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1. Introduction

The generalized hypergeometric function with p numeratorial and q denomina-
torial parameters is defined by (see [8, p. 73])

pFq

[
α1, . . . , αp

β1, . . . , βq
; z

]
= pFq [α1, . . . , αp;β1, . . . , βq ; z](1.1)

=

∞∑
n=0

(α1)n . . . (αp)n
(β1)n . . . (βq)n

zn

n!
,

where (α)n denotes the Pochhammer symbol (or the shifted factorial,
since (1)n = n!) defined for any complex number α by

(α)n =
Γ(α+ n)

Γ(α)
=

{
α(α+ 1) · · · (α+ n− 1), n ∈ N = {1, 2, . . .},

1, n = 0.

When q = p this series converges for all |x| < ∞, but when q = p − 1 convergence
occurs when |x| < 1 (unless the series terminates).

It should be remarked here that whenever hypergeometric and generalized hy-
pergeometric functions can be summed in terms of Gamma functions, the results
are very important from the application points of view. It should also be noted
that summation formulas for pFq are known for only very restricted arguments and
parameters, for example Gauss’ two summation theorems, Kummer’s summation
theorems for the series 2F1, and Dixon’s, Watson’s, Whipple’s and Saalschütz’s sum-
mation theorems for the series 3F2, and others, play an important role in the theory
of hypergeometric and generalized hypergeometric functions. The function pFq(z)
has been extensively studied by many authors such as Slater [9] and Exton [2].

By applying various known summation theorems to a general formula based
upon Bailey’s transformation theorem given in Slater [9] (and re-derived by Kim
et al. [4] and written in corrected form), Exton [3] obtained as a special case
numerous new general transformation formulas involving hypergeometric functions
of order two and of higher order. One of his result is the following transformation
formula
(1.2)(

2

1 +
√

1− x

)2d−1

2F1

[
2d− 1, d− 1

2

d+ 1
2

;
x(

x+
√

1− x
)2
]

= 2F1

[
d− 1

2 , d

d+ 1
2

;x

]

provided |x| < 1 and ∣∣∣∣∣ x(
x+
√

1− x
)2
∣∣∣∣∣ < 1.

It is interesting to mention here the very recently Milovanović and Rathie [6] estab-
lished the generalization of (1.2) by obtaining the following two master formulas for
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each i ∈ N0 viz.( 2

1 +
√

1− x

)2d−1
2F1

[
2d+ i− 1, d− 1

2

d+ 1
2

;
x(

x+
√

1− x
)2
]

(1.3)

= 2−i
i∑

r=0

(
i

r

)
2F1

[
d− 1

2 , d+ 1
2r

d+ 1
2

;x

]
and (

2

1 +
√

1− x

)2d−1

2F1

[
2d− i− 1, d− 1

2

d+ 1
2

;
x(

x+
√

1− x
)2
]

(1.4)

=
(−2)i

Γ(i+ 1)

i∑
r=0

(−1)r
(
i

r

)
Γ
(
d+ 1

2r
)

Γ
(
d− i+ 1

2r
) 3F2

[
1, d− 1

2 , d+ 1
2r

i+ 1, d+ 1
2

;x

]
.

Moreover, special cases of the results (1.3) and (1.4) for i = 0, 1, 2, 3, 4, 5 are
obtained by Pogany and Rathie [7]. In fact, in our present investigation, we shall
be concerned with the following interesting transformation formula(

1

2
+

1

2

√
1− x

)1−2d

3F2

[
2d− 1, b, d− 1

2

2d− b, d+ 1
2

; − x

(1 +
√

1− x)2

]
(1.5)

= 3F2

[
d− 1

2 , d, d− b+ 1
2

2d− b, d+ 1
2

; x

]
,

which is valid for |x| < 1 and ∣∣∣∣ x

(1 +
√

1− x)2

∣∣∣∣ < 1.

Moreover, Exton [3] deduced (1.5) from the following more general transforma-
tion formula(

1

2
+

1

2

√
1− x

)1−2d

A+1FH+1

[
(a), d− 1

2

(h), d+ 1
2

;
xy

(1 +
√

1− x)2

]
(1.6)

=

∞∑
m=0

(d− 1
2 )m(d)m

(2d)mm!
xmA+1FH+1

[
(a), −m

(h), 2d+m
; y

]
,

which is valid for |y| < 1 and ∣∣∣∣ xy

(1 +
√

1− x)2

∣∣∣∣ < 1.



930 Y. S. Kim, G. V. Milovanović, A. K. Rathie, and R. B. Paris

Here, the symbol (h) is a convenient contraction for the sequence of parameters h1,
h2, . . . , hH and the Pochhammer symbol (h)n is defined above.

The aim of this paper is to obtain the following generalization of (1.5) in the
form

(1.7)

(
1

2
+

1

2

√
1− x

)1−2d

3F2

[
b, d− 1

2 , 2d− 1− i

d+ 1
2 , 2d− b+ j

; − x

(1 +
√

1− x)2

]

for integer i satisfying −3 ≤ i ≤ 3 and j = 0, 1, 2, 3. For this, we will require the
following generalization of Dixon’s theorem for the sum of a 3F2 of unit argument
obtained earlier by Lavoie et al. [5],

3F2

[
a, b, c

1 + a− b+ i, 1 + a− c+ i+ j
; 1

]
= 2−2c+i+jCi,j(1.8)

×

{
Ai,j

Γ( 1
2a− c+ 1

2 + [ i+j+1
2 ])Γ( 1

2a− b− c+ 1 + i+ [ j+1
2 ])

Γ( 1
2a+ 1

2 )Γ( 1
2a− b+ 1 + [ 12 i])

+Bi,j

Γ( 1
2a− c+ 1 + [ i+j

2 ])Γ( 1
2a− b− c+ 3

2 + i+ [ j2 ])

Γ( 1
2a)Γ( 1

2a− b+ 1
2 + [ i+1

2 ])

}
,
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Table 1.1: Values of the coefficients Ai,j

i\j 0 1 2 3

3
5a− b2 + (a+ 1)2

−(2a− b+ 1)(b+ c)
— — —

2

1
2 (a− 1)(a− 4)

−(b2 − 5a+ 1)

−(a− b+ 1)(b+ c)

(b− 1)(b− 2)

−(a− b+ 1)(a− b− c+ 3)

1
2 (a− c+ 2)(a− 2b− c+ 5)

×{(a− c+ 2)(a− 2b+ 2)

−a(c− 3)}
−(b− 1)(b− 2)(c− 2)(c− 3)

—

1 1 c− a− 1
a(a− 1)

+(b+ c− 3)(c− 2a− 1)
—

0 1 −1
1
2 {(a− b− c+ 1)2

+(c− 1)(c− 3)− b2 + a}

c(a− b− c+ 4)

−(a+ 1)(a+ 2)

−(a− 1)(b− 1) + 3ab

−1 1 1 b+ c− 1
(c− 1)(c− 2)

−b(a− c+ 1)

−2
1
2 (a− 1)(a− 2b− 2)

−c(a− b− 1)
a− b− 1

1
2 (a− 1)(a− 2b− 2c)

+b(b+ c)

(a− b− 1)(c− 1)

−b(b+ 1)

−3

(a− 1)

×(a− 2b− 2c− 4)

+bc

(a− b− 2)

×(a− c− 1)

−ac

(a− b− 1)

×(a− b− 2c− 2)

−bc

b(b+ 1)

+(a− 1)(a− b)
−c(2a− b− 2)
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Table 1.2: Values of the coefficients Bi,j

i\j 0 1 2 3

3
−a+ 3b2 − (a+ 3)2

+(2a− 3b+ 5)(b+ c)
— — —

2 −2

(a− b− 2c+ 5)

×(a− b− c+ 3)

−(b− 1)(b− 2)

−2(a− c+ 2)

×(a− 2b− c+ 5)
—

1 −1 a− 2b− c+ 3

(b− 1)(b− c+ 1)

−(a− b− c+ 2)

×(a− b− c+ 3)

—

0 0 1 −2
(a+ 2)(a+ 4)− b(2a+ 5)

−3c(a− b− c+ 4) + 3

−1 1 1 −(b− c+ 1)
(c− 1(c− 2)

+b(a− 2b− c+ 1)

−2 2 a− b− 2c− 1 2

b(a− 2c+ 2)

−(b− c+ 1)

×(a− b− 2c+ 1)

−3

(a− 2)

×(a− 2b− 2c− 3)

+3bc

(a− b− 2)(a− 2b− 2c− 3)

+bc

(a− b− 2)

×(a− b− 2c− 1)

+bc

(a− 1)(a− 2)

−3b(a− b− 2)

−c(2a− 3b− 4)
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where

Ci,j =
Γ(1 + a− b+ i)Γ(1 + a− c+ i+ j)Γ

(
b− 1

2 i−
1
2 |i|
)
Γ
(
c− 1

2 (i+ j + |i+ j|)
)

Γ(a− 2c+ i+ j + 1)Γ(a− b− c+ i+ j + 1)Γ(b)Γ(c)
,

provided Re(a− 2b− 2c) > −2− 2i− j with −3 ≤ i ≤ 3 and j = 0, 1, 2, 3.

Here and in what follows, [x] is the greatest integer less than or equal to x and
|x| denotes the usual absolute value of x. The coefficients Ai,j and Bi,j are given
in Tables 1.1 and 1.2.

Also, if fi,j denotes the 3F2(1) series on the left-hand side of (1.8), the natural
symmetry

fi,j(a, b, c) = fi+j,−j(a, c, b)

makes it possible to extend the result to j = −1,−2,−3.

Several interesting cases, including Exton’s result, are then deduced as special
cases of our main findings. In addition to this, certain known results obtained
recently by Pogány and Rathie [7] have also obtained as a limiting case of our main
findings. The results derived in this paper are easily established and may be of
general interest.

2. Extension of Exton’s Quadratic Transformation

Here we establish a natural extension of the Exton transformation (1.5) given by
the following theorem.

Theorem 2.1. In the domain D defined by the connected subset

D =

{
x ∈ C

∣∣∣ |x| < 1 ∧
∣∣∣∣ x

(1 +
√

1− x)2

∣∣∣∣ < 1

}
,

the following identities(1

2
+

1

2

√
1− x

)1−2d
3F2

[
b, d− 1

2 , 2d− 1− i

d+ 1
2 , 2d− b+ j

; − x

(1 +
√

1− x)2

]
(2.1)

=
2i(−1)

1
2 (i+|i|)Γ(d)Γ(d+ 1

2 )Γ(b− 1
2 (i+ j + |i+ j|))

Γ(b)Γ(d− b+ 1
2j)Γ(d− b+ 1

2j + 1
2 )

Qi,j(x; b, d),

where

Qi,j(x; b, d) =

∞∑
n=0

n!

(n+ 1
2 i+ 1

2 |i|)!
(d)n(d− 1

2 )n

(2d− b+ j)n

xn

n!

×

{
Ai,j

Γ(d− b− i
2 + [ i+j+1

2 ])Γ(d− b+ i
2 + 1

2 + [ j+1
2 ])

Γ(d− i
2 )Γ(d+ 1

2 −
i
2 + [ i2 ])

(d− b+ i
2 + 1

2 + [ j+1
2 ])n

(d+ 1
2 −

i
2 + [ i2 ])n

+ Bi,j

Γ(d− b+ 1
2 −

i
2 + [ i+j

2 ])Γ(d− b+ i
2 + 1 + [ j2 ])

Γ(d− i
2 −

1
2 )Γ(d− i

2 + [ i+1
2 ])

(d− b+ i
2 + 1 + [ j2 ])n

(d− i
2 + [ i+1

2 ])n

}
,
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hold for integer i satisfying −3 ≤ i ≤ 3 and j = 0, 1, 2, 3. As usual [x] denotes
the greatest integer less than or equal to x and its modulus is denoted by |x|. The
coefficients Ai,j and Bi,j can be obtained from the values of Ai,j and Bi,j in Tables
1.1 and 1.2 by changing a to 2d− 1− i, b to −n and c to b, respectively.

Proof. We first derive Exton’s result (1.6) in an alternative way. Let S denote the
left-hand side of (1.3) and express A+1FH+1 as a series so that

S =

∞∑
n=0

(−1)n ((a))n (d− 1
2 )n x

n yn

((h))n (d+ 1
2 )n 22n n!

(
1

2
+

1

2

√
1− x

)1−2(d+n)

.

Use of the well-known result [8, p. 34](
1

2
+

1

2

√
1− x

)1−2a

= 2F1

[
a− 1

2 , a
2a

; x

]
,

then enables S to be rewritten in the form

S =

∞∑
n=0

(−1)n ((a))n (d− 1
2 )n x

n yn

((h))n (d+ 1
2 )n 22n n!

2F1

[
d+ n− 1

2 , d+ n
2d+ 2n

; x

]
.

Expressing 2F1 as a series, we then obtain

S =

∞∑
n=0

∞∑
m=0

(−1)n ((a))n (d− 1
2 )n (d+ n− 1

2 )m (d+ n)m xn+m yn

((h))n (d+ 1
2 )n (2d+ 2n)m 22n n!m!

.

Changing m to m− n and using the following identities [8, p. 57, Eq. (8)]

∞∑
n=0

∞∑
k=0

A(k, n) =

∞∑
n=0

n∑
k=0

A(k, n− k)

and

(α+ k)n−k =
(α)n
(α)k

, (n− k)! =
(−1)k n!

(−n)k
,

we find after some simplification that

S =
∞∑

m=0

(d− 1
2 )m(d)mx

m

(2d)mm!

m∑
n=0

((a))n(−m)ny
n

((h))n(2d+m)nn!
.

Finally, summing the inner series as a hypergeometric series, we easily arrive at
the right-hand side of (1.6). This completes our proof of (1.6).

Now we are ready to derive our main result (2.1). For this, if we put A = 2,
H = 1, a1 = 2d− 1− i, a2 = b, h1 = 2d− b− j and y = 1 in (1.6), we obtain(

1

2
+

1

2

√
1− x

)1−2d

3F2

[
2d− 1− i, b, d− 1

2

2d− b+ j, d+ 1
2

; − x

(1 +
√

1− x)2

]
(2.2)

=

∞∑
n=0

(d− 1
2 )n(d)nx

n

(2d)nn!
3F2

[
2d− 1− i, b, −n

2d− b+ j, 2d+ n
; 1

]
.
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It is now easy to see that the 3F2 on the right-hand side of (2.2) can be evaluated
with the help of the generalized Dixon summation theorem in (1.8) by replacing a
by 2d−1− i, b by −n and c by b. Then, after a little simplification, we easily arrive
at the right-hand side of (2.1). This completes the proof of (2.1).

3. Special Cases

By assigning values to i and j in our main result (2.1), we can obtain a large
number of interesting and useful results. However, we shall mention here only a few
of them. All these transformations hold in a domain D defined by the connected
subset

D =
{
x ∈ C

∣∣∣ |x| < 1,

∣∣∣∣ x

(1 +
√

1− x)2

∣∣∣∣ < 1
}
.

For i = 0 and j = 0 in (2.1), we obtain(
1

2
+

1

2

√
1− x

)1−2d

3F2

[
2d− 1, b, d− 1

2

2d− b, d+ 1
2

; − x

(1 +
√

1− x)2

]
(3.1)

= 3F2

[
d− 1

2 , d, d− b+ 1
2

2d− b, d+ 1
2

; x

]
,

which is the result stated in (1.2).

For i = 0 and j = 1 in (2.1), we obtain(
1

2
+

1

2

√
1− x

)1−2d

3F2

[
2d− 1, b, d− 1

2

2d− b+ 1, d+ 1
2

; − x

(1 +
√

1− x)2

]
(3.2)

=
2d− 2b+ 1

2(1− b) 3F2

[
d− 1

2 , d, d− b+ 3
2

2d− b+ 1, d+ 1
2

; x

]

− 2d− 1

2(1− b) 2F1

[
d− 1

2 , d− b+ 1

2d− b+ 1
; x

]
.

For i = 1 and j = 0 in (2.1), we obtain(
1

2
+

1

2

√
1− x

)1−2d

3F2

[
2d− 2, b, d− 1

2

2d− b, d+ 1
2

; − x

(1 +
√

1− x)2

]
(3.3)

=
(2d− 1)(d− b)

(1− b) 3F2

[
d− 1

2 , d− b+ 1, 1

2d− b, 2
; x

]

− (d− 1)(2d− 2b+ 1)

(1− b) 4F3

[
d, d− 1

2 , d− b+ 3
2 , 1

2d− b, d+ 1
2 , 2

; x

]
.
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For i = 1 and j = 1 in (2.1), we obtain(
1

2
+

1

2

√
1− x

)1−2d

3F2

[
2d− 2, b, d− 1

2

2d− b+ 1, d+ 1
2

; − x

(1 +
√

1− x)2

]
(3.4)

= A(b, d) 3F2

[
d− 1

2 , d− b+ 2, 1

2d− b+ 1, 2
; x

]

−B(b, d) 5F4

[
d− 1

2 , d, d− b+ 3
2 , d−

1
2b+ 3

2 , 1

2d− b+ 1, d+ 1
2 , d−

1
2b+ 1

2 , 2
; x

]
,

where

A(b, d) =
(2d− 1)(d− b+ 1)(2d− b− 1)

(b− 1)(b− 2)

and

B(b, d) =
(d− 1)(2d− b+ 1)(2d− 2b+ 1)

(b− 1)(b− 2)
.

For i = −1 and j = 0 in (2.1), we obtain(
1

2
+

1

2

√
1− x

)1−2d

3F2

[
2d, b, d− 1

2

2d− b, d+ 1
2

; − x

(1 +
√

1− x)2

]
(3.5)

=
1

2
2F1

[
d− 1

2 , d− b
2d− b ; x

]
+

1

2
3F2

[
d, d− 1

2 , d− b+ 1
2

2d− b, d+ 1
2

; x

]
.

For i = −1 and j = 1 in (2.1), we obtain(
1

2
+

1

2

√
1− x

)1−2d

3F2

[
2d, b, d− 1

2

2d− b+ 1, d+ 1
2

; − x

(1 +
√

1− x)2

]
(3.6)

=
1

2
2F1

[
d− 1

2 , d− b+ 1
2d− b+ 1

; x

]
+

1

2
3F2

[
d, d− 1

2 , d− b+ 1
2

2d− b+ 1, d+ 1
2

; x

]
.

For i = −2 and j = 1 in (2.1), we obtain(
1

2
+

1

2

√
1− x

)1−2d

3F2

[
2d+ 1, b, d− 1

2

2d− b+ 1, d+ 1
2

; − x

(1 +
√

1− x)2

]
(3.7)

=
1

2
4F3

[
d, d− 1

2 , 2d+ 1, d− b+ 1
2

2d, d+ 1
2 , 2d− b+ 1

; x

]

+
1

2
3F2

[
d− b, d− 1

2 , 2d− 2b+ 1

2d− b+ 1, 2d− 2b
; x

]
.

Similarly other results can also be obtained.
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4. Interesting Limiting Cases

Here we mention some of the interesting limiting cases of our results. All these
transformations hold in the domain D defined by the connected subset

D =

{
x ∈ C

∣∣∣ |x| < 1,

∣∣∣∣ x

(1 +
√

1− x)2

∣∣∣∣ < 1

}
.

If we let b→∞ in (3.1) or (3.2), we obtain the following result:(
1

2
+

1

2

√
1− x

)1−2d

2F1

[
2d− 1, d− 1

2

d+ 1
2

;
x

(1 +
√

1− x)2

]
(4.1)

= 2F1

[
d− 1

2 , d

d+ 1
2

; x

]
.

If we let b→∞ in (3.3) or (3.4), we obtain the following result:(
1

2
+

1

2

√
1− x

)1−2d

2F1

[
2d− 2, d− 1

2

d+ 1
2

;
x

(1 +
√

1− x)2

]
(4.2)

= (2d− 1) 2F1

[
d− 1

2 , 1

2
; x

]
− 2(d− 1) 3F2

[
d− 1

2 , d, 1

d+ 1
2 , 2

; x

]
.

If we let b→∞ in (3.5) or (3.6), we obtain the following result:(
1

2
+

1

2

√
1− x

)1−2d

2F1

[
2d, d− 1

2

d+ 1
2

;
x

(1 +
√

1− x)2

]
(4.3)

=
1

2
1F0

[
d− 1

2

−
; x

]
+

1

2
2F1

[
d− 1

2 , d

d+ 1
2

; x

]
.

If we let b→∞ in (3.7), we obtain the following result:(
1

2
+

1

2

√
1− x

)1−2d

2F1

[
2d+ 1, d− 1

2

d+ 1
2

;
x

(1 +
√

1− x)2

]
(4.4)

=
1

2
1F0

[
d− 1

2

−
; x

]
+

1

2
3F2

[
d− 1

2 , d, 2d+ 1

d+ 1
2 , 2d

; x

]
.

We remark that the result (4.1) was obtained by Choi and Rathie [1], whereas
the results (4.2)–(4.4) were obtained by Pogány and Rathie [7] using a generalization
of Kummer’s summation theorem. For a remark on the Exton result [3], see the
paper by Choi and Rathie [1].
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