacillus
sporogenes as probiotic, 0.1 g inulin as prebiotic, and 0.05 g β-carotene) for 6 weeks enhanced
insulin metabolism and lipid profile as well as augmented the antioxidant GSH plasma
levels [143]. Another study investigated the effects of β-carotene at the doses of 30 and
90 mg/day for 90 days on wrinkles, elasticity, and ultraviolet (UV)-induced DNA damage
in healthy females over the age of 50 years. Interestingly, only the lowest dose was effective
in preventing and repairing skin photoaging [144]. These data are consistent with previous
studies demonstrating the pro-oxidant effects of β-carotene at high doses as it can produce
radical ions that themselves may contribute to cell injury [145].

Finally, previous studies have reported that reduced levels of β-carotene can be de-
tected in patients with different inflammatory disorders, including non-alcoholic fatty
liver disease [146], chronic obstructive pulmonary disease [147], acute myocardial infarc-
tion [148], infection by H. pylori [149], and advanced coronary artery disease [150]. These
findings support the protective effects of β-carotene through inhibition of the inflamma-
tory processes.

4.2. Lutein
4.2.1. In Vitro Studies

The beneficial effects of LUT in ocular disorders have been demonstrated in numer-
ous in vitro studies. Along this line, LUT exhibited a protective role in human retinal
pigment epithelial cells (ARPE-19 cells) exposed to different stimuli implicated in age-
related macular degeneration pathogenesis (AMD), a severe disease that causes vision
loss. The mechanisms underlying these actions were associated with an inhibition of
apoptosis, VEGF levels, and oxidative stress markers, as well as prevention of autophagy
flux alteration [151]. Similarly, a LUT nanoemulsion improved penetration into ARPE-
19 cells and protected cells from H2O2-induced damage [152]. It has been reported that
retinal photo-oxidative damage may lead to inflammation of eyes and AMD-associated
lesions. A previous study reported a reduction in proteasome activity in ARPE-19 cells
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exposed to blue light and that LUT and ZX were able to reverse this effect and regulate
inflammation-related genes, such as MCP-1 and IL-8 [153].

Retinal ischemia/reperfusion injury occurs in some eye diseases including glau-
coma and diabetic retinopathy. The protective effects of LUT have been reported in a rat
Műller cell line exposed to cobalt (II) chloride, a model that mimics the hypoxic/ischemic
state. This carotenoid exerted anti-inflammatory effects by reducing NF-κB, IL-1β, and
COX-2 levels [154] as well as inhibited apoptosis and autophagy in glial cells [155]. It
has been reported that hyperosmoticity of tears induces inflammation and ocular surface
damage, playing a main role in dry eye development. In this line, LUT has been shown to
be a potential agent for the treatment of dry eye since it suppressed the hyperosmoticity-
induced increase in IL-6 through inhibition of NF-κB pathway activation in human corneal
epithelial cells [156].

Furthermore, LUT protected a human keratinocyte cell line and primary human ker-
atinocytes from foreskins against UVB-induced damage through an increase in cell viability
and proliferation, and reduction in apoptosis [157]. Similarly, LUT pretreatment for 48 h
before UVA irradiation preserved tissue architecture in a model of three-dimensional
human skin equivalent [158]. The photoprotective effects of this carotenoid were also
related to the inhibition of MMP-9 expression and ROS production in UV-irradiated Ha-
CaT [159]. Other papers reported the antioxidant effects of LUT via up-regulation of the
Nrf2/HO-1 pathway and its anti-inflammatory actions through inhibition of NF-κB activ-
ity in monosodium iodoacetate-induced osteoarthritis in primary chondrocyte cells [160]
as well as in LPS-activated microglial cells [161]. In addition, this compound reduced
LPS-induced production of TNF-α, IL-6, and IL-1β in peripheral blood mononuclear cells
from patients with stable angina [162]. Another action mechanism involved in the anti-
inflammatory properties of LUT was related to suppression of the transcription factor AP-1
in LPS-activated macrophages [159]. The antioxidant and anti-inflammatory effects of LUT
and its combination with six anthocyanidin glucosides were also evaluated chemically
and in Caco-2 cells. LUT alone showed better results than the mixture with the other com-
pounds, demonstrating antioxidant activity through inhibition of liposome peroxidation
and anti-inflammatory effects via suppression of the in vitro lipoxygenase-1 activity and
reduction in IL-8 and NO levels in Caco-2 cells [163].

4.2.2. In Vivo Studies

Like in vitro studies, the protective effects of LUT in eye disorders, such as AMD,
diabetic retinopathy, cataract, uveitis, and dry eye syndrome have been previously re-
ported in a number of animal studies. In this respect, LUT and ZX have been evaluated
on high-fat diet-induced retinal inflammation in rats since a high-fat intake has been as-
sociated with a high incidence of AMD. Data reported that the mix of both carotenoids
(100 mg/kg) enhanced metabolic and lipid profile, as well as reduced oxidative stress in
the retina by increasing the Nrf2/HO-1 pathway [164]. Light exposure has been reported
to be another risk factor for AMD development since it increases the stress in the retinal
pigment epithelium. In this line, a LUT-rich marigold extract, composed of 92% LUT
and 8% ZX (100 mg/kg), protected the retina from oxidative stress and inflammation in a
model of photostressed retina in mice [165]. Regarding diabetic retinopathy, chronic LUT
administration (4.2 and 8.4 mg/kg) in the retina of Ins2Akita/+ mice, a genetic model of
type 1 diabetes, suppressed microglia activation, which is involved in retinal inflammation,
and preserved retinal activity [166]. Likewise, LUT supplementation of 0.1% (wt/wt) was
reported to have antioxidative effects in the retina in streptozotocin-induced diabetic mice
via down-regulation of ROS-mediated extracellular signal-regulated kinase (ERK) activa-
tion [167]. In the same experimental model, administration of 0.5 mg/kg LUT or 0.6 and
3 mg/kg ATX exerted antioxidant and anti-inflammatory effects via inhibition of the NF-κB
pathway [168]. Furthermore, intraperitoneal administration of micelles containing LUT
(1.3 mmol/kg) in combination with three unsaturated fatty acids protected against cataract
formation induced by sodium selenite in rat pups. The mechanisms involved in these
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actions were related to an increase in antioxidant enzymes activity and down-regulation of
proinflammatory markers, such as phospholipase A2 (PLA2), COX-2, iNOS, and NF-κB
expression [169], as well as regulation of the chaperone function of lens crystallin [170].
The protective effect of LUT at the doses of 125 and 500 mg/kg has also been demonstrated
in LPS-induced uveitis in mice through its antioxidant properties, including reduction in
NO and MDA levels and an increase in SOD and glutathione peroxidase activities [171].
In the same model, LUT was reported to protect against uveitis via reduction in IL-8
production in uveal melanocytes accompanied by inhibition of JNK1/2 and NF-κB sig-
naling pathways [172]. Furthermore, a recent study has reported the antioxidative and
anti-inflammatory effect of a formulation containing LUT/ZX, curcumin, and vitamin D3
in a rat model of benzalkonium chloride-induced dry eye syndrome [173].

Regarding cardiovascular diseases, the preventive effects of chronic administration of
LUT (25, 50, and 100 mg/kg) on atherosclerosis have been reported in ApoE-deficient mice
fed a high-fat diet via an increase in PPAR-α, a marker related to lipid metabolism [174].
Likewise, dietary LUT (0.01 g/100 g diet) improved the lipid profile and reduced oxidative
stress and cytokine production in aortas of guinea pigs fed a hypercholesterolemic diet [175].
Later, these authors showed the protective effect of this carotenoid against a high-fat diet-
induced hepatic injury by inhibiting NF-κB activity [176].

In relation to the potential role of this corotenoid for pain treatment, this carotenoid
has been recently investigated in acute trigeminal inflammatory pain induced by mustard
oil injection and chronic trigeminal pain following complete Freund’s adjuvant administra-
tion into rat whisker pads. The results in the acute model demonstrated that intraperitoneal
administration of LUT (10 mg/kg) suppressed edema thickness and sensitization of noci-
ceptive processing in spinal trigeminal nucleus caudalis (SpVc) and upper cervical (C1)
dorsal horn neurons [177]. Similarly, in the chronic model, the carotenoid was able to
reduce the hyperalgesia and neuronal hyperexcitability via COX-2 inhibition [178]. Further-
more, LUT attenuated mustard oil-induced acute neurogenic inflammation via suppression
of the activation of transient receptor potential ankyrin 1 (TRPA1) on capsaicin- sensitive
sensory nerves [139]. This compound has also been reported to have protective effects
against thermal injury in remote organs in rats. Oral administration of this compound
at the dose of 250 mg/kg for three days attenuated liver and kidney dysfunction and
oxidative damage. Moreover, this carotenoid evidenced anti-inflammatory and antiapop-
totic properties by reducing TNF-α and caspase-3 expression, respectively, in the liver,
kidneys, and lungs [179]. Regarding central nervous system disorders, LUT at the doses
of 80 and 160 mg/kg demonstrated anti-inflammatory and antioxidative actions in a
model of severe traumatic brain injury via down-regulation of NF-κB and ICAM-1 ex-
pression, and up-regulation of Nrf2 and endothelin-1 levels [180]. The antioxidant and
anti-inflammatory actions of LUT have been described in other experimental models, such
as osteoporosis in ovariectomized rats [181], alcohol-induced hepatic damage [182], and
ischemia/reperfusion injury in skeletal muscle [183].

4.2.3. Human Studies

The effects of LUT in AMD have been previously investigated in a variety of clinical
studies. One of the largest was the Age-related Eye Disease Study 2 (AREDS2), a double-
blind, randomized trial in people at risk of developing late AMD. The results of this
study, which evaluated the effects of a formulation of vitamins and zinc, plus LUT/ZX
(10mg/2mg), suggest a reduced risk of developing advanced AMD with the consumption of
LUT/ZX [184]. These findings were confirmed in a post hoc study evaluating participants
enrolled in AREDS 1 and AREDS2 with no late AMD [185]. Likewise, the protective effects
of this carotenoid against the development and progression of AMD have been evidenced
in other clinical trials by increasing sensitivity of the retina, macular pigment optical density,
and visual performance [186–188]. Nevertheless, other studies that evaluated the effects
of co-administration of LUT and PUFA reported protective actions of this combination in
some studies [189] and non-significant effects in others [190].
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Regarding the photoprotective effects of LUT, a randomized, controlled, double-blind
clinical trial in people exposed to UVB/A demonstrated that capsules of LUT (10 mg,
twice daily) decreased the skin expression of HO-1, MMP-1, and ICAM-1 [191]. Moreover,
oral supplementation with omega-6 and omega-3 fatty acids, ZX, LUT, and vitamin D
attenuated sunburn risk in patients with Fitzpatrick skin phototypes I, II, or III [192].
Finally, a recent study confirmed the photoprotective and antiphotoaging effects of a
nutritional intervention with different antioxidants, including LUT (3 mg/day), in healthy
volunteers [193].

4.3. Zeaxanthin
4.3.1. In Vitro Studies

This carotenoid has been shown to have in vitro anti-inflammatory effects in
LPS/H2O2-stimulated human adipose-derived mesenchymal stem cells by reduction in
ROS production via down-regulation of the protein kinase C/MAPK/ERK pathway [194].
In addition, ZX prevented oxidative stress in ARPE-19 cells due to PI3K/Akt activation as
well induction of phase II enzyme expression via Nrf2 activation [195].

4.3.2. In Vivo Studies

The protective role of ZX in ocular diseases has been previously demonstrated in
animal models including AMD. In this line, this carotenoid induced an antioxidative
response in retinal pigment epithelium, protecting its structure and function in a genetic
model of oxidative stress-mediated retinal degeneration in mice [196]. Similarly, this
compound attenuated intense light-induced retinal damage by activating Nrf2/HO-1
pathways and suppressing NF-κB expression [197]. Likewise, the neuroprotective effects
of LUT/ZX isomers via up-regulation of Nrf2 and down-regulation of NF-κB have been
recently reported in a mouse model of traumatic brain injury [198]. On the other hand, ZX
was effective in reducing colon inflammation acetic acid-induced ulcerative colitis through
an increase in antioxidant defense mechanisms and attenuation of NF-κB levels and the
consequent iNOS and COX-2 inhibition [199]. Furthermore, the anti-inflammatory activity
of ZX has been evidenced in a model of paw edema in mice [200], as well as in a model
of alcoholic fatty liver in rats [201]. This carotenoid also ameliorated diabetes-induced
neuroinflammation, improving anxiety and depression [202].

4.3.3. Human Studies

As mentioned in the section on LUT, numerous clinical trials have investigated the
effects of a combination of LUT and ZX in ocular disorders. In this regard, supplementation
with these carotenoids reduced the risk of developing AMD [184,185,203]. Nevertheless,
other studies did not report significant changes after LUT and ZX treatment for the pre-
vention of eye diseases or improvement of macular pigments [204]. In relation to dry eye
syndrome, a randomized, double-blind, clinical trial reported that oral supplementation
with LUT, ZX, curcumin, and vitamin D3 for 8 weeks enhanced dry eye symptoms and
attenuated eye inflammation by reducing MMP-9 levels in tears [205].

4.4. Astaxanthin
4.4.1. In Vitro Studies

ATX has been shown to have in vitro anti-inflammatory effects in THP-1 macrophages
through inhibition of NF-κB activation with the subsequent down-regulation of the proin-
flammatory markers IL-1β, IL-6, TNF-α, and MMP-2 and 9 [206]. In the same line,
this carotenoid suppressed the MAPK signaling pathway, up-regulated the Nrf2 path-
way, and increased SIRT-1 activity in ethanol or LPS-induced macrophages from sev-
eral sources [207–209]. In addition, ATX microparticles protected macrophages against
radiation-induced damage via suppression of transforming growth factor beta [210]. On the
other hand, the neuroprotective role of ATX in LPS-activated BV2 cells has been reported
in microglia-mediated inflammation following Alzheimer’s disease through inhibition of
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MAPK and NF-κB pathway activation [211,212], as well as in particulate matter-stimulated
microglial cells [213]. In addition, ATX inactivated STAT3 transcription factor, which
led to inhibition of β-secretase activity with the subsequent prevention of amyloid beta
accumulation [214]. ATX has also been shown to have antiarthritic properties via reduc-
tion of NLRP3 inflammasome stimulation in monosodium urate crystal-activated murine
macrophages [215]. Furthermore, ATX protected human primary keratinocytes and HaCaT
keratinocytes against UVB-induced damage through reduction of the proinflammatory
cytokines IL-8, TNF-α, and IL-1β and the enzymes iNOS and COX-2 [216]. Likewise, the
beneficial role of this carotenoid in dry eye treatment was confirmed in human corneal
epithelial cells via reduction in TNF-α and IL-1β levels [217]. Finally, the anti-inflammatory
and antioxidant effects of this carotenoid have been demonstrated in other in vitro mod-
els, including bovine endometritis [218], gastric inflammation by H. pylori [219], and
osteoporosis [220].

4.4.2. In Vivo Studies

A variety of animal studies have revealed the protective role of ATX against liver
inflammation and its progression to cirrhosis and cancer. The mechanisms underlying
the anti-inflammatory effects of this carotenoid in the model of non-alcoholic fatty liver
were associated with a suppression of endoplasmic reticulum stress and NF-κB [221], a
reduction in lipogenic regulator genes [222], and PPAR-α activation [223]. Additionally, the
hepatoprotective effects of ATX in liver injury were due to suppression of STAT3 activity in
ethanol-induced hepatic damage [224], modulation of gut microbiota [225], inhibition of
MAPK pathway activation in acetaminophen-induced hepatic injury [226], and suppression
of NF-κB and autophagy in carbon tetrachloride-induced hepatic fibrosis [227] or arsenic-
stimulated liver damage [228]. Likewise, dietary ATX (1mg/kg) alleviated high-fructose
diet-induced liver inflammation via up-regulation of SIRT-1 and inhibition of NF-κB [229].
Another paper demonstrated that ATX liposomes attenuated LPS-induced acute liver
injury in rats, reporting a higher antioxidant and anti-inflammatory activity than free ATX
due to an enhancement of its oral bioavailability [230]. In the same line, treatment with
ATX (5, 10 and 20 mg/kg) dose-dependently protected against burn-induced acute kidney
inflammation through suppression of the TLR4/NF-κB pathway and an increase in HO-1
levels [231].

In relation to cardiovascular diseases, it has been recently described that ATX protected
mouse heart against LPS-induced cardiac dysfunction by down-regulating MAPK and
PI3K/Akt pathways with the consequent apoptosis inhibition [232]. In addition, several
animal studies demonstrated the beneficial role of ATX in diabetes mellitus and metabolic
syndrome since this carotenoid enhanced the lipid profile and glucose tolerance as well as
reduced insulin resistance in a model of chemically induced diabetes [233] and gestational
diabetes [234]. Another paper evidenced that PEGylated ATX had a higher antidiabetic
effect than free ATX due to an enhancement in oral bioavailability [235]. Additionally,
this carotenoid ameliorated diabetic retinopathy in a rat model of streptozotocin-induced
diabetes [168,236]. Regarding diabetes-induced brain damage, ATX improved cognitive
function through inhibition of NOS activity and up-regulation of the PI3K/Akt path-
way [237], as well as activation of the Nrf2/HO-1 pathway in the cerebral cortex and
hippocampus [238].

ATX has also demonstrated anti-inflammatory effects in central nervous disorders,
such as depression; in this line, this compound alleviated depressive-like symptoms in
a mouse model of LPS-induced inflammation via attenuation of NF-κB activation and
the subsequent suppression of COX-2 and iNOS in the hippocampus and prefrontal cor-
tex [239]. In the same model, a recent study reported that oral treatment with an ATX
emulsion to increase its bioavailability improved cognitive function and exhibited anti-
inflammatory activity by down-regulating inflammation-related proteins such as COX-2,
iNOS, TNF-α, IL-6, and IL-1β and increasing IL-10 levels [240]. Furthermore, ATX was
effective in attenuating status epilepticus-induced neuroinflammation in rats by suppress-
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ing extracellular ATP levels and the consequent P2X7R inhibition, a microglial receptor
involved in inflammation [241]. The neuroprotective effects of this compound were also
evidenced in a model of subarachnoid haemorrhage via inhibition of MMP-9 levels and
activity [242] and up-regulation of SIRT1 expression [243]. In addition, ATX reduced neu-
roinflammation in other animal models, such as chronic neuropathic pain [244], spinal cord
injury [245,246], Alzheimer’s disease [247], and acute cerebral infarction [248].

Regarding the potential role of ATX for arthritis treatment, this carotenoid protected
cartilage against destruction surgically induced by destabilization of the medial meniscus,
through Nrf2 activation [249]. In addition, this carotenoid exhibited antiarthritis properties
by attenuating chronic inflammatory pain and suppressing proinflammatory and oxidative
stress markers in a rat model of arthritis by complete Freund’s adjuvant [250], as well as in
monosodium iodoacetate-induced osteoarthritis [251]. ATX also attenuated inflammation
in a model of gouty arthritis in rats [215] and in different animal models of gastrointestinal
inflammation. In this regard, it has been recently demonstrated that dietary ATX (0.005%)
ameliorated oxidative stress, interferon gamma (IFN-γ) levels, and the oncogenes c-myc
and cyclin D1 in a mouse model of H. pylori-associated gastritis, suggesting the chemopre-
ventive role of this carotenoid in H. pylori-induced carcinogenesis [252]. Additionally, ATX
administered orally (100 mg/kg) attenuated ochratoxin A-induced cecum inflammation
due to suppression of TLR4 and its downstream protein Myd88, as well as inhibition
of NF-κB and the subsequent release of TNF-α and IFN-γ [253]. Similarly, ATX supple-
mentation revealed a protective role in DSS-induced ulcerative colitis in mice through
down-regulation of NF-κB-induced COX-2 and iNOS expression [254]. Similar findings
were reported when ATX was administered to obese mice, suppressing the development of
azoxymethane-induced colonic premalignant lesions [255]. Additionally, this carotenoid
improved acute pancreatitis in mice via suppression of JAK/STAT3 activity [256].

The beneficial role of ATX in pulmonary disorders has also been reported in dif-
ferent in vivo models. At this respect, this compound exhibited antiasthmatic effects
in ovalbumin-induced asthma in mice due to modulation of Th1 and Th2 cytokine pro-
files [257]. Furthermore, ATX inhibited inflammatory and oxidative response in acute lung
injury via attenuation of oxidative/nitrosative stress markers, apoptosis, and NF-κB expres-
sion [258] as well as an increase in the Nrf2/HO-1 signaling pathway [259]. As regards skin
diseases, it has been reported that this carotenoid administered topically on the ear or back
skin of mice alleviated hyperkeratosis and inflammatory response in a model of phthalic
anhydride-induced atopic dermatitis. These actions were related to a down-regulation of
NF-κB and its proinflammatory target genes iNOS and COX-2 [260,261]. In the same model,
ATX-loaded liposomes were more effective than free ATX in alleviating skin inflammation
due to inhibition of oxidative stress and STAT3 and NF-κB signaling pathways as well
as a reduction of IgE, a marker of allergic inflammation [262]. Likewise, oral treatment
with ATX enhanced atopic dermatitis-induced pruritus and inflammation, evidenced by
an inhibition of proinflammatory cytokines and L-histidine decarboxylase levels [263].
Moreover, ATX protected mouse skin against burn injury as well as corneal epithelium
against UV-induced keratitis by suppressing proinflammatory and oxidative markers and
apoptosis [264,265]. On the other hand, ATX has been shown to have anti-inflammatory
effects in a mouse model of hyperosmoticity-induced dry eye due to suppression of TNF-α
and IL-1β, as well as down-regulation of high-mobility group box 1, a proinflammatory
marker involved in ocular damage [217].

4.4.3. Human Studies

Regarding human studies, the photoprotective and antiaging effects of ATX have
been demonstrated in a randomized and double-blind study in healthy women exposed
to UVB and receiving ATX capsules at 6 or 12 mg/day for 16 weeks. At the end of the
study, the carotenoid was effective in attenuating wrinkle formation and improving skin
elasticity [266]. Similar results were detected in another clinical trial in participants treated
with ATX capsules at 4 mg for 9 weeks [267]. Additionally, an ATX supplement (6 mg/day)
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for 12 weeks increased cognitive function in patients with mild cognitive impairment [268],
and this treatment for 4 weeks alleviated mental and physical fatigue in healthy volun-
teers [269]. Furthermore, administration of ATX at 8 mg/day for 8 weeks improved the
lipid profile and reduced blood pressure in patients with T2DM [270]. Likewise, the benefi-
cial effects of the same dose of ATX in T2DM have been recently reported in a randomized,
double-masked clinical trial through reduction in IL-6 and MDA levels as well as down-
regulation of microRNA 146a, a proinflammatory marker whose deregulation has been
implicated in diabetes pathogenesis and complications [271].

4.5. Fucoxanthin
4.5.1. In Vitro Studies

The carotenoid FX has been shown to have marked anti-inflammatory effects in differ-
ent in vitro experimental models. In this line, FX suppressed COX-2 and iNOS expression
and the consequent production of PGE2 and NO, respectively, as well as reduced TNF-α,
IL-1β, and IL-6 levels via inhibition of NF-κB and MAPK pathways in LPS-stimulated
RAW 264.7 macrophages [272,273]. A recent study reported that this carotenoid attenuated
the palmitate-induced inflammatory response in RAW 264.7 macrophages by improving
lipid metabolism and mitochondrial dysfunction. Additionally, this compound blocked
the expression gene of M1 markers (IL-6, IL-1β, TNF-α, and Nlrp3) and up-regulated the
expression of the M2 marker Tgfβ1, thus suppressing macrophage-induced inflamma-
tion [274]. Another study by our group confirmed the anti-inflammatory activity of FX
due to a reduction in TNF-α levels in LPS-activated THP-1 macrophages and IL-6 and IL-8
production in TNF-α-stimulated HaCaT keratinocytes, an in vitro model of psoriasis [275].

In relation to neurodegenerative diseases, FX has been demonstrated to have neu-
roprotective effects in amyloid-β42-stimulated BV2 microglia cells [276], as well as in
LPS-activated BV2 cells via inhibition of Akt/NF-κB and MAPK/AP-1 pathways and
activation of the Nrf2/HO-1 pathway [277]. Likewise, the antifibrotic effect of FX has
also been reported in TGF-β1-stimulated human pulmonary fibroblasts via suppression of
MAPK, PI3K/Akt, and Smad2/Smad3 pathways [278]. On the other hand, our group has
previously shown that FX protected HaCaT cells against UVB irradiation via attenuation of
ROS and IL-6 production [275]. Interestingly, the combination of FX and the polyphenol
rosmarinic acid down-regulated inflammasome-related proteins such as NLRP3, ASC,
and caspase-1 and up-regulated the Nrf2/HO-1 pathway in UVB-irradiated HaCaT ker-
atinocytes [279]. In the same line, a sunscreen containing FX 0.5 (w/v) revealed photo-
protective properties in UVA-stimulated reconstructed human skin (RHS) via reduction
in ROS production [280]. These authors also reported that this carotenoid administered
topically in RHS attenuated ethanol-induced skin inflammation through an increase in
filaggrin expression [281]. As regards ocular diseases, FX protected ARPE-19 cells against
high glucose-induced diabetes retinopathy in ARPE-19 cells via up-regulation of Nrf2 and
reduction in apoptosis [282].

Furthermore, the potential therapeutic effect of FX has been reported in LPS-stimulated
Caco-2 cells, an in vitro intestinal inflammation model. This carotenoid improved the
intestinal epithelial barrier and reduced IL-1β and TNF-α levels and increased the anti-
inflammatory cytokine IL-10 [283]. In relation to metabolic disorders, FX inhibited lipid
accumulation and ROS production by modulating adipogenic and lipogenic mediators
and increasing antioxidant enzymes in adipocytes, demonstrating interesting antiobesity
properties [284–286]. According with these findings, FX stimulated lipolysis and supressed
lipogenesis in oleic acid-induced hepatocytes, a fatty liver cell model, through activation
of the SIRT1/AMP-activated protein kinase (AMPK) pathway [287]. In the same line,
antiobesity activity has also been reported after fucoxanthinol treatment, a metabolite of
FX, in TNF-α-stimulated adipocytes by reducing the levels of adipocytokines, such as
IL-6 and MCP-1, and in palmitic acid-stimulated RAW264.7 cells by inhibiting TNF-α
production [286]. These effects were confirmed in a model of low-grade chronic inflamma-
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tion, consisting of a co-culture of adipocytes and macrophages, demonstrating that this
compound ameliorated inflammation in adipose tissue [284].

4.5.2. In Vivo Studies

The anti-inflammatory effects of FX have been demonstrated in a variety of animal
models. In terms of skin disorders, a study by our group in the 12-O-tetradecanoylphorbol-
13-acetate (TPA) model, which mimics psoriatic markers in mouse dorsal skin, evidenced
that topical administration of an FX cream improved hyperplasia via suppression of
MPO activity and COX-2 expression. Additionally, this preparation protected mouse skin
against UVB-induced acute erythema due to inhibition of COX-2 and iNOS expression and
up-regulation of the Nrf2/HO-1 pathway [275]. Furthermore, FX-containing Vaseline im-
proved AD skin symptoms in the Nc/Nga mouse model through an increase in regulatory
innate lymphoid cell-released IL-2 and IL-10 [288]. This carotenoid (4 and 8mg/kg) also
suppressed inflammation in the mouse model of carrageenan-induced paw edema due to
inhibition of MAPK, NF-κB, and protein kinase B/Akt pathways [289]. Regarding colon
inflammation, treatment with FX at 50 and 100 mg/kg ameliorated DSS-induced acute coli-
tis in mice by down-regulation of the NF-κB/COX-2/PGE2 pathway [290]. Similar results
were reported after FX administration in a rat model of carrageenan/kaolin-induced arthri-
tis [291]. According to these findings, this carotenoid (200 mg/kg) improved LPS-induced
depressive and anxiety-like behaviors via suppression of NF-κB and its proinflammatory
target genes iNOS, COX-2, IL-1β, IL-6, and TNF-α, as well as activation of AMPK [292]. In
addition, FX treatment demonstrated antifibrotic actions in bleomycin-induced pulmonary
fibrosis in mice [293], as well as antiasthmatic effects in an ovalbumin-induced asthma
mouse model [294,295].

The therapeutic effects of FX in metabolic diseases have been demonstrated in different
animal models of obesity. In this respect, oral administration of FX (0.2, 0.4, and 0.6 %) was
effective in reducing inflammation through reduction in IL-1β, TNF-α, iNOS, and COX-2 in
a model of high-fat diet-induced obesity [296]. Later, this effect was confirmed in the same
model after administration of FX at the dose of 1 mg/kg, showing that this carotenoid im-
proved the lipid profile and insulin resistance and decreased blood pressure. Furthermore,
FX up-regulated the anti-inflammatory cytokine adiponectin and inhibited leptin expres-
sion, a hormone associated with obesity [297,298]. In the same model, FX demonstrated
antiobesity properties via modulation of gut microbiota composition [297,298] and stim-
ulation of the Nrf2/NQO1 pathway [299]. Likewise, FX supplementation (0.1 and 0.2%)
prevented obesity development and reduced hyperglycemia in diabetic/obese KK-Ay mice,
by supressing MCP-1 and TNF-α, which are involved in insulin resistance [286]. Moreover,
an extract from Laminaria japonica with a high FX content enhanced insulin sensitivity
and reduced lipidic peroxidation in a model of streptozotocin- and nicotinamide-induced
diabetes [300]. In relation to hepatic disorders, the protective effect of dietary FX (0.2%)
has been reported in a mouse model of non-alcoholic fatty liver induced by a high-fat
diet via suppression of hepatic fat accumulation and MCP-1 expression [301]. In the same
line, FX treatment (10, 20 or 40mg/kg) protected against alcohol-induced liver damage via
up-regulation of Nrf2 and suppression of the TLR4-mediated NF-κB pathway [302].

4.5.3. Human Studies

Regarding human studies, a randomized controlled clinical trial has recently reported
the protective effect of a combination of fucoidan, a polysaccharide mainly derived from
brown seaweed (825 mg), and FX (825 mg), twice a day for 24 weeks in non-alcoholic fatty
liver disease patients. The results demonstrated that this treatment improved the lipid
profile and reduced hepatic steatosis and inflammation by inhibiting plasma levels of IL-6
and IFN-γ [303].
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4.6. β-Cryptoxanthin
4.6.1. In Vivo Studies

The beneficial role of BCX has been reported in different animal studies. In this
line, this carotenoid administered orally (2 and 4 mg/kg) protected the retina against
light-induced damage through an increase in antioxidant status as well as a reduction in
NF-κB levels and the subsequent production of IL-1β and IL-6 [304]. As regards metabolic
disorders, the antiobesity properties of dietary BCX for 12 weeks have been reported in a
mouse model of high-fat diet-induced insulin resistance. The mechanisms underlying this
effect were associated with a down-regulation of NF-κB expression and up-regulation of
the Nrf2/HO-1 pathway [305], as well as modulation of the M1/M2 status, resulting in an
increase in the M2 macrophage population [306]. Likewise, the cardioprotective effect of
this carotenoid has been recently reported in a rat model of ischemia/reperfusion-induced
myocardial injury by down-regulating the NF-κB pathway [307]. In addition, BCX attenu-
ated the development of surgically induced osteoarthritis by inhibiting proinflammatory
cytokine levels [308] as well as ameliorated cigarette smoke-induced lung inflammatory
response and squamous metaplasia via reduction in the NF-κB/TNF-α pathway [309].

4.6.2. Human Studies

Regarding human studies, a randomized, double-masked, and placebo-controlled
clinical trial enrolling subjects suffering non-alcoholic fatty liver disease demonstrated that
a BCX capsule for 12 weeks attenuated oxidative stress and inflammatory processes via
reduction in MDA and IL-6 serum levels, respectively [310].

Table 1. Microalgal carotenoids and their described activities in inflammation and cancer.

Carotenoid Source Bioactivity References

β-Carotene

Dunaliella salina
Chlamydomonas reinhardtii

Isochrysis galbana
Tetraselmis suecica

Inflammation
Colitis [130–132]
Hepatic fibrosis [133]
Non-alcoholic fatty liver [134]
Atherosclerosis [135,136]
Atopic dermatitis [137,138]
Neurogenic inflammation [139]
Acute spinal cord injury [140]
Arthritis [127]
Asthma [141]
Irritable bowel syndrome [142]
Type 2 diabetes mellitus [143]
Skin photoaging [144,145]

Cancer
Colon cancer [311,312]
Liver cancer [313,314]
Gastric cancer [315,316]
Esophageal squamous cell

[317,318]carcinoma
Prostate cancer [319]
Neuroblastoma [320]
Breast cancer [321–323]
Pancreatic cancer [324]
Non-Hodgkin lymphoma [325]

Lutein

Chlorella sorokiniana
Chromochloris zoofingiensis

Auxenochlorella protothecoides
Dunaliella salina

Chlamydomonas sp.
Tetraselmis suecica

Inflammation
Age-related macular

[165,184–188]degeneration
Diabetic retinopathy [166–168]
Uveitis [171,172]
Dry eye syndrome [173]
Atherosclerosis [174,175]
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Table 1. Cont.

Carotenoid Source Bioactivity References

Lutein

Chlorella sorokiniana
Chromochloris zoofingiensis

Auxenochlorella protothecoides
Dunaliella salina

Chlamydomonas sp.
Tetraselmis suecica

Inflammation
Hepatic injury [176]
Pain [139,177–179]
Osteoporosis [181]
Alcohol-induced hepatic

[182]damage
Ischemia/Reperfusion [183]
Photoprotective/

[191–193]Antiaging effects

Cancer
Colon cancer [326,327]
Hepatocellular carcinoma [328]
Breast cancer [329,330]
Bladder cancer [331]
Renal cell carcinoma [332]
Neck cancer [333]
Non-Hodgkin lymphoma [325]
Pharyngeal cancer [334]
Esophageal cancer [318]
Pancreatic cancer [335]

Zeaxanthin

Synechocystis sp.
Microcystis aeruginosa

Nannochloropsis oculata
Chloroidium saccharophilum

Dunaliella sp.
Porphyridium purpureum

Heterosigma akashiwo

Inflammation
Age-related macular

[184,185,196,336]degeneration
Traumatic brain injury [198]
Colitis [199]
Edema [200]
Alcoholic fatty liver [201]
Depression/Anxiety [202]
Eye dry syndrome [205]

Cancer
Uveal melanoma [337]
Pancreatic cancer [338]
Ovarian cancer [339]
Bladder cancer [331]
Breast cancer [330]
Non-Hodgkin lymphoma [325]
Pharyngeal cancer [334]
Esophageal cancer [318]
Colon cancer [340]
Pancreatic cancer [335]

Astaxanthin

Haematococcus lacustris
Chromochloris zofingiensis

Chlorococcum sp.
Dunaliella salina

Tetraselmis suecica

Inflammation
Non-alcoholic fatty liver [221–223]
Liver inflammation [224–230]
Kidney inflammation [231]
Cardiac dysfunction [232]
Diabetes mellitus [233–235,270,271]
Diabetes-related disorders [168,236–238]
Depression [239,240,341]
Epilepsy-induced

[241–243]neuroinflammation
Acute cerebral infarction [248]
Arthritis [215,249–251,342]
Colitis [254,255]
Asthma [257]
Acute lung injury [258,259,343]
Contact dermatitis [344]
Atopic dermatitis [260–263]
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Table 1. Cont.

Carotenoid Source Bioactivity References

Astaxanthin

Haematococcus lacustris
Chromochloris zofingiensis

Chlorococcum sp.
Dunaliella salina

Tetraselmis suecica

Inflammation
Dry eye [217]
Photoprotective/

[266]Antiaging effects
Cognitive function [268]

Cancer
Hepatocellular carcinoma [345–347]
Mammary tumor [348]
Colon cancer [349]
Esophageal cancer [350]
Oral cancer [351,352]
Prostate cancer [353]
Lung metastatic melanoma [354]

Fucoxanthin

Isochrysis sp.
Odontella aurita

Chaetoceros neogracilis
Chrysotila carterae Phaeodactylum

tricornutum
Pavlova sp.

Inflammation
Psoriasis/Acute erythema [275]
Atopic dermatitis [288]
Edema [289]
Colitis [290]
Arthritis [291]
Depression/Anxiety [292]
Lung injury [278,293]
Asthma [294,295]
Obesity [296–299]
Diabetes [300]
Non-alcoholic fatty liver [301–303]

Cancer
Colon cancer [355–359]
Lung cancer [360–362]
Hepatocellular carcinoma [363]
Glioblastoma [364]
Cervical cancer [365]
Melanoma [366]
Sarcoma [367]

β-Cryptoxanthin
Phaeodactylum tricornutum
Auxenochlorella pyrenoidosa

Porphyridium purpureum

Inflammation
Obesity [305,306]
Ischemia/Reperfusion [307]
Osteoarthritis [308]
Lung inflammation [309]
Non-alcoholic fatty liver [310]

Cancer
Gastric cancer [368,369]
Hepatocellular carcinoma [370]
Lung cancer [371–373]
Non-Hodgkin lymphoma [374]
Colon cancer [375]
Head/Neck cancer [333]
Breast cancer [376]
Renal cell carcinoma [377]

5. Anticancer Activity of Carotenoids
5.1. β-Carotene
5.1.1. In Vitro Studies

Numerous in vitro studies have reported the anticancer activity of β-carotene in
gastrointestinal cancers. In this line, this carotenoid inhibited the cell growth of the
colorectal cancer cells HT-29 [378] and Caco-2 [379]. In addition, β-carotene exhibited
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anticancer properties via suppression of M2 macrophage polarization, which has a main
role in promoting tumor progression and metastasis, as well as reduction in the migration
and invasion of HCT116 colon cancer cells [311]. Another paper demonstrated that the
molecular mechanisms underlying the anti-colon cancer effects of β-carotene were related
to regulation of epigenetic modifications, including an increase in histone acetylation and
reduction in DNA methylation [340].

Moreover, β-carotene was reported to act as a proapoptotic agent in gastric cancer
cells through reduction in the expression and activity of Ku proteins, which are involved
in the repair process of damaged DNA [380]. Furthermore, this carotenoid inhibited
proliferation of H. pylori-infected gastric adenocarcinoma cells through suppression of
NF-κB activation, which in turn down-regulated tumor necrosis factor receptor-associated
factor 1 (TRAF1) and TRAF2 expression [381], as well as inhibition of β-catenin signaling
and oncogene expression [382]. As regards esophagus cancer, β-carotene has been reported
to suppress the growth of a human esophageal squamous cell carcinoma cell line and
induce apoptosis via down-regulation of NF-κB/Akt pathway activation and caveolin-1
protein expression [383]. Later, these authors demonstrated a greater antiproliferative
effect of β-carotene when it was combined with 5-fluorouracil [317]. Other mechanisms
underlying the anticancer effects of this carotenoid in esophageal squamous carcinoma
cells include up-regulation of PPAR-γ and down-regulation of cyclin D1 and COX-2
expression [384]. Likewise, β-carotene, in combination with α-carotene, demonstrated a
strong antiproliferative activity as well as a reduction in DNA synthesis in esophageal
cancer cells [385]. In relation to hepatic cancer, a mixture of different carotenoids, including
α- and β-carotene, lycopene, LUT, and BCX, evidenced a higher antimetastatic activity
than individual carotenoids in human hepatocarcinoma SK-Hep-1 cells [386]. In addition,
β-carotene at a plasma peak concentration exhibited genotoxic and cytotoxic antitumor
activity in HepG2 cells [387]. In this cell line, Dunaliella salina (as Dunaliella bardawil)
(Chlorophyta) biomass-loaded nanoparticles, whose majority components are β-carotene,
LUT, ZX, CX, phytoene, and phytofluene, were effective in inhibiting cell proliferation and
inducing apoptosis [388].

The antiproliferative and proapoptotic actions of β-carotene have also been reported in
human cervical cancer cells, hepatoma cells, and breast cancer cells, via inhibition of human
calcium/calmodulin-dependent protein kinase IV activity [389], as well as in adrenocor-
ticotropic hormone-secreting pituitary adenoma AtT-20 cells [390]. This carotenoid also
suppressed cell proliferation in leukemia K562 cells through an increase in PPAR-γ ex-
pression [391], as well as increased the growth inhibitory effect of the anticancer drug
trichostatin A in the lung carcinoma cell line A549 [392]. β-Carotene has also been shown
to have an antiproliferative effect in human breast adenocarcinoma cells via induction of
apoptosis and cell cycle arrest [393], as well as suppression of PI3K/Akt and ERK signaling
pathways [394]. Similarly, the combination of a low-dose doxorrubicin treatment with
several carotenoids, such as β-carotene, LUT, ATX, or FX, was reported to have a cell
growth inhibitory effect and a proapoptotic effect in breast cancer cells [395]. Similar results
were reported after treatment with β-carotene-loaded solid lipid nanoparticles [396].

5.1.2. In Vivo Studies

In relation to in vivo studies, β-carotene at the doses of 5 and 15 mg/kg twice weekly
for 11 weeks was demonstrated to be effective in the reduction of tumor growth in a model
of colitis-associated colon cancer in mice via suppression of M2 macrophage polariza-
tion [311]. Similarly, this carotenoid administered orally (20, 40, and 60 mg/kg) for 30 days
decreased tumor weight and size in a rat model of H22 cell-induced liver cancer [313]. In
addition, the chemopreventive role of β-carotene in gastric cancer was demonstrated in a
model of tobacco smoke-exposed mice. This carotenoid prevented epithelial–mesenchymal
transition, which is involved in the gastric cancer development, through inhibition of Notch
pathway activation [315]. Another paper evidenced that β-carotene in combination with 5-
fluorouracil suppressed tumor growth and induced apoptosis in a mouse model of Eca109
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cells (an esophageal squamous cell carcinoma cell line) [317]. Similarly, this carotenoid
administered at the dose of 16 mg/kg twice a week for 7 weeks showed antiproliferative
effects in a xenograft model of prostate cancer [319].

As regards extracranial solid tumors, oral pretreatment with β-carotene reduced tumor
growth in a neuroblastoma model, as well as induced cell differentiation and inhibited
cancer cell stemness via down-regulation of different cancer stem cell markers [320]. In
the same model, these authors confirmed the anticarcinogenic effects of this carotenoid on
the murine liver microenvironment of a metastatic neuroblastoma through suppression of
proliferation and angiogenesis, as well as inhibition of apoptosis by up-regulating of Bcl-2
and down-regulating Bax protein [397]. Finally, β-carotene-loaded lipid polymer hybrid or
zein nanoparticles were shown to reduce tumor growth in a model of chemically induced
breast cancer in rats and this effect was enhanced when the carotenoid was co-administered
with methotrexate [321,322].

5.1.3. Human Studies

Previous human studies have reported that reduced levels of β-carotene can be de-
tected in patients with different cancers, including oral cancer [398], breast cancer [399],
prostate cancer [400], pancreatic cancer [338], and malignant pleural mesothelioma [401].
Moreover, numerous epidemiological studies have indicated that dietary intakes of β-
carotene, obtained from fruits and vegetables, may reduce cancer mortality [402] and
protect against the development of some gastrointestinal cancers, such as esophageal can-
cer [318], gastric cancer [316], colon cancer [312], pancreatic cancer, and hepatocellular
carcinoma [314,324]. Likewise, consumption of this carotenoid exerted a chemopreventive
effect against the development of breast cancer [323,403], lung cancer [404], head and neck
cancer [333], and non-Hodgkin lymphoma [325]. However, other human studies have re-
ported contradictory results since β-carotene supplementation was associated with higher
risk of developing cancer, such as breast cancer [405] and lung cancer in smokers [406].
These effects may be explained due to the antioxidant properties of this carotenoid, which
would lead to a reduction in ROS production with the consequent apoptosis inhibition. In
conclusion, further studies for β-carotene are needed to assess this potential association.

5.2. Lutein
5.2.1. In Vitro Studies

Several in vitro studies have reported the anticancer properties of LUT in breast cancer.
In this regard, LUT inhibited cell growth and induced apoptosis in two breast cancer lines,
the non-invasive MCF-7 and invasive MDA-MB-231 cells. The mechanisms underlying
these effects were associated with an inhibition of the transcription factor Nrf2 and its
target genes SOD-2 and HO-1, as well as a down-regulation of cell survival markers such
as pAkt, pERK, and NF-κB [407]. Other mechanisms involved in the anti-breast cancer
effects of this carotenoid include inhibition of glycolysis [408], suppression of cell cycle
progression, stimulation of p53 signaling, and an increase in cellular heat shock protein
60 expression [409]. Moreover, LUT inhibited cell invasion and migration under hypoxic
conditions through down-regulation of the transcription factor hairy and enhancer of
split-1 (HES1) in MCF-7 and MDA-MB-231 cells [410]. In the same cell lines, the epoxide
form of LUT exhibited higher cytotoxic and proapoptotic activity than LUT [411]. Likewise,
LUT-loaded nanoparticles exhibited an antiproliferative effect in MCF-7 cells [412].

The antiproliferative and proapoptotic actions of LUT have also been described in
other cancer cell lines, including sarcoma S180 cells [413], colon adenocarcinoma cells [414],
prostate cancer (PC-3) cells [415], A549 lung cancer cells [416], and lymphoid leukaemia
cell lines [417].

5.2.2. In Vivo Studies

As regards preclinical animal studies, the chemoprotective effect of dietary LUT
(0.002%) administered either 8 weeks before or after the induction of neoplasia was reported
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in dimethylhydrazine-induced colon cancer. This carotenoid reduced tumor incidence and
down-regulated some proteins involved in cell proliferation, such as K-ras, Akt/protein
kinase B, and β-catenin [326]. Moreover, LUT (50 and 250 mg/kg) effectively inhibited
carcinogenesis in a model of N-nitrosodiethylamine-induced hepatocellular carcinoma in
rats via suppression of cytochrome P450 phase I enzyme activity and induction of detoxify-
ing phase II enzymes [328]. More recently, it has been reported that daily administration
of LUT (50 mg/kg) for 30 days inhibited tumor growth in a murine breast cancer model
induced by injection of 4T1 cells [329]. Similar results were found when this carotenoid
(40 mg/kg) was administered to mice inoculated with sarcoma S180 cells; interestingly,
the growth inhibitory effect was higher when this carotenoid was co-administered with
doxorubicin [413].

5.2.3. Human Studies

The protective effects of dietary LUT and ZX in the prevention of cancer have been
revealed in human epidemiological studies, which reported that consumption of these
carotenoids reduced the risk of different cancers, such as bladder cancer [331], breast
cancer [330], renal cell carcinoma [332], head and neck cancer [333], and non-Hodgkin
lymphoma [325]. Similarly, it has been reported that intake of LUT and ZX was inversely
related with a decreased risk of gastrointestinal cancers, including oral and pharyngeal
cancer [334], esophageal cancer [318], colon cancer [327], and pancreatic cancer [335].

5.3. Zeaxanthin
5.3.1. In Vitro and Animal Studies

The in vitro anticancer effects of ZX have been recently reported in HT-29 cells [378,414]
as well as in several human gastric cancer cells. This carotenoid exhibited cytotoxic effects
and induced G2/M cell cycle and apoptosis in gastric cancer cells by up-regulating sev-
eral proapoptotic factors, such as Bax, and down-regulating some antiapoptotic proteins,
such as Bcl-2, among others. Moreover, these authors suggested that LUT-induced ROS
production may induce regulation of the MAPK signaling pathway and, consequently,
activate apoptosis [418]. A bioguided study of the microalga Cyanophora paradoxa (Glau-
cophyta) reported a marked antiproliferative activity of different fractions rich in ZX and
BCX in A-2058 melanoma cells [419]. Other papers evidenced the potential of ZX as an
antimelanoma agent since this carotenoid induced apoptosis of human uveal melanoma
cells [420], as well as suppressed platelet-derived growth factor and melanoma cell-induced
fibroblast migration [421]. A preclinical study in mice reported that intravitreal injection
of ZX markedly supressed the tumor growth and invasion in a model of human uveal
melanoma induced by injection of C918 cells [337].

5.3.2. Human Studies

As regards human studies, in the section on LUT the chemopreventive effects of intake
of LUT and ZX in the development of many tumors have already been mentioned. In
addition, other studies have described an inverse association between low plasma levels of
ZX and increased risk of pancreatic cancer [338] and ovarian cancer [339].

5.4. Astaxanthin
5.4.1. In Vitro Studies

Several studies have reported the anticancer activity of this red pigment carotenoid. In
this regard, a study evaluated the role of ATX on pontin, a conserved ATPase of the AAA+
(ATPases associated with various cellular activities) superfamily overexpressed in many
cancers. This carotenoid modulated the expression of pontin, which led to a reduction
in the proliferation and migration of breast cancer cells when compared to normal breast
cells [422]. Recently, the role of ATX has been reported as a novel metastasis inhibitor on the
human breast cell line T47D through activation of different tumor metastasis suppressors
such as maspin, Kai1, breast cancer metastasis suppressor 1, and mitogen-activated protein
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kinase kinase 4 [423]. In addition, the cytotoxic effect of ATX against ovarian carcinoma
cells via promotion of apoptosis and inactivation of the NF-κB signaling pathway has
recently been reported [424].

ATX has also shown antiproliferative effects in leukemia K562 cells by PPAR-γ inhibi-
tion [425]. In addition, this compound may induce G0/G1 or G2/M cell cycle arrest, mod-
ulate epigenetic alterations (e.g., cell cycle regulator genes or growth factors), and inhibit
angiogenesis and metastasis in different cancer cell lines including glioblastoma [426–428].
These mechanisms were also observed in murine hepatoma cells H22 [429] and in several
human adenocarcinoma gastric cell lines such as AGS, KATO-III, MKN-45, and SNU-1 [430].
Additionally, this carotenoid induced mitochondrial membrane damage, decreasing its
transmembrane potential and the function of electron transport, which promoted the ex-
pression of proapoptotic proteins in rat hepatocellular carcinoma cells [431]. Furthermore,
ATX evidenced protective effects against the gastric disease associated with H. pylori in-
fection by promoting autophagy through AMPK pathway activation and reducing the
oxidative stress in the gastric adenocarcinoma cell line AGS [432].

Regarding colon cancer, ATX has been reported to inhibit cancer cell growth not only
by arresting cell cycle progression but also by promoting apoptosis via an increase in
caspase 3 expression in colon cancer cells [433]. Additionally, this carotenoid was able to
promote the expression of Bax, p53, p21, and p27 and the phosphorylation of p38, JNK,
and ERK1/2. Moreover, cyclin D1 and Bcl-2 expression and Akt phosphorylation were
found to be significantly decreased by ATX treatment, suggesting a protective role against
colon cancer cells [434], MCF-7 breast cancer cells [435], and glioblastoma [426]. It is worth
highlighting that the three stereoisomers of ATX (S, R, and a mixture of S:meso:R) exhibited
antiproliferative activity in HCT116 and HT29 colon cancer cells via apoptosis induction
and cell cycle arrest; however, terminal ring structures were not involved in these antitumor
effects since no significant differences were detected between the three stereoisomers [436].
Concerning skin cancer, ATX has been shown to decrease tyrosinase activity on human
dermal fibroblasts, which can lead to a malignant transformation of normal melanocytes
and promote skin cancer [437].

5.4.2. In Vivo Studies

Previous in vivo studies have reported the anticancer activity of ATX in gastrointesti-
nal cancers. In this line, the chemoprotective effect of ATX administered orally (15 mg/kg)
for 16 weeks was reported in dimethylhydrazine-induced colon cancer in rats through
apoptosis induction via down-regulation of ERK-2, NF-κB, and COX-2 [349]. Similar results
were demonstrated after ATX treatment (200 ppm in the diet) in the experimental model
of colitis-associated colon cancer induced by azoxymethane (AOM)/DSS in mice [254].
Likewise, dietary intake of ATX at the same dose supressed AOM-induced colonic pre-
malignant lesion development in mice via attenuation of oxidative stress markers and
inactivation of NF-κB [255]. Regarding oral cancer, ATX effectively inhibited carcinogenesis
in 7,12-dimethylbenz[a]anthracene (DMBA)-induced buccal pouch cancer in hamsters
via down-regulation of NF-κB and Wnt/β-catenin signaling pathways. In addition, this
carotenoid induced caspase-mediated mitochondrial apoptosis through attenuation of the
antiapoptotic Bcl-2, p-Bad, and surviving expression and up-regulation of the proapop-
totic proteins Bax and Bad [351]. In the same model, an ATX-enriched diet (15 mg/kg)
suppressed tumor progression via inhibition of the JAK/STAT3 signaling pathway and
its downstream targets cyclin D1, MMP-2 and -9, and VEGF, preventing cell proliferation
and invasion and, consequently, regulating tumor microvascular density [352]. In addition,
ATX supplementation at the dose of 25 mg/kg effectively suppressed tumorigenesis in a
rat model of N-nitrosomethylbenzylamine-induced esophageal cancer by down-regulating
NF-κB and its target gene COX-2 [350]. Likewise, the chemopreventive effects of dietary
ATX (200 ppm) were also reported in diethylnitrosamine (DEN)-induced hepatic cancer
in obese mice via attenuation of oxidative stress and an increase in serum adiponectin
levels [347].
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Regarding skin cancer, the chemopreventive role of ATX (200 µg/kg) was demon-
strated in a rat model of UV-DMBA-induced skin tumorigenesis through inhibition of
tyrosinase activity and modulation of oxidative stress [438]. In the same line, nitroas-
taxanthin, the main reaction product of ATX with peroxynitrite, reduced the number of
papillomas in a two-stage carcinogensis model on mouse skin initiated by DMBA and
promoted by TPA [439]. Moreover, an oral nanoemulsion containing 15 mg/kg of ATX
has been found to suppress lung metastatic melanoma by apoptosis activation via down-
regulation of Bcl-2, ERK, and NF-κB in B16F10 cell-injected mice [354]. Likewise, in a
xenograft model induced by human mammary tumor cells, a diet containing 0.005% ATX
for 8 weeks reduced tumor growth and regulated immune response when this carotenoid
was administered before tumor initiation, increasing NK cell populations and plasma IFN-γ
levels. However, mice fed ATX after tumor initiation exhibited a faster tumor growth and
increased plasma levels of IL-6 and TNF-α, showing the importance of a good antioxidant
status prior to tumor initiation [348]. Additionally, this carotenoid administered orally at
the dose of 100 mg/kg suppressed tumor growth and induced apoptosis via caspase-3
activation in a xenograft model of prostate cancer in nude mice [353].

5.4.3. Human Studies

ATX is considered as a phytonutrient with strong anti-inflammatory and antioxidant
activity. Moreover, the European Food Safety Authority (EFSA) recently reported that the
intake of 8 mg ATX per day is safe [440], although no toxic effect has been shown with an
exceeded EFSA dose recommendation [437]. Nevertheless, although further clinical studies
are needed to complete the anticancer activity, ATX supplementation in the human diet has
been shown to regulate inflammatory activity [441], enhance the immune response [442],
reduce the risk of cardiovascular disease [443], promote eye health, and improve cognitive
function [444].

A common metabolic alteration in the tumor microenvironment is lipid accumulation,
which is associated with immune dysfunction [445]. In this line, the most studied ATX-
mediated pathways in humans are the low-density lipoprotein peroxidation and blood
lipid profiles, which increase atherosclerosis risk [446]. Moreover, the relation between
abnormal lipid metabolism and liver cancer has been demonstrated. In this regard, and
in line with animal experimentation, ATX could be a good candidate for hepatocellular
carcinoma, although further clinical data are necessary [345].

5.5. Fucoxanthin
5.5.1. In Vitro Studies

Previous in vitro studies have reported the anticancer activity of FX in gastrointesti-
nal cancers. In this line, FX has been shown to have growth-inhibitory effects on gastric
adenocarcinoma cells by suppression of cyclin B1 and myeloid cell leukemia 1 protein via
the JAK/STAT signaling pathway [447,448]. Additionally, the anticancer actions of this
carotenoid were associated with autophagy and apoptosis induction through an increase
in beclin-1, microtubule-associated protein 1 light chain 3, and cleaved caspase-3, and
a reduction in Bcl-2 in gastric cancer cells [449]. Similarly, the cytotoxic activity of FX
via up-regulation of autophagy and apoptosis was reported in B666-1 nasopharyngeal
cancer cells [450]. Regarding colon cancer, FX exhibited cytotoxic effects in HCT116 and
HT29 cells, demonstrating a higher cytotoxicity when the carotenoid was combined with
5-fluorouracil [451]. In addition, FX demonstrated anticancer properties by reducing beta-
glucuronidase activity in DLD-1 colorectal cancer cells [452]. Interestingly, fucoxanthinol
evidenced a more potent proapoptotic effect than FX in HCT116 cells via suppression of
NF-κB activation [453]. Additionally, other studies using FX nanogels or nanoparticles to in-
crease its bioavailability reported that these formulations exhibited a greater pro-oxidative
activity than free FX, stimulating ROS-triggered apoptosis in Caco-2 cells [454,455]. In
relation to hepatic cancer, FX in combination with cisplatin evidenced a higher antiprolifer-
ative activity than treatment with cisplatin alone in human hepatoma HepG2 cells through
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down-regulation of NF-κB expression as well as an increase in the Bax/Bcl-2 ratio [456]. In
the same cell line, an FX-rich fraction from the microalga Chaetoceros calcitrans (Bacillario-
phyta) demonstrated proapoptotic effects via inhibition of antioxidant gene expression and
MAPK signaling [457].

On the other hand, FX and its metabolite fucoxanthinol inhibited viability in two breast
cancer lines, the non-invasive MCF-7 and the invasive MDA-MB-231 cells, by inducing
apoptosis. These effects were more prominent with fucoxanthinol and correlated with
a suppression of NF-κB pathway activation [458]. Moreover, FX reduced migration and
invasion of MDA-MB-231 cells as well as inhibited tumor-induced lymphangiogenesis
in human lymphatic endothelial cells [459]. In cervical tumors, FX was reported to have
cytotoxic activity in the human cervical cancer cell line HeLa through suppression of the
Akt/mechanistic target of rapamycin (mTOR) pathway and the subsequent autophagy
induction [460]. Additionally, the mechanisms underlying the proapoptotic effects of FX in
HeLa cells were associated with a down-regulation of PI3K/Akt, NF-κB, and the oncogene
histone cluster 1 H3 family member [365,461,462].

Regarding lung cancer, FX exhibited growth inhibitory effects in several lung car-
cinoma cell lines by up-regulation of the proapoptotic genes PUMA (p53 up-regulated
modulator of apoptosis) and Fas, as well as suppression of Bcl-2 levels [361]. Moreover,
this carotenoid induced apoptosis in the human bladder cancer T24 cells via attenuation of
mortalin expression, which is considered as an antiapoptotic factor that binds to p53, thus
inhibiting its apoptotic activity [463]. Similarly, FX suppressed the mortalin–p53 interaction,
leading to p53 nuclear translocation and activation in different cancer cells [464]. This
carotenoid and its deacetylated product, fucoxanthinol, also exhibited antiosteosarcoma
activity via attenuation of migration and invasion and activation of apoptosis in different
osteosarcoma cell lines. The mechanisms underlying these effects may be related to down-
regulation of Akt and AP-1 pathways [465]. In relation to skin, the anticancer effects of FX
were demonstrated in mouse melanoma B16F10 cells, via cell cycle arrest in the G0/G1
phase and apoptosis induction [366] as well as metastasis inhibition [466]. Furthermore, FX
and ATX supressed TPA-induced neoplastic transformation of mouse skin JB6 P+ cells, an
in vitro model for tumor promotion, via activation of the Nrf2 pathway [467].

As regards central nervous system tumors, FX has been reported to inhibit cell prolif-
eration, invasion, and angiogenesis as well as induced ROS-triggered apoptosis in several
glioblastoma cells [468,469]. The molecular antitumorigenic mechanisms of FX involved
suppression of PI3K/Akt/mTOR and p38 signaling pathways as well as modulation of
the MAPK pathway [364,470]. In relation to B cell malignancies, FX and fucoxanthinol
exhibited antiproliferative and proapoptotic effects in Burkitt’s and Hodgkin’s lymphoma
cell lines through NF-κB activation with the consequent down-regulation of antiapop-
totic proteins (Bcl-2 and X-linked inhibitor of apoptosis protein), and cell cycle regulatory
proteins (cyclins D1 and D2) [471]. Similar results were described after treatment of pri-
mary effusion lymphoma cells with FX and its metabolite; in addition, their antineoplastic
actions were associated with suppression of PI3K/Akt and AP-1 activation [472]. Addi-
tionally, the proapoptotic activity of FX was demonstrated in HL-60 leukemia cells due
to its pro-oxidative effects and the subsequent down-regulation of the Bcl-xL signalling
pathway [473]. Moreover, the antileukemia activity of FX was confirmed in two cancer cell
lines representative of advanced stages of chronic myelogenous leukemia [474].

5.5.2. In Vivo Studies

Previous in vivo studies have demonstrated the protective effect of FX in colorectal
carcinogenesis. In this respect, FX at the dose of 30 mg/kg for 8 weeks was effective in
supressing adenocarcinoma incidence and development of the tumor microenvironment
in a model of inflammation-associated colorectal cancer by AOM/DSS [355]. In the same
model, these authors demonstrated that FX treatment reduced salivary glycine content
over time, suggesting that it may be a good predictor for cancer chemopreventive actions
of FX [356]. Additionally, the mechanisms involved in the anti-colon cancer effects of this
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carotenoid were related to modulation of gut microbiota [357], as well as an induction of
anoikis (detachment-induced cell death) though down-regulation of integrin signaling-
related proteins [358]. In addition, dietary FX for 5 weeks inhibited colon carcinogenesis
in DSS-treated ApcMin/+ mice, a model of human familial adenomatous polyposis, by
down-regulating cyclin D1 levels [359].

Regarding lung cancer, the chemopreventive role of FX was demonstrated in a mouse
model of benzo(A)pyrene-induced lung cancer through apoptosis induction by enhanced
caspase 9 and 3 levels and reduced expression of Bcl2 protein [360]. Additionally, FX ad-
ministration at the dose of 50 mg/kg for 5 weeks attenuated A549 tumor xenograft growth
in nude mice via apoptosis induction [361]. Furthermore, a recent study demonstrated the
antimetastatic activity of FX in a lung metastatic tumor model in A549-bearing mice [362].

On the other hand, FX administered orally for 15 weeks (50 mg/kg) effectively in-
hibited carcinogenesis in a model of DEN-induced hepatocellular carcinoma in rats via
an increase in the endogenous antioxidant defence system [363]. In xenograft models,
this carotenoid administered at the dose of 200 mg/kg for 28 days showed antiprolifera-
tive and proapoptotic effects as well as reduced invasion and migration in a xenograft of
glioblastoma through suppression of PI3K/Akt/mTOR and p38 pathways [364]. In addi-
tion, oral administration of FX (10 and 20 mg/kg) for 5 weeks effectively inhibited tumor
growth in a cervical cancer xenograft model in nude mice [365]. Similarly, intraperitoneal
administration of this carotenoid suppressed melanoma tumor mass in B16F10 cell-injected
mice [366]. Additionally, FX exhibited antitumor growth and proapoptotic effects in mice
bearing sarcoma 180 xenografts through suppression of STAT3/epidermal growth factor
receptor signaling [367].

5.6. β-Cryptoxanthin
5.6.1. In Vitro Studies

Several in vitro studies evidenced the antiproliferative, antimigratory, and antiapop-
totic effects of BCX in different gastric cancer cells [368,369]. Likewise, this carotenoid
inhibited cell viability and induced apoptosis in HCT116 colon cancer cells [475], as well as
supressed the migration and invasion of lung cancer cells [372].

5.6.2. In Vivo Studies

Animal studies have demonstrated the chemopreventive effects of BCX in different
gastrointestinal cancers. In this regard, oral administration of BCX (5 and 10 mg/kg) for
20 days in a gastric cancer xenograft model in nude mice effectively inhibited tumor growth
and angiogenesis and induced apoptosis [369]. Similarly, this carotenoid in combination
with the chemotherapeutic drug oxaliplatin exhibited antitumor growth effects on nude
mice bearing HCT116 xenografts [475]. Another paper demonstrated that dietary BCX
for 24 weeks suppressed the progression of chemically and highly refined carbohydrate
diet-induced hepatocellular carcinoma in mice. The mechanisms underlying this effect
involved an increase in p53 acetylation, with the subsequent induction of apoptosis and
the reduction in HIF-1α and its down-stream targets, MMP-2 and MMP-9 [370].

As regards lung cancer, it has been demonstrated that dietary BCX (10 and 20 mg/kg
diet) reduced tumor size and multiplicity in a chemically induced lung cancer model via up-
regulation of the tumor suppressors SIRT-1, p53, and retinoic acid receptor-β [371]. Later,
these authors reported that pre-treatment with BCX supplementation (1 and 10 mg/kg
diet) supressed tumor promotion in a model of a nicotine-derived carcinogen-induced
lung tumorigenesis through down-regulation of nicotinic acetylcholine receptor α7, highly
involved in lung cancer development [372].

5.6.3. Human Studies

Finally, several human studies have described that high serum BCX levels were
associated with reduced risk of non-Hodgkin lymphoma [374], colon cancer [375], head
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and neck cancer [333], breast cancer [376], renal cell carcinoma [377], and lung cancer death
in current smokers [373].

6. Conclusions

Microalgae have widely drawn scientists’ attention since they are a rich source of
bioactive compounds. Their basic and cheap growth requirements make them attractive
to be used on a large scale by pharmaceutical, food, and cosmetic industries for health
promotion. Carotenoids are one of the most abundant components in microalgae and
have been shown to have significant beneficial effects for health. There are two types of
carotenoids: carotenes (hydrocabon carotenoids) and xanthophylls (oxygenate derivatives,
including ZX, ATX, FX, LUT, α- and BCX, and CX). A multitude of in vitro and in vivo
studies and some human studies have evidenced the anti-inflammatory, antioxidant, and
antitumor activities of microalgal carotenoids. In this regard, they have been reported to
have beneficial effects on many inflammatory diseases, including colitis, non-alcoholic fatty
liver, type 2 diabetes mellitus, asthma, arthritis, AMD, AD, and psoriasis, among others.
Furthermore, they have been demonstrated to exhibit chemopreventive effects in numerous
types of cancer, such as gastric, colon, liver, pancreas, skin, lung, glioblastoma, breast, and
prostate. However, further studies, including clinical trials, are required to better evaluate
the efficacy and safety of carotenoids and establish recommendations for optimal doses to
be used in the prevention and treatment of different inflammatory disorders and cancer.
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