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Abstract. In this work we propose an unbiased estimator for a multiple linear re-
gression model of the CAPM in the presence of multicollinearity in the explanatory
variables. Multicollinearity is a common problem in empirical Econometrics. The ex-
isting methods so far have not dealt with cases of perfect multicollinearity. This new
optimization method that belongs to the class of unbiased estimators is suitable for
cases with strong or perfect multicollinearity, imposes restrictions of the minimizing
matrix and produces small standard errors for the estimated parameters. First, we
presented the theoretical background of our approach and next we derive an expression
for the covariance matrix of estimated coefficients. As an example, we have estimated
the basic linear regression model on Apple Inc expected stock returns and we have
examined multivariate extensions of this model in the special case of multicollinearity
using the proposed method.
Keywords CAPM, Data multicollinearity, Moore-Penrose inverse, MDLUE, Multiple
linear regression.

1. Introduction

Multicollinearity is a problem that occurs when we estimate linear or general-
ized linear models and the independent variables in the regression model are highly
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Corresponding Author: Dimitrios Pappas, Department of Economics, National and Kapodistrian
University of Athens, 1 Sofokleous Str, 10559 Athens, Greece | E-mail: dipappas@econ.uoa.gr
2010 Mathematics Subject Classification. Primary 15A09; Secondary 15A10,62P05,62J05
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correlated to each other. This situation has as a result unstable estimates of the
regression coefficients. The coefficients of the model become very sensitive to small
changes in the model. Also, multicollinearity reduces the precision of the estimate
coefficients ([1]). In our work we concentrate in cases where we have strong or per-
fect collinearity between explanatory variables, this means for values of correlation
greater than 0.9.

The Capital Asset Pricing Model (CAPM) was introduced by [24] and [15] based
on the the work of Markowitz on modern portfolio theory ([17], [16]). The CAPM
describes the relationship between expected return and systematic risk for stocks.
It is also widely used for pricing risky securities and generating expected returns
for assets given the risk of those assets and the cost of the capital. The formula for
calculating the CAPM is

(1.1) E(Ri) = Rf + βi(E(Rm)−Rf )

or else

(1.2) Ri = αi + βiRm + εi

where E(Ri) is the expected return of the investment, Rf is the risk-free rate, βi is
the systematic risk given by

(1.3) βi =
cov(Ri, Rm)

σ2(Rm)
,

and E(Rm) is the expected return of market. The quantity E(Rm) − Rf is the
market risk premium. In equation (2), Ri is the return of asset i, αi is a constant
term, Rm refers to the return of the market and εi is an error term. The most
commonly used estimation method for the CAPM is the ordinary least squares
(OLS)([7]).

In [22] the authors derive a multiple linear regression model of the CAPM by
examining various explanatory variables that can be added to the basic CAPM
for the expected returns on Apple Inc.. Their model, in addition to the market
return (S&P500 returns), includes as explanatory variables the average spread and
its interaction term with the market return. The average spread is the difference
between the daily highest ask price and the lowest bid price divided by the price of
the stock at the end of the day.

Various methods have been proposed for dealing with multicollinearity, such as
deleting parameters, principal components regression, ridge regression estimation,
maximum entropy estimators and shrinkage estimators (e.g. see [23], [13], [20]).
The work of [25] introduces the generalized maximum entropy (GME) approach in
order to estimate the quantile regression model for CAPM. The OLS method is
very sensitive to extreme observations and [7] propose a fuzzy regression method
which takes into account possible extreme observations and needs less assumptions
from the OLS method. The method that we apply in our work belongs to the class
of unbiased estimators, such as the minimum dispersion method (see for example
[23]) in contrast to the ridge regression which is a biased estimation method ([26]).
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The aim of the current work is to find a purpose for a new unbiased estimator for
a multiple regression model of CAPM in case of strong multicollinearity using Linear
Algebra techniques. [12] compares through a simulation study various biased and
unbiased alternative estimators to the OLS estimator in the case of collinearity. In
regression analysis, least squares estimations assume that explanatory variables are
not correlated with each other. In the presence of multicollinearity, inference about
the coefficients of regression can be difficult due to instability in the coefficients.

In this work we will apply a solution to a minimization problem for a matrix-
valued function under linear constraints, in the case of a singular matrix. The
theoretical framework of this method is not new and it is based on the paper [19].
Here we adapt and extend this framework by deriving an expression for the co-
variance matrix of estimated coefficients. Our method differs from others on the
restriction of the minimizing matrix to the range of the corresponding quadratic
function. In the case of singular positive matrices, many matrix valued functions
are investigated using a partial ordering. Using matrix analysis results, we propose
this additional relation as a constraint, by taking advantage of the canonical form
related to this class of matrices. Moreover, the singularity of the matrix implies the
use of the Moore-Penrose inverse matrix, giving us a unique minimal norm solution
to the problem.

This paper is organized as follows: In section 2 we present the data and the
multiple regression model and define the special case of multicollinearity. Section
3 introduces the proposed estimation technique in case of multicollinearity and we
estimate the covariance matrix of estimated coefficients. Section 4 presents the
estimation results for the simple CAPM and the multiple regression models of the
CAPM. In addition, the proposed method is tested and compared against another
known methods in terms of the standard errors of the estimated coefficients. Finally,
concluding remarks appear in section 5.

2. Data and the Multiple Regression Model

The multiple linear regression model of the CAPM that we use has the following
form:

(2.1) E(RA) = α+ β1R1 + β2R2 + β3R3 + β4E(Rm) + εt

where E(RA) are the expected daily returns of the asset and E(Rm) are the expected
daily market returns. We remind that the OLS estimator for coefficients of the
multiple regression Y = α+ βX + ε is given by

(2.2) β̂ = (X
′
X)−1X

′
Y

In the presence of collinearity the quantity (X
′
X) is not invertible and the estima-

tion of the variance of the coefficient estimates

(2.3) V ar(β̂) = σ2(X
′
X)−1
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is problematic. If the quantity (X ′X) is not exactly singular but very close to be
non-invertible, then the variance will be large. Moreover, if there is not an exact
linear relationship among the predictor variables but they are close to each other,
then the matrix (X ′X) will be invertible but the inverse matrix will have very large
entries, due to the very small value of the determinant. If some of the variables
are highly correlated then the matrix (X ′X) becomes non-orthogonal and as a
result the inversion is unstable. As for the OLS solution of the model, the analysis
and interpretation of each of the explanatory variables is difficult (see e.g. [13]).
Multicollinearity has several effects in a regression model. For example the high
variance of coefficients may reduce the precision of the estimation or the estimated
coefficients to have the wrong sign. Also, the estimates of the coefficients may
be sensitive to a particular set of the data. In our paper we try to overcome the
problem of multicollinearity and find an unbiased solution. Since the problem with
multicollinearity in multiple regression has infinite solutions, we will choose among
them the minimal norm least squares solution, making use of the Moore-Penrose
inverse.

For the basic CAPM model we use daily data of Apple Inc. stock returns
(APPLE) and the market returns are the S&P500 daily returns (SP500). In the
multiple linear regression model, the observed values are the daily expected stock
returns of Apple Inc. (APPLE). The explanatory variables are the S&P500 daily
returns (SP500), the opening stock price (OPENP), the semi-sum of opening and
lower stock price (OPENLOW) of each day and the closing price (CLOSEP). The
data are from January 1, 2007 until June 6, 2014.

Table 1 presents some descriptive statistics for our data. The skewness of the
data show that they are approximately symmetric. The distributions of the time
series Apple Inc. returns and market S&P500 returns have positive excess kyrtosis
and are leptokurtic. Also the distributions of the opening stock price, the semi-sum
of opening and lower stock price of each day and the closing price are having thinner
tails than those of the normal distribution. Table 2 presents the correlation coef-

APPLE SP500 OPENP OPENLOW CLOSEP
Maximum 0.130 0.11 134.46 132.555 133
Minimum -0.197 -0.095 11.341 11.438 11.171
Mean 0.0001 0.0002 56.77 56.753 56.770
Median 0.001 0.0007 51.031 51.009 56.736
St. Deviation 0.021 0.014 123.119 35.019 35.007
Skewness -0.448 -0.315 0.482 0.481 0.481
Kurtosis 9.725 12.511 2.059 2.057 2.057
Range 0.328 0.204 123.119 121.117 121.829

Table 2.1: Descriptive Statistics for Data. The data are the Apple Inc. stock returns
(APPLE), the S&P 500 daily returns (SP500), the opening stock price (OPENP),
the semi-sum of opening and lower stock price (OPEN LOW) of each day and the
closing price (CLOSEP). The data are from January 1, 2007 until June 6, 2014.
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ficients of the explanatory variables in the multiple regression model. The results
indicate that there is a strong positive relationship between the explanatory vari-
ables except for the market S&P500 returns. For the detection of multicollinearity

SP500 OPENP OPENLOW CLOSEP
SP500 1 0.014 0.018 0.022
OPEN 0.014 1 0.999 0.999
OPENLOW 0.018 0.999 1 0.999
CLOSEP 0.022 0.999 0.999 1

Table 2.2: Correlation coefficients for the explanatory variables: S&P 500 daily
returns (SP500), opening stock price (OPENP), semi-sum of opening and lower
stock price (OPENLOW) of each day, closing stock price (CLOSEP). The data are
from January 1, 2007 until June 6, 2014.

in regression models there are various diagnostic techniques.

In the following part, we will briefly present two of the basic diagnostic tools
for collinearity. The first is the Variance Inflation Factor (VIF) which measures
the inflation of the parameter estimates being computed for all the explanatory
variables in the regression model ([2]). The VIF is given by

(2.4) V IF =
1

1−R2
i

, i = 1, . . . , p

where p is the number of explanatory variables andR2 is the squared multiple corre-
lation coefficient. The VIF has a lower bound value equal to 1 but no upper bound.
Higher values signify that it is difficult to define accurately the contribution of the
predictor variable to a regression model. Usually values higher than 10 indicate
collinearity. Table 2.3 presents the variance inflation factor (VIF) and condition
index results of the explanatory variables for the multiple regression model. From
the results it is obvious that there exists high collinearity between the opening stock
price, the semi-sum of opening and lower stock price of each day and the closing
price. Another measure of collinearity is the condition index. The condition index
(CI) is the square root of the ratio of each eigenvalue λ to the smallest eigenvalue of
X ([6]) and indicates how close the underlying matrix is to a singular matrix. The
condition index is defined as

(2.5) Ck =

√
λ

λmin

where λmin is the smallest eigenvalue value of X
′
X . Values between 10 and 30 are a

sign of multicollinearity and multicollinearity occurs when the value of the condition
indices are greater than 30 ([8]). The results from table 2.3 confirm the existence
of collinearity between the explanatory variables except the S&P500 variable.
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Table 2.3: Results for the Vari-
ance Inflation Factor (VIF) and
condition index for the explana-
tory variables: S&P 500 daily
returns (SP500), opening stock
price (OPENP), semi-sum of
opening and lower stock price
(OPENLOW) of each day, closing
price (CLOSEP). The data are
from January 1, 2007 until June
6, 2014.

Variable VIF Cond. Index
S&P 500 0 1.7323 1
OPEN 5.6830e+14 17.330

OPENLOW 2.2710e+15 182.4603
CLOSEP 5.6740e+14 7.8015e+15

3. Constrained matrix optimization

In this section, we will briefly present the basic concepts of the theoretical back-
ground of our matrix constrained optimization (MCO) method, for more informa-
tion see [19]. As discussed previously, the collinearity of the data makes the quantity
(X

′
X) not invertible (or very close to singular) and the estimation of the variance

of the coefficient estimates

V ar(β̂) = σ2(X
′
X)−1

is problematic. So, a way to tackle the problem is to use a constrained matrix
optimization method, making use of the Moore-Penrose inverse matrix.

Suppose that A ∈ Rn×n is a square matrix with N (A) and R(A) its kernel and
its range respectively. Also we denote as A′ the transpose of the square matrix A.
The generalized inverse, also known as the Moore-Penrose inverse of a matrix A is
the unique matrix A† satisfying the following four Penrose conditions:

(3.1) AA† = (AA†)′, A†A = (A†A)′, AA†A = A, A†AA† = A†.

It is easy to see that AA† is the orthogonal projection of Rn onto R(A) , denoted
by PA, and that A†A is the orthogonal projection of Rn onto R(A

′
) noted by PA′ .

It is also well known that R(A†) = R(A
′
). For more on the Moore-Penrose inverse,

see e.g. [4], [5].
The Moore-Penrose inverse also satisfies the following inequality ([21])

(3.2) ‖ AA†B −B ‖2≤‖ AX −B ‖2

for all X.

We remind that given a matrix R ∈ RM×M , minimizing W ′RW with

W ∈ RM×m

means finding a matrix Ŵ ∈ RM×m such that the m×m matrix (W ′RW−Ŵ ′RŴ )
is positive semidefinite for all W ∈ RM×m. (The Löwner partial ordering for
hermitian nonnegative definite matrices, defined as: A ≥ B, if A − B is positive
semidefinite). See e.g. [3], [10].
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3.1. Matrix Optimization and Linear Regression

Next we assume that t R ∈ RM×M is a positive semidefinite symmetric matrix.
The main problem is the minimization of W ′RW, W ∈ RM×m under the Löwner
ordering, when W satisfies a set of linear constraints :

S = {W ∈ RM×m : C ′W = F}

with C ∈ RM×n, F ∈ Rn×m. As a result, we will find a matrix Ŵ such that
W ′RW ≥ Ŵ ′RŴ for all W ∈ S.
In [9] and [14] where a similar problem is treated the matrix R is assumed to
be positive definite. In our work the matrix R is positive semidefinite (therefore
singular). The difference in our method is that the matrix W will also satisfy the
relation R(W ) ⊆ R(R) in order to overcome the singularity of R.
In our case the positive semidefinite matrix R is singular, N (R) 6= {0} and therefore
we have that W ′RW = 0 for all matrices W of appropriate dimensions belonging
to the set Z = {W : RW = 0} and so, the problem

(3.3) minimize W ′RW,W ∈ S

has many solutions when S ∩ Z 6= Ø.
In other words, since the matrix R is symmetric, we have that R(R) = R(R†)
and therefore we are looking for the minimum of W ′RW under the constraints
C ′W = F and R(W ) ⊆ R(R).
From Theorem 1 in [19] we have that the minimizing problem in eq. 10 has the
unique solution Ŵ = R†C[C ′R†C]†F . In the case now that S is empty then the con-
straint must be replaced by the equation C ′W = F1 = PR(C′R†C)F . The following
Corollary is a consequence of the previous result:

Corollary 3.1. Let R ∈ RM×M a positive semidefinite symmetric matrix, the
matrices W ∈ RM×m, C ∈ RM×n, F ∈ Rn×m with m < M,n < M , and the
equation C ′W = F . The problem:

minimize W ′RW, W ∈ Ŝ

where Ŝ = {W : C ′W = PR(C′R†C)F, such that R(W ) ⊆ R(R)} has a unique
solution among the generalized constrained solutions which is

Ŵ = R†C[C ′R†C]†F

In many statistical applications as in our case, the matrix R is equal to CC ′. In
this case, we have the following proposition:

Proposition 3.1. Let R ∈ RM×M to be a positive semidefinite symmetric matrix
and the matrices W ∈ RM×m, C ∈ RM×n, F ∈ Rn×m with m < M,n < M .
Also, suppose that C ′W = F and the set S = {W : C ′W = F, such that R(W ) ⊆
R(R)} is not empty. Taking as R = CC ′ then the problem:

minimize W ′RW, W ∈ S
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has the unique solution
Ŵ = (C ′)†F

Consider a simple linear model

(3.4) y = Cβ + ε

where y ∈ Rm×1 is a vector of observed data, C ∈ Rm×p the matrix of p observed
covariates, β ∈ Rp×1 vector of parameters to be estimated and ε ∈ Rm×1 the noise
vector. When Rank(C) = p, and C ′C is nonsingular the inverse (C ′C)−1 can be
computed. Then the Best Linear Unbiased Estimator (BLUE) for β is defined as

(3.5) β̂ = (C ′C)−1C ′y = W ′y

In the case when the matrix R is singular, then Theorem 1 in [19] can be applied
to the problem of computing the Best Linear Unbiased Estimator in linear models.
In this specific case, the size of the matrices are:

R ∈ RM×M , W ∈ RM×m, C ∈ Rm×p, I ∈ Rm×m,m < M

In the case when the matrix C is of full rank, then W ′ is the unique left inverse of
C, and therefore, Theorem 1 can be applied to find the optimum matrix Ŵ .

There might be cases, however, where there is a deficiency in rank of the design
matrix C. That means that Rank(C) = r < p < m and thus C ′C is singular. When
m < p ordinary least squares method (OLS) cannot be used to estimate β in linear
model (7). Some methods to overcome this problem have been suggested based on
maximum entropy estimation ([11]) or penalized regression ([18]). We will denote
any generalized inverse of C ′C as (C ′C)−. In such a case there might be several
values of β that lead to same values of Cβ. In addition, the estimator is not unbiased
anymore, since the condition W ′C = I does not necessarily hold. However, let L′β
be linear functions of β such that R( L) ⊂ R(C ′) implying L = C ′A for some A.
Then if (C ′C)− is any generalized inverse of C ′C and

(3.6) β̂ = (C ′C)−C ′y

it can be shown ([23] p. 30) that L′β̂ is the minimum dispersion unbiased esti-
mator (MDLUE) of L′β with dispersion matrix σ2L′(C ′C)−L. In the case when
Rank(C) < p, then C does not have a left inverse, and therefore the constraint
must be slightly modified, as said in Theorem 1 ([19]), since C ′W = I does not
hold.
Following all the above and using Theorem 1 we will minimize W ′RW under the
constraint

C ′W = PR(C′R†C), with R(W ) ⊆ R(R)

where PR(C′R†C) is the orthogonal projection on the range of C ′R†C.
So, from the above discussion and Theorem 1 we have the following Proposition:
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Proposition 3.2. Consider a simple linear model

(3.7) y = Cβ + ε

and let C ∈ RM×m the matrix of m observed covariates with m < M , β ∈ Rm×1 the
vector of parameters to be estimated , R ∈ RM×M a positive semidefinite symmetric
matrix such that R = E(y − Cβ)(y − Cβ)′ . Then,

(3.8) β̂MCO = [R†C[C ′R†C]†]′y

gives a solution which is restricted on a particular set defined by the orthogonal
projection, thus giving the minimum dispersion unbiased estimator of any linear
combination of βMCO.

Moreover, in [23] p. 25, a different way of estimating β̂ is also presented when C is
not of full rank:

(3.9) β̂RMDLUE = (C ′C)−C ′y + (I − (C ′C)−C ′C)w

where (C ′C)− defined as before and w is an arbitrary vector.

The rationale follows from the fact that the empirical predictor (given as ŷ = Cβ̂)

has the same value for all solutions of β that emerge from C ′Cβ̂ = C ′y.

In many practical applications estimation of β relies on either formulas (3.9) or
(3.6). In the next section we will use Proposition 3.2 and hence the result given by
eq.(3.8) in order to solve the multicollinearity problem, finding a unique MDLUE
solution among the infinite solutions that this problem admits. Our solution gives
a model similar to the one found using eq.(3.9) with differences in the coefficients
due to the different choice of the unique solution among the infinite ones.
The variance of all the estimated coefficients using the MCO approach is given by

V (β̂MCO) = V ([R†C[C ′R†C]†]′y)

= ([R†C[C ′R†C]†]′)V (y)([R†C[C ′R†C]†]′)′

= ([R†C[C ′R†C]†]′)σ2[R†C[C ′R†C]†]

Also we have that, since R is symmetric, so (R†)′ = R† :

(3.10)

([R†C[C ′R†C]†]′)([R†C[C ′R†C]†]′)′ = ([R†C[C ′R†C]†]′)(R†C[C ′R†C]†)

= ([C ′R†C]†)′(R†C)′R†C[C ′R†C]†

= ([C ′R†C]′)†C ′R†[R†C[C ′R†C]†

= [C ′R†C]†C ′R†R†C[C ′R†C]†

Denote with K = C ′R† then equation (3.10) becomes

(3.11)
[C ′R†C]†C ′R†R†C[C ′R†C]† = (KC)†KK ′(KC)†

= A†KK ′A†



1028 D. Pappas and K. Bisiotis

where A = KC. As a result the variance of the estimated coefficient β̂MCO is given
by

(3.12) V (β̂MCO) = σ2A†KK ′A†

The standard errors are estimated by taking the square root of the diagonal of
V (β̂MCO).

4. Estimation Results

In this study, we apply our matrix constrained optimization method to two mul-
tivariate regression models. The first (Multiple Regression Model I) contains all
ofl the explanatory variables we previous mentioned. The second model (Multiple
Regression Model II) excludes the variable with the lowest correlation coefficient,
the S&P 500 market returns and as a result we have a model with strong correlation
between the regressors, almost equal to one. As said above, in order to compare
our method, the regression coefficients have been also estimated using the MDLUE
method presented in [23]. Table 4.1 reports the results for the basic CAPM for the
Apple Inc. stock returns and the S&P500 expected returns as the market returns.
The resulting simple CAPM has the following form

E(RAPPLE) = 0.0008 + 0.9568(SP500)

Table 4.1: Capital Asset Pricing
Model (CAPM) coefficients. The
table presents the value of the
coefficients for the Capital Asset
Pricing Model with an intercept
and one explanatory variable, the
S&P 500.

Variable Estimation
Intercept 0.0008
S&P500 0.9568

Table 4.2 presents the coefficients of the multiple linear regression in case of
multicollinearity for the proposed constrained matrix optimization method (MCO,
eq. (16)) and the MDLUE proposed by [23] (RMDLUE, eq. (17)) along with their
standard errors. The multiple linear regression model under MCO is the following:

E(RAPPLE) = 0.0012 + 0.5671(SP500)− 0.0324(OPENP )

+ 0.0005(OPENLOW ) + 0.0334(CLOSEP )

We compare the performance of our approach with the RMDLUE method in
terms of the standard errors of the estimated regression coefficients. One of the
problems of multicollinearity is that affects the standard error of the parameter
estimators. For the Multiple Regression Model I the standard errors for the co-
efficients estimated with the MCO method are smaller in most of the cases than
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MCO Coefficients Std Error t value p-value

Intercept 0.0012 0.0015 0.3257 0.7447
S&P500 0.5671 0.0493 4.1584 < 0.00001
OPEN -0.0324 0.0015 -11.9939 < 0.00001
OPENLOW 0.0005 2.6597e-05 20.6638 < 0.00001
CLOSEP 0.0334 0.0016 12.3642 < 0.00001
RMDLUE Coefficients Std Error t value p-value

Intercept 0.0015 0.7277 2.2479 < 0.00001
S&P500 0.6885 4.7211e-06 28.34 < 0.00001
OPEN -0.1933 0.0082 18.09 < 0.00001
OPENLOW 0.3558 0.0088 -14.64 < 0.00001
CLOSEP -0.1625 0.0825 24.47 < 0.00001

Table 4.2: Multiple Regression Model I.Parameter estimates for the matrix con-
strained optimization method (MCO) and the minimum dispersion linear unbiased
method (RMDLUE) and their standard errors.

those from the RMDLUE approach. The t-value column represents whether the
estimated coefficients of the variables in the multiple regression model are statisti-
cally significant. Also, in the table we present the p-values, the probability that the
variable in the model is not significant. The reported p-values are low, which means
that the variables are statistically significant. The results in table 7 for the Mul-
tiple Regression Model I show that the relationship between the S&P 500 market
returns and the Apple Inc returns is positive and the value of regression coefficient is
0.5671. This means that an increase in the S&P 500 daily market returns lead to an
increase in the Apple Inc returns. The same behavior happens between the Apple
Inc returns the semi-sum of opening and lower stock price (OPENLOW) of each
day and the closing stock price (CLOSEP). In contrast the relationship between the
opening stock price (OPENP) and the Apple Inc returns is negative.

Table 4.3 now presents the coefficients of the multiple linear regression in case
of multicollinearity for the constrained matrix optimization method (MCO) and
the RMDLUE method if we exclude the variable of the stock market returns. The
standard errors for the OPEN, OPENLOW and CLOSEP coefficient are smaller
than those estimated with the RMDLUE approach. The results for both regression
models indicate that the MCO method could be a good alternative when someone
wants to obtain estimates with small standard errors and the variable that appear
to have strong collinearity are all of interest. As previously, the reported p-values
indicate that the variables are statistically significant.



1030 D. Pappas and K. Bisiotis

MCO Coefficients Std Error t value p-value

Intercept 0.0003 0.0015 0.0489 0.961004
OPEN -0.0433 0.0014 -12.2014 < 0.00001
OPENLOW 0.0007 3.0788e-05 20.9787 < 0.00001
CLOSEP 0.0488 0.0014 12.6021 < 0.00001
RMDLUE Coefficients Std Error t value p-value

Intercept 0.0011 6.7648e-04 1.3351 0.182006
OPEN -0.1624 0.009 -29.91 < 0.00001
OPENLOW 0.2850 0.619e-05 54.12 < 0.00001
CLOSEP -0.1226 0.0078 22.57 < 0.00001

Table 4.3: Multiple Regression Model II. Parameter estimates for the matrix con-
strained optimization method (MCO) and the minimum dispersion linear unbiased
method (RMDLUE) and their standard errors. The multiple linear regression model
excludes the S&P500 factor.

5. Concluding Remarks

In this research, we refer to the multicollinearity issue of a multiple regression prob-
lem. Various techniques have been proposed in order to overcome this problem such
as ridge regression or delete the factors that are collinear. The matrix constrained
optimization method that we proposed is an unbiased estimator that can be ap-
plied in situations where exists strong or perfect collinearity and we can not delete
any collinear factor because this may affect the interpretation of the model results
and the factor is important for the analysis. Also, we obtain an expression for the
variance-covariance matrix of the estimated coefficients.
The method is applied in a special case of a multiple linear regression model which is
an extension of the Capital Asset Pricing Model (CAPM). The matrix constrained
optimization method is implemented in two multiple regression models. The differ-
ence between these models is that the first includes an explanatory variable with
low correlation which in the second model,this factor is excluded. The results are
compared with another unbiased linear estimator, the MDLUE, in terms of stan-
dard errors of the estimated parameters. We have mentioned that this technique is
appropriate when high levels of correlations exist among the regressors, and there
is a need for an unbiased estimator. In this case, the solution of deleting the factors
with high collinearity may not be feasible because of the importance of the factors
in the regression model.
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