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Abstract. In this paper, we study the stretch curvature of homogeneous Finsler man-
ifolds. First, we prove that every homogeneous Finsler metric has relatively isotropic
stretch curvature if and only if it is a Landsberg metric. It follows that every weakly
Berwald homogeneous metric has relatively isotropic stretch curvature if and only if
it is a Berwald metric. We show that a homogeneous metric of non-zero scalar flag
curvature has relatively isotropic stretch curvature if and only if it is a Riemannian
metric of constant sectional curvature. It turns out that a homogeneous (α, β)-metric
with relatively isotropic stretch curvature is a Berwald metric. Also, it follows that a
homogeneous spherically symmetric metric with relatively isotropic stretch curvature
reduces to a Riemannian metric. Finally, we prove that every homogeneous stretch-
recurrent metric is a Landsberg metric.
Keywords: Strech metric, Landsberg metric, Berwald metric, (fi; fl)-metric, homoge-
neous metric.

1. Introduction

In [7], Deng-Hou proved that the group of isometries of a Finsler manifold (M.F ),
denoted by I(M,F ), is a Lie transformation group of the underlying manifold that
can be used to study homogeneous Finsler manifolds. This important result opens
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an interesting window to generalize the concept of homogeneous Riemannian man-
ifold to homogeneous Finsler manifold. An n-dimensional Finsler manifold (M,F )
is called a homogeneous Finsler manifold if the group I(M,F ) acts transitively on
the manifold M .

A Finsler metric F on a manifold M is called a Berwald metric if its spray
coefficients Gi are quadratic in y ∈ TxM for all x ∈ M . The important described
characteristic of a Berwald space is that all its tangent spaces are linearly isometric
to a common Minkowski space. For a Landsberg space, all its tangent spaces are
isometric to a common Minkowski space. Thus every Berwald space is a Landsberg
space. However, it has been one of the longest-standing problems in Finsler geom-
etry whether there exists a Landsberg space that is not a Berwald space. In [35],
Xu-Deng conjectured that every homogeneous Landsberg space must be a Berwald
space.

In 1924, at the annual meeting of the Mathematical Society of Germany in Inns-
bruck, Berwald defined of the stretch curvature as a generalization of Landsberg
curvature and denoted it by T [3]. He published the stretch curvature in 1925 on
the first of his main papers [5]. He showed that T = 0 if and only if the length
of a vector remains unchanged under the parallel displacement along an infinites-
imal parallelogram. In his lecture at the International Congress of Mathematics,
Bologna, 1928, he introduced a series of special classes of Finsler metrics, such
as Landsberg metrics and stretch metrics [2]. He proved that for two-dimensional
stretch metrics, the total curvature (curvature integral)

∫ ∫
R
√
gdx1dx2 can be de-

fined, which means the integrand is a function of position alone, where R is the
Underhill curvature. Then, this curvature has been investigated by Shibata in [21]
and Matsumoto in [10]. Matsumoto denoted this curvature by Σ. We have the
following big picture.

{Berwald metrics} ⊆ {Landsberg metrics} ⊆ {Stretch metrics}.

Let (M,F ) be a Finsler manifold. Then F is called a relatively isotropic stretch
metric if its stretch curvature is given by

Σijkl = cF (Cijk|l − Cijl|k),(1.1)

where c = c(x) is a scalar function on M , and “|” denotes the horizontal covariant
derivative with respect to the Berwald connection of F . In this case, (M,F ) is
called a relatively isotropic stretch manifold.

Example 1.1. A Finsler metric F satisfying Fxk = FFyk is called a Funk metric. The
standard Funk metric on the Euclidean unit ball Bn(1) is defined by

F (x, y) :=

√
|y|2 − (|x|2|y|2− < x, y >2)

1− |x|2 +
< x, y >

1− |x|2 , y ∈ TxBn(1) ' Rn,(1.2)

where <,> and |.| denote the Euclidean inner product and norm on Rn, respectively. It
follows from Gi = 1

2
Fyi that F satisfies (1.1) with c = −1.
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Example 1.2. For y ∈ TxBn(1) ' Rn, let us define

Fa(x, y) :=

√
|y|2 − (|x|2|y|2− < x, y >2)

1− |x|2 +
< x, y >

1− |x|2 +
< a, y >

1+ < a, x >
,(1.3)

where a ∈ Rn is a constant vector with |a| < 1. For a 6= 0, it is easy to see that Fa is
a locally projectively flat Finsler metric with negative constant flag curvature. It follows
that F is a relatively isotropic stretch metric with c = −1.

In this paper, we prove the following.

Theorem 1.1. Every homogeneous Finsler metric on a manifold M has relatively
isotropic stretch curvature if and only if it is a Landsberg metric.

In [27], Tayebi-Najafi proved that every homogeneous Landsberg surface is Rieman-
nian or locally Minkowskian spaces. Then by Theorem 1.1, we conclude that every
homogeneous Finsler surface of relatively isotropic stretch curvature is Riemannian
or locally Minkowskian spaces.

There is another important quantity defined by the spray of a Finsler metric
F . Taking a trace of Berwald curvature implies the mean Berwald curvature E. A
Finsler metric F is said to be weakly Berwaldian if E = 0.

Corollary 1.1. Every weakly Berwald homogeneous Finsler metric on a manifold
M has relatively isotropic stretch curvature if and only if it is a Berwald metric.

Douglas curvature is a non-Riemannian projectively invariant constructed from
the Berwald curvature. The notion of Douglas curvature was proposed by Bácsó-
Matsumoto as a generalization of Berwald curvature [1]. The Douglas curvature
vanishes for Riemannian spaces; therefore, it plays a prominent role only outside
the Riemannian world. Finsler metrics with D = 0 are called Douglas metrics.

Corollary 1.2. Every Douglas homogeneous Finsler metric on a manifold M has
relatively isotropic stretch curvature if and only if it is a Berwald metric.

The flag curvature in Finsler geometry is a natural extension of the sectional
curvature in Riemannian geometry, first introduced by L. Berwald [2][5]. For a
Finsler manifold (M,F ), the flag curvature is a function K(P, y) of tangent planes
P ⊂ TxM and directions y ∈ P . A Finsler metric F is said to be of scalar flag cur-
vature if the flag curvature K(P, y) = K(x, y) is independent of flags P associated
with any fixed flagpole y. Finsler metrics of scalar flag curvature are the natural ex-
tension of Riemannian metrics of isotropic sectional curvature (of constant sectional
curvature in dimension n ≥ 3 by the Schur Lemma). One of the central problems
in Finsler geometry is to characterize Finsler manifolds of scalar flag curvature.
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Corollary 1.3. Let (M,F ) be a homogeneous Finsler metric of dimension n ≥ 3.
Suppose that F has non-zero scalar flag curvature. Then F has relatively isotropic
stretch curvature if and only if it is a Riemannian metric of constant sectional
curvature.

An (α, β)-metric is a Finsler metric on M defined by F := αφ(s), where s =
β/α, φ = φ(s) is a C∞ function on the (−b0, b0) with a certain regularity, α =√
aij(x)yiyj is a Riemannian metric, and β = bi(x)yi is a 1-form on M (see [26],

[31] and [32]).

Corollary 1.4. Every homogeneous (α, β)-metric on a manifold M has relatively
isotropic stretch curvature if and only if it is a Berwald metric.

A Finsler metric F = F (x, y) on a domain Ω ⊆ Rn is called spherically symmet-
ric metric if it is invariant under any rotation in Rn. Indeed, the class of spherically
symmetric metrics in the Finsler setting was first introduced by S.F. Rutz, who
studied the spherically symmetric Finsler metrics in 4-dimensional space-time and
generalized the classic Birkhoff theorem in general relativity to the Finsler case
[17]. According to the equation of Killing fields, there exists a positive function φ
depending on two variables so that F can be written as

F = |y|φ
(
|x|, 〈x, y〉

|y|

)
,

where x is a point in the domain Ω, y is a tangent vector at the point x. There
are classical Finsler metrics which are spherically symmetric, such as Funk metric,
Berwald’s metric, Bryant’s metric, etc, (see [14] for more details). .

Corollary 1.5. Every homogeneous spherically symmetric Finsler metric on a
manifold M has relatively isotropic stretch curvature if and only if it is a Rie-
mannian metric.

A homogeneous Finsler manifold (M,F ) is said to be stretch-recurrent or Σ-
recurrent if its stretch curvature satisfies following

Σijkl|sy
s = ΨΣijkl,(1.4)

where Ψ is a non-zero smooth function on TM0 satisfying Ψ(x, ty) = tΨ(x, y) for
all positive real number t and (x, y) ∈ TM0. It is easy to see that every stretch
metric and then Landsberg metric is a Σ-recurrent metric. However, the converse
is not valid in general. Here, we prove that every homogeneous Σ-recurrent Finsler
metric is a Landsberg metric.

Theorem 1.2. Any homogeneous Σ-recurrent metric is a Landsberg metric.



On the Stretch Curvature of Homogeneous Finsler Metrics 1147

2. Preliminaries

Let (M,F ) be an n-dimensional Finsler manifold. The fundamental tensor gy :
TxM × TxM → R of F is defined by following

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s,t=0, u, v ∈ TxM.

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, define
Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
|t=0, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0
is called the Cartan torsion.

Given a Finsler manifold (M,F ), then a global vector field G is induced by F
on TM0, which in a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where Gi = Gi(x, y) are scalar functions on TM0 given by

Gi :=
1

4
gij

{
∂2[F 2]

∂xk∂yj
yk − ∂[F 2]

∂xj

}
, y ∈ TxM.(2.1)

The G is called the spray associated to (M,F ).

For a non-zero vector y ∈ TxM0, define By : TxM × TxM × TxM → TxM by
By(u, v, w) := Bijkl(y)ujvkwl ∂

∂xi |x where

Bijkl :=
∂3Gi

∂yj∂yk∂yl
.

The quantity B is called the Berwald curvature. F is called a Berwald metric if
B = 0.

Define the mean of Berwald curvature by Ey : TxM ⊗ TxM → R, where

Ey(u, v) :=
1

2

n∑
i=1

gij(y)gy

(
By(u, v, ei), ej

)
.(2.2)

The family E = {Ey}y∈TM\{0} is called the mean Berwald curvature or E-curvature.
In local coordinates, Ey(u, v) := Eij(y)uivj , where

Eij :=
1

2
Bmmij .
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By definition, Ey(u, v) is symmetric in u and v and we have Ey(y, v) = 0. The
quantity E is called the mean Berwald curvature. F is called a weakly Berwald
metric if E = 0.

For non-zero vector y ∈ TxM0, define Dy : TxM × TxM × TxM → TxM by
Dy(u, v, w) := Di

jkl(y)uivjwk ∂
∂xi |x, where

Di
jkl :=

∂3

∂yj∂yk∂yl

[
Gi − 2

n+ 1

∂Gm

∂ym
yi
]
.(2.3)

D is called the Douglas curvature. F is called a Douglas metric if D = 0 [1]. By
definition, it follows that the Douglas tensor Dy is symmetric trilinear form and
has the following properties

Dy(y, u, v) = 0, trace(Dy) = 0.

According to (2.3), the Douglas tensor can be written as follows

Di
jkl = Bijkl −

2

n+ 1

{
Ejkδ

i
l + Eklδ

i
j + Eljδ

i
k + Ejk,ly

i
}
.

For y ∈ TxM , define the Landsberg curvature Ly : TxM × TxM × TxM → R by

Ly(u, v, w) := −1

2
gy
(
By(u, v, w), y

)
.

F is called a Landsberg metric if Ly = 0. By definition, every Berwald metric is a
Landsberg metric.

For y ∈ TxM0, define the stretch curvature Σy : TxM×TxM×TxM×TxM → R
by Σy(u, v, w, z) := Σijkl(y)uivjwkzl, where

Σijkl := 2(Lijk|l − Lijl|k),(2.4)

and “|” denotes the horizontal derivation with respect to the Berwald connection
of F . A Finsler metric is said to be a stretch metric if Σ = 0.

The second variation of geodesics gives rise to a family of linear maps Ry :
TxM → TxM with homogeneity Rλy = λ2Ry, ∀λ > 0 which is defined by

Ry(u) := Rik(y)uk
∂

∂xi
,

where

Rik(y) = 2
∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj

∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

Ry is called the Riemann curvature in the direction y.
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For a flag P := span{y, u} ⊂ TxM with flagpole y, the flag curvature K =
K(P, y) is defined by

K(x, y, P ) :=
gy
(
u,Ry(u)

)
gy(y, y)gy(u, u)− gy(y, u)2

.(2.5)

The flag curvature K(x, y, P ) is a function of tangent planes P = span{y, v} ⊂ TxM .
A Finsler metric F is of scalar flag curvature if K = K(x, y) is independent of flag
P (see [23], [24] and [25]).

3. Proof of Theorem 1.1

Every two points of a homogeneous Finsler manifold map to each other by an
isometry. Then, the norm of arbitrary tensor of a homogeneous Finsler manifold
is a constant function on the underlying manifold. Thus the norm of an arbitrary
tensor of a homogeneous Finsler space is bounded. This fact is proved in [28].

Lemma 3.1. ([28]) Let (M,F ) be a homogeneous Finsler manifold. Then the
norm of an arbitrary tensor of F which is invariant under every isometry of F is
bounded.

We define the norm of the Landsberg curvature at x ∈M by

‖L‖x := sup
y,u,v,w∈TxM\{0}

F (y)|Ly(u, v, w)|√
gy(u, u)gy(v, v)gy(w,w)

.

We showed that the Landsberg curvature of homogeneous Finsler metric F is
bounded.

Lemma 3.2. ([28]) Let (M,F ) be a homogeneous Finsler manifold. Then the
Landsberg curvature of F is bounded.

In order to prove Theorem 1.1, we need the following.

Theorem 3.1. ([29]) Homogeneous Finsler manifolds are complete.

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1: Let p be an arbitrary point of manifold M , and y, u, v, w ∈
TpM . Let c : (−∞,∞)→M is the unit speed geodesic passing from p and

dc

dt
(0) = y.
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If U(t), V (t) and W (t) are the parallel vector fields along c with

U(0) = u, V (0) = v W (0) = w.

Let us put

L(t) = L
(
U(t), V (t),W (t)

)
,

L′(t) = L′
ċ

(
U(t), V (t),W (t)

)
.

Contracting (1.1) with yl implies that

Lijk|ly
l = cFCijl|ky

l.(3.1)

By definition, we have
Lijk = Cijl|ky

l.(3.2)

From (3.1) and (3.2), we have

Lijk|ly
l = cFLijk.(3.3)

According to the definition, (3.3) yields the following ODE

L′(t) = cL(t),(3.4)

which its general solution is
L(t) = ectL(0).(3.5)

Using ||L|| <∞, and letting t→ +∞ or t→ −∞, we get

L(0) = L(u, v, w) = 0.

So L = 0, i.e., (M,F ) is a Landsberg manifold.

Proof of Corollary 1.1: In [6], Crampin showed that every Landsberg metric
with vanishing mean Berwald curvature is a Berwald metric. Then by Theorem
1.1, we get the proof.

Proof of Corollary 1.2: Let (M,F ) be a Douglas manifold of dimension n. Sup-
pose that F has vanishing Landsberg curvature. In [4], Berwald proved that every
2-dimensional Douglas metric with vanishing Landsberg curvature is a Berwald
metric. In 1984, Izumi pointed out that the Berwald theorem must be true for the
higher dimensions [8]. In [1], Bácsó-Matsumoto proved that every Douglas metric
with vanishing Landsberg curvature is a Berwald metric. Then by Theorem 1.1, we
get the proof.

Proof of Corollary 1.3: According to by Theorem 1.1, F is a Landsberg metric. In
[16], Numata proved that every Landsberg metric of non-zero scalar flag curvature is
a Riemannian metric of constant sectional curvature. This completes the proof.
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Proof of Corollary 1.4: In [19], Shen proved that an (α, β)-metric with vanish-
ing Landsberg curvature is a Berwald metric. Then by Theorem 1.1, we get the
proof.

Proof of Corollary 1.5: In [14], Mo-Zhou classified the spherically symmetric
Finsler metrics in Rn with Landsberg type and found some exceptional almost
regular metrics which do not belong to Berwald type. They proved that every
regular spherically symmetric Finsler metric in Rn is a Berwald metric. Then they
proved that all of Berwaldian spherically symmetric Finsler metrics are Riemannian.
Then by Theorem 1.1, we get the proof.

4. Stretch-Recurrent Homogeneous Metrics

In this section, we are going to prove Theorem 1.2.

Proof of Theorem 1.2: We know that (M,F ) is homogeneous, and the scalar
function Ψ is invariant under the isometries of F . In general, if a continuous func-
tion f : TM0 → R is invariant under isometries of (M,F ) and also is positively
homogeneous of degree zero with respect to directions, then f is a bounded func-
tion. Thus, f := Ψ/F is bounded and, by definition, is everywhere non-zero. Since
M is connected, the range of Ψ/F is an interval, say (c1, c2) ⊆ R, which does not
contain zero. Without loss of generality, suppose that c1 > 0. Thus, we have

c1F (x, y) ≤ Ψ(x, y) ≤ c2F (x, y), ∀(x, y) ∈ TM0.(4.1)

For y ∈ TxM , let c = c(t) be the unit speed geodesic of (M,F ) with ċ(0) = y and
c(0) = x. Suppose X = X(t), Y = Y (t), Z = Z(t) and W = W (t) are parallel
vector fields along the geodesic c. Define Σ(t) as follows

Σ(t) = Σċ

(
X(t), Y (t), Z(t),W (t)

)
.(4.2)

Thus, the restriction of (1.4) to the canonical lift of c, i.e., (c, ċ) becomes

Σ′(t) = Ψ(t)Σ(t).(4.3)

For simplicity, we have used the following nomination:

Ψ(t) := Ψ
(
c(t), ċ(t)

)
.

By (4.3), we get

Σ(t) = e
∫ t
0

Ψ(s) ds Σ(0)(4.4)

It follows from (4.1) and F (c(t), ċ(t)) = 1 that

ec1 t ≤ e
∫ t
0

Ψ(s) ds ≤ ec2 t, ∀t > 0.(4.5)
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The stretch tensor of any homogeneous metric is a bounded tensor. Let Σ(0) 6=
0. By Theorem 3.1, M is complete, and the parameter t takes all the values in
(−∞,+∞). Letting t → ∞, we conclude that the norm of Σ(t) is unbounded
which arises a contradiction. Therefore, we get

Σ(0) = 0,

and F reduces to a stretch metric. On the other hand, in [28] it is proved that every
homogenous stretch metric is a Landsberg metric. This completes the proof.
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