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INTRODUCTION

The search for cheaper procedures for the hydroly-
sis of bagasse to fermentable sugar that can still avoid 
formation of toxic compounds for the subsequente fer-
mentation has been increasing. The use of microbial 
enzymes such as cellulases and xylanases meets these 
requirements; however, this technology is not ready to 
be applied (Pávon-Orozco et al. 2012).

In some works, a variety of microorganisms includ-
ing bacteria (Mattéotti et al. 2012), yeast (Menon et 
al. 2010), actinomycetes (Kapoor et al. 2008) and fila-
mentous fungi (Silva et al. 1999) have been reported to 

produce xylanolytic enzymes. Because of their natural 
ability to produce plant polysaccharide-hydrolyzing en-
zymes, filamentous fungi such as Trichoderma (Hung 
et al. 2008), Fusarium (Carapito et al. 2009), Penicil-
lium (Mesharam et al. 2008) and Aspergillus (Téo et al. 
2000) have been the organisms of choice for investigat-
ing xylan hydrolysis applications. Different biotechno-
logical applications for microbial xylanases have been 
found in the last two decades. They are widely used in 
the cellulose biobleaching process in the pulp and pa-
per industry to reduce the usage of chlorine (Beg et al. 
2001), as well as in others industries, such as brewing 
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(Qiu et al. 2010), bakery (Dalfré et al. 2007), fruit and 
vegetable processing (Dhiman et al. 2011), juice and 
wine (Hung et al. 2008), and as feed additives in broiler 
and animal diets (Ncube et al. 2012).

Xylan is one of the major components of hemicellu-
loses in plant cell walls – the second most abundant poly-
saccharide after cellulose – and it accounts for 20-30% 
of their total dry mass. In nature, complete hydrolysis of 
xylan requires the synergistic action of different xylan-
olytic enzymes, including endoxylanase, β-xylosidase, 
and accessory enzymes, such as alpha-arabinofuranosi-
dase, acetyl esterase, and alpha-glucuronidase. Among 
them, endo-β-1,4-xylanase (EC 3.2.1.8) catalyzes the 
hydrolysis of long-chain xylan into short xylooligosac-
charides; it has been studied due to the extensive inter-
est arising from its wide applications in pulp bleaching, 
bioethanol production and oligosaccharides production 
(Jun et al. 2009, Qiu et al. 2010, Kumar et al. 2012).

Each organism or strain has its own special condi-
tions for maximum enzyme production. Therefore, 
optimization of medium composition has to be carried 
out in order to maintain a balance among various me-
dium components, hence minimizing the amount of 
non-utilized components at the end of fermentation. An 
important factor is the selection of the most suitable me-
dium composition to decrease the cost of the bioprocess 
(Müllen & Silva 2005). This can be achieved by us-
ing cheaply available agroindustrial waste. Part of this 
waste is composed by sugarcane bagasse (SCB), which, 
in Brazil, comes from the production of sugar and alco-
hol from sugarcane. SCB is an abundant and low-cost 
lignocelullosic material, which has about 30–50% of 
cellulose and 20–24% of lignin (Hernández-Salas et al. 
2009, Vieira et al. 2007).

The main proposals of this study were isolating and 
identifying fungus species able to produce extracellular 
enzymes, determining the best conditions for xylanase 
production using sugarcane bagasse as substrate, and 
comparing xylanase extraction types.

MATERIAL AND METHODS

Materials

Birchwood xylan used as substrate for xylanase assay 
was obtained from Sigma Aldrich (São Paulo, São Pau-
lo, Brazil). All chemicals used were of analytical grade.

Fungi identification

The filamentous fungi used in this work were iso-
lated from sugarcane (Saccharum sp.), which was 
provided by the Company of Agricultural Research 
of Pernambuco (Empresa Pernambucana de Pesquisa 
Agropecuária-IPA). The sugarcane was removed with 
all the anatomical parts (leaf, stem and root) and were 
treated separately with 15% (v/v) sodium hypochlorite 
solution. Soon after, the samples were crushed. The liq-

uid obtained from the maceration was diluted with 5 mL 
of sterilized distillated water and inoculated using Dri-
galsky spatial (1 mL) in Petri dish with Sabouraud agar 
medium with 0.05% (w/v) yeast extract and 0.005% 
(w/v) of chloramphenicol and ampicillin, for 3 days at 
30 ºC.

The macroscopic study was carried out from purified 
colonies of filamentous fungi isolated from sugarcane, 
on Sabouraud agar medium. They were later cultivated 
on Czapek agar (Bernfeld 1955) composed of 0.3% 
(w/v) sucrose, 0.03% (w/v) NaNO3, 0.005% (w/v) KCl, 
0.005% (w/v) MgSO4, 0.001% (w/v) FeSO4.7H2O, 
0.01% (w/v) K2HPO4, 0.2% (w/v) and PDA-potato dex-
trose agar (Lacaz et al. 2002) with 14% (w/v) potato, 
0.2% (w/v) dextrose, 0.2% (w/v) agar at 30 ºC for 10 
days. The following morphological characteristics were 
evaluated: colony growth (length and width); presence 
or absence of aerial mycelium; colony color; presence 
of wrinkles and furrows; pigment production; and other 
characteristics, according to Booth (1971), Ellis (1971), 
Rapper and Fennell (1977), Domsch and Gams (1993) 
and Pitt (1998).

The microscopic study were carried out from Fungi 
colonies fragments cultivated at 30 ºC for 7 days on Cza-
pek agar and PDA media in glass microchamber. Previ-
ously sterilized coverslips (18 x 18 mm) were placed on 
the slide with the fragments (Domsch & Gams 1993).  
Mycelium germination and growth were observed us-
ing Amann blue dye under an optical microscope.

Substrate preparation for microorganism growth

In order to increase sugarcane bagasse digestibility, 
alkaline hydrolysis was performed at 121 ºC for 4h af-
ter mixing 100g over-dried chopped bagasse with 1L 
0.25 N NaOH solution according to Hernández-Salas et 
al. (2009). After heating, the solid waste was separated 
by filtration. The hydrolyzate bagasse was washed with 
deionized water to remove NaOH. The hydrolyzate ba-
gasse remained in heater for 24h at 80 ºC, to remove 
the excess of water. The hidolyzate bagasse was used as 
substrate for enzymes productions studies.

Screening for enzyme production by selected Fungi 

In the first step, Penicillium spp., Trichoderma auro-
viride and Cladosporium cladosporioides were selected 
for enzymes production using sugarcane steam as sub-
strate. The fungi were inoculated in a spore suspension 
(106 spores/mL) and cultured in submerged fermenta-
tion (SmF) using Erlenmeyer flasks (250 mL) with 10g 
sugarcane steam and 25 mL distilled water, which were 
sterilized at 121 ºC for 20 min. The cultures were incu-
bated in an orbital shaker (180 rpm) at 30˚C for 5 days. 
Samples were collected every 24h and 2 mL were used 
for enzyme extraction in an orbital shaker for 10 min in 
the same culture conditions, with 27 mL of 0.1% (v/v) 
Tween 80 in 0.15 M saline solution. Supernatant (en-
zyme extract) was obtained after centrifugation (5500 x 



229Production of enzymes by filamentous fungus

R. bras. Bioci., Porto Alegre, v. 11, n. 2, p. 227-234, abr./jun. 2013

g) for 15 min and assessed to determine the total protein 
and xylanase, protease and invertase activity.

Enzyme activities

Xylanase activity was assessed using 1% Birchwood 
xylan (Sigma, USA) in 0.05 M citrate buffer (pH 
5.3), according to Bailey et al. (1992). The release of 
reducing sugars was determined by Miller (1959) using 
3,5-dinitrosalicylic acid (DNS). A unit of enzymatic 
activity (U) was defined as the amount of enzyme 
producing 1 μmol of xylose per minute.

Protease activity on azocasein as a substrate was de-
termined according to Leighton et al. (1973) using 1% 
(w/v) azocasein in a 0.1 M Tris-HCl buffer (pH 7.2). 
One unit (U) of protease activity was defined as the 
amount of enzyme required to produce a 0.1 increase in 
the optical density after 1h at 440 nm.

Invertase activity (β-D-fructofuranosidase fructohy-
drolase, EC 3.2.1.26) was determined as descried by 
Robinson et al. (1988). Crude extract (1.5 mL) was 
added to 2.5 mL sucrose solution (0.25 M acetate buf-
fer, pH 5.0) and incubated for 30 min at 37 °C. The 
reducing sugars produced by sucrose hydrolysis were 
measured by the DNS method (Bailey et al. 1992). One 
unit of enzyme (U) was defined as the quantity of en-

zyme that hydrolyses 1 µmol of sucrose to glucose and 
fructose per minute.

Effect of stirring and temperature on xylanase produc-
tion using sugarcane bagasse hydrolyzate as substrate

In the second step, the influence of stirring intensity 
and temperature on xylanese production by Trichoder-
ma aureoviride was evaluated at different time inter-
vals. The fermentations were carried out in Erlenmeyer 
flasks (250 mL) with the production medium with 
the following composition: 2.5g sugarcane bagasse 
hydrolyzate, enriched with 25 mL Vogel minimum salts 
medium. After inoculating spores up to a concentration 
of 106 cells/mL in Erlenmeyer flasks with the produc-
tion medium, fermentations were performed in an orbi-
tal shaker at different stirring intensity (96 and 150 rpm) 
and temperature (25 and 35 ̊ C). Samples were collected 
after 120h of fermentation and used for the enzyme ex-
traction step, once previous experiments demonstrated 
that, at this time, xylanase production was high.

Enzyme extraction was obtained after fermentations; 
3 mL of the homogenized fermented were suspended 
and used in the enzyme extraction step, in three diffe-
rent methods: 27 mL of sterilized distilled water, 27 
mL of 0.1% (v/v) Tween 80 in 0.15 M saline solution, 

Table 1. Macromorphological and micromorphological characteristics of isolated fungi.

Fungi (Genus) Macroscopic characteristics Microscopic characteristics

Fusarium Produces cotton- and velvet-like colonies, which are 
smooth and scattered. In the front, the color of the col-
ony may be white, cream, salmon, yellow, red, violet, 
pink, or purple. The back may be colorless, red, dark 
purple, or brown. (De Hoog et al. 2000a, Larone al. 
1995, Sutton et al. 1998)

Hyphae, conidiophores, phialides, macroconidia, and 
microconides are septate and hyaline. In addition to 
these basic elements, chlamydospores are also produced 
by some species. Phialides are cylindrical –  with a 
small collarette  –, lonely or produced as components 
of a complex branched system. The color of the colony, 
length and shape of macroconidia, the number, shape 
and arrangement of the fusiform and the presence or ab-
sence of chlamydospores are key features for Fusarium 
species differentiation. (De Hoog et al. 2000a, Larone 
al. 1995).

Cladosporium The colonies texture is velvety. Similar to other Deutero-
mycetes fungi, the colony has an olive green color and 
its back ranges from dark green to black. (Collier et al. 
1998, Dixon et al. 1991, Sutton et al. 1998).

The genus produces brown hyphae, septate, erect and 
pigmented conidiophores, and conidia. Conidiophores 
of some species are geniculate, and present conidia, 
light-colored to brown. The conidial wall is smooth or, 
occasionally, spiculated. (Collier et al. 1998, Sutton et 
al. 1998). 

Trichoderma The colonies are velvety and become compact over 
time. The front can display white. While the spore form 
patches bluish green or yellowish green. These patches 
can sometimes form concentric rings. The back is pale 
or yellowish. (De Hoog et al. 2000a, Larone al. 1995, 
St-Germain-Germain al. 1996, Sutton et al. 1998).

Hyphae, conidiophores, phialides, and conidia are sep-
tate and hyaline can also produce chlamydospores. Co-
nidiophores are branched and may occasionally indicate 
a pyramidal arrangement. Phialides are attached to the 
conidiophores at right angles. Phialides may be solitary 
or arranged in clusters. Spores are round or ellipsoidal. 
They are smooth or rough, grouped in sticky heads at the 
tips of phialides. Conidia are mostly green. (De Hoog 
et al. 2000a, Larone al. 1995, St-Germain-Germain al. 
1996, Sutton et al. 1998).

Penicillium Penicillium colonies may have smooth, filamentous, 
velvet- or cotton-like textures. The colonies are initially 
white and become blue green, green-gray, gray-olive or 
yellow with time. The back of the card is usually pale to 
yellowish (De Hoog et al. 2000a, Larone al. 1995, St-
Germain-Germain al. 1996, Sutton et al. 1998).

They have septate and hyaline hyphae and conidio-
phores. The conidia and phialides may be simple or 
branched; conidiophores are formed by the secondary 
phialides. The organization of the phialides at the tips of 
conidiophores is very common. (De Hoog et al. 2000a, 
Larone al. 1995, St-Germain-Germain al. 1996, Sutton 
et al. 1998).
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Figure 1. Fungi isolated from sugarcane in Sabouraud and Czapek agar. A. Fusarium spp. B. Cladosporium cladosporioides. C. Penicillium 
spp. (n. 1). D. Trichoderma auroviride. E. Penicillium spp. (n. 2) in Czapek agar. F- Penicillium spp. (n. 2).

and 27 mL of 0.5 M acetate buffer (pH 5.5). After that, 
each homogenized fermented was stirred at 110 rpm in 
shaker for 10 min. The supernatant (enzyme extract) 
was obtained after centrifugation (5500 x g) for 15 min 
and used as the enzymatic crude extract.

The protein concentration was determined according 
to Bradford (1976), using bovine serum albumin as 
standard. 

In addition, all of the analyses and experiments were 
performed in triplicate, and the results were expressed 
as mean values. The experimental data errors from the 
mean values were expressed as standard deviation, 
using the Microsoft Excel 2000 software (MapInfo Cor-
poration, Troy, NY, USA) and illustrated as error bars.

RESULTS AND DISCUSSION

Fungi isolation and identification 

The microorganisms found isolated from all anatomi-
cal parts (leaf, stem and root) sugarcane were divided 
into: bacteria and filamentous fungi in the leaf; bacteria, 
fungi and yeasts in the root; and only yeast in the stem. 
Five fungi, isolated from root and leaf, were selected 
for the purification and identification steps. The isolated 
fungi were identified for genus and species, if possible, 
based on the macromorphological and micromorpho-
logical characteristics presented in specific culture me-
dium (Table 1).

The purified and identified fungi in Czapek and Sa-
bouraud agar are shown in figure 1. Among the isolated 
microorganisms, the fungi Fusarium oxysporum (Fig. 
1A), Cladosporium cladosporioides (Fig. 1B), Peni-
cillium sp. (Fig. 1C), and Trichoderma auroviride (Fig. 
1D), were identified. Only the three latter were used for 

the study of enzyme production, once they presented 
the lowest degree of pathogenicity. Cladosporium cla-
dosporioides culture in Sabouraud agar shows olive-
-green color colonies and its reverse ranges, from dark 
green to black texture, different from the others. Peni-
cillium sp. Sabouraud agar culture showed macroscopic 
characteristics different from the same culture in Cza-
pek agar. The colonies are white to yellow in Sabouraud 
agar culture medium, and blue-green, green-gray and 
gray-olive in Czapek agar. The reverse of the colonies 
in both culture media is usually pale to yellowish.

These results are in accordance with some results re-
ported in the literature. Fusarium, Penicillium, Tricho-
derma and Cladosporium genus, as well as Aspergillus 
(Damen et al. 2012), Geotrichum, Mucor, and Oidium 
(Dalfré et al. 2007), and endophytical fungi like Curvu-
laria, Monilia, Trichophyton, and Mycelia (Müllen & 
Silva 2005) were the most frequently encountered ones 
in the sugarcane and derivates samples.

Yeasts and bacteria genus were also observed in su-
garcane agroecosystem. Eighty-two bacteria strains 
were isolated, such as: Bacillus, Pseudomonas, Serratia, 
Enterobacter, among others (Lima et al. 1999). De Aze-
redo et al. (1998) studied yeast communities associated 
with sugarcane leaves, stems and rhizosphere and ob-
served that the prevalent genus isolated from sugarcane 
were Cryptococcus, Rhodotorula, Debaryomyces, Can-
dida, Sacharomyces, and Trichosporon.

Production of fungi extracellular enzymes using sugar-
cane steam as substrate 

The first step was carried out using sugarcane steam 
as substrate for xylanase, invertase, and protease pro-
duction by selected fungi Penicillium sp., Trichoderma 
auroviride and Cladosporium cladosporioides. Figure 2 
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Fungi/Enzymes Invertase (U) Protease (U)
Penicillium sp. 762.6 0.04
Trichoderma auroviride 62.3 0.33
Cladosporium cladosporioides 58.4 0.27

Figure 2. Xylanase production by T. aureoviride (▲), C. cladosporides (־) and Penicillium (■) using sugarcane steam as substrate.

shows xylanase production by Penicillium sp., Tricho-
derma auroviride and Cladosporium cladosporioides 
during 120h of cultivation. The highest fungus produ-
cer of xylanase was Penicillium sp. (3181 U) after 120h 
of cultivation, followed by Trichoderma auroviride 
(2039.5 U) and Cladosporium cladosporioides (1637.5 
U) after 120h and 72h of cultivation, respectively. This 
activity was much higher than that reported by Olivei-
ra et al. (2006) for xylanase production by Penicillium 
janthinellum (23 U) using sugarcane bagasse as substra-
te after 132h of cultivation.

To verify the co-production of other enzymes, inver-
tase and protease concentration were investigated by 
the selected fungi at the maximum xylanase produc-
tion time (Table 2). Invertase production obtained by 
Trichoderma auroviride (62.3 U) and Cladosporium 
cladosporioides (58.4 U) was lower than that the one 
observed with Penicillium sp. (762.6 U).

Alegre et al. (2009) observed the highest levels of ex-
tracellular invertase activity (301 U) under submerged 
fermentation when Aspergillus caespitosus was cultu-
red using agroindustrial wastes, such as wheat bran, as 
carbon source. The best result was obtained in Khanna 
medium supplemented with nitrogen ((NH4)2SO4 and 
peptone), phosphate (KH2PO4 and Na2PO4) and glucose 
after 72h with wheat bran. Other agroindustrial wastes 
used as carbon sources in Khanna medium, such as oat 
meal (6.2 U), rice straw (4.2 U), sugar cane bagasse (2.2 
U), among others, also stimulated invertase production 
and secretion. 

In this work, the medium used for enzymes produc-
tion by the selected fungi was only sugarcane steam 
plus distillated water, and the activity obtained was 
much higher than that reported by Alegre et al. (2009) 
for invertase production by Aspergillus caespitosus 
(301 U), using wheat bran medium supplemented with 
nitrogen ((NH4)2SO4 and peptone), phosphate (KH2PO4 
and Na2PO4) and glucose. 

A co-production of high proteolytic activity may be 
a serious problem to maintain the stability of xylanase. 
However, low levels of protease activity were obtained 
during the cultivation of three selected fungi (Table 2). 
These results may be due to the chemical composition 
of the culture medium (sugarcane steam), which con-
tains low levels of protein. According to Oliveira et al. 
(2006), protease production was very low in all agro-
-industrial residues because of the low nitrogen source. 
Similar behavior was also observed by Ferreira et al. 
(1999) using sugarcane bagasse for the production of 
xylanase by Aspergillus tamarri.

Influence of temperature, stirring intensity and enzyme 
extraction method on xylanase production using sugar-
cane bagasse as substrate 

The goal of this part of the work was to explore the 
influence of temperature, stirring intensity, and types 
of enzyme extraction on xylanase production by Tri-
choderma aureoviride (URM 5351), using sugarcane 
bagasse as substrate. Even though Penicillium sp. has 
presented the highest yields of xylanase and invertase, it 
was not used for further studies due to the impossibility 
of identifying it as a species, thus belonging to the fungi 
pathogenic group.

A 25 mL working volume in 250 mL Erlenmeyer 
flasks under 150 rpm stirring condition was found to 
be suitable for more efficient xylanase production by 
Trichoderma aureoviride (600 U). Stirring rates below 

Table 2. Invertase and protease detection by the selected fungi at the 
maximum xylanase production time.
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150 rpm, regardless of the extraction system used (Ta-
ble 3), resulted in lower xylanase yields, probably due 
the difficulty in maintaining sufficient dissolved oxy-
gen (DO) level for cell growth. The stirring and aeration 
processes are used to meet the demand of oxygen du-
ring the fermentation processes. Moreover, mechanical 
stirring is reported to be crucial in fermentative proces-
ses due to its effectiveness in mixing contents of media 
and prevention of cell clumping (Kapoor et al. 2008).

Moreover, it is known that temperature is also one of 
the most critical parameters that must be controlled in 
the fermentation process (Chi & Zhao 2003). Not only 
does temperature regulate the synthesis of the enzyme 
but possibly the secretion of the enzyme, by changing 
the properties of the cell wall (Anandan et al. 2007). 
In this work, temperature showed a positive effect on 
xylanase production, and the maximum yield (1980 U) 
was obtained at 35 ºC (Table 4). It is likely that xyla-
nase secretion was improved at higher temperatures to 
maintain adequate metabolic fluxes under these stress 
conditions. 

The literature on the production of xylanase from fi-
lamentous fungi is extremely broad. To provide a few 
examples, the maximum xylanase productions from Pe-
nicillium oxalicum (31.1 U) (Li et al. 2007), Penicilium 
janthinellum (28.98 U) (Menon et al. 2010) and Tricho-
derma reesei (630 U) (Xiong et al. 2005) were found at 
31.1 ºC, 28 ºC and 30 ºC, respectively.

The extraction method after enzyme production was 
another parameter evaluated. Three different methods 
were employed: sterilized distilled water; 0.1% (v/v) 
Tween 80 in 0.15 M saline solution; and 0.5 M sodium 
acetate buffer (pH 5.5). The best enzyme recovery 
(1900 U) was obtained using the sodium acetate buffer 
method, followed by Tween 80 in saline solution (1840 
U) (Table 4). The distillated water extraction method 
was not as efficient as the other two. This observation 
is pursuant to the results of Rezende et al. (2002), who 
obtained a maximum xylanase extraction (15 U) using 
both extraction methods (Tween 80, 0.1% (v/v), in phy-
siological saline and 50 mM sodium acetate buffer, pH 
5.0). Silva et al. (1999) also efficiently extracted the 
xylanase produced (1234 U) by Aspergillus fumigatus 
from the fermentation broth using 0.025 M sodium ace-
tate buffer, pH 5.0.

Among the results of the influence of variables on the 
cultivation step and the enzyme extraction method used, 
the best result of xylanase production by Trichoderma 
aureoviride (1900 U) in sugarcane bagasse as substrate 
was observed at 35 °C, at150 rpm stirring intensity after 

120h of cultivation using sodium acetate buffer solution 
as enzyme extraction method.

CONCLUSION

The results obtained in the present paper reveal the 
potential of sugarcane steam and sugarcane bagasse as 
an alternative and cheap substrate for the production of 
enzymes, especially xylanase by fungus isolated from 
sugarcane. The influence of two variables - temperature 
and stirring intensity - showed a considerable impact 
on xylanase production by the new isolate Trichoder-
ma aureoviride, using sugarcane bagasse hydrolyzed as 
substrate. The best result of xylanase production (1900 
U) was obtained at 35 °C with 150 rpm stirring intensi-
ty, after 120h of cultivation using sodium acetate buffer 
solution as enzyme extraction method by Trichoderma 
aureoviride.
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