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Abstract
Mean-Field Games with Absorption and Singular Controls

by Maddalena GHIO

This Ph.D. thesis studies two newly developed branches of the theory of mean-field
games: mean-field games with absorption and mean-field games with singular controls,
with a focus on financial applications and numerical methods.

The first part of the work is devoted to mean-field games with absorption, a class
of games that can be viewed as natural limits of symmetric stochastic differential
games with a large number of players who, interacting through a mean-field, leave
the game as soon as their private states hit a given boundary. In most of the litera-
ture on mean-field games, all players stay in the game until the end of the period,
while in many applications, especially in economics and finance, it is natural to have
a mechanism deciding when a player has to leave. Such a mechanism can be mod-
elled by introducing an absorbing boundary for the state space.
The second part of the thesis, deals with mean-field games of finite-fuel capacity expan-
sion with singular controls. While singular control problems with finite (and infinite)
fuel find numerous applications in the economic literature and originated from the
engineering literature in the late 60’s, many-player game versions of these problems
have only very recently been introduced. They are a natural extension of the single
agent set-up and allow to model numerous applied situations. In our work in par-
ticular, we make assumptions on the structure of the interaction across players that
are suitable to model the so-called goodwill problem.

Altogether, the original contribution to the mean-field games literature of the
present work is threefold. First, it contributes to the development of mean-field
games with absorption, continuing the work of Campi and Fischer (2018) and con-
siderably generalizing the original model by relaxing the assumptions and setting
it into a more abstract, infinite-dimensional, framework. Second, it introduces a
new set of tools to deal with mean-field games with singular controls, extending
the well-known connection between singular stochastic control and optimal stop-
ping to mean-field games. Finally, it also contributes to the numerical literature on
mean-field games, by proposing a numerical scheme to approximate the solutions
of mean-field games with singular controls with a constructive approach.
Overall, this thesis focuses on newly introduced branches of the theory of mean-
field games that display a high potential for economic and financial applications,
contributing to the literature not only by further developing the existing theory but
also by working in directions that make the these models more suitable to applica-
tions.
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Chapter 1

Introduction

1.1 Mean-Field Games

Mean-field games (MFGs for short) are, loosely speaking, limits of symmetric stochas-
tic differential games with a large number of players that interact with the distribu-
tional behaviour of their competitors. These games were introduced in the seminal
papers by Lasry and Lions (2006a,b, 2007a,b) and, simultaneously, by Huang et al.
(2007a,b,c, 2006). An increasing stream of research has been flourishing since then,
producing theoretical results as well as a wide range of applications in many fields
such as economics, finance, crowd dynamics and social sciences in general. Two
approaches have been adopted: an analytic approach as in the first works by Lasry
and Lions and a probabilistic one, that we follow in this work and which has been
developed in a series of papers by Carmona, Delarue and their co-authors (see, e.g.,
Carmona and Delarue (2013a,b); Carmona et al. (2016); Carmona and Lacker (2015)).
For an excellent presentation of the theory we refer in particular to the lecture notes
by Cardaliaguet (2013) and the two-volume monograph by Carmona and Delarue
(2018).

The term “mean-field” comes from physics, in particular from statistical mechan-
ics and condensed matter physics, where the mean-field (or effective-field) approxi-
mation, replacing local interactions between neighbouring particles with an average
(non-local) effective interaction, enables to find approximate solutions of problems
that would otherwise be analytically intractable, like phase transition in the the Ising
model in dimension three or higher. Mean-field interactions are also at the heart of
propagation of chaos results for diffusive interacting particle systems, see for in-
stance Sznitman (1991), where law-of-large-numbers (LLN) phenomena allow the
recovery of renown partial differential equations (PDEs) from physics as a reduced
description of particles’ dynamics, in the limit for the number of particles going to
infinity.
A game with a large number of players whose private states evolve in time according
to a controlled diffusion process, can be understood as a particle system with the ad-
ditional difficulty that now the particle-like players are rational optimizing agents.
Analogously to the aforementioned problems in physics, the curse of dimensionality
affects also game theory, as soon as the number of players starts increasing. Indeed,
analytically finding the Nash equilibria of games with a large number of interacting
players is often unfeasible. However, in the symmetric case and when players inter-
act in a “mean-field” way, i.e. via variables that are function of the distribution of
all players, the passage to the limit for the number of players going to infinity, the
so called “mean-field limit”, produces a substantial simplification of the problem,
making the effect of a single player’s action negligible on the population as a whole.
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The many-player game thus reduces to a single-player game, in which a represen-
tative agent interacts with the distribution of all players. The representative player
of the MFG responds optimally to the distribution of the population which, at equi-
librium, coincides with the distribution of the optimally controlled state variable.
Resulting from the limit of finitely many-player games, the MFG can be proved to
be a good approximation of the corresponding finite-player game, in the sense that
its solution can typically be implemented in the N-player game providing approxi-
mate Nash equilibria with vanishing error in the limit for N → ∞.

In economics, the idea of studying Nash equilibria in large finite-player games
via the approximation of a continuum of players goes back to the strand of litera-
ture on anonymous games, i.e. games in which single players, as individuals, have
no significative influence on the others’ behaviour but they do when aggregated. In
this regard, we recall in particular the pioneering paper on existence of equilibria in
anonymous games by Schmeidler (1973), the later reformulation with distributional
strategies by Mas-Colell (1984) and the work by Jovanovic and Rosenthal (1988) in-
troducing a unified model for sequential discounted anonymous games.
Jumping to more recent times, MFGs are a promising tool to be applied to eco-
nomics (see Achdou et al., 2014, for a general survey on continuous-time models
in economics). They have been introduced in the mathematical formalization of het-
erogeneous agent models in continuous time, finding macroeconomics applications that
range from the study of the wealth distribution (Achdou et al., 2014, 2017) to optimal
social and monetary policy (Nuño, 2017; Nuño and Thomas, 2020, to cite a few) until
a very recent application to the Coronavirus crisis (Kaplan et al., 2020).

1.1.1 An illustrative game

Consider a symmetric stochastic N-player game, where the private states of the play-
ers are denoted by XN .

= (XN,1, . . . , XN,N). In an economic or financial application,
players could be households, firms or banks, just to give an example, and the vari-
ables XN,i would represent their private wealth or capital. Throughout the section,
to give a more practical sense of the theory and in view of the models of Chapters 2
and 3, we will continue developing the parallel with economic and financial models.

Let the XN,i be stochastic processes with values in Rd, evolving over a finite time
horizon [0, T], T > 0, according to Brownian driven diffusions of the form

XN,i
t = XN,i

0 +
∫ t

0
b
(

s, XN,i
s , µN

s , αN,i
s

)
ds + σWN,i

t , t ∈ [0, T], (1.1)

for i ∈ {1, . . . , N}, where WN,1, . . . , WN,N are independent d-dimensional Wiener
processes defined on some filtered probability space, αN .

= (αN,1, . . . , αN,N) is a vec-
tor of adapted strategies, σ is a non-degenerate diffusion matrix and b is a given drift
functional.
The symmetric interaction of players is modelled via µN , the random flow of empir-
ical probability measures representing the empirical distribution of all players

µN
t (·) .

=
1
N

N

∑
i=1

δXN,i
t

(·) , t ∈ [0, T].
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The simplest form of interaction can happen via average variables, e.g. the empirical
average Ot of an observable quantity of the system O : Rd → R at time t ∈ [0, T]

Ot =
1
N

N

∑
i=1

O(XN,i
t ) =

∫
Rd

O(x)µN
t (dx), t ∈ [0, T].

In an economic or financial model, O could represent an aggregate variable like ag-
gregate wealth of the economy or average capital reserve of the players. However,
the measure dependence of the drift on the empirical measure µN , can account for
more complex, also non-local, interaction forms, meaning that interaction among the
players can take place also via quantities that depend on the entire distribution of
the players, not only averages but also tails and in general the full distribution.

Players evaluate their strategy vector αN according to their own expected costs
and depending on the other players’ states, via cost functionals of the form

JN,i(αN)
.
= E

[∫ T

0
f
(

s, XN,i
s , µN

s , αN,i
s

)
ds + F

(
T, XN,i

T

)]

where f and F are respectively a given running cost and terminal cost. The cost
functionals JN,i(αN) take into account all possible costs that players can incur into
during the game, from consumption to fees, but also more figurative and indirect
costs, like the cost of being “far from the crowd”. The players’ goal is then to imple-
ment a strategy that allows them to minimize their costs at each instant of time of
the game. A strategy could be a consumption policy for a household or an invest-
ing/borrowing plan for a firm or a bank.
Equilibrium situations in many-player non-cooperative games, where players have
no incentive to change their currently employed strategy deviating from equilib-
rium because they would only experience further losses, are well described by the
concept of Nash equilibrium (Nash, 1950, 1951). In our framework, a strategy vector
αN is a Nash equilibrium for the N-player game if for every i ∈ {1, . . . , N} and for
any alternative admissible single-player strategy β we have

JN,i(αN) ≤ JN,i
([

αN,−i, β
])

where the standard notation [αN,−i, β] denotes a strategy vector equal to αN for all
players but the i-th one, who deviates by playing β instead.

The interaction via the empirical measure µN introduces in the N-player dynam-
ics, i.e. in the N-dimensional system of stochastic differential equations describing
the time evolution of the players’ private states, a strong coupling. Besides coupling
and high dimensionality, minimization of the cost functional by the players brings
in addition an optimization problem, more precisely a problem of stochastic optimal
control. As soon as the number of players starts increasing, analytically finding the
exact Nash equilibria of the N-player game becomes often unfeasible. It is at this
point that the mean-field games theory comes to aid.
First, we relax the notion of Nash equilibrium to that of ε-Nash equilibrium, where
deviating from the equilibrium strategy can only lead to limited (at most ε) addi-
tional gain. More precisely, a strategy vector αN is an ε-Nash equilibrium for the
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N-player game if for every i ∈ {1, . . . , N} and for any alternative admissible single-
player strategy β we have

JN,i(αN) ≤ JN,i
([

αN,−i, β
])

+ ε.

Then, we introduce the associated MFG, as an auxiliary single-player game repre-
senting the limit of the N-player games for N going to infinity. In the so-called
“mean-field limit”, the effect of single players on the population as a whole becomes
negligible. Then, the description of the system reduces to that of a representative
player interacting with the limit distribution of all other players.
The MFG, with the mathematical simplification produced by the passage to the limit,
can be exploited as a tool to find approximate solutions of the original N-player
game. In practice, one solves the MFG problem (in a sense that will be defined be-
low) instead of the N-player one, finding an optimal control for the representative
player. With this optimal control at hand, it is possible in many situations to con-
struct a vector of strategies for the corresponding N-player game, that proves to be
an ε-Nash equilibrium with vanishing ε in the limit for N-going to infinity.
In this sense, we can say that the MFG is a “good” approximation of the original
N-player game. Moreover, despite modelling only a representative player, the MFG
keeps track of the initial N-players heterogeneity by deriving at the same time also
the evolution of the entire distribution of all players, not as an exogenously given
background dynamics but as an endogenous product arising from within the model.

The MFG associated to our illustrative N-player game, will be of the following
form.
Given a (deterministic) flow of probability measures µ and an admissible control
process α, the representative player’s state evolves according to the equation

Xt = X0 +
∫ t

0
b (s, Xs, µs, αs) ds + σWt, t ∈ [0, T], (1.2)

where X is a d-dimensional stochastic process, W is a d-dimensional Wiener process
on some filtered probability space (Ω,F , F = (Ft)t∈[0,T],P) and b is the drift defined
as above in the N-player game. The flow of probability measures µ is to be under-
stood as the limit, in a sense to be defined, for N going to infinity of the random flow
of empirical probability measures µN .
The representative agent evaluates the control α according to a cost functional of the
form

Jµ (α)
.
= E

[∫ T

0
f (s, Xs, µs, αs)ds + F (T, XT)

]
(1.3)

where f and F are respectively the running and terminal costs defined as above.
A solution of the MFG is then, loosely speaking, a pair (α, µ) where α is optimal for
the control problem, i.e. it is a minimizer of the cost functional Jµ, while µ is a flow
of probability measures, satisfying the fixed-point condition µt = L(Xt), i.e. µt is
the law of Xt for all t ∈ [0, T].
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1.1.2 A game with absorption and a game with singular controls

A MFG with absorption (Campi and Fischer, 2018; Campi et al., 2019) is a MFG, as
introduced is Section 1.1.1, where the private state of the representative player X in
Equation (1.2) evolves in a subset O ⊂ Rd until it hits the boundary ∂O, then leaves
the game at τ

.
= inf{t ∈ [0, T] : Xt /∈ O}, equivalently we say that it is absorbed by

the boundary. The dynamics of the representative player now depends on a flow µ of
sub-probability measures instead of the more common flow of probability measures,
starting as a normalized probability but then losing mass with the passing of time to
represent the fraction of players leaving the game. The cost functional of Equation
(1.3) writes

Jµ (α)
.
= E

[∫ τ∧T

0
f (s, Xs, µs, αs)ds + F (τ ∧ T, Xτ∧T)

]
.

A natural application of MFGs with absorption is to model the interbank market
and its interconnectedness via bilateral credit exposures, as in Carmona et al. (2015).
Here, players are interpreted as banks, whose monetary reserves evolve according
to stochastic dynamics as in Equation (1.1) and where the drift depends on both the
rate of interbank borrowing/lending and on a controlled borrowing/lending rate to
a central bank. However, in Carmona et al. (2015) no absorbing boundary conditions
are considered, while it would be natural to include the possibility of default when
the capital of a bank hits from above a barrier, ideally associated to minimum reg-
ulatory capital requirements. Our research then aims to fill this gap in the existing
literature. We refer to Chapter 2 for a complete review of the related literature.

A MFG with singular controls (Campi et al., 2020) is a MFG, as introduced is
Section 1.1.1, where the control process ξ = (ξt)t∈[0,T] is not necessarily absolutely
continuous with respect to the Lebesgue measure on [0, T], thus entering the repre-
sentative player’s dynamics as

Xt = X0 +
∫ t

0
b (s, Xs, µs, ξs) ds +

∫ t

0
dξs + σWt, t ∈ [0, T]

and satisfying good enough assumptions to give sense to the equation above (adapted,
non-negative, non-decreasing, right-continuous and bounded in our model in Chap-
ter 3). A similar dependence can be included also in the cost functional, i.e.

Jµ (α)
.
= E

[∫ T

0
f (s, Xs, µs, ξs)ds +

∫ T

0
dξs + F (T, XT)

]

Generally speaking, the singular control ξ, being a monotonically increasing process,
can represent the cumulative investment in production of a company producing a
good of value X. Investing in production comes with a cost that depends on the total
investment in a proportional way, i.e. on the integral of dξ over the total investment
horizon T. Notice that singularity of the investment process ξ, allowing for jumps,
enables to include into the model possibly discontinuous realistic investment deci-
sions. In Chapter 3, we apply this class of games to model the so-called goodwill
problem. We refer to the introduction of Chapter 3 for a detailed description of the
problem and a complete review of the related literature.
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1.2 Our original contribution to the mean-field games litera-
ture

Our original contribution to the MFGs literature is threefold. First, we contribute to
the development of MFGs with absorption, continuing the work of Campi and Fis-
cher (2018) and further generalizing their original model by considerably relaxing
the assumptions and setting it into a more abstract, infinite-dimensional, framework.
Second, we introduce a new set of tools to deal with MFGs with singular controls,
extending the well-known connection between singular stochastic control and op-
timal stopping to MFGs. Finally, we also contribute to the numerical literature on
MFGs, by proposing a numerical scheme to approximate solutions of MFGs of finite-
fuel capacity expansion with singular controls and underlying GBM dynamics.
Overall, our work focuses on newly introduced branches of the MFG theory that
display a high potential for economic and financial applications. We contribute not
only by further developing the existing theory but also by working in directions that
make the these models more apt to practical applications.

1.2.1 Our contribution to MFGs with absorption

Regarding MFGs with absorption, our best efforts focus on leveraging them to an
infinite-dimensional framework and stretching the assumptions of Campi and Fis-
cher (2018) to include more general and realistic dynamics that are common in stan-
dard models. Specifically,

(i) We recast MFGs with absorption in a more general setting, most common to
the MFG literature, where the dependence of the dynamics and costs on the
empirical measure is infinite-dimensional.

(ii) We introduce a direct dependence on past absorptions in the drift of the Stochas-
tic Differential Equations (SDEs) describing the evolution of the players’ states
by letting the initial distribution of players lose mass over time. Such a loss
of mass corresponds to the exit of the absorbed players from the game, so that
the proportion of the absorbed players has an effect on the future evolution of
the survivors. This feature was not present in Campi and Fischer (2018), where
the empirical measure of the survivors was re-normalized at each time. Such a
dependence on past absorptions is also included in the costs.

(iii) We allow both the drift and the cost functional of the players to grow at most
linearly with the state, hence they are not necessarily bounded unlike in Campi
and Fischer (2018). Moreover, the set of non-absorbing statesO can also be un-
bounded. Dropping the boundedness of the game data increases the flexibility
of our setting, which can include more realistic dynamics from the viewpoint
of applications.

Our technical results can be summarized as follows while for more details and a
broader overview of the related literature we refer to Chapter 2.

• We prove existence of a relaxed feedback MFG solution and, under an addi-
tional convexity assumption, we show that there are optimal feedback strate-
gies in strict form; see Theorem 2.3.1, Proposition 2.3.4 and Proposition 2.3.5.
Additionally, we show that there exist relaxed and strict feedback solutions
that are Markovian up to the exit time; see Proposition 2.3.6.



1.2. Our original contribution to the mean-field games literature 7

• We prove uniqueness of the MFG solution under standard monotonicity con-
ditions of the Lasry-Lions type formulated for sub-probability measures; see
Theorem 2.4.1.

• We study approximate Nash equilibria for the N-player game in a setting
where the dependence on the measure variable is finite-dimensional. Precisely,
we show that if we have a feedback solution of the MFG (either relaxed or
strict), we can construct a sequence of approximate Nash equilibria for the cor-
responding N-player games with a vanishing approximation error as N → ∞;
see Theorem 2.5.1 and Corollary 2.5.2. It is worth stressing that the construc-
tion produces approximate N-player equilibria in feedback strategies (instead
of the more common open-loop strategies).

1.2.2 Our contribution to MFGs with singular controls

For what concerns MFGs of finite-fuel capacity expansion with singular controls,
our main contribution to the literature is the following.

(i) We introduce the MFG of finite-fuel capacity expansion with singular controls,
with an interaction structure among the players that is particularly apt to mod-
elling the so-called goodwill problem.

(ii) We prove that the renown and well-established connection between singular
control problems of capacity expansion and problems of optimal stopping also
holds in our MFG setting.

(iii) We prove existence of a solution of the MFG of finite-fuel capacity expansion
with singular controls via an iterative approximation procedure, naturally sug-
gesting a numerical method that we also formalize and implement (see Chap-
ter 4).

Our technical results can be summarized as follows while for more details and a
broader overview of the related literature we refer to Chapter 3.

• We formulate the MFG of capacity expansion as the limit model for a sequence
of N-player games of capacity expansion (Section 3.2). Then, under mild as-
sumptions on the problem’s data we construct a solution in feedback form of
the MFG of capacity expansion (Section 3.3). Our constructive approach, based
on an intuitive iterative scheme, allows us to determine the optimal control for
the MFG in terms of an optimal boundary (t, x) 7→ c(t, x) that splits the state
space [0, T]×R× [0, 1] into an action region and an inaction region; see Theo-
rem 3.2.1 in Section 3.2. The optimal strategy prescribes to keep the controlled
dynamics underlying the MFG inside the closure of the inaction region by Sko-
rokhod reflection.

• Whenever the optimal boundary in the MFG is Lipschitz continuous in its sec-
ond variable we can show that it induces a sequence of approximate εN-Nash
equilibria for the N-player games with vanishing approximation error at rate
O(1/

√
N) as N tends to infinity; see Theorem 3.4.1 in Section 3.4. While Lips-

chitz regularity of optimal boundaries is in general a delicate issue, we provide
sufficient conditions on our problem data that guarantee such regularity.
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• Based on the iterative procedure in the proof of Theorem 3.2.1, Section 3.3, we
construct a numerical scheme to approximate the solution of the MFG of finite-
fuel capacity expansion with underlying Geometric Brownian motion dynam-
ics, introduced in Section 4.1. We implement the numerical method in Section
4.2.2.
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Chapter 2

Mean-Field Games with
Absorption

2.1 Introduction to mean-field games with absorption

Mean-field games with absorption is a class of games that has been introduced in
Campi and Fischer (2018) and that can be viewed as natural limits of symmetric
stochastic differential games with a large number of players who, interacting through
a mean-field, leave the game as soon as their private states hit some given boundary.
In most of the literature on MFGs, all players stay in the game until the end of the pe-
riod, while in many applications, especially in economics and finance, it is natural to
have a mechanism deciding when some player has to leave. Such a mechanism can
be modelled by introducing an absorbing boundary for the state space as in Campi
and Fischer (2018), which is the starting point of our study.

Related literature, featuring some form of absorption or exit mechanism for the
players and introducing possible applications for this kind of models, is vast.
First, we cite the works of Giesecke et al. (2013) and Giesecke et al. (2015) where a
model based on point processes for correlated defaults timing in a portfolio of firms
is introduced and analysed. Giesecke et al. (2013) prove a LLN for the default rate as
the number N of firms goes to infinity. Motivated by modelling the contagion effect
are the works of Hambly and Ledger (2017), Hambly et al. (2019) and Hambly and
Søjmark (2019) too. The first work provides a LLN for the empirical measure of a sys-
tem of finitely many (uncontrolled) diffusions on the half-line, absorbed when they
hit zero and correlated through the proportion of absorbed processes. In Hambly
et al. (2019) the model is extended to include a positive feedback mechanism when
the particles hit the barrier, thus modelling contagious blow-ups. A mathematical
complement to the previous work is provided in Ledger and Søjmark (2020). More
recently, Hambly and Søjmark (2019) have proposed a general model for systemic
(or macroscopic) events. By working on a set-up similar to Hambly and Ledger
(2017), they interpret the diffusions as distances-to-default of financial institutions
and model the correlation effect through a common source of noise and a form of
mean-reversion in the drift. A form of endogenous contagion mechanism is also
considered.
On the side of applications to economics, Chan and Sircar (2015) and Chan and Sircar
(2017) study oligopolistic models with exhaustible resources formulated as MFGs
with absorption at zero. Their model keeps track of the fraction of active players at
each time. However, this fraction appears in the objective functions but not in the
state variable.
Two more papers to mention are those by Delarue et al. (2015a) and Delarue et al.
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(2015b), where a particle system approach is used to study the mathematical proper-
ties of an integrate-and-fire model from neurology. The particles’ dynamics have
some resetting mechanism which activates as soon as some particle hits a given
boundary. Besides, we cite two recent papers by Nadtochiy and Shkolnikov (2019,
2020). The first one focuses on the cascade effect in an interbank mean-field model
with defaults and a contagion effect modelled via a singular interaction through
hitting times. The second one investigates the associated mean-field game also in-
cluding more general dynamics and connection structures.
Finally, we mention a class of MFGs that has been considered quite recently espe-
cially in relation to bank run models, that is MFGs of optimal stopping or timing;
see, for instance, Bertucci (2018), Bouveret et al. (2020), Carmona et al. (2017) and
Nutz (2018). Therein, the agents solve an optimal stopping problem so that the ter-
minal time is directly chosen by them instead of being determined by the evolution
of the controlled state as in our setting. In both settings the terminal time is in fact
a random time and the state evolution might be affected by the fraction of players
leaving the game and the empirical measure of those that remain.

2.1.1 Model description

The purpose of this chapter is to study N-player games and related MFGs in the
presence of an absorbing set (players are eliminated from the game once their private
states leave a given open set O ∈ Rd), and where the vector of private states XN .

=
(XN,1, . . . , XN,N) evolves according to

XN,i
t = XN,i

0 +
∫ t

0
b̄
(

s, XN,i
s , µN

s , uN,i
(

s, XN
))

ds + σWN,i
t , t ∈ [0, T] , (2.1)

for i ∈ {1, . . . , N}, where uN .
= (uN,1, . . . , uN,N) is a vector of feedback strategies,

WN,1, . . . , WN,N are independent d-dimensional Wiener processes defined on some
filtered probability space, σ is the (non-degenerate) diffusion matrix and b̄ is a given
drift functional. Finally, µN is the random flow of empirical sub-probability mea-
sures representing the empirical distribution of the survivors

µN
t (·) .

=
1
N

N

∑
i=1

δXN,i
t

(·) 1
[0,τXN,i )

(t) .

Each player evaluates a strategy vector uN according to their own expected costs

JN,i
(

uN
) .
= E

[∫ τN,i

0
f̄
(

s, XN,i
s , µN

s , uN,i
(

s, XN
))

ds + F
(

τN,i, XN,i
τN,i

)]
(2.2)

over a random time horizon. In Equation (2.2), XN is the N-player dynamics under
uN and τN,i .

= τXN,i ∧ T. In the present work, we are interested in drifts b̄ and costs
f̄ with sub-linear growth, hence possibly unbounded. Further details on the setting
with all the technical assumptions will be given in Section 2.2.
The dynamics above is also motivated by economic models for corporate finance,
systemic risk, and asset allocation. For instance, we can interpret players as firms
whose values are represented by the state variables XN,i for i ∈ {1, . . . , N}. Each
company is affected by the fraction of both defaulted and non-defaulted firms and
takes strategic decisions accordingly. Moreover, sub-linearity of the drift allows to
include a mean-reversion term representing some herding behaviour. A possible
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application is the pricing of portfolio credit derivatives where the pricing depends
upon the so called distance-to-default of the assets in the portfolio (Hambly and
Ledger (2017)). Alternatively, each player can be interpreted as a bank, whose mone-
tary reserve evolves according to the stochastic dynamics in Equation (2.1) where the
drift depends on both the rate of interbank borrowing/lending and on a controlled
borrowing/lending rate to a central bank, as in Carmona et al. (2015). However, in
Carmona et al. (2015) no absorbing boundary conditions are considered. The lat-
ter features could be incorporated in the model by introducing absorbing boundary
conditions at the default level, similarly to Hambly and Ledger (2017). This would
enable to study the impact of defaults on systemic risk and stability of the financial
system described by the game. Last but not least, the proposed set-up allows for a
Brownian motion with an Ornstein–Uhlenbeck type drift modelling for the private
state, a model that has been used (for instance) for the notion of flocking to default
in the financial literature (Fouque and Sun (2013)). However, in the present work we
focus on the mathematical properties of the proposed family of games and we leave
the applications for future research.

2.1.2 Methodology and original contribution

The first paper introducing mean-field games with absorption is Campi and Fischer
(2018). Therein, existence of solutions of the MFG and construction of approximate
Nash equilibria for the N-player games were provided under some boundedness
assumptions on the coefficients and without including the effect of past absorption
on the survivors’ behaviour. The present work continues the investigation of this
kind of games, with the following main extensions.

(i) We recast MFGs with absorption in a more general setting, most common to
the MFG literature, where the dependence of the dynamics and costs on the
empirical measure is infinite-dimensional.

(ii) We introduce a direct dependence on past absorptions in the drift of the Stochas-
tic Differential Equations (SDEs) describing the evolution of the players’ states
by letting the initial distribution of players lose mass over time. Such a loss
of mass corresponds to the exit of the absorbed players from the game, so that
the proportion of the absorbed players has an effect on the future evolution of
the survivors. This feature was not present in Campi and Fischer (2018), where
the empirical measure of the survivors was re-normalized at each time. Such a
dependence on past absorptions is also included in the costs.

(iii) We allow both the drift and the cost functional of the players to grow at most
linearly with the state, hence they are not necessarily bounded unlike in Campi
and Fischer (2018). Moreover, the set of non-absorbing statesO can also be un-
bounded. Dropping the boundedness of the game data increases the flexibility
of our setting, which can include more realistic dynamics from the viewpoint
of applications (for more details, see later in this introduction).

The main contributions of the chapter can be summarized as follows:

• We introduce the MFG with smooth dependence on past absorptions, i.e. the
limit model corresponding to the above N-player games as N tends to infinity.
For a solution of the MFG, the empirical sub-probability measures (µN

t )t∈[0,T]

are replaced by flows of sub-probability measures on Rd; see Definition 2.2.1.
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• We prove existence of a relaxed feedback MFG solution and, under an addi-
tional convexity assumption, we show that there are optimal feedback strate-
gies in strict form; see Theorem 2.3.1, Proposition 2.3.4 and Proposition 2.3.5.
Additionally, we show that there exist relaxed and strict feedback solutions
that are Markovian up to the exit time; see Proposition 2.3.6.

• We prove uniqueness of the MFG solution under standard monotonicity con-
ditions of the Lasry-Lions type formulated for sub-probability measures; see
Theorem 2.4.1.

• We study approximate Nash equilibria for the N-player game in a setting
where the dependence on the measure variable is finite-dimensional. Precisely,
we show that if we have a feedback solution of the MFG (either relaxed or
strict), we can construct a sequence of approximate Nash equilibria for the cor-
responding N-player games with a vanishing approximation error as N → ∞;
see Theorem 2.5.1 and Corollary 2.5.2. It is worth stressing that the construc-
tion produces approximate N-player equilibria in feedback strategies (instead
of the more common open-loop strategies).

The proof of the existence of feedback solutions of the MFG is inspired by the
truncation procedure introduced by Lacker (2015). We construct a sequence of ap-
proximating MFGs, each one with bounded drift and cost functional, to which we
can apply the results of Campi and Fischer (2018). Then, we prove convergence
of the solutions of these approximating MFGs to a solution of the original one.
Nonetheless, the procedure in Lacker (2015) cannot be applied directly to our case
mainly due to the history dependency and the discontinuities induced by past ab-
sorptions. In particular, a different instance of the mimicking result of Brunick and
Shreve (2013) applies to our framework.
To establish the uniqueness result we follow standard monotonicity arguments, with
some adjustments due to the dependence of the coefficients on a flow of sub-probability
measures instead of probability measures. In particular, the uniqueness result relies
on an additional (standard) monotonicity assumption on the running cost of the
Lasry-Lions type.
The proof of the construction of approximate Nash equilibria for the N-player game
is based on weak convergence arguments and controlled martingale problems. The
use of martingale problems in proving convergence to the McKean-Vlasov limit and
propagation of chaos for weakly interacting systems goes back to Funaki (1984),
Oelschläger (1984) and Méléard (1996). We observe that, whereas standard results
prove convergence in law of the empirical measures, in the present work we follow
the approach of Lacker (2018) to obtain a strong form of propagation of chaos with
possibly unbounded and path-dependent drift. We show that the empirical mea-
sures converge in a stronger topology (the τ-topology), a result that enables us to
take the limit as N → ∞ without assuming any regularity of the feedback strate-
gies with respect to the state process. In our framework, unlike Campi and Fischer
(2018), the continuity of the MFG optimal control for almost every path of the state
variable with respect of the Wiener measure is no longer feasible. Indeed, the PDE-
based estimates that were used in Campi and Fischer (2018) to get such a regularity
are not available anymore due to the possible unboundedness of the drift and the
running cost.
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2.1.3 Preliminaries and notation for mean-field games with absorption

In this section, we provide the definitions of the different spaces of trajectories and
measures used in the chapter along with the corresponding topologies, distances
and notions of convergence.

Spaces of trajectories. Let d ∈ Z+. We denote by O ⊂ Rd an open subset of Rd

representing the space of the players’ private states and by X .
= C([0, T]; Rd) the

space of Rd-valued continuous trajectories on the time interval [0, T], T < ∞. The
space Rd is equipped with the standard Euclidean norm, always indicated by | · |,
while X with the sup-norm, denoted by ‖ · ‖∞, which makes X separable and com-
plete. We use the notation ‖ · ‖∞,t whenever the sup-norm is computed over the time
interval [0, t], t < T. Besides, we denote with X N .

= C([0, T]; Rd×N) the space of N-
dimensional vectors of continuous trajectories and identify it with X×N .

Spaces of measures. We use flows of probability and sub-probability measures to
describe the distribution of players and its time evolution inO. For E a Polish space,
let M f (E) denote the space of finite Borel measures on E, P(E) the space of Borel
probability measures on E andM≤1(E) the space of Borel sub-probability measures
on E, i.e. measures µ ∈ M f (E) such that µ(E) ≤ 1. These spaces are endowed with
the weak convergence of measures (Billingsley (1999)). We will often write µn w

⇀ µ

to indicate weak convergence of µn towards µ as n → ∞ and ξn
L−→ ξ to denote

convergence in law of a sequence of random variables (ξn)n∈N (defined on possibly
different probability spaces) to a limit random variable ξ.

We define by ΥT
P (E) (resp. by ΥT

≤1(E)) the spaces of measurable flows of proba-
bility (resp. sub-probability) measures on E, i.e. the space of Borel measurable maps
π (resp. µ) from the time interval [0, T] to P(E) (resp. M≤1(E)). Wherever possible
without confusion, we use ΥT

P (resp. ΥT
≤1) when E = Rd. We denote by P1(E) and

byM≤1,1(E) the following subsets of P(E) andM≤1(E):

P1 (E) .
=

{
π ∈ P (E) :

∫
E

dE(x, x0)π(dx) < ∞ for some x0 ∈ E
}

,

M≤1,1 (E) .
=

{
µ ∈ M≤1 (E) :

∫
E

dE(x, x0)µ(dx) < ∞ for some x0 ∈ E
}

.

We endow P1(E) with the 1-Wasserstein distance W1

W1(µ, ν)
.
= inf

π∈Π(µ,ν)

∫
E×E

dE (x, y)dπ(x, y) = sup
f∈Lip1(E;R)

∫
E

f (x)d(µ− ν)(x) (2.3)

where Π(µ, ν) ⊂ P1(E × E) represents the set of probability measures with given
marginals µ and ν, and Lip1(E; R) the set of Lipschitz functions on E with unitary
Lipschitz constant. The second equality in Equation (2.3) is due to the Kantorovich-
Rubinstein Theorem (see, for instance, Theorem 6.1.1 in Ambrosio et al. (2008)). No-
tice that (P1(E), W1) is a separable and complete metric space whenever (E, dE) is
separable and complete. Finally, let ΥT

P ,1(E) (resp. ΥT
≤1,1(E)) denote the space of

measurable flows of probability measures in P1(E) (resp. in M≤1,1(E)). Again,
wherever possible without confusion, we use ΥT

P ,1 and ΥT
≤1,1 when E = Rd.

The canonical space. We will often work on the canonical filtered probability space,
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denoted by (Ω,F , F = (Ft)t∈[0,T],P) and defined as follows. Set Ω .
= X , let ξ be

an Rd-valued random variable with law ν ∈ P(Rd) and let W be a d-dimensional
Wiener process on X independent of ξ. Define Wν ∈ P(X ) as the law of ξ + σW.
Set F as the Wν-completion of the Borel σ-algebra B(X ) and F = (F )t∈[0,T] as the
Wν-augmentation of the filtration generated by the canonical process X̂ on X , i.e.
X̂t(ϕ)

.
= ϕ(t) for all (t, ϕ) ∈ [0, T] × X . In particular, F satisfies the usual condi-

tions. Finally set P .
= Wν and W .

= σ−1(ξ − X̂), which is a Wiener process on X .
Where no confusion is possible, we will write X for X̂.
The extended canonical probability space. When dealing with relaxed controls we will
work on the following extension of the canonical probability space X . Set Ω̃ .

=
X × V , let F and F be the canonical σ-algebra and the canonical filtration on X ,
respectively, whereas G and G = (Gt)t∈[0,T] denote the Borel σ-algebra and the
filtration generated by the canonical process Λ̂ on V , respectively. Finally, we set
F̃t

.
= Ft ⊗ Gt for all t ∈ [0, T], and F̃ .

= F ⊗ G.

2.2 The mean-field game with absorption: setting and as-
sumptions

In this section, we describe the MFG with smooth dependence on past absorptions
and give the definition of solution of the MFG. We also introduce the MFGs with
truncated coefficients, which will be used in the proof of existence of MFG solutions.

Now, let O ⊂ Rd be a non-empty open set, the set of non-absorbing states, and
let Γ ⊂ Rd be the set of control actions. For each ϕ ∈ X we set τϕ .

= inf{t ∈ [0, T] :
ϕ(t) 6∈ O}, with the convention inf∅ = ∞, and τ(ϕ)

.
= τϕ ∧ T. In order to set up

the dynamics of the players’ states, we need to introduce the following functions:

b̄ : [0, T]×Rd ×M≤1,1(R
d)× Γ→ Rd, σ ∈ Rd×d,

f̄ : [0, T]×Rd ×M≤1,1(R
d)× Γ→ [0, ∞), F : [0, T]×Rd → [0, ∞).

Since we will have to impose some joint continuity property for the functions above,
in particular with respect to the µ-variable, and there is no natural metrizable topol-
ogy over the set of sub-probability measures M≤1,1(R

d), it will be convenient to
work with the following reparameterization of a suitable restriction of b̄ and f̄ :

b(t, ϕ, θ, u) .
= b̄(t, ϕ(t), g(t, θ), u),

f (t, ϕ, θ, u) .
= f̄ (t, ϕ(t), g(t, θ), u)

where b and f are progressively measurable functionals such that

b : [0, T]×X ×P1(X )× Γ→ Rd,
f : [0, T]×X ×P1(X )× Γ→ [0, ∞)

while g : [0, T]×P1(X ) → M≤1,1(R
d) is defined by its action on the test functions

of the 1-Wasserstein convergence, i.e., on the functions ψ ∈ C(Rd) with sub-linear
growth, as ∫

Rd
ψ(x)g(t, θ)(dx) .

=
∫
X

ψ(ϕ(t))1[0,τϕ)(t)θ(dϕ). (2.4)
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In words, the functions b and f above are reparameterizatons of the restrictions of b̄
and f̄ , respectively, to the range of the map

(t, ϕ, θ, u) 7→ (t, ϕ(t), g(t, θ), u).

Moreover, for each µ ∈ M≤1,1(R
d) and θ ∈ P1(X ) we introduce the notation

m(µ)
.
=
∫

Rd
|x|µ(dx) and m(t; θ)

.
=
∫
X
|ϕ(t)|1[0,τϕ)(t)θ(dϕ).

Now, we collect the necessary assumptions on all initial data in order to state our
main results. Some further assumptions will be given later in the chapter when
necessary.

(H1) The drift b̄ satisfies the following uniform Lipschitz continuity:∣∣b̄(t, x, µ, u)− b̄(t, x′, µ, u)
∣∣ ≤ L|x− x′|, x, x′ ∈ Rd

for any (t, µ, u) ∈ [0, T]×M≤1,1(R
d)× Γ. Moreover it has sub-linear growth,

i.e. ∣∣b̄(t, x, µ, u)
∣∣ ≤ C (1 + |x|+ m(µ))

for all (t, x, µ, u) ∈ [0, T] × Rd ×M≤1,1(R
d) × Γ and for a positive constant

C > 0.

(H2) The running costs f̄ and the terminal cost F have sub-linear growth, i.e.

f̄ (t, x, µ, u) ≤ C(1 + |x|+ m(µ)),
F(t, x) ≤ C(1 + |x|),

for all (t, x, µ, u) ∈ [0, T]×Rd ×M≤1,1(R
d)× Γ, (t, x) ∈ [0, T]×Rd and for a

positive constant C > 0.

(H3) b̄ and f̄ are such that their reparametrizations b and f are jointly continuous at
points (t, ϕ, θ, u) ∈ [0, T]×X ×P1(X )× Γ such that θ � Wν. Moreover, F is
jointly continuous on [0, T]×Rd.

(H4) The set O is open, convex and strictly included in Rd with C2-boundary, i.e.
∂O is the graph of a C2 function. Alternatively, O = (0, ∞)×d is also allowed.

(H5) The set Γ ⊂ Rd is compact.

(H6) The diffusion matrix σ ∈ Rd×d has full rank.

(H7) The initial distribution ν ∈ P(Rd) has support inO and satisfies
∫
O eλ|x|2 ν(dx) <

∞ for some λ > 0.

(H8) The initial conditions of the N-player game XN,i
0 , i ∈ {1, . . . , N}, are i.i.d. and

with the initial condition of the MFG X0, they are all distributed as ν ∈ P(Rd).

Before turning to the MFG dynamics, some remarks on the assumptions above are
in order.

Remark 2.2.1. The growth assumptions in (H1) and (H2) could be further refined.
For instance, one could assume sub-linear and sub-polynomial growth of the drift
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and diffusion matrix with suitable exponents as, e.g., in Lacker (2015). Moreover, the
running cost f could certainly take real values; however, without loss of generality
and given the interpretation as a cost term, we have assumed f ≥ 0.

Remark 2.2.2. The continuity properties in (H3) are crucial in the passage to the limit
performed in Proposition 2.3.2. Since the laws of the processes that we consider are
absolutely continuous with respect to the Wiener measure Wν (they belong to the
set Q ⊂ P(X ) of laws of Brownian-driven processes with sub-linear drift that we
introduce and characterize in the Appendix A, cfr. Lemma A.0.3), it is sufficient
to require continuity at points θ � Wν. The passage to the limit in the measure
argument can then be performed by Lemma A.0.4 together with Lemma A.0.5.

Remark 2.2.3. Admittedly, compactness of Γ is a strong assumption, but it will play
an important role in order to obtain existence and uniqueness of weak solutions of
the SDEs for the player state’s dynamics in both the MFG and the N-player games.
In particular, it enables a line of arguments based on Beněs’ condition – ensured by
the boundedness of the coefficient in the control variable – and Girsanov’s theorem
(see Remark 2.2.5 for more precise references), which is one of the main tools of our
approach.

Remark 2.2.4. The nondegeneracy of σ as in (H6) is justified by the counter-example
in Campi and Fischer (2018), Section 7, where it was shown that a feedback MFG
solution does not necessarily induce a sequence of approximate Nash equilibria with
vanishing error. A careful inspection of such a counter-example reveals that it can be
easily adapted to our setting since, in that particular context, dividing by the initial
number of players N (as in our setting) or renormalizing each time by the current
number of players (as in the counter-example) turn out to be equivalent for N large.
Finally, even though state dependency of the diffusion matrix can be handled using
very similar techniques, we have decided to leave it out and focus on other more
interesting aspects of the model. For the same reason we leave aside a possible
dependence of σ on the control, as it would just increase the level of technicality of
the proofs due to the use of martingale measures (see Lacker (2015)).

The mean-field dynamics. Given a flow of sub-probability measures µ ∈ ΥT
≤1,1 and a

feedback progressively measurable control u : [0, T] × X → Γ, the representative
player’s state evolves according to the equation

Xt = X0 +
∫ t

0
b̄ (s, Xs, µs, u (s, X)) ds + σWt, t ∈ [0, T], (2.5)

where X is a d-dimensional stochastic process starting at X0
d∼ ν ∈ P(Rd) and W

is a d-dimensional Wiener process on some filtered probability space (Ω,F , F =
(Ft)t∈[0,T],P). Solutions of Equation (2.5) are understood to be in the weak sense
(see Remark 2.2.5 below).
Let U f b denote the set of all feedback controls defined as

U f b
.
= {u : [0, T]×X → Γ : u is progressively measurable}.

The cost associated with a strategy u ∈ U f b, a flow of sub-probability measures
µ ∈ ΥT

≤1,1 and an initial distribution ν ∈ P(Rd) is given by (we omit, for the sake of
simplicity, the explicit dependence on ν)

Jµ (u) .
= E

[∫ τ

0
f̄ (s, Xs, µs, u (s, X))ds + F (τ, Xτ)

]
(2.6)
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where (Ω,F , F = (Ft)t∈[0,T],P, W, X) is a solution of Equation (2.5) under u with
initial distribution ν, and τ

.
= τX ∧ T the random time horizon. Finally we set

Vµ .
= inf

u∈U f b
Jµ(u).

Remark 2.2.5. For a given flow of sub-probability measures µ, thanks to the linear
growth of b̄ in the state variable ϕ and to the boundedness of the action space Γ, we
have that both existence and uniqueness in law of a weak solution of Equation (2.5) is
guaranteed by Lemma A.0.1, and by Proposition 5.3.6, Remark 5.3.8 and Proposition
5.3.10 in Karatzas and Shreve (1987) (see our Lemma A.0.2). Precisely, this can be
proved by means of Girsanov’s theorem and Beněs’ condition (Beneš, 1971).

The notion of solution we consider for the MFG is the following.

Definition 2.2.1 (Feedback MFG solution). A feedback solution of the MFG is a pair
(u, µ) ∈ U f b × ΥT

≤1,1 such that:

(i) Strategy u is optimal for µ, i.e. Vµ = Jµ(u).

(ii) Let (Ω,F , F = (Ft)t∈[0,T],P, X, W) is a weak solution of Equation (2.5) with
flow of sub-probability measures µ, strategy u and initial condition ν. Then

µt(·) = P({Xt ∈ ·} ∩ {τX > t}), t ∈ [0, T].

Relaxed controls. It will be very convenient to use relaxed controls (see El Karoui
et al. (1987) for a precise definition), which allow us to view progressively measur-
able controls with values on a compact set Γ as elements of the space of probability
measures on Γ. The latter space is compact when endowed with the weak conver-
gence of measures. The space V of relaxed controls is given by

V .
=
{

q ∈ M f ([0, T]× Γ) : q(dt, dγ) = dtqt(dγ), t 7→ qt ∈ P(Γ)Borel measurable
}

i.e. it is the set of all finite positive measures on [0, T] × Γ with Lebesgue time
marginal. With a slight abuse of notation, we denote with Λ̂ both the identity map
and the canonical process on V (where no confusion is possible, we drop the hat
and write Λ in place of Λ̂). Precisely, a single-player relaxed control is a V-valued
random variable Λ such that (Λt)t∈[0,T] is a progressively measurable P(Γ)-valued
stochastic process. We say that Λ is a feedback control if there exists a progressively
measurable functional λ : [0, T]×X → P(X ) such that Λt = λ(t, X) for all t ∈ [0, T],
with X denoting the player’s dynamics. Moreover, we say that Λ is a strict and feed-
back control if there exists u ∈ U f b such that λ(t, X) = δu(t,X) for all t ∈ [0, T].
Let Ũ f b be the set of relaxed feedback controls for the MFG. We rewrite the dynamics
and the cost functional of the MFG (Equation (2.5)) and Equation (2.6)) using relaxed
controls:

Xt = X0 +
∫
[0,t]×Γ

b̄ (s, Xs, µs, u) λ (s, X) (du)ds + σWt, (2.7)

Jµ (λ) = E

[∫
[0,τ]×Γ

f̄ (s, Xs, µs, u) λ (s, X) (du)ds + F (τ, Xτ)

]

where t ∈ [0, T] and λ ∈ Ũ f b. Moreover, we extend accordingly the notion of feed-
back solutions of the MFG.
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Definition 2.2.2 (Relaxed feedback MFG solution). A relaxed feedback solution of the
MFG is a pair (λ, µ) ∈ Ũ f b × ΥT

≤1,1 such that:

(i) λ is optimal, i.e. Vµ = Jµ(λ).

(ii) Let (Ω̃, F̃ , F̃ = (F̃t)t∈[0,T],Q, X, W) be a weak solution of Equation (2.7) with
flow of sub-probability measures µ, control λ and initial condition ν. Then

µt(·) = Q({Xt ∈ ·} ∩ {τX > t}), t ∈ [0, T].

Feedback and open-loop controls. Feedback controls induce stochastic open-loop con-
trols, i.e. tuples (Ω,F , F = (Ft)t∈[0,T],P, X, u, W) that are weak solutions of

Xt = X0 +
∫ t

0
b̄ (s, Xs, µs, us) ds + σWt, t ∈ [0, T] (2.8)

where u is a progressively measurable Γ-valued stochastic process. As a conse-
quence, the computation of the infimum of Jµ(·) over the class of stochastic open-
loop controls would imply a lower value for Vµ. However, thanks to Proposition
2.6 in El Karoui et al. (1987), the two minimization problems are equivalent from the
point of view of the value function.
A similar argument holds also in the case of feedback relaxed controls, that induce
relaxed stochastic open-loop controls, tuples (Ω̃, F̃ , F̃ = (F̃t)t∈[0,T],Q, X, Λ, W) that
are weak solutions of

Xt = X0 +
∫
[0,t]×Γ

b̄ (s, Xs, µs, u)Λs(du)ds + σWt, t ∈ [0, T] (2.9)

where Λ is a progressively measurable P(Γ)-valued stochastic process.
In the rest of the chapter we will call U the set of open-loop controls and, for the
sake of brevity and where no confusion is possible, denote with u an element of U

implying the whole tuple (Ω,F , F = (Ft)t∈[0,T],P, X, u, W). Similarly, we will call Ũ

the set of open-loop relaxed controls and denote with Λ an element of Ũ implying
the whole tuple (Ω̃, F̃ , F̃ = (F̃t)t∈[0,T],Q, X, Λ, W).

Approximating MFGs. We conclude this preliminary section by introducing a suitable
sequence of approximating MFGs, which is obtained by truncation of the coefficients
of the original MFG similarly as in Lacker (2015). Such a sequence will be useful in
the proof of existence of a MFG solution along the following lines: we will prove
existence of feedback MFG solutions of the approximating MFGs in the sequence
by extending the existence result of Campi and Fischer (2018). Then, by letting the
truncation threshold go to infinity, we will obtain a solution of the original MFG.
This approach relies on two additional assumptions (Assumptions (C1) and (C2) be-
low) that will be introduced later in this part.
Let (Kn)n∈N ⊂ R+ be an increasing sequence such that Kn ↗ +∞. The nth approxi-
mating MFG model, denoted by MFG(n), is obtained as follows.

(Tn) b̄n(x) = b̄(x) when |b̄(x)| ≤ Kn, while it is continuously truncated at level
Kn, i.e. |b̄n(x)| = Kn, otherwise. Similarly for the costs f̄ n and Fn and for the
associated functions bn and f n.

Notice that we do not truncate the possibly unbounded set O of non-absorbing
states. In each MFG(n) the representative player’s state evolves as in Equation (2.5)
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with b̄ replaced by b̄n, i.e.

Xt = X0 +
∫ t

0
b̄n (s, Xs, µs, u(s, X)) ds + σWt, t ∈ [0, T] (2.10)

when the player is using the strict control u, and similarly when using a relaxed con-
trol. Moreover, in the cost functional f̄ and F are replaced by their truncated coun-
terpart f̄ n and Fn. The associated cost functional is denoted by Jn,µ (u) or Jn,µ (λ)
depending on whether the player is implementing a strict strategy u or a relaxed
one λ. The optimal values are defined, accordingly, by

Vn,µ .
= inf

u∈U f b
Jn,µ(u).

The definitions of strict and relaxed MFG solutions given above for the (un-truncated)
MFG can clearly be applied to the approximating MFG(n)s with the obvious modi-
fications. We associate to the MFG(n)s the following Hamiltonians:

hn(t, x, θ, z, u) .
= f n(t, x, θ, u) + z σ−1 bn(t, x, θ, u),

Hn(t, x, θ, z) .
= inf

u∈Γ
hn(t, x, θ, z, u)

and the set of minimizers

An(t, x, θ, z) .
= {u ∈ Γ : hn(t, x, θ, z, u) = Hn(t, x, θ, z)}

for (t, x, θ, z) ∈ [0, T]×Rd × P1(X )×Rd. In the next section on existence of MFG
solutions we will rely on the following additional convexity assumptions:

(C1) For each n ∈N, An(t, x, θ, z) is convex for all (t, x, θ, z) ∈ [0, T]×Rd×P1(X )×
Rd.

(C2) The running cost f is convex in the control variable u ∈ Γ.

Remark 2.2.6. Assumption (C1) is common in control theory and it is crucial in order
to apply fixed point theorems. In our case it is satisfied if, for instance, the running
cost f is bounded and convex in the control variable u ∈ Γ. Indeed in this case, due
to the flexibility in the choice of the truncation thresholds, choosing Kn ≥ ‖ f ‖∞ for
all n ∈N we have f n = f for all n ∈N. Then convexity is preserved by adding any
sub-linear term. Finally, we observe that Assumption (C2) will be used in Section
2.3.4 for obtaining the existence of strict MFG solutions.

2.3 Existence of solutions of the mean-field game

Throughout this section Assumptions (H1)-(H8) are in force. Under these and the
additional convexity Assumptions (C1) and (C2) we show that both a relaxed and
a strict feedback solution of the MFG exist; see Theorem 2.3.1 below together with
Proposition 2.3.4 and Proposition 2.3.5. In addition, we guarantee the existence of a
feedback solution of the MFG with Markovian feedback strategy up to the exit time;
see Proposition 2.3.6. Our main existence result can be stated as follows.

Theorem 2.3.1 (Existence of relaxed and strict feedback MFG solutions). Under Assump-
tions (H1)-(H8) and (C1), there exists a relaxed feedback MFG solution (λ, µ). Moreover,
under the additional Assumption (C2) , there exists a strict feedback MFG solution (u, µ).
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To prove Theorem 2.3.1, we proceed by approximation in the sense that, first, we
prove that each MFG(n) introduced in the previous section has a feedback (strict)
solution by extending the results in Campi and Fischer (2018); see Subsection 2.3.1.
Then, we prove the convergence of such approximating solutions to a feedback
(relaxed) solution of the original MFG by passing to the limit with the truncation
thresholds; see Subsection 2.3.2.

Before proceeding, we ensure the well-posedness of the game in the sense that
we show that the private state X of the representative agent remains inO up to time
T with some positive probability. This is the content of the following lemma.

Lemma 2.3.1. Grant Assumptions (H1)-(H8). Let (Ω,F , F = (Ft)t∈[0,T],P, X, W) be a
weak solution of Equation (2.5). Then P(τX > t) > 0 for all t ∈ [0, T].

Proof. Set bt
.
= b̄(t, Xt, µt, u(t, X)) for t ∈ [0, T], and define Z .

= (Zt)t∈[0,T] as

Zt
.
= Et

(
−
∫ ·

0
σ−1bsdWs

)
, t ∈ [0, T],

where Et(·) denotes the Doléans-Dade stochastic exponential. By Lemma A.0.1, Z
is a true martingale. Define Q by dQ

dP
.
= ZT. By Girsanov’s theorem W̃t

.
= Wt +∫ t

0 σ−1bsds, t ∈ [0, T], is a Q-Wiener process, and under Q the process X has lawWν.
As a consequence of the law of iterated logarithms, any Wiener process remains in
an open set, hence in O ⊂ Rd, for a finite time with strictly positive probability.
Therefore Q(τX > T) > 0 and thus P(τX > T) > 0.

2.3.1 Approximating MFGs

In this subsection we prove existence of solutions of the approximating MFG(n)s.

Theorem 2.3.2 (Existence of solutions of MFG(n)). Let n ∈N. Under Assumptions (H1)-
(H8) and (C1) there exists a feedback solution (un, µn) of MFG(n).

Proof. The proof follows similar steps to those in Section 6 of Campi and Fischer
(2018): we only sketch here the main steps. The main difference with Campi and
Fischer (2018) is that, due to Assumption (C1), we have to deal with set-valued maps,
hence to apply a version of Kakutani’s fixed point theorem instead of Brouwer’s. We
use the version proposed by Carmona and Lacker (2015), Proposition 7.4, which is
in turn based on the results of Cellina (1969). Other adjustments are due to the fact
that µ is a flow of sub-probability measures (instead of probability measures) and
that O can be unbounded.
Fix n ∈N. The proof is based on the construction of a suitable map Ψ : P(X )×U→
P(X ) on an appropriate compact and convex subset of P(X ), where U is the space
of progressively measurable Γ-valued stochastic processes. The fixed points of Ψ will
provide MFG(n) solutions. More in detail, define Qν,K as the set of laws θ ∈ P(X ) of
any process of the type

ξ +
∫ t

0
bsds + σWt, t ∈ [0, T]

defined on some filtered probability space with a Wiener process W, ξ
d∼ ν, drift

(bt)t∈[0,T] adapted and bounded by K > 0. Let us consider

Ψ : Qν,Kn ×U 3 (θ, u) 7→ Pθ,u ◦ X−1 ∈ Qν,Kn ,
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where X is the canonical process on X and the probability measure Pθ,u is defined
as follows. Let (θ, u) ∈ Qν,Kn ×U and let µθ ∈ ΥT

≤1 be defined as µθ
t (·)

.
= θ({Xt ∈

·}∩ {τX > t}) for all t ∈ [0, T]. Let (Ω,F u, Fu = (F u
t )t∈[0,T],Pθ,u, X, Wu) be the weak

solution of

Xt = X0 +
∫ t

0
b̄n(s, Xs, µθ

s , us)ds + σWu
t , t ∈ [0, T]

on the canonical space (Ω .
= X ,F , F = (Ft)t∈[0,T],P). Moreover, for θ ∈ Qν,Kn we

call uθ an optimal control for the cost

Jn,µθ
(u) .

= EPθ,u

[∫ τ

0
f̄ n(s, Xs, µθ

s , us)ds + Fn (τ, Xτ)

]
.

Such optimal controls uθ can be constructed by standard BSDE techniques as in
Campi and Fischer (2018), Section 6.1, by means of Darling and Pardoux (1997),
Theorem 3.4, due to the random terminal times. Under Assumption (C1) optimal
controls uθ are in general not unique. Indeed

An(θ)
.
=
{

uθ ∈ U : uθ ∈ An(·, X·, θ, Zθ
· ), LT ⊗ P− a.e.

}
provides an entire set of optimal controls, where Zθ is part of the the solution of
the associated adjoint BSDE and LT denotes the Lebesgue measure on [0, T]. More-
over, by measurable selection there exists a measurable function ûn,θ : [0, T]×Rd ×
Qν,Kn ×Rd → Γ such that

ûn,θ(·, X·, θ, Zθ
· ) ∈ An(θ), LT ⊗ P− a.e.

Additionally, ûn,θ(t, Xt, θ, Zθ
t ), for t ∈ [0, T], is a progressively measurable control

process that can be written in feedback form. Indeed, since Zθ is progressively mea-
surable for the canonical filtration, it can expressed as Zθ

t = ζθ(t, X) for some pro-
gressively measurable functional ζθ : [0, T]×X → Rd and for any t ∈ [0, T].
Now, a fixed point for the map Ψ is a probability measure θ ∈ Qν,Kn such that
θ ∈ Ψ(θ, A(θ)). Existence is provided by Proposition 7.4 in Carmona and Lacker
(2015), so to conclude the proof it suffices to check that all the required assump-
tions are satisfied in our case. The set Qν,Kn ⊂ P(X ) is a (weakly) compact, convex
and metrizable subset of C∗b (X ), the dual of the space of bounded and continuous
functions on X , which is a locally convex topological vector space with the weak*
topology (that induces the weak convergence of measures on P(X )). We endow the
vector space U with the norm ‖·‖U defined as ‖u‖U

.
= E[

∫ T
0 |ut|dt]. As a conse-

quence of Berge’s maximum theorem (Aliprantis and Border, 1994, Theorem 17.31)
and of Assumption (C1) the set-valued map An : Qν,Kn → U is upper hemicontin-
uous and has non-empty convex and closed values (see the proof of Lemma 7.11
in Carmona and Lacker (2015)). Therefore, Proposition 7.4 in Carmona and Lacker
(2015) applies, yielding the existence of a feedback solution of MFG(n).

A-priori estimates. Here, we show that the moments up to any order α ≥ 1 of the
state process remain bounded uniformly in n. Such estimates will be very useful
when we will relax the truncation in the next section.

Lemma 2.3.2 (A-priori estimates). Grant Assumptions (H1)-(H8) and (C1). Consider feed-
back solutions (un, µn)n∈N and (u, µ) of the MFG(n)’s and of the MFG, respectively. Let
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(Ωn,F n, Fn = (F n
t )t∈[0,T],Pn, Xn, Wn)n∈N be a sequence of weak solutions of the SDEs

in Equation (2.10) and (Ω,F , F = (Ft)t∈[0,T],P, X, W) a weak solution of the SDE in
Equation (2.5). Then for any α ≥ 1

sup
n∈N

EPn
[‖Xn‖α

∞] ≤ K(α) and EP [‖X‖α
∞] ≤ K(α)

where K(α) < ∞ is a positive constant independent of n.

Proof. This follows from standard estimates that rely on the drift’s sub-linear growth
and on Grönwall’s lemma.

2.3.2 Convergence of the approximating MFGs

Let (un, µn)n∈N be a sequence of feedback solutions of the approximating MFGs
introduced in the previous Subsection 2.3.1, whose existence is guaranteed by The-
orem 2.3.2. In addition, let (Ωn,F n, Fn = (F n

t )t∈[0,T],Pn, Xn, Wn)n∈N be a sequence
of weak solutions of the SDEs in Equation (2.10) associated to (un, µn)n∈N. Let θn be
defined as θn .

= Pn ◦ (Xn)−1 for each n ∈N.
To prove the convergence of the approximating MFGs we proceed in the follow-

ing way. First, we show that there exists a subsequence of (θn)n∈N, say (θnk)nk∈N,
that converges in P1(X ) to some limit θ ∈ P1(X ). To prove this, we interpret
(un, µn)n∈N as relaxed feedback solutions, (λn, µn)n∈N. Second, we show that also
the sequence of the corresponding extended laws (Θn)n∈N ⊂ P(X × V) converges
in P1(X × V) to some limit Θ ∈ P1(X × V). Finally, we characterize the limit
points by means of the martingale problem of Stroock and Varadhan (see Stroock
and Varadhan (1969, 2007)).

Lemma 2.3.3 (Relative compactness). (θn)n∈N is relatively compact in P(X ).

Proof. First, we prove tightness by applying Aldous’ criterion (see, e.g., Jacod and
Shiryaev (2013), Condition VI.4.4), that is

lim
δ→0

lim sup
n→∞

sup
τ≤σ≤τ+δ

Pn (|Xn
σ − Xn

τ | ≥ r) = 0

for all r > 0 and where τ and σ are stopping times bounded by T. Indeed, we have

Pn (|Xn
σ − Xn

τ | ≥ r) ≤ EPn
[|Xn

σ − Xn
τ |]

r

and

EPn
[|Xn

σ − Xn
τ |] ≤ EPn

[∫ (τ+δ)∧T

τ

∣∣b̄n(t, Xn
t , µn

t , un(t, Xn))
∣∣dt
]
+ |σ|((τ + δ) ∧ T − τ)

1
2 CW

T

≤ EPn

[
C
∫ (τ+δ)∧T

τ
(1 + ‖Xn‖∞,t + sup

n∈N

EPn‖Xn‖∞,t + |un(t, Xn)|)dt

]
+|σ|((τ + δ) ∧ T − τ)

1
2 CW

T

≤ EPn
[

C
∫ (τ+δ)∧T

τ
(1 + ‖Xn‖∞ + K + |un(t, Xn)|)dt

]
+|σ|((τ + δ) ∧ T − τ)

1
2 CW

T

for some constants CW
T , K > 0 independent of n ∈ N. Then we conclude by Lemma

2.3.2. Relative compactness then follows from Prohorov’s Theorem.
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Now, let θ ∈ P(X ) be a limit point for (θn)n∈N and let (θnk)nk∈N be a subse-
quence of (θn)n∈N such that θnk

w
⇀ θ as nk → ∞. With a slight abuse of notation,

in what follows we identify (θnk)nk∈N with (θn)n∈N. We now show that the latter
convergence is actually stronger by proving that (θn)n∈N converges to θ in the 1-
Wasserstein distance.

Lemma 2.3.4 (Convergence in the 1-Wasserstein distance). Let (θn)n∈N be as above. Then
W1(θ

n, θ)→ 0 and θ ∈ P1(X ).

Proof. Notice that by Lemma 2.3.2 we have (θn)n∈N ⊂ P1(X ). To prove convergence
in the 1-Wasserstein distance, we have to show that (see, for instance, Theorem 7.12.ii
in Villani (2003))

lim
R→∞

sup
n∈N

EPn
[
‖Xn‖∞1{‖Xn‖∞≥R}

]
= 0.

Set α, β > 1 such that 1
α + 1

β = 1. Then, for any ε > 0 by Young’s and Markov’s
inequalities, and by Lemma 2.3.2 we have

EPn
[
‖Xn‖∞1{‖Xn‖∞≥R}

]
≤ εαE

Pn
[‖Xn‖α

∞]

α
+

Pn(‖Xn‖∞ ≥ R)
εββ

≤ εα K(α)
α

+
K

εββR

for some positive constants K(α) and K independent of n ∈ N. The conclusion im-
mediately follows thanks to the fact that convergence in the 1-Wasserstein distance
preserves the finiteness of the first moment.

Proposition 2.3.1 (Absolute continuity of limit measures). Let θ, (θn)n∈N ⊂ P1(X ) be as
in Lemma 2.3.4. Then θ �Wν, i.e. θ is absolutely continuous with respect toWν.

Proof. By construction θn � Wν for all n ∈ N, hence we have to make sure that
the absolute continuity is also preserved in the limit. For doing so, we apply The-
orem X.3.3 in Jacod and Shiryaev (2013). In particular, we have to verify that all
assumptions therein are fulfilled, which in our setting are reduced to the following
properties:

(i) The contiguity of the sequence of θn with respect to the Wiener measure Wν,
i.e. for any sequence of measurable sets Bn withWν(Bn)→ 0 we have θn(Bn)→
0 as n→ ∞ (see, e.g., Definition V.1.1 in Jacod and Shiryaev (2013)).

(ii) The tightness of the sequence ofWν-martingales (Mn)n∈N, where each Mn =
(Mn

t )t∈[0,T] is defined as

Mn
t

.
= Et

(∫ ·
0

σ−1b̄n(s, Xs, µn
s , un(s, X))dWs

)
, t ∈ [0, T].

In order to check property (i), we first show that the sequence of Radon-Nikodym
derivatives ( dθn

dWν )n∈N is uniformly integrable under Wν. This is a consequence of
the following bound:

sup
n∈N

EW
ν

[(
dθn

dWν

)p]
< ∞, p ∈ [1, ∞) (2.11)
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which follows from Corollary A.0.1 and by fact that, by inspection of the proofs of
Lemma A.0.1 and Corollary A.0.1, all bounds are uniform in n ∈N.
Now, property (i) can be obtained as follows: for all sequences of measurable sets Bn
withWν(Bn)→ 0, we have

θn(Bn) = EW
ν

[
dθn

dWν
1Bn

]
→ 0, n→ ∞,

by an application of dominated convergence theorem due to the bound in Equation
(2.11). Hence the sequence of measures θn is contiguous toWν.
Property (ii) follows from Aldous criterion (Jacod and Shiryaev, 2013, Condition
VI.4.4), that is

lim
δ→0

lim sup
n→∞

sup
τ≤σ≤τ+δ

Wν (|Mn
σ −Mn

τ | ≥ r) = 0 (2.12)

for all r > 0 and where τ and σ are stopping times bounded by T. As a consequence,
we will also have the tightness property for the pair (X, Mn)n∈N under the measure
Wν. By Theorem VI.4.13 in Jacod and Shiryaev (2013) it is sufficient to check the
tightness property for the corresponding quadratic variation processes

〈Mn〉t =
∫ t

0

∣∣∣σ−1b̄n(s, Xs, µn
s , un(s, X))Mn

s

∣∣∣2 ds, t ∈ [0, T].

First, by Markov’s inequalityWν(|〈Mn〉σ − 〈Mn〉τ| ≥ r) ≤ 1
rE
Wν

[|Mn
σ −Mn

τ |]. Then,
by Young’s inequality for all p, q > 1 such that 1

p +
1
q = 1 we have

EW
ν
[|〈Mn〉σ − 〈Mn〉τ|] ≤ EW

ν

[∫ (τ+δ)∧T

τ

∣∣∣σ−1
∣∣∣2 ∣∣b̄n(s, Xs, µn

s , un(s, X))
∣∣2 |Mn

s |
2 ds

]
≤ 1

p

∣∣∣σ−1
∣∣∣2 ∫ (τ+δ)∧T

τ
EW

ν
[∣∣b̄n(s, Xs, µn

s , un(s, X))
∣∣2p
]

ds

+
1
q

∣∣∣σ−1
∣∣∣2 ∫ (τ+δ)∧T

τ
EW

ν
[
|Mn

s |
2q
]

ds

≤
(

K(p)
p

+
K(q)

q

) ∣∣∣σ−1
∣∣∣2 ((τ + δ) ∧ T − τ)

for some positive constants K(p) and K(q) > 0 independent of n ∈ N. Notice that
the last inequality is a consequence of Lemma 2.3.2 and Property (i). Therefore, Al-
dous’ criterion in Equation (2.12) is satisfied.

After checking properties (i) and (ii) above, we can at last apply Theorem X.3.3
in Jacod and Shiryaev (2013), yielding that the tightness of (Wν ◦ (X, Mn)−1)n∈N

implies the tightness of (θn ◦ (X, Mn)−1)n∈N. In particular, if (Wν ◦ (X, Mn)−1)n∈N

weakly converges to some Θ′ in P(X × X ) then (θn ◦ (X, Mn)−1)n∈N weakly con-
verges to some other Θ′′ � Θ′ in P(X ×X ), and the same holds true for their first
marginals on X . Therefore, we can conclude that θ �Wν.

Compactification method. So far we have established the convergence of the laws
(θn)n∈N to some limit law θ in the 1-Wasserstein distance. Now, in order to prove the
convergence of the approximating feedback solutions (un, µn)n∈N to some feedback
MFG solution (u, µ), we need to show that the sequence of optimal controls (un)n∈N

converges to a control u, which is optimal for the limit game.
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To do this, we interpret the sequence of strict feedback solutions (un, µn)n∈N as a
sequence of relaxed feedback solutions (λn, µn)n∈N, by defining λn : [0, T]× X →
P(Γ) as λn(t, ϕ)

.
= δun(t,ϕ) for all (t, ϕ) ∈ [0, T]×X and for all n ∈ N. Furthermore,

we identify each λn with a stochastic relaxed control Λn. We then fix a sequence of
associated weak solutions (Ω̃n, F̃ n, F̃n = (F̃ n

t )t∈[0,T],Qn, Xn, Wn) of Equation (2.7)
and set Θn .

= Qn ◦ (Xn, Λn)−1 ∈ P(X × V) for all n ∈ N. Finally, we associate
to each MFG(n) and to the limit MFG a martingale problem (Stroock and Varadhan
(1969, 2007)) and show that the limit points Θ ∈ P(X × V) of (Θn)n∈N solve the
limit relaxed martingale problem. We start with the following lemma.

Lemma 2.3.5 (Tightness in the 1-Wasserstein distance and absolute continuity). Let (Θn)n∈N

be as above. Then the following two properties hold:

(i) (Θn)n∈N is tight in P1(X × V);

(ii) Any limit point Θ of the sequence (Θn)n∈N in P1(X ×V) satisfies Θ ◦ X−1 �Wν.

Proof. (i). It follows from Lemma 2.3.4 and the compactness of Γ.
(ii). This is a consequence of Proposition 2.3.1, the fact that by construction θn =

Θn ◦ X−1 for all n ∈ N, and the fact that weak convergence of the joint laws implies
weak convergence of the marginals.

By the previous lemma, we can assume without loss of generality that the orig-
inal sequence (Θn)n∈N converges to some limit measure Θ in P1(X × V). In order
to characterize the limit point Θ, we associate to each approximating MFG(n) and
to the limit MFG a (relaxed) martingale problem, henceforth RM(n) and RM, respec-
tively. Then, we show that Θ is also a solution of RM. We will use the notation Dg
and D2g for the gradient and the Hessian of a smooth function g : Rd → R, while
Tr[A] denote the trace of a square matrix A. Notice that in the following definition
we have used the repameterization b of the drift b̄.

Definition 2.3.1 (The approximating martingale problems (RM(n))). We say that Θ̂ ∈
P(X × V) is a solution of RM(n) if for all g ∈ C2

c (R
d) the process

Mn,g
t (ϕ, q; Θ̂)

.
= g(ϕ(t))− g(ϕ(0))−

∫
[0,t]×Γ

bn(s, ϕ, θ̂, u)>Dg(ϕ(s))q(ds, du)

−1
2

∫ t

0
Tr
[
σσ>D2g(ϕ(s))

]
ds, t ∈ [0, T]

is a Θ̂-martingale, where θ̂
.
= Θ̂ ◦ X−1 and X is the canonical process on X .

Observe that, by construction, each Θn solves RM(n). In Proposition 2.3.2 below
we will characterize the limit points as solutions of the following (relaxed) martin-
gale problem.

Definition 2.3.2 (The limit martingale problem (RM)). We say that Θ̂ ∈ P(X × V) is a
solution of RM if for all g ∈ C2

c (R
d) the process

Mg
t (ϕ, q; Θ̂)

.
= g(ϕ(t))− g(ϕ(0))−

∫
[0,t]×Γ

b(s, ϕ, θ̂, u)>Dg(ϕ(s))q(ds, du)

−1
2

∫ t

0
Tr
[
σσ>D2g(ϕ(s))

]
ds, t ∈ [0, T]

is a Θ̂-martingale, where θ̂
.
= Θ̂ ◦ X−1.
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Remark 2.3.1. The martingale property in both RM(n) and in RM is understood to
hold on (X × V ,B(X × V)) with respect to the Θ-augmentation of the canonical fil-
tration made right continuous by a standard procedure. Nonetheless, to conclude it
is sufficient to check that the martingale property holds with respect to the canonical
filtration on X × V (see, for instance, Problem 5.4.13 in Karatzas and Shreve (1987)).

Now, we can characterize the limit points via the martingale problems.

Proposition 2.3.2 (Characterization of limit points via martingale problems). Θ solves RM
as in Definition 2.3.2.

Proof. Fix t1, t2 ∈ [0, T], t1 < t2, g ∈ C2
c (R

d) and ψ ∈ Cb(X × V) measurable with
respect to Bt1(X × V). Define Ψ, Ψn : P(X × V)→ R as

Ψ
(
Θ′; Θ

) .
= EΘ′

[
ψ
(

Mg
t2
(· ; Θ)−Mg

t1
(· ; Θ)

)]
,

Ψn (Θ′; Θ
) .

= EΘ′
[
ψ
(

Mn,g
t2

(· ; Θ)−Mn,g
t1

(· ; Θ)
)]

for Θ′, Θ ∈ P(X × V) and for all n ∈ N. Since Ψn(Θn; Θn) = 0 for all n ∈ N, it
suffices to prove that Ψn(Θn; Θn)→ Ψ(Θ; Θ) as n→ ∞.
First, we observe that Ψn(Θn; Θn) and Ψ(Θ; Θ) can be written as

Ψn(Θn; Θn) =
∫
X×V

ψ(ϕ, q)
∫
[t1,t2]×Γ

bn(s, ϕ, θn, u)>Dg(ϕ(s))q(ds, du)Θn(dϕ, dq)

+
∫
X×V

ψ(ϕ, q)
∫ t2

t1

1
2

Tr
[
σσ>D2g(ϕ(s))

]
ds Θn(dϕ, dq)

and

Ψ(Θ; Θ) =
∫
X×V

ψ(ϕ, q)
∫
[t1,t2]×Γ

b(s, ϕ, θ, u)>Dg(ϕ(s))q(ds, du)Θ(dϕ, dq)

+
∫
X×V

ψ(ϕ, q)
∫ t2

t1

1
2

Tr
[
σσ>D2g(ϕ(s))

]
ds θ(dϕ, dq).

The convergence of the diffusion terms is a straightforward consequence of the weak
convergence Θn w

⇀ Θ and the fact that the map

(ϕ, q) 7→ ψ(ϕ, q)
∫ t2

t1

1
2

Tr
[
σσ>D2g(ϕ(s))

]
ds

is in Cb(X × V), leading to∫
X×V

ψ(ϕ, q)
∫ t2

t1

1
2

Tr
[
σσ>D2g(ϕ(s))

]
ds Θn(dϕ, dq)

−→
n→∞

∫
X×V

ψ(ϕ, q)
∫ t2

t1

1
2

Tr
[
σσ>D2g(ϕ(s))

]
ds Θ(dϕ, dq).

Hence, we only need to study the convergence of the drift terms. We split the rest of
the proof in two steps.

Step 1. We prove that∫
X×V

ψ(ϕ, q)
∫
[t1,t2]×Γ

(bn(s, ϕ, θn, u)− b(s, ϕ, θn, u))> Dg(ϕ(s))q(ds, du)Θn(dϕ, dq) −→
n→∞

0.
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Indeed,∣∣∣∣∫X×V ψ(ϕ, q)
∫
[t1,t2]×Γ

(bn(s, ϕ, θn, u)− b(s, ϕ, θn, u))> Dg(ϕ(s))q(ds, du)Θn(dϕ, dq)
∣∣∣∣

≤ CDgCψ

∫
X×V

∫
[t1,t2]×Γ

|bn(s, ϕ, θn, u)− b(s, ϕ, θn, u)| q(ds, du)Θn(dϕ, dq)

≤ CDgCψ

∫
X×V

∫
[t1,t2]×Γ

|b(s, ϕ, θn, u)| 1{|b|≥Kn}q(ds, du)Θn(dϕ, dq)

≤ CDgCψ

εα
∫
X×V

∫
[t1,t2]×Γ |b(s, ϕ, θn, u)|α q(ds, du)Θn(dϕ, dq)

2α

+ CDgCψ

∫
X×V

∫
[t1,t2]×Γ 1{|b|≥Kn}q(ds, du)Θn(dϕ, dq)

2βεβ

≤ CDgCψ

εα supn∈N

∫
X×V

∫
[t1,t2]×Γ |b(s, ϕ, θn, u)|α q(ds, du)Θn(dϕ, dq)

2α

+ CDgCψ

supn∈N

∫
X×V

∫
[t1,t2]×Γ |b(s, ϕ, θn, u)| q(ds, du)Θn(dϕ, dq)

2Knβεβ

for all ε > 0, where CDg and Cψ are uniform bounds on Dg and ψ, respectively.
We applied Young’s inequality with exponents α, β > 1, 1

α + 1
β = 1 for the third

inequality, while for the last one we used the Markov’s inequality with respect to
the measure π(ds, du, dϕ, dq) .

= q(ds, du)Θn(udϕ, dq) on X × V × [0, T]× Γ:

∫
X×V

∫
[t1,t2]×Γ

1{|b|≥Kn}q(ds, du)Θn(dϕ, dq) ≤
∫
X×V

∫
[t1,t2]×Γ |b(s, ϕ, θn, u)| q(ds, du)Θn(dϕ, dq)

Kn
.

The suprema over n ∈ N are bounded due to Lemma 2.3.2. We conclude this step
by letting first n→ ∞ (so that Kn ↗ ∞) then ε→ 0.

Step 2. We prove that∫
X×V

ψ(ϕ, q)
∫
[t1,t2]×Γ

b(s, ϕ, θn, u)>Dg(ϕ(s))q(ds, du)Θn(dϕ, dq)

−→
n→∞

∫
X×V

ψ(ϕ, q)
∫
[t1,t2]×Γ

b(s, ϕ, θ, u)>Dg(ϕ(s))q(ds, du)Θ(dϕ, dq).

To this aim we show that:

(θ, ϕ, q) 7→ ψ(ϕ, q)
∫
[t1,t2]×Γ

b(s, ϕ, θ, u)>Dg(ϕ(s))q(ds, du)

is continuous on P1(X ) × X × V at points such that θ � Wν and that it has sub-
linear growth in (ϕ, q) ∈ X × V so that we can conclude by using the property
W1(Θn, Θ)→ 0 together with Theorem 7.12.iv in Villani (2003). Since ψ ∈ C(X ×V),
we only need to show the continuity of the second (integral) term. Let (θn, ϕn, qn, un)n∈N ⊂
P1(X )×X ×V × Γ converge to some point (θ, ϕ, q, u) ∈ P1(X )×X ×V × Γ where
θ �Wν. Then

b(t, ϕn, θn, un)>Dg(ϕn(t)) −→
n→∞

b(t, ϕ, θ, u)>Dg(ϕ(t))
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for all t ∈ [t1, t2] by the continuity assumptions on b and Dg, i.e. b(t, ·)>Dg(·) is
jointly continuous for each t ∈ [t1, t2] at points (θ, ϕ, q, u) with θ �Wν. Moreover∣∣∣b(t, ϕ, θ, u)>Dg(ϕ(t))

∣∣∣ ≤ CDgC (1 + ‖ϕ‖∞,t + m(t; θ) + |u|)

≤ CDgC (1 + K + ‖ϕ‖∞,t + |u|)

for some constants CDg, C, K > 0 (this replaces Assumption (2) of Corollary A.5 in
Lacker (2015)). We conclude by means of Corollary A.5 in Lacker (2015).

We conclude this subsection by characterizing any limit measure Θ as the joint
law of state and (relaxed) control for a weak solution of the limit SDE in Equation
(2.9) with drift b̄. The next corollary is a fairly standard result establishing a well-
known connection between solutions of RM and weak solutions of SDEs:

Corollary 2.3.1 (Representation of limit points). Let Θ be a solution of RM, as in Definition
2.3.2. Then there exists a weak solution (Ω̃, F̃ , F̃ = (F̃t)t∈[0,T],Q, X, Λ, W) of

Xt = X0 +
∫
[0,t]×Γ

b̄ (s, Xs, µs, u)Λs(du)ds + σWt, t ∈ [0, T]

such that Θ = Q ◦ (X, Λ)−1, θ = Θ ◦ X−1 and µt = g(t, θ) with g : [0, T]×P1(X ) →
M≤1,1(R

d) as in Equation (2.4).

Proof. Arguing analogously as in the proofs of Proposition 5.4.6 and Corollary 5.4.8
in Karatzas and Shreve (1987) gives the existence of a weak solution (Ω̃, F̃ , F̃ =

(F̃t)t∈[0,T],Q, X, Λ, W) of the SDE

Xt = X0 +
∫
[0,t]×Γ

b (s, X, θ, u)Λs(du)ds + σWt, t ∈ [0, T] (2.13)

such that Θ is the law of (X, Λ) under Q and θ = Θ ◦X−1. The conclusion is obtained
by going back to the original drift b̄, that we recall is given by

b̄(t, ϕ(t), g(t, θ), u) = b(t, ϕ, θ, u), (t, ϕ, θ, u) ∈ [0, T]×X ×P1(X )× Γ,

and g(t, θ) = µt as in Equation (2.4).

2.3.3 Optimality of the limit points

In this subsection, we show that any limit point Θ ∈ P(X ×V) of (Θn)n∈N is optimal
according to the cost functional of the MFG. In order to do that, we will extend the
notion of relaxed MFG solution to controls that are not necessarily in feedback form.
In this case we evaluate optimality according to the following cost functional:

Jµ (Λ)
.
= E

[∫
[0,τ]×Γ

f̄ (s, Xs, µs, u)Λs(du)ds + F (τ, Xτ)

]
,

where Λ is any relaxed stochastic control and τ
.
= τX ∧ T, subject to the dynamics

Xt = X0 +
∫
[0,t]×Γ

b̄ (s, Xs, µs, u)Λs(du)ds + σWt, t ∈ [0, T]. (2.14)
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We set Vµ = infΛ Jµ(Λ), where the minimization is actually performed over the set
of relaxed stochastic open-loop controls, i.e. over the tuples (Ω̃, F̃ , F̃ = (F̃t)t∈[0,T],Q, X, Λ, W)
that are weak solutions of Equation (2.14) and where Λ is a progressively measur-
able P(Γ)-valued stochastic process. To simplify the notation, we will just write Λ
to refer to the whole tuple. Moreover, when working on the canonical space X × V ,
where the canonical process (X, Λ) is completely characterized by its law Θ, we will
simply write Jµ(Θ) in place of Jµ(Λ).

Definition 2.3.3 (Relaxed MFG solution). A relaxed solution of the MFG is a pair
(Λ, µ), where Λ is a relaxed stochastic control and µ ∈ ΥT

≤1,1, such that:

(i) Λ is optimal, i.e. Vµ = Jµ(Λ).

(ii) Let (Ω̃, F̃ , F̃ = (F̃t)t∈[0,T],Q, X, Λ, W) be a weak solution of Equation (2.14)
with flow of sub-probability measures µ, stochastic control Λ and initial con-
dition ν. Then

µt(·) = Q({Xt ∈ ·} ∩ {τX > t}), t ∈ [0, T].

Proposition 2.3.3 (Existence of relaxed MFG solutions). Grant Assumptions (H1)-(H8)
and (C1). Let Θ be a limit point of (Θn)n∈N in P1(X × V). Set µ ∈ ΥT

≤1,1 as

µt (·)
.
= Θ

(
{Xt ∈ ·} ∩

{
τX > t

})
t ∈ [0, T].

Then (Θ, µ) is a relaxed MFG solution according to Definition 2.3.3.

Proof. By construction we immediately have that Λ is a relaxed stochastic control
and µ ∈ ΥT

≤1,1. Moreover, property (ii) is a consequence of the fact that Θ is a solution
of RM as in Definition 2.3.2. To prove property (i), we proceed through the following
steps:

(j) Let Θ̃ ∈ P(X × V) be a solution of RM. Then there exists a sequence of
solutions (Θ̃n)n∈N of RM(n) such that limn→∞ Jn,µn

(Θ̃n) = Jµ(Θ̃).

(jj) limn→∞ Jn,µn
(Θn) = Jµ(Θ).

(jjj) Jµ(Θ) ≤ Jµ(Θ̃) for any Θ̃ ∈ P(X × V) solution of RM.

The proof of (j)-(jjj) largely follows that of Theorem 3.6 in Lacker (2015). Therefore,
we highlight only the main differences with respect to our setting, which are due to
the sub-linear growth of the drift and the cost functional and to the path dependency
induced by the exit time from O.

Proof of (j). Let Θ̃ ∈ P(X ×V) be a solution of RM and let (Ω̃, F̃ , F̃ = (F̃t)t∈[0,T], Θ̃, X, Λ, W)

be a weak solution of Equation (2.14) on the canonical space Ω̃ = X × V . The ex-
istence of this solution is guaranteed by Corollary 2.3.1. Now fix Λ and let Xn be a
sequence of strong solutions of:

Xn
t = ξ +

∫
[0,t]×Γ

b̄n (s, Xn
s , µn

s , u)Λs(du)ds + σWt, t ∈ [0, T]

on the filtered probability space (Ω̃, F̃ , F̃ = (F̃t)t∈[0,T], Θ̃). Set Θ̃n .
= Θ̃ ◦ (Xn, Λ)−1

for each n ∈N. Notice that (Θ̃n)n∈N ⊂ P1(X ×V). Moreover each Θ̃n solves RM(n)
as in Definition 2.3.1. We now show that:

EΘ̃ [‖Xn − X‖∞] −→n→∞
0 and W1(Θ̃n, Θ̃) −→

n→∞
0. (2.15)
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Regarding the first limit, it is sufficient to note that:

EΘ̃ [‖Xn − X‖∞,t] ≤ L
∫ t

0
EΘ̃ [‖Xn − X‖∞,s]ds + EΘ̃

[∫
[0,t]×Γ

∆bn(s, u)Λs(du)ds
]

where we set

∆bn(t, u) .
= |b̄n(t, Xt, µt, u)− b̄(t, Xt, µt, u)|.

The first term can be handled with Grönwall’s Lemma, whereas the second one by
applying a similar argument as in the first step of the proof of Proposition 2.3.2.
Regarding the second limit in Equation (2.15) we can proceed as follows. First, notice
that the first limit in Equation (2.15) implies convergence in probability, hence in law,
of Xn to X. Thus, by an argument similar to that of Lemma 2.3.5, we can prove the
convergence in the 1-Wasserstein distance. At this point, the convergence of the costs
is a consequence of the convergence in the 1-Wasserstein distance and the sub-linear
growth of the running cost (combined with Theorem 7.12.iv in Villani (2003)), as in
the second step of the proof of Proposition 2.3.2.

Proof of (jj). This follows from an argument similar to the second part of (j).
Proof of (jjj). Let Θ̃ ∈ P(X × V) be a solution of RM and let (Θ̃n)n∈N ⊂ P(X ×

V) be an approximating sequence as in (j). By the optimality of Θn we have

Jn,µn
(Θn) ≤ Jn,µn

(Θn)

for all n ∈ N. The optimality of Θ follows by taking the limit for n → ∞ on both
sides of the inequality above and using the previous properties (j) and (jj).

2.3.4 Existence of solutions

In this subsection we finally conclude the proof of Theorem 2.3.1 by proving the
existence of a relaxed feedback MFG solution and, under additional convexity as-
sumptions, the existence of a strict feedback MFG solution. In addition, we also
prove existence of solutions that are Markovian up to the exit time.

Relaxed feedback MFG solutions. The main mathematical tool here is the mimicking
result of Brunick and Shreve (2013). We follow the procedure in Lacker (2015) but
with modifications due to the peculiarities of our model induced mainly by the pres-
ence of absorptions. We give more details in the proof below.

Proposition 2.3.4 (Existence of relaxed feedback MFG solutions). Grant Assumptions (H1)-
(H8) and (C1). Let (Θ, µ) be a relaxed MFG solution as in Definition 2.3.3.

Then there exists another relaxed MFG solution (Θ′, µ) and a progressively measurable
functional λ : [0, T]×X → P(Γ) such that Θ′((ϕ, q) ∈ X × V : qt = λ(t, ϕ)) = 1 for
LT-a.e. t ∈ [0, T] and Jµ(Θ′) = Jµ(Θ) = Vµ, i.e. (λ, µ) is a relaxed feedback solution of
the MFG as in Definition 2.2.2.

Proof. We adapt the proof of Theorem 3.7 in Lacker (2015) to our setting, by exploit-
ing the mimicking result in Corollary 3.11 of Brunick and Shreve (2013) instead of
Corollary 3.7 as in Lacker (2015). As a consequence, the mimicking process that we
get is not Markovian as in Lacker. However, it has the same law as the original pro-
cess and not only the same marginals. This is important in our setting due to the
path dependency induced by the exit time τ.
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We start with the construction of λ by disintegration. Precisely, define η ∈
P([0, T]×X × Γ) as:

η (I × B× G)
.
=

1
T
EΘ
[∫

[0,T]×Γ
1(I×B×G) (t, X, u)Λ (dt, du)

]
and disintegrate it as η(dt, dϕ, du) = η̃(dt, dϕ)λt,ϕ(du). Then:

η (I × B× G) =
∫
[0,T]×X

∫
Γ

1(I×B×G) (t, ϕ, u) λt,ϕ (du) η̃ (dt, dϕ)

for all I ∈ B([0, T]), B ∈ B(X ) and G ∈ B(Γ). By the disintegration theorem,
(t, ϕ) 7→ λt,ϕ(·) ∈ P(Γ) is Borel-measurable. Now set F̃X

t
.
= σ(Xs, s ∈ [0, t]) for each

t ∈ [0, T]. We claim that:

λt,X (·) = EΘ
[
Λt (·)

∣∣F̃X
t

]
Θ-a.s. and for LT-a.e. t ∈ [0, T] (2.16)

which is measurable and adapted, hence it has a progressively measurable modifica-
tion λ. We show that for any bounded measurable functional g : [0, T]×X × Γ→ R

such that g(t, ·, u) is F̃X
t -measurable for all t ∈ [0, T] and u ∈ Γ∫

Γ
g (t, X, u) λt,X (du) =

∫
Γ

g (t, X, u)EΘ
[
Λt (du)

∣∣F̃X
t

]
Θ-a.s. and for LT-a.e. t ∈ [0, T]. Indeed, for any other bounded measurable func-
tional h : [0, T] × X → R such that h(t, ·) is F̃X

t -measurable for all t ∈ [0, T], we
have

1
T
EΘ
[∫ T

0
h (t, X)

∫
Γ

g (t, X, u) λt,X (du)dt
]

(2.17)

=
∫
[0,T]×X

h (t, ϕ)
∫

Γ
g (t, ϕ, u) λt,ϕ (du) η̃ (dt, dϕ)

=
∫
[0,T]×X×Γ

h (t, ϕ) g (t, ϕ, u) η (dt, dϕ, du)

=
1
T
EΘ
[∫ T

0
h (t, X)

∫
Γ

g (t, X, u)Λt (du)dt
]

where the first equality comes from the definition of η̃, the second one is due to the
disintegration of η and the third one holds by definition of η.
Now, let (Ω̃, F̃ , F̃ = (F̃t)t∈[0,T],Q, W, X, Λ) be a weak solution of Equation (2.14)
with relaxed control Θ = Q ◦ (X, Λ)−1. By Corollary 3.11 in Brunick and Shreve
(2013) there exists a weak solution (Ω̃′, F̃ ′, F̃′ = (F̃ ′t )t∈[0,T],Q′, W ′, X′) of

X′t = ξ +
∫ t

0

∫
Γ

b̄
(
s, X′s, µs, u

)
λs,X′(du)ds + σW ′t , t ∈ [0, T]

such that Q′ ◦ (X′)−1 = Q ◦ X−1. Define Θ′ .
= Q′ ◦ (X′, Λ′)−1 where Λ′(dt, du) .

=
dtλt,X′(du). Notice that if µ′ is the flow of sub-probability measures associated to Θ′

then µ′ = µ. Finally, Θ′ solves the same relaxed martingale problem as Θ, and it has
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the same cost as Θ as required:

Jµ
(
Θ′
)

= EQ′
[∫ τ′

0

∫
Γ

f̄
(
t, X′t, µt, u

)
λt,X′ (du)dt + F

(
τ′, X′τ′

)]
= EQ

[∫ τ

0

∫
Γ

f̄ (t, Xt, µt, u) λt,X (du)dt + F (τ, Xτ)

]
= EQ

[∫ τ

0

∫
Γ

f̄ (t, Xt, µt, u)EQ
[
Λt (du)

∣∣F̃X
t

]
dt + F (τ, Xτ)

]
= EQ

[∫ τ

0

∫
Γ
EQ
[

f̄ (t, Xt, µt, u)Λt (du)
∣∣F̃X

t

]
dt + F (τ, Xτ)

]
= EQ

[∫
[0,τ]×Γ

f̄ (t, Xt, µt, u)Λ (dt, du) + F (τ, Xτ)

]
= Jµ (Θ) .

Remark 2.3.2. We observe that, due to the discontinuity induced by the exit time τ,
it is not possible in general to apply Theorem 3.6 of Brunick and Shreve (2013) to
Zt = (Xt, I[0,τ)(t)), t ∈ [0, T], to obtain a control which is Markovian in Z. Moreover
the few mimicking results available in the literature for discontinuous processes hold
under very restrictive or hardly verifiable assumptions. Nonetheless, Theorem 3.6
of Brunick and Shreve (2013) could still be applied in some particular cases when,
for instance, O = (0, ∞) and Zt = (Xt, infs∈[0,t] Xs).

Strict feedback MFG solutions. Under additional convexity assumptions (Filippov
(1962); Haussmann and Lepeltier (1990)), we prove existence of feedback MFG so-
lutions in strict form. Let (Θ, µ) be a relaxed MFG solution according to Definition
2.3.3 and for each (t, ϕ) ∈ [0, T]×X define K(t, ϕ, µ) as:

K (t, ϕ, µ)
.
=
{(

b̄ (t, ϕ(t), µt, u) , z
)

: z ≥ f̄ (t, ϕ(t), µt, u) and u ∈ Γ
}

.

Existence of strict MFG solutions is established under the additional Assumption
(C2).

Remark 2.3.3. Assumption (C2) is equivalent to requiring that the set K(t, ϕ, µ) is
convex. This assumption is crucial to apply the measurable selection arguments in
Dufour and Stockbridge (2012); Haussmann and Lepeltier (1990).

Proposition 2.3.5 (Existence of strict feedback MFG solutions). Grant Assumptions (H1)-
(H8), (C1) and Assumption (C2). Let (Θ, µ) be a relaxed MFG solution as in Definition
2.3.3.

Then there exists another relaxed MFG solution (Θ′, µ) and a progressively measurable
functional u ∈ U f b such that Θ′((ϕ, q) ∈ X × V : qt = δu(t,ϕ)) = 1 for LT-a.e. t ∈ [0, T]
and Jµ(Θ′) = Jµ(Θ) = Vµ, i.e. (u, µ) is a strict and feedback solution of the MFG as in
Definition 2.2.1.

Proof. We follow once more the proof of Theorem 3.7 in Lacker (2015), highlighting
the main differences with respect to our setting. The first part of the proof proceeds
as in Proposition 2.3.4. Since for all (t, ϕ) ∈ [0, T]×X the pair (b̄(t, ϕ(t), µt, u), f̄ (t, ϕ(t), µt, u))
belongs to K(t, ϕ, µ) for all u ∈ Γ and K(t, ϕ, µ) is convex, we have∫

Γ

(
b̄ (t, ϕ(t), µt, u) , f̄ (t, ϕ(t), µt, u)

)
λt,ϕ(du) ∈ K (t, ϕ, µ) .
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By applying the measurable selection argument in Dufour and Stockbridge (2012);
Haussmann and Lepeltier (1990) (with respect to the progressive σ-algebra, i.e. the
σ-algebra generated by progressively measurable processes), we find a progressively
measurable functional u : [0, T]×X → Γ such that∫

Γ
b̄ (t, ϕ(t), µt, u) λt,ϕ(du) = b̄ (t, ϕ(t), µt, u(t, ϕ))

and ∫
Γ

f̄ (t, ϕ(t), µt, u) λt,ϕ(du) ≥ f̄ (t, ϕ(t), µt, u(t, ϕ)) (2.18)

for all (t, ϕ) ∈ [0, T] × X . Define Θ′ .
= Q′ ◦ (X′, Λ′)−1 where Q′ is as in the proof

of Proposition 2.3.4 and Λ′(ϕ, q)(dt, du) .
= dtδu(t,ϕ)(du). Θ′ solves the same relaxed

martingale problem as Θ. As for the costs, we have

Jµ
(
Θ′
)

= EQ′
[∫ τ′

0

∫
Γ

f̄
(
t, X′t, µt, u

)
δu(t,X′)(du)dt + F

(
τ, X′τ

)]
= EQ′

[∫ τ′

0
f̄
(
t, X′t, µt, u(t, X′)

)
dt + F

(
τ, X′τ

)]
≤ EQ′

[∫ τ′

0

∫
Γ

f̄
(
t, X′t, µt, u

)
λt,X′(du)dt + F

(
τ, X′τ

)]
= EQ

[∫ τ

0

∫
Γ

f̄ (t, Xt, µt, u) λt,X (du)dt + F (τ, Xτ)

]
= EQ

[∫
[0,τ]×Γ

f̄ (t, Xt, µt, u)Λ (dt, du) + F (τ, Xτ)

]
= Jµ (Θ)

where the inequality above is due to Equation (2.18). Given the optimality of (Θ, µ)
we already have the converse inequality, i.e. Jµ(Θ) ≤ Jµ(Θ′). Hence Jµ(Θ) =
Jµ(Θ′).

We can finally give the proof of Theorem 2.3.1.

Proof of Theorem 2.3.1. Grant Assumptions (H1)-(H8) and (C1). Proposition 2.3.3 guar-
antees existence of a relaxed MFG solution (Θ, µ) as in Definition 2.3.3. By Proposi-
tion 2.3.4 there exists another relaxed MFG solution (Θ′, µ) together with a progres-
sively measurable functional λ : [0, T]× X → P(Γ) such that Θ′((ϕ, q) ∈ X × V :
qt = λ(t, ϕ)) = 1 for LT-a.e. t and Jµ(Θ′) = Jµ(Θ) = Vµ. Then (λ, µ) is a relaxed
and feedback solution of the MFG as in Definition 2.2.2.

Additionally grant Assumption (C2). By Proposition 2.3.5 there exists another
relaxed MFG solution (Θ′, µ) and a progressively measurable functional u ∈ U f b
such that Θ′((ϕ, q) ∈ X × V : qt = δu(t,ϕ)) = 1 for LT-a.e. t ∈ [0, T], and Jµ(Θ′) =
Jµ(Θ) = Vµ. Then (u, µ) is a strict and feedback solution of the MFG as in Definition
2.2.1.

Markovian MFG solutions. We conclude this part with showing that there exist re-
laxed and strict feedback solutions that are Markovian up to the exit time.

Proposition 2.3.6 (Markovian MFG solutions). Grant Assumptions (H1)-(H8) and (C1).
Let (Θ, µ) be a relaxed MFG solution as in Definition 2.3.3. Then there exists another
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relaxed MFG solution (Θ′, µ) and a function λ : [0, T]×Rd → P(Γ) such that

LT ⊗Θ′({(t, ϕ, q) : qt = λ(t, ϕ(t)), t ≤ τX(ϕ)}) = 1

and Jµ(Θ′) = Jµ(Θ) = Vµ. Additionally, grant Assumption (C2). Then there exists a
function u : [0, T]×Rd → Γ such that

LT ⊗Θ′({(t, ϕ, q) : qt = δu(t,ϕ(t)), t ≤ τX(ϕ)}) = 1

and Jµ(Θ′) = Jµ(Θ) = Vµ.

Proof. Let us define the following processes

Yt
.
= (t, Xt), XτX

t
.
= Xt∧τX , YτX

t
.
= Yt∧τX

for t ∈ [0, T]. If X satisfies Equation (2.14) with flow of sub-probability measures
µ and relaxed control Λ then the SDE satisfied by XτX

is (on the same probability
space)

XτX

t = ξ +
∫
[0,t]×Γ

b̄
(

s, XτX

s , µs, u
)

1[0,τX)(s)Λs(du)ds + σ
∫ t

0
1[0,τX)(s)dWs

for t ∈ [0, T]. Notice that until t ≤ τX the stopped process XτX
coincides pathwise

with the original process X. We now apply the mimicking result in Corollary 3.7 of
Brunick and Shreve (2013), to the stopped process YτX

. To this end, we follow the
proof of Theorem 3.7 in Lacker (2015) and the proofs of Propositions 2.3.4 and 2.3.5
in the present chapter.
First, we claim that there exists a measurable function λ : [0, T]×Rd+1 → P(Γ) such
that

λt,YτX
t
(·) = EΘ

[
Λt(·)

∣∣YτX

t

]
, Θ-a.s. and for LT-a.e. t ∈ [0, T].

Such a function can be constructed by disintegration as follows. Let η ∈ P([0, T]×
Rd+1 × Γ) be given by

η(B) .
=

1
T
EΘ
[∫

[0,T]×Γ
1C

(
t, YτX

t , u
)

Λ(dt, du)
]

.

We define λ through η(dt, dy, du) .
= η̃(dt, dy)λt,y(du). By Corollary 3.7 in Brunick

and Shreve (2013) applied to λt,YτX
t

there exists a weak solution (Ω̃′, F̃ ′, F̃′ = (F̃ ′t )t∈[0,T],Q′, W ′, X′)
of

X′t = ξ +
∫ t

0

∫
Γ

b̄
(
s, X′s, µs, u

)
1[0,τX′ )(s)λs,YτX′

t
(du)ds + σ

∫ t

0
1[0,τX′ )(s)dW ′s

for t ∈ [0, T], where YτX′

t
.
= (t∧ τX′ , X′t) and Q′ ◦ (t∧ τX′ , X′t)

−1 = Q ◦ (t∧ τX, XτX

t )−1

for all t ∈ [0, T], i.e. YτX′
and YτX

have the same time marginals. Now set τ′
.
= τX′ ∧

T. Recall that Θ = Q ◦ (X, Λ)−1 and define Θ′ .
= Q′ ◦ (X′, Λ′)−1 where Λ′(dt, du) .

=
dtλ

t,YτX′
t

(du). Equality of the costs can be shown just as in the proof of Proposition
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2.3.4:

Jµ
(
Θ′
)

= EQ′
[∫ τ′

0

∫
Γ

f̄ (t, X′t, µt, u)λt,t∧τX′ ,X′t
(du)dt + F

(
τ′, X′τ′

)]
= EQ

[∫ τ

0

∫
Γ

f̄ (t, XτX

t , µt, u)λt,t∧τX ,XτX
t
(du)dt + F

(
τ, XτX

τ

)]
= EQ

[∫
[0,τ]×Γ

f̄ (t, XτX

t , µt, u)Λ(dt, du) + F
(

τ, XτX

τ

)]
= Jµ (Θ) .

Therefore, λ : [0, T]× [0, T]×Rd → P(Γ) satisfies Θ′(q ∈ V : qt = λ(t, t∧ τX̂, X̂τX̂

t )) =
1 for LT-a.e. t ∈ [0, T] and Jµ(Θ′) = Jµ(Θ) = Vµ.

Consider now a weak solution (Ω̃′′, F̃ ′′, F̃′′ = (F̃ ′′t )t∈[0,T],Q′′, W ′′, X′′) of

X′′t = ξ +
∫ t

0

∫
Γ

b̄
(
s, X′′s , µs, u

)
λ

s,YτX′′
t

(du)ds + σW ′′t , t ∈ [0, T]

where YτX′′

t = (t∧ τX′′ , X′′t ). Set Θ′′ .
= Q′′ ◦ (X′′, Λ′′)−1 where Λ′′(dt, du) .

= dtλ
t,YτX′′

t
(du).

To avoid confusion between specific solutions, here (X̂, Λ̂) denotes the canonical
process on X × V . First, Θ′ solves the martingale problem associated to

M̂g
t (ϕ, q) .

= g(ϕ(t))− g(ϕ(0))−
∫
[0,t]×Γ

b̄(s, ϕ(s), µs, u)>Dg(ϕ(s))1[0,τX̂)(s)q(ds, du)

+
1
2

∫ t

0
Tr
[
σσ>D2g(ϕ(s))

]
1[0,τX̂)(s)ds, t ∈ [0, T].

as well as the one associated to

Mg
t (ϕ, q) .

= g(ϕ(t))− g(ϕ(0))−
∫
[0,t]×Γ

b̄(s, ϕ(s), µs, u)>Dg(ϕ(s))q(ds, du)

+
1
2

∫ t

0
Tr
[
σσ>D2g(ϕ(s))

]
ds

up to time τX̂ ∧ T, i.e. the martingale property is satisfied by the processes above
stopped at time τX̂ ∧ T. Second, Θ′′ solves the latter martingale problem up to time
T. Then Θ′ and Θ′′ solve the same martingale problem up to time τX̂ ∧ T. Moreover,
we have Θ′′(q ∈ V : qt = λ(t, t ∧ τX̂, X̂t)) = 1 for LT-a.e. t ∈ [0, T]. If we set
Θt

.
= Θ ◦ (X̂, Λ̂)−1

·∧t for all Θ ∈ P(X × V) and t ∈ [0, T], then by uniqueness of the
solution of the martingale problem up to time τX̂ ∧ T we have

Θ′t(· ∩ {t ≤ τX̂ ∧ T}) = Θ′′t (· ∩ {t ≤ τX̂ ∧ T}).

Hence Jµ(Θ′) = Jµ(Θ′′). Now Θ′′ satisfies item (ii) of Definition 2.3.3.
To conclude notice that the process YτX′′

t = (t∧ τX′′ , X′′t ) reduces to (t, X′′t ) before
time τX′′ ∧ T. Hence, also λ

t,YτX′′
t

, with a slight abuse of notation, reduces to λt,X′′t .

With the additional Assumption (C2), the second part of this lemma follows from
the proof of Proposition 2.3.5 applied to the stopped process YτX

.
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2.4 Uniqueness of solutions of the mean-field game

In this section we address the problem of uniqueness of MFG solutions. Precisely,
under Assumptions (H1)-(H8) and with the additional Assumptions (U1)-(U4) given
below, where the second one guarantees monotonicity of the running cost in the
same spirit as Lasry and Lions (2007b) (see also Theorem 3.29 in Carmona and
Delarue (2018)), we show uniqueness of the MFG solution also in the presence of
smooth dependence on past absorptions. The extra assumptions can be formulated
as follows.

(U1) The running cost can be split in two terms:

f̄ (t, x, µ, u) = f̄0(t, x, u) + f̄1(t, x, µ)

for some measurable functions f̄0 : [0, T]×Rd × Γ → [0, ∞) and f̄1 : [0, T]×
Rd ×M≤1,1(R

d)→ [0, ∞).

(U2) Lasry-Lions monotonicity assumption: Let µ, µ̃ ∈ M≤1,1(R
d), µ 6= µ̃. Then∫

Rd

(
f̄1(t, x, µ)− f̄1(t, x, µ̃)

)
(µ− µ̃)(dx) ≥ 0, t ∈ [0, T].

(U3) The drift b does not depend on the measure variable.

(U4) Let µ̄ ∈ ΥT
≤1,1 be fixed. Then the following optimization problem

inf
Λ∈Ũ

Jµ̄ (Λ)
.
= E

[∫
[0,τ]×Γ

f̄ (s, Xs, µ̄s, u)Λs(du)ds + F (τ, Xτ)

]
(2.19)

has a unique solution Λµ̄, where (Ω,F , F = (Ft)t∈[0,T],P, W, X) is a solution of
Equation (2.9) under Λµ̄ with initial distribution ν and drift b satisfying (U3).

Theorem 2.4.1 (Uniqueness). Under Assumptions (H1)-(H8) and (U1)-(U4), if there exists
a feedback solution of the MFG (λ, µ) (as in Definition 2.2.2) then it is unique.

Proof. By contradiction, let (λ, µ) and (λ̃, µ̃) be two different feedback MFG solu-
tions (as in Definition 2.2.2). Then

Jµ̃(λ)− Jµ̃(λ̃) > 0 and Jµ(λ̃)− Jµ(λ) > 0

where the inequality is strict by uniqueness of the minimizer in Assumption (U4),
and in particular

∆(µ, µ̃, λ, λ̃)
.
= Jµ̃(λ)− Jµ̃(λ̃) + Jµ(λ̃)− Jµ(λ) > 0.

However, thanks to Assumption (U3) that grants independence of the dynamics of
the state processes from the flows of measures µ and µ̃

∆(µ, µ̃, λ, λ̃) = EP

[∫ T

0
1[0,τ)(t)

(
f̄1(t, Xt, µ̃t)− f̄1(t, Xt, µt)

)
dt
]

+EP̃

[∫ T

0
1[0,τ̃)(t)

(
f̄1(t, X̃t, µt)− f̄1(t, X̃t, µ̃t)

)
dt
]

where (Ω,F , F = (Ft)t∈[0,T],P, W, X) and (Ω̃, F̃ , F̃ = (F̃t)t∈[0,T], P̃, W̃, X̃) are weak
solutions of Equation (2.7) respectively with controls λ and λ̃. Set θ

.
= P ◦ X−1 and
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θ̃
.
= P̃ ◦ X̃−1. Then

∆(µ, µ̃, λ, λ̃) =
∫
X

∫ T

0
1[0,τ(ϕ))(t)

[
f̄1(t, ϕ(t), µt)− f̄1(t, ϕ(t), µ̃t)

]
dtθ̃(dϕ)

−
∫
X

∫ T

0
1[0,τ(ϕ))(t)

[
f̄1(t, ϕ(t), µt)− f̄1(t, ϕ(t), µ̃t)

]
dtθ(dϕ)

=
∫ T

0

∫
X

[
f̄1(t, ϕ(t), µt)− f̄1(t, ϕ(t), µ̃t)

]
1[0,τ(ϕ))(t)θ̃(dϕ)dt

−
∫ T

0

∫
X

[
f̄1(t, ϕ(t), µt)− f̄1(t, ϕ(t), µ̃t)

]
1[0,τ(ϕ))(t)θ(dϕ)dt

=
∫ T

0

∫
Rd

[
f̄1(t, x, µt)− f̄1(t, x, µ̃t)

]
µ̃t(dx)dt

−
∫ T

0

∫
Rd

[
f̄1(t, x, µt)− f̄1(t, x, µ̃t)

]
µt(dx)dt

= −
∫ T

0

∫
Rd

[
f̄1(t, x, µt)− f̄1(t, x, µ̃t)

]
(µt − µ̃t)(dx)dt

which is lower than or equal to zero by Assumption (U2). In the second equality we
have used Fubini-Tonelli theorem, while the third one comes from the definitions of
µ and µ̃, i.e.

µt(B) .
= θ ({Xt ∈ B} ∩ {t < τ})

=
∫
X

1B(ϕ(t))1[0,τ(ϕ))(t)θ(dϕ)

=
∫

Rd
1B(x)µt(dx), t ∈ [0, T]

for all B ∈ B(Rd) and similarly for µ̃.

Example 2.4.1 (Non-local dependence on the measure through a weighted average).
We provide and example of running cost f̄ satisfying the monotonicity condition
(U2), which is an assumption on the measure-dependent term f̄1 only. Let w : Rd →
[0, ∞) be some measurable function with sub-linear growth so that

mw(µ)
.
=
∫

Rd
w(x)µ(dx) < ∞, for all µ ∈ M≤1,1(R

d)

and set

f̄1(t, x, µ)
.
= w(x)

∫
Rd

w(y)µ(dy) = w(x)mw(µ), (t, x, µ) ∈ [0, T]×Rd ×M≤1,1(R
d).

Since

f̄1(t, x, µ)− f̄1(t, x, µ̃) = w(x)
∫

Rd
w(y)(µ− µ̃)(dy)

we obtain∫
Rd

(
f̄1(t, x, µ)− f̄1(t, x, µ̃)

)
(µ− µ̃)(dx) =

∫
Rd

w(x)
∫

Rd
w(y)(µ− µ̃)(dy)(µ− µ̃)(dx),

=
∫

Rd
w(x)(µ− µ̃)(dx)

∫
Rd

w(y)(µ− µ̃)(dy),

=

(∫
Rd

w(x)(µ− µ̃)(dx)
)2

≥ 0.
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2.5 Approximate Nash equilibria for the N-player game with
finite-dimensional interaction

In this section, we consider an important particular case of our MFG with absorp-
tion, where the mean-field interaction is finite-dimensional. This is inspired by the
original model of Campi and Fischer (2018). We show that any feedback solution
of the MFG can be used to construct a sequence of approximate Nash equilibria
for the corresponding N-player game. To this end, we will need two additional as-
sumptions (Assumptions (N1) and (N2) below). We focus on a finite-dimensional
example first for technical reasons: this setting is very suitable to the propagation
of chaos result that we use in the proofs without being too technical. Second, we
think that this case is also particularly relevant for the applications as mentioned in
the introduction. Overall, we believe that the finite-dimensional setting enables us
to keep a good balance between abstract technicalities and modelling needs.

The approximation result is the content of Theorem 2.5.1 and Corollary 2.5.2. In
order to prove this, we interpret the N-player system as a system of N interacting
diffusions (as in, e.g., Gärtner (1988); McKean (1966); Sznitman (1991)). While the
usual mode of convergence of an N-particle system is the convergence in law of the
empirical measures, here we obtain a stronger form of propagation of chaos as in
Lacker (2018) but with possibly unbounded drift in the state variable. We prove that
the empirical measures converge in the stronger τ-topology, which is widely used in
the large deviations literature (see, for instance, Chapter 6.2 in Dembo and Zeitouni
(2010)); see Subsection 2.5.3.

2.5.1 The setting with finite-dimensional interaction

Here, we describe the MFG and the corresponding N-player game with smooth de-
pendence on past absorptions, specializing them to the finite-dimensional interac-
tion setting. In particular, we give the definition of ε-Nash equilibrium for the N-
player game. Then, we give the assumptions that are specific to this model. We
conclude by checking that the MFG with finite-dimensional interactions satisfies the
hypotheses of Theorem 2.3.1, granting the existence of relaxed and strict solutions of
the MFG.

The mean-field dynamics. Given a feedback control u ∈ U f b and a flow of sub-
probability measures µ ∈ ΥT

≤1,1, the representative player’s state evolves according
to the equation

Xt = X0 +
∫ t

0
b̃ (s, Xs, L (µs) , mw (µs) , u (s, X)) ds + σWt, t ∈ [0, T] (2.20)

where X is a d-dimensional stochastic process starting at X0
d∼ ν ∈ P(Rd), W

is a d-dimensional Wiener process on some filtered probability space (Ω,F , F =
(Ft)t∈[0,T],P), b̃ and σ are as in the assumptions below. In addition, mw (µ) and L (µ)

are functions mw :M≤1,1(R
d)→ Rd0 and L :M≤1,1(R

d)→ [0, 1] defined as

mw (µ)
.
=
∫

Rd
w (x) µ(dx) and L (µ)

.
= 1−

∫
Rd

µ(dx)
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where w : Rd → Rd0 , d0 ∈ N, is a fixed weight function with sub-linear growth.
Again, solutions of Equation (2.20) are understood in the weak sense (see Remark
2.2.5). The cost associated to a strategy u ∈ U f b and a flow of sub-probability mea-
sures µ ∈ ΥT

≤1,1 is given by

Jµ (u) .
= E

[∫ τ

0
f̃ (s, Xs, L (µs) , mw (µs) , u (s, X))ds + F (τ, Xτ)

]
(2.21)

where τ
.
= τX ∧ T is the random time horizon as in the previous sections.

The N-player dynamics. Let N ∈ N be the number of players. We assume that the
players’ private states evolve according to the following system of N d-dimensional
SDEs: for i ∈ {1, . . . , N},

XN,i
t = XN,i

0 +
∫ t

0
b̃
(

s, XN,i
s , L

(
µN

s

)
, mw

(
µN

s

)
, uN,i

(
s, XN

))
ds + σWN,i

t (2.22)

for t ∈ [0, T], where XN,i
0

d∼ ν i.i.d., WN,1, . . . , WN,N is an N-dimensional vector of
independent d-dimensional Wiener processes, XN denotes the vector of all players’
private states, uN the vector of feedback strategies, b̃ and σ are as in the assumptions
below. We remind that µN ∈ ΥT

≤1,1 is the random empirical sub-probability measures
defined as

µN
t (·) .

=
1
N

N

∑
i=1

δXN,i
t

(·) 1
[0,τXN,i )

(t) , t ∈ [0, T]. (2.23)

Solutions of the SDEs in Equation (2.22) are understood to be in the weak sense on
some filtered probability space (ΩN ,FN , FN = (FN

t )t∈[0,T],PN) satisfying the usual
conditions (see Remark 2.2.5).
Let UN

1 be the set of all progressively measurable functionals u : [0, T]× X N → Γ,
and let UN

N , the set of all vectors uN such that uN,i ∈ UN
1 , i ∈ {1, . . . , N}. Each

element of UN
N is called feedback strategy vector. In this game, player i evaluates a

strategy vector uN ∈ UN
N according to the expected costs

JN,i
(

uN
) .
= E

[∫ τN,i

0
f̃
(

s, XN,i
s , L

(
µN

s

)
, mw

(
µN

s

)
, uN,i(s, XN)

)
ds

+F
(

τN,i, XN,i
τN,i

)]
(2.24)

over a random time horizon, where XN is the N-player dynamics under uN and
τN,i .

= τXN,i ∧ T. Our aim is the construction of approximate Nash equilibria for
the N-player game from a solution of the limit problem. In the next definition, we
use the standard notation [uN,−i, v] to indicate a strategy vector equal to uN for all
players but the i-th, who deviates by playing v ∈ UN

1 instead.

Definition 2.5.1 (ε-Nash equilibrium). Let ε ≥ 0. A strategy vector uN ∈ UN
N is called

ε-Nash equilibrium for the N-player game if for every i ∈ {1, . . . , N} and for any
deviation v ∈ UN

1 we have:

JN,i(uN) ≤ JN,i
([

uN,−i, v
])

+ ε.
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Relaxed controls. It will be very convenient to use relaxed controls also in the N-
player case. Let ŨN

1 be the set of all single-player relaxed strategies for the N-
player game, and let ŨN

N be the set of N-player relaxed strategy vectors, i.e. vec-
tors λN = (λN,1, . . . , λN,N) with λN,i ∈ ŨN

1 , i ∈ {1, . . . , N}. At this point, we can
rewrite the dynamics and the cost functional of the N-player game (Equation (2.22)
and Equation (2.24)) by using relaxed controls as

XN,i
t = XN,i

0 +
∫
[0,t]×Γ

b̃
(

s, XN,i
s , L

(
µN

s

)
, mw

(
µN

s

)
, u
)

λN,i
(

s, XN
)
(du)ds +σWN,i

t (2.25)

with associated cost

JN,i
(

λN
)
= E

[∫
[0,τN,i ]×Γ

f̃
(

s, XN,i
s , L

(
µN

s

)
, mw

(
µN

s

)
, u
)

λN,i
(

s, XN
)
(du)ds

+F
(

τN,i, XN,i
τN,i

)]
(2.26)

for t ∈ [0, T], i ∈ {1, . . . , N}, λN ∈ ŨN
N and λN,i ∈ ŨN

1 for all i ∈ {1, . . . , N}.
Moreover, we extend accordingly the notion of ε-Nash equilibrium.

Definition 2.5.2 (Relaxed ε-Nash equilibrium). A strategy vector λN ∈ ŨN
N is an ε-

Nash equilibrium for the N-player game if for every i ∈ {1, . . . , N} and for any
single-player strategy β ∈ ŨN

1

JN,i(λN) ≤ JN,i
([

λN,−i, β
])

+ ε.

The drift b̃, the function w, the running cost f̃ and the terminal cost F now satisfy
the following assumptions, replacing Assumptions (H1)-(H3):

(H1’) The drift b̃ : [0, T] × Rd × [0, 1] × Rd0 × Γ → Rd is jointly continuous and
satisfies the following uniform Lipschitz continuity: there exists L > 0 such
that ∣∣b̃ (t, x, `, m, u)− b̃

(
t, x′, `, m, u

)∣∣ ≤ L
∣∣x− x′

∣∣
for all x, x′ ∈ Rd and all (t, `, m, u) ∈ [0, T]× [0, 1]×Rd0 × Γ. Moreover it has
sub-linear growth in (x, m) uniformly in the other variables, i.e. there exists a
constant C > 0 such that∣∣b̃ (t, x, `, m, u)

∣∣ ≤ C (1 + |x|+ |m|)

for all (t, x, `, m, u) ∈ [0, T]×Rd × [0, 1]×Rd0 × Γ.

(H2’) w : Rd → Rd0 is continuous and has sub-linear growth: |w(x)| ≤ C(1 + |x|)
for all x ∈ Rd.

(H3’) The costs f̃ : [0, T]×Rd× [0, 1]×Rd0 × Γ→ [0, ∞) and F : [0, T]×Rd → [0, ∞)
are jointly continuous. Moreover, they have sub-linear growth:∣∣ f̃ (t, x, `, m, u)

∣∣ ≤ C (1 + |x|+ |m|) ,
|F(t, x)| ≤ C (1 + |x|) ,

for all (t, x, `, m, u) ∈ [0, T]×Rd × [0, 1]×Rd0 × Γ.
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We conclude the presentation of the finite-dimensional model by introducing the co-
efficients’ reparametrization on P1(X ), by checking their joint continuity (as in As-
sumption (H3)), where continuity in the measure variable is in the 1-Wasserstein dis-
tance and at points θ � Wν. We set (b̄, f̄ )(t, x, µ, u) .

= (b̃, f̃ )(t, ϕ(t), L(µ), mw(µ), u)
for all (t, x, µ, u) ∈ [0, T] ×Rd ×M≤1,1(R

d) × Γ and define the reparametrization
(b, f ) as in Section 2.2. Then

(b, f )(t, ϕ, θ, u) = (b̃, f̃ )(t, ϕ(t), L(t; θ), mw(t; θ), u)

where

mw(t; θ)
.
=

∫
X

w (ϕ(t)) 1[0,τ(ϕ))(t)θ(dϕ),

L(t; θ)
.
= 1−

∫
X

1[0,τ(ϕ))(t)θ(dϕ)

are called the average and loss process and they equal mw(µt) and L(µt) in case
µt = g(t, θ) where g is defined as in Equation (2.4).
Joint continuity of b and f follows from joint continuity of b̃ and f̃ and from the
following lemma.

Lemma 2.5.1 (Continuity of the average and loss processes). Grant Assumptions (H1’)-
(H3’) and (H4)-(H8). Let (θn)n∈N ⊂ P1(X ) converge to θ ∈ P1(X ), θ � Wν, in the
1-Wasserstein distance, then

(i) L(t; θn)→ L(t; θ) as n→ ∞.

(ii) mw(t; θn)→ mw(t; θ) as n→ ∞.

Proof. (i). Denote by Dτ(t) the set of discontinuity points of the map ϕ 7→ 1[0,τ(ϕ))(t)
for t ∈ [0, T]. In particular θn w

⇀ θ. Then:

L(t; θn)− L(t; θ) = −
∫
X

1[0,τ(ϕ))(t) (θ
n − θ) (dϕ) −→

n→∞
0

for all t ∈ [0, T]. This follows from the definition of weak convergence of measures,
the fact that θ(Dτ(t)) = 0 for all t ∈ [0, T] (due to θ �Wν) and by Lemma A.0.4.(d).

(ii). Now we have:

|mw(t; θn)−mw(t; θ)| ≤
∣∣∣∣∫X w(ϕ(t))1[0,τ(ϕ))(t) (θ

n − θ) (dϕ)

∣∣∣∣ −→n→∞
0

for all t ∈ [0, T] as a consequence of the convergence in the 1-Wasserstein distance,
the fact that θ(Dτ(t)) = 0 for all t ∈ [0, T] and by Lemma A.0.4.(d) together with
Lemma A.0.5.

We conclude by proving that we can use Theorem 2.3.1 and get existence of a
feedback relaxed and strict solutions of the MFG with smooth dependence on past
absorptions and finite-dimensional dependence on the measure.

Corollary 2.5.1 (Existence of relaxed and strict feedback MFG solutions). Under Assump-
tions (H1’)-(H3’), (H4)-(H8) and (C1) , there exists a relaxed feedback solution (λ, µ) of the
MFG with finite dimensional interaction. Moreover, under the additional Assumption (C2)
, there exists a strict feedback MFG solution (u, µ).
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Proof. Assumptions (H1’)-(H3’) imply Assumptions (H1)-(H3) of Theorem 2.3.1. In-
deed, (H1)-(H2) follow from the definition of the coefficients b̃ and f̃ . Assumption
(H3), i.e. joint continuity of the reparametrized coefficients, is a consequence of joint
continuity of b̃ and f̃ and Lemma 2.5.1.

2.5.2 The N-player approximation theorem

In order to state the N-player approximation results, we need the following two
additional assumptions (N1)-(N2), whose formulation requires some more termi-
nology.
We set

dTV
t (θ, θ̃)

.
= supB∈Ft

|θ(B)− θ̃(B)|,

for all θ, θ̃ ∈ P(X ) and we note that for t ∈ [0, T), dt is only a pseudo-metric,
whereas for t = T it is a proper metric; dTV

T is called the total variation distance.
However, with a slight abuse of terminology, we will often refer to dTV

t as the total
variation distance for each t ∈ [0, T].

(N1) The function w : Rd → Rd0 is bounded.

(N2) The drift b̃ satisfies the following Lipschitz continuity:∣∣b̃ (t, x, `, m, u)− b̃
(
t, x′, `′, m′, u

)∣∣ ≤ L
(∣∣x− x′

∣∣+ ∣∣`− `′
∣∣+ ∣∣m−m′

∣∣)
for all (x, `, m), (x′, `′, m′) ∈ Rd × [0, 1] ×Rd0 and all (t, u) ∈ [0, T] × Γ, with
Lipschitz constant L > 0. The running cost f̃ can be decomposed as

f̃ (t, x, `, m, u) = f̃0(t, x, u) + f̃1(t, x, `, m),

where

| f̃0(t, x, u)| ≤ K and | f̃1(t, x, `, m)| ≤ C(1 + |x|),

for all (t, x, `, m, u) ∈ [0, T]×Rd× [0, 1]×Rd0 × Γ and some constants C, K > 0.

From Assumptions (N1)-(N2), the reparametrizations b and f inherit a series of
properties that are fundamental in the proof of the approximation result. First, being
w : Rd → Rd0 bounded, the drift b is Lipschitz continuous with respect to the total
variation distance, which is a key assumption in Lemma 2.5.2. Indeed∣∣b(t, ϕ, θ, u)− b(t, ϕ, θ′, u)

∣∣ ≤ L
(∣∣L(t; θ)− L(t; θ′)

∣∣+ ∣∣mw(t; θ)−mw(t; θ′)
∣∣)

≤ L(1 + ‖w‖∞)dTV
T (θ, θ′)

.
= LTV

b dTV
T (θ, θ′)

because∣∣L(t; θ)− L(t; θ′)
∣∣ =

∣∣∣∣∫X 1[0,τ(ϕ))(t)(θ
′ − θ)(dϕ)

∣∣∣∣ ≤ dTV
T (θ, θ′) and

∣∣mw(t; θ)−mw(t; θ′)
∣∣ =

∣∣∣∣∫X w(ϕ(t))1[0,τ(ϕ))(t)(θ − θ′)(dϕ)

∣∣∣∣ ≤ ‖w‖∞dTV
T (θ, θ′).

Second, the sub-linear growth property

|b(t, ϕ, θ, u)| ≤ C(1 + ‖w‖∞ + ‖ϕ‖∞,t), (t, ϕ) ∈ [0, T]×X
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is uniform in θ ∈ P(X ) and in u ∈ Γ, implying that b is bounded in the measure and
control variables (and analogously f ). This means that b and f are well defined on
all P(X ) not only on P1(X ), which is fundamental to apply the fixed point theorem
in Lemma 2.5.2. Finally, the running cost f can be decomposed as

f (t, ϕ, θ, u) = f0(t, ϕ, u) + f1(t, ϕ, θ)

where its components are

f0(t, ϕ, u) .
= f̃0(t, ϕ(t), u) and f1(t, ϕ, θ)

.
= f̃1(t, ϕ(t), L(t; θ), mw(t; θ))

which inherit from f̃0 and f̃1 the properties

| f0(t, ϕ, u)| ≤ K and | f1(t, ϕ, θ)| ≤ C(1 + ‖ϕ‖∞,t)

for all (t, ϕ, θ, u) ∈ [0, T] × X × P(X ) × Γ. This is a key assumption to perform
the passage to the many-player limit in Theorem 2.5.1. Indeed, boundedness in the
control of f0 enables us to exploit convergence in the τ-topology while sub-linearity
in the state variable ϕ uniformly in the measure variable θ makes f1 a good test
function for the convergence in the 1-Wasserstein distance.

Theorem 2.5.1 (Approximate Nash equilibria - relaxed). Let (λ, µ) be a relaxed feedback
MFG solution. For all N ≥ 2, define λN = (λN,1, . . . , λN,N) ∈ ŨN

N where λN,i(t, ϕN)
.
=

λ(t, ϕN,i) for all i ∈ {1, . . . , N}, t ∈ [0, T] and ϕN ∈ X N .
Then under Assumptions (H1’)-(H3’), (H4)-(H8) and (N1)-(N2), for every ε > 0 there
exists Nε ∈ N such that λN is an ε-Nash equilibrium for the N-player game whenever
N ≥ Nε, i.e. for every i ∈ {1, . . . , N} and for any deviation β ∈ ŨN

1

JN,i
(

λN
)
≤ JN,i

([
λN,−i, β

])
+ ε

for all N ≥ Nε.

Corollary 2.5.2 (Approximate Nash equilibria - strict). Let (u, µ) be a strict feedback MFG
solution. For all N ≥ 2, define uN = (uN,1, . . . , uN,N) ∈ UN

N where uN,i(t, ϕN)
.
=

u(t, ϕN,i) for all i ∈ {1, . . . , N}, t ∈ [0, T] and ϕN ∈ X N .
Then under Assumptions (H1’)-(H3’), (H4)-(H8) and (N1)-(N2), for every ε > 0 there
exists a Nε ∈ N such that uN is an ε-Nash equilibrium for the N-player game whenever
N ≥ Nε, i.e. for every i ∈ {1, . . . , N} and for any deviation v ∈ UN

1

JN,i
(

uN
)
≤ JN,i

([
uN,−i, v

])
+ ε

for all N ≥ Nε.

Before proceeding, we define the empirical measure ζN of the N-player system (Equa-
tion (2.25)) as

ζN (·) .
=

1
N

N

∑
i=1

δXN,i (·) (2.27)

which is a P(X )-valued random variable. Moreover, we fix a relaxed feedback MFG
solution (λ, µ) and define (cfr. Theorem 2.5.1 and Corollary 2.5.2) λN ∈ ŨN

N as λN .
=

(λN,i)i=1,...,N where λN,i(t, ϕN)
.
= λ(t, ϕN,i) for all i = 1, . . . , N, t ∈ [0, T] and ϕN ∈
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X N . In the next two subsections we consider the following N-particle system:

XN,1
t = XN,1

0 +
∫
[0,t]×Γ

b
(

s, XN,1, ζN , u
)

β
(

s, XN
)
(du)ds + σWN,1

t , (2.28)

XN,i
t = XN,i

0 +
∫
[0,t]×Γ

b
(

s, XN,i, ζN , u
)

λ
(

s, XN,i
)
(du)ds + σWN,i

t (2.29)

for i = 2, . . . , N, t ∈ [0, T] and where β ∈ ŨN
1 is a generic single-player control.

Precisely, in Subsection 2.5.3 we set β(t, ϕN)
.
= λ(t, ϕN,1) for t ∈ [0, T] and ϕN ∈ X N

(we say that β = λ for short); whereas, in Subsection 2.5.4 we let β be generic (unless
differently specified), which means that we allow the first player to deviate from the
MFG solution λ.

2.5.3 Propagation of chaos

In this subsection we consider the system of N interacting symmetric diffusions
given by Equations (2.28) and (2.29) with β = λ. We associate to this system a
suitable McKean-Vlasov equation (Equation (2.30) below) and show a propagation
of chaos result, that we will need in the proofs of Theorem 2.5.1 and Corollary 2.5.2.

Definition 2.5.3 (McKean-Vlasov solution). A law θ∗ ∈ P(X ) is a McKean-Vlasov
solution of equation

Xt = X0 +
∫
[0,t]×Γ

b (s, X, θ∗, u) λ (s, X) (du)ds + σWt, t ∈ [0, T], X0
d∼ ν (2.30)

if there exists a weak solution (Ω,F , F = (Ft)t∈[0,t],P, X, W) with P ◦ X−1 = θ∗ and
P ◦ X−1

0 = ν.

The following lemma ensures the well-posedness of Equation (2.30).

Lemma 2.5.2 (Existence and uniqueness of McKean-Vlasov solutions). Grant Assumptions
(H1’)-(H3’), (H4)-(H8) and (N1)-(N2). Then, there exists a unique McKean-Vlasov solution
for Equation (2.30).

Proof. We follow Lacker (2018), proof of Theorem 2.4. Precisely, we apply Banach
fixed point theorem on the complete metric space (P(X ), dT) together with Picard
iterations. To this end, we start by defining, for any α > 0, the following distance:

dα(θ, θ′)2 .
=
∫ T

0
e−αtdt(θ, θ′)2 dt, θ, θ′ ∈ P(X ).

We note that dα(·, ·) is a complete metric on P(X ). We now define Ψ : P (X ) →
P(X ) ⊂ P (X ) as the map θ 7→ Ψ(θ)

.
= Pθ ◦ (Xθ)−1 where (Ωθ ,F θ ,Pθ , Xθ , Wθ) is a

weak solution of Equation (2.30) with θ in the drift, which is well defined (see Re-
mark 2.2.5).
We show that Ψ is a contraction on P (X ) with respect to the distance dα for a suf-
ficiently large α > 0. Let H(θ|θ′) denote the relative entropy of θ with respect to
θ′ for θ, θ′ ∈ P(X ), and let Ht(θ|θ′) = H(θt|θ′t), θt

.
= Pθ ◦ (Xθ

·∧t)
−1. By Pinsker’s

inequality, there exists a constant CH > 0 such that

dt(Ψ(θ), Ψ(θ′))2 ≤ CHHt(Ψ(θ), Ψ(θ′))

≤ 1
2

CH |σ−1|2 L̃2
∫ t

0
ds(θ, θ′)2ds
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where we set L̃ .
= LTV

b . Therefore, we have

dα(Ψ(θ), Ψ(θ′))2 =
∫ T

0
e−αtdt(Ψ(θ), Ψ(θ′))2dt

≤ 1
2

CH |σ−1|2 L̃2
∫ T

0
e−αt

∫ t

0
ds(θ, θ′)2ds dt

=
1
2

CH |σ−1|2 L̃2
∫ T

0
dt(θ, θ′)2

∫ T

t
e−αsds dt

≤ 1
2

CH

α
|σ−1|2 L̃2

∫ T

0
e−αtdt(θ, θ′)2dt =

1
2

CH

α
|σ−1|2 L̃2dα(θ, θ′)2

which shows that Ψ is a contraction whenever 1
2

CH
α |σ−1|2 L̃2 < 1. Thanks to the

arbitrariness of α > 0, we conclude that Ψ has a unique fixed-point in P(X ).

We consider the sequence of empirical measures (ζN)N∈N in Equation (2.27) as-
sociated to the N-particle systems in Equations (2.28) and (2.29) (with β = λ). We
follow Lacker (2018) and we prove the convergence, both in law and in probability
in the τ-topology, of (ζN)N∈N to the McKean-Vlasov solution θ∗ ∈ P(X ) of Equa-
tion (2.30). We remind that the τ-topology on P(X ), denoted with τ(P(X )), is the
topology generated by the sets

B f ,x,δ
.
=

{
π ∈ P(X ) :

∣∣∣∣∫X f (y)π(dy)− x
∣∣∣∣ < δ

}
where f : X → R is any measurable bounded function, x ∈ R and δ is any strictly
positive constant. In particular, the τ-topology is the coarsest topology that makes
the maps π 7→

∫
X f (y)π(dy) continuous for all measurable bounded functions

f : X → R (see, for instance, Chapter 6.2 in Dembo and Zeitouni (2010)).
Moreover, we denote by w(P(X )) the weak topology on P(X ) and with B(P(X ))
the Borel σ-algebra on X generated by the open sets of the weak topology. The
following lemma adapts Theorem 2.6.1-2 in Lacker (2018) to our framework, in par-
ticular to the case of diffusions with possibly unbounded drift.

Lemma 2.5.3 (Propagation of chaos). Grant Assumptions (H1’)-(H3’), (H4)-(H8) and (N1)-
(N2). Let θ∗ ∈ P(X ) be the unique McKean-Vlasov solution of Equation (2.30). Then the

sequence (ζN)N∈N converges in law to θ∗, i.e. ζN L−→ θ∗, as N → ∞. Moreover

lim
N→∞

PN
(

ζN 6∈ B
)
= 0

for all open neighbourhoods B of θ∗ in the τ-topology that are in B(P(X )).

Proof. Let (Ω,F ,P) be a probability space that supports an i.i.d. sequence of X -
valued random variables with law θ∗. For each N ∈ N, set (FN

t )t∈[0,T] to be the
filtration generated by X1, . . . , XN . Define

W i
t

.
= σ−1

(
Xi

t − ξ −
∫
[0,t]×Γ

b(s, Xi, θ∗, u)λ(s, Xi)(du)ds
)

, t ∈ [0, T], i ∈ {1, . . . , N}.

In particular, W1, . . . , WN are independent Wiener processes on (Ω,F , FN = (FN
t )t∈[0,T],P).

Fix N ∈N, and consider the tuple (Ω,F , FN = (FN
t )t∈[0,T],P, (XN,1, . . . , XN,N), (W1, . . . , WN)),
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with XN,i .
= Xi, for all i ∈ {1, . . . , N}. This is a weak solution of

XN,i = ξ +
∫
[0,t]×Γ

b(s, XN,i, θ∗, u)λ(s, XN,i)(du)ds + σW i
t , t ∈ [0, T], i ∈ {1, . . . , N}.

Now, define the probability PN via its density with respect to P, dPN

dP
.
= ZN

T , where,
for all t ∈ [0, T]

ZN
t

.
= Et

(∫ ·
0

N

∑
i=1

∫
Γ

σ−1
(

b(s, XN,i, ζN , u)− b(s, XN,i, θ∗, u)
)

λ(s, XN,i)(du)dW i
s

)
.

A standard application of Girsanov’s theorem gives

XN,i
t = ξ +

∫
[0,t]×Γ

b(s, XN,i, ζN , u)λ(s, XN,i)(du)ds + σWN,i
t , t ∈ [0, T], i ∈ {1, . . . , N}

for some PN-Wiener process WN . Notice that (Ω,F , FN = (FN
t )t∈[0,T],PN , XN , WN)

is a weak solution of the N-particle system in Equations (2.28) and (2.29), with
β(t, ϕN)

.
= λ(t, ϕN,1) for t ∈ [0, T] and ϕN ∈ X N .

At this point, the rest of the proof can be performed as in Lacker (2018), Theorem
2.6.1-2, along the following steps:

(i) Show that Ft1,t2 : P(X )→ R defined as

Ft1,t2(θ)
.
=
∫
X

∫ t2

t1

∣∣∣∣∫Γ
σ−1 (b(s, ϕ, θ, u)− b(s, ϕ, θ∗, u)) λ(s, ϕ)(du)

∣∣∣∣2 dsθ(dϕ)(2.31)

is τ-continuous for all t1, t2 ∈ [0, T], t1 < t2 and B(P(X ))-measurable, which
is done aside at the end of this proof. Moreover Ft1,t2(θ) ≤ L̃(t2 − t1)H(θ|θ∗)
for all t1, t2 ∈ [0, T], t1 < t2 and for all θ ∈ P(X ), which is a straightforward
consequence of the Lipschitz continuity in the total variation distance.

(ii) Since XN,1, XN,2, . . . XN,N are i.i.d. under P, Sanov’s Theorem (e.g. Theorem
6.2.10 in Dembo and Zeitouni (2010)) can be applied to P ◦ (ζN)−1.

(iii) Derive a large deviation principle for PN ◦ (ζN)−1, precisely

lim sup
N→∞

1
N

logPN
(

ζN 6∈ B
)
≤ −e−L̃T inf

θ 6∈B
H (θ|θ∗)

for all open neighbourhoods B of θ in the τ-topology that are in B(P(X )), for
some constant L̃ > 0.
To this aim, we stress that we can proceed just as in Lacker (2018)1. Indeed, re-
gardless of the sub-linear growth of the drift, we can adapt Lacker’s estimates
thanks to ∣∣b (t, ϕ, θ, u)− b

(
t, ϕ, θ′, u

)∣∣ ≤ 2L̃.

Moreover we can apply Varadhan’s integral lemma (Dembo and Zeitouni,
2010, Theorem 4.3.1) thanks to the continuity of Ft1,t2 .

1Precisely we can show by induction that Equation (4.1) in Lacker (2018) holds also in this case,
then conclude observing that PN and P agree on F0.
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(iv) Conclude by showing that infθ 6∈BH(θ|θ∗) > 0 so that

lim
N→∞

PN
(

ζN 6∈ B
)
= 0

which can be performed as in Lacker (2018).

Proof of the continuity of Ft1,t2 in the τ-topology. We actually prove the stronger claim
that the functional Ft1,t2 in Equation (2.31) is continuous in the weak topology (w-
topology for short). First, we can write Ft1,t2(θ) =

∫
X ft1,t2(ϕ, θ)θ(dϕ) for θ ∈ P(X ),

where

ft1,t2(ϕ, θ)
.
=
∫ t2

t1

∣∣∣∣∫Γ
σ−1 (b(s, ϕ, θ, u)− b(s, ϕ, θ∗, u)) λ(s, ϕ)(du)

∣∣∣∣2 ds

which is a real-valued bounded measurable function defined on X × P(X ). Let
(θn)n∈N, θ ∈ P(X ) be such that θn w

⇀ θ. We want to show that Ft1,t2(θ
n) → Ft1,t2(θ)

as n→ ∞.
Set fn(ϕ)

.
= ft1,t2(ϕ, θn) and f (ϕ)

.
= ft1,t2(ϕ, θ). They are all in Cb(X ) with uniform

bound in n ∈N. Moreover, fn → f in the sup-norm. Indeed

sup
ϕ∈X
| fn(ϕ)− f (ϕ)| ≤ 4LTV

b L
∫ t2

t1

|L(s; θn)− L(s; θ)|+ |mw(s; θn)−mw(s; θ)|ds

which vanishes in the limit for n → ∞ due to Lemma 2.5.1. As a consequence, we
obtain

Ft1,t2(θ
n) =

∫
X

fn(ϕ)θn(dϕ) −→
n→∞

∫
X

f (ϕ)θ(dϕ) = Ft1,t2(θ).

2.5.4 Proof of the The N-player approximation theorem

This section is devoted to the construction of approximate Nash equilibria for the
N-player game from a solution of the limit problem, in the particular case of finite-
dimensional interaction as described before. The results of previous Subsection 2.5.3
allow us to pass to the many-player limit even if feedback MFG strategies are dis-
continuous in the state variable. We have observed in the introduction that the con-
struction of approximated Nash equilibria for the N-player games in Campi and
Fischer (2018) was crucially based on the continuity of the limit optimal control for
almost every paths of the state variable with respect to the Wiener measure. In our
setting, such a regularity property is no longer feasible due to the possible unbound-
edness of the coefficients, which makes it difficult to apply PDE-based estimates as
in Campi and Fischer (2018) to get the needed continuity. Therefore, in order to over-
come this obstacle, we will use the strong form of propagation of chaos in Lemma
2.5.3, which allows to pass to the limit even through possibly discontinuous MFG
optimal controls.
In this part, we consider the dynamics in Equation (2.28) and Equation (2.29) with-
out necessarily taking β = λ, unless differently specified. We start with some pre-
liminary estimates ensuring that the costs remain bounded in the mean-field limit
despite the sub-linear growth.
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Lemma 2.5.4 (A-priori estimates). Grant Assumptions (H1’)-(H3’), (H4)-(H8) and (N1)-
(N2). Consider the dynamics in Equations (2.28) and (2.29). Then for any α ≥ 1

sup
N∈N

EPN
[
‖XN,i‖α

∞

]
≤ K(α)

for i ∈ {1, . . . , N} and where K(α) < ∞ is a positive constant independent of N.

Proof. This is a consequence of Grönwall’s lemma together with uniform bounded-
ness of the drift in the measure and control variables.

Now, we prove the tightness of the sequence of laws (PN ◦ (ζN)−1)N∈N when
β = λ in Equation (2.28), i.e. when the dynamics are symmetric. Then, thanks
to Lemma 2.5.3, we characterize the limit points of (PN ◦ (ζN)−1)N∈N as McKean-
Vlasov solutions of Equation (2.30); see Lemma 2.5.6.

Lemma 2.5.5 (Tightness). Grant Assumptions (H1’)-(H3’), (H4)-(H8) and (N1)-(N2). Let
ζN be the empirical measure of the system given by Equations (2.28) and (2.29) with β = λ.
Then the sequence (PN ◦ (ζN)−1)N∈N is tight in P(P(X )).

Proof. The tightness of such a sequence follows from Sznitman (1991), Proposition
2.2, combined with Kolmogorov-Chentsov criterion (see, for instance, Corollary 14.9
in Kallenberg (2006)).

Lemma 2.5.6 (Characterization of limit points). Grant Assumptions (H1’)-(H3’), (H4)-
(H8) and (N1)-(N2). Let ζN be the empirical measure of the system given by Equations
(2.28) and (2.29) with β = λ. Let (PNk ◦ (ζNk)−1)k∈N be a convergent subsequence of
(PN ◦ (ζN)−1)N∈N. Let ζ be a random variable defined on some probability space (Ω,F ,P)

with values in P(X ) such that ζNk
L−→ ζ. Then

(i) ζ coincides P-a.s. with the unique McKean-Vlasov solution θ∗ of Equation (2.30).

(ii) The sequence (ζN)N∈N converges in probability (hence also in law) to θ∗ when P(X )
is equipped with the τ-topology.

Proof. By Lemma 2.5.5 there exists a subsequence (PNk ◦ (ζNk)−1)k∈N ⊂ P(P(X ))
converging to P ◦ ζ−1 ∈ P(P(X )). Lemma 2.5.3 guarantees the convergence in law
of the whole sequence (ζN)N∈N to the deterministic limit θ∗, which is the unique
McKean-Vlasov solution of Equation (2.30). By uniqueness in law of the weak limit
we have P ◦ ζ−1 = δθ∗ , yielding ζ = θ∗ P-a.s.. Lemma 2.5.3 also gives convergence
in probability in the τ-topology of (ζN)N∈N to θ∗.

Corollary 2.5.3 (Characterization of the convergence). Under the assumptions of Lemma
2.5.6, the following properties hold:

(i) For all Borel-measurable bounded function f : X → R such that θ 7→
∫
X f (ϕ)θ(dϕ)

is τ(P(X ))-continuous

EPN
[∫
X

f (ϕ)ζN(dϕ)

]
−→
N→∞

EP

[∫
X

f (ϕ)ζ(dϕ)

]
≡ EP

[∫
X

f (ϕ)θ∗(dϕ)

]
.

(ii) PN ◦ (XN,1, ζN)−1 w
⇀ θ∗⊗ δθ∗ . Moreover, PN ◦ (XN,1)−1 w

⇀ θ∗ and PN ◦ (ζN)−1 w
⇀

δθ∗ .
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(iii) For all f ∈ C(X ) with sub-linear growth, i.e. | f (ϕ)| ≤ C f (1 + ‖ϕ‖∞) for some
C f > 0 and all ϕ ∈ X , we have

EPN
[∫
X

f (ϕ)ζN(dϕ)

]
−→
N→∞

EP

[∫
X

f (ϕ)ζ(dϕ)

]
≡ EP

[∫
X

f (ϕ)θ∗(dϕ)

]
.

Proof. (i) This is a consequence of Lemma 2.5.3, Lemma 2.5.6 and of the almost sure
equality ζ = θ∗.
(ii) We already know that PN ◦ (ζN)−1 w

⇀ δθ∗ from Lemma 2.5.6. Therefore, the
convergence of PN ◦ (XN,1)−1 to θ∗ follows from Sznitman (1991), Proposition 2.2,
and the symmetry of the system.
(iii) Let f ∈ C(X ) with sub-linear growth. It is enough to show that

EPN
[∫
X
‖ϕ‖∞ζN(dϕ)

]
−→
N→∞

∫
X
‖ϕ‖∞θ∗(dϕ).

To this aim, for fixed R > 0, we consider the decomposition

EPN
[∫
X
‖ϕ‖∞(ζ

N − θ∗)(dϕ)

]
≤ EPN

[∫
X
(‖ϕ‖∞ ∧ R)(ζN − θ∗)(dϕ)

]
+EPN

[∫
X
‖ϕ‖∞1{‖ϕ‖∞≥R}(ζ

N + θ∗)(dϕ)

]
.

By property (i), for any fixed R > 0, we have

lim
N→∞

EPN
[∫
X
(‖ϕ‖∞ ∧ R)(ζN − θ∗)(dϕ)

]
= 0

so that

lim sup
N→∞

EPN
[∫
X
‖ϕ‖∞(ζ

N − θ∗)(dϕ)

]
≤ lim sup

N→∞
EPN

[∫
X
‖ϕ‖∞1{‖ϕ‖∞≥R}(ζ

N + θ∗)(dϕ)

]
.

Now, we let R→ ∞ and we show that the RHS vanishes in the limit. To do so, recall
that, due to Lemma 2.5.4, there exist constants K(α), K > 0 such that

sup
N∈N

EPN
[
‖XN,i‖α

∞

]
≤ K(α) and sup

N∈N

EPN
[
‖XN,i‖∞

]
≤ K

independently of i ∈ {1, . . . , N}. Then, set α, β > 1 such that 1
α +

1
β = 1 and let ε > 0.

By definition of ζN and by Young’s and Markov’s inequalities, we have

lim sup
N→∞

EPN
[∫
X
‖ϕ‖∞1{‖ϕ‖∞≥R}ζ

N(dϕ)

]
= lim sup

N→∞

1
N

N

∑
i=1

EPN
[
‖XN,i‖∞1{‖XN,i‖∞≥R}

]
≤

(
εα K(α)

α
+

K
εββR

)
(2.32)

which converges to zero by letting R → ∞ and then ε → 0. A similar reasoning
applies to the same expectation with θ∗ instead of ζN .

Remark 2.5.1. Let D
.
= {ϕ ∈ X : τ(ϕ) is discontinuous at ϕ}. Since ζ

a.s.
= θ∗ ∈ Q,

Lemma A.0.4 implies θ∗(D) = 0 and the statement of Corollary 2.5.3 holds for f =
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1D as well.

Finally, we conclude this section with the proof of Theorem 2.5.1, which leads
immediately to Corollary 2.5.2.

Proof of Theorem 2.5.1. The proof is structured in three steps.

(j) limN→∞ JN,1(λN) = Jµ(λ).

(jj) Let βN,1 ∈ UN
1 be such that

JN,1([λN,−1, βN,1]) ≤ inf
β∈UN

1

JN,1([λN,−1, β]) +
ε

2
.

Then

lim inf
N→∞

JN,1
([

λN,−1, βN,1
])
≥ Jµ(λ).

(jjj) JN,1(λN) ≤ infβ∈UN
1

JN,1([λN,−1, β]) + ε.

We consider the dynamics in Equation (2.25). In (j) we set λN,1(t, ϕN) = λ(t, ϕN,i) for
all (t, ϕN) ∈ [0, T]×X N and prove convergence of the first-player cost functional to
the cost functional of the MFG. In (jj) instead we allow the first player to deviate and
choose λN,1(t, ϕN) = βN,1(t, ϕN) for all (t, ϕN) ∈ [0, T] × X N where βN,1 ∈ ŨN

1 is
a generic single-player relaxed control. We conclude the proof in (jjj) by combining
the results in (j) and (jj).

Proof of (j). To prove that JN,1(λN) → Jµ(λ), as N → ∞, we split each cost
functional in the sum of two terms:

JN,1(λN) = EPN
[∫

[0,T]×Γ

∫
X

1[0,τ(ϕ))(t) f0(t, ϕ, u)λ(t, ϕ)(du)ζN(dϕ)dt
]

+EPN
[∫ T

0
1[0,τN,1)(t) f1(t, XN,1, ζN)dt + F(τN,1, XN,1

τN,1)

]
and

Jµ(λ) = EP

[∫
[0,T]×Γ

∫
X

1[0,τ(ϕ))(t) f0(t, ϕ, u)λ(t, ϕ)(du)ζ(dϕ)dt
]

+EP

[∫ T

0
1[0,τ)(t) f1(t, X, ζ)dt + F(τ, Xτ)

]
.

Since f0 is bounded, the convergence of the first summand in the decomposition of
JN,1(λN) to the corresponding term in Jµ(λ) is a consequence of Corollary 2.5.3(i)
and of Lemma 2.5.6. On the other hand, since both f1 and F have sub-linear growth,
the convergence of the second summand in JN,1(λN) follows from Corollary 2.5.3(iii),
Lemma 2.5.6 and the fact that θ∗ ∈ Q together with Lemma A.0.5.

Proof of (jj). We follow the proof of Theorem 3.10 in Lacker (2020) with suitable
modifications due to the possibly unbounded drift and the dependence on the first
exit time from the set O.
Let (ΩN ,FN , FN = (FN

t )t∈[0,T],QN , YN , WN)N∈N be a weak solutions of the N-
player system. Let (ζN)N∈N be the associated empirical measures. Under QN the
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first player’s dynamics is

YN,1
t = YN,1

0 +
∫
[0,t]×Γ

b(s, YN,1, ζN
Y , u)βN,1(s, YN)(du)ds + σWN,1

t , t ∈ [0, T].

Now, let PN be the probability measure under which the first player’s dynamics
becomes

YN,1
t = YN,1

0 +
∫
[0,t]×Γ

b(s, YN,1, ζN
Y , u)λ(s, YN,1)(du)ds + σW̃N,1

t , t ∈ [0, T]

where W̃N,1 is a PN-Wiener process. In other terms, PN satisfies dQN

dPN = ZN
T where

ZN
t = Et

(∫ ·
0

∫
Γ

b(s, YN,1, ζN
Y , u)(βN,1(s, YN)− λ(s, YN,1))(du)dW̃s

)
, t ∈ [0, T].

By inspection of the proofs of Lemma A.0.1 and Corollary A.0.1, all bounds are uni-
form in N ∈N, hence Corollary A.0.1 gives the uniform integrability of the sequence
of exponential martingales (ZN)N∈N. More in detail, we apply Corollary A.0.1 to the
drift

b(t, ϕN)
.
=
∫

Γ
b(t, ϕN,1, ζϕN , u)(βN,1(t, ϕN)− λ(t, ϕN,1))(du)

for (t, ϕN) ∈ [0, T] × X N . Notice that this drift is sublinear in ϕN . Therefore con-
vergence of the empirical measures to θ∗ in probability in the τ-topology under PN

implies convergence of the empirical measures to the same limit in probability in the

τ-topology under QN . Hence ζN
Y

L−→ θ∗ under QN and

lim
N→∞

QN
(

ζN
Y 6∈ B

)
= 0

for all neighbourhoods B of θ in the τ-topology which belong to B(P(X )). The
tightness of (YN,1)N∈N under QN still follows from their tightness under PN . Con-
sider (βN,1(t, YN))t∈[0,T] as a single-player relaxed stochastic open-loop control and
denote it simply by (βN,1

t )t∈[0,T]. Interpret (YN,1, βN,1, ζN
Y )N∈N as a sequence of ran-

dom variables with values in X × V × P(X ). Compactness of V and tightness of
(YN,1, ζN

Y )N∈N imply the tightness of (YN,1, βN,1, ζN
Y )N∈N under QN .

Let (Y, β, θ∗) be a limit point of the sequence (YN,1, βN,1, ζN
Y )N∈N, defined on

some probability space with probability measure Q. Then by a standard martingale
argument it can be shown to satisfy

Yt = ξ +
∫
[0,t]×Γ

b(s, Y, θ∗, u)βt(du)ds + σWt, t ∈ [0, T] (2.33)

where W is a Q-Wiener process. As in (j) we split JN,1([λN,−1, βN,1]) in two terms as

JN,1([λN,−1, βN,1]) = EQN
[∫

[0,T]×Γ
1[0,τN,1)(t) f0(t, YN,1, u)βN,1

t (du)dt
]

+EQN
[∫ T

0
1[0,τN,1)(t) f1(t, YN,1, ζN

Y )dt + F(τN,1, YN,1
τN,1)

]
.

We move along a weakly converging subsequence of (YN,1, βN,1, WN,1)N∈N under
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QN to the limit point (Y, β, W) in Equation (2.33). Convergence of the first and sec-
ond summands above now works as in the proof of (j). Considering again the whole
sequence, we obtain

lim inf
N→∞

JN,1([λN,−1, βN,1]) ≥ inf
β
EQN

[∫
[0,T]×Γ

1[0,τ)(t) f (t, Y, θ∗, u)βt(du)dt + F(τ, Yτ)

]
= Vµ

where the infimum on the RHS above is taken over all relaxed stochastic open-loop
controls and the last equality follows from embedding the set of strict controls into
the set of relaxed controls combined with the chattering lemma (Bahlali et al., 2006;
El Karoui et al., 1987; Fleming and Rishel, 2012).

Proof of (jjj). This is a consequence of steps (j) and (jj). Indeed

JN,1(λN)− inf
β∈UN

1

JN,1([λN,−1, β]) ≤ JN,1(λN)− Jµ(λ) + Jµ(λ)− JN,1([λN,−1, βN,1]) +
ε

2
.

Now by steps (j) and (jj) there exists Nε ∈N such that for all N ≥ Nε

JN,1(λN)− Jµ(λ) ≤ ε

4
and Jµ(λ)− JN,1([λN,−1, βN,1]) ≤ ε

4
.

Therefore, we can conclude that JN,1(λN) ≤ infβ∈UN
1

JN,1([λN,−1, β]) + ε for all N ≥
Nε, which establishes the statement of Theorem 2.5.1.
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Chapter 3

Mean-Field Games of Finite-Fuel
Capacity Expansion with Singular
Controls

3.1 Introduction to mean-field games with singular controls

Singular control problems with finite (and infinite) fuel find numerous applications
in the economic literature and originated from the engineering literature in the late
60’s (see Bather and Chernoff (1967) for a seminal paper and, for example, Beneš
et al. (1980); El Karoui and Karatzas (1988); Karatzas (1985) for early contributions to
the finite fuel case). Game versions of these problems are a natural extension of the
single agent set-up and allow to model numerous applied situations.

Here in particular we make assumptions on the structure of the interaction across
players that are suitable to model the so-called goodwill problem (see, e.g., Jack et al.
(2008); Marinelli (2007) in a stochastic environment and Buratto and Viscolani (2002)
in a deterministic one). Specifically, players can be interpreted as firms that produce
the same good (e.g., mobile phones) and must decide how to advertise it over a fi-
nite time horizon. The i-th firm’s product has a market price that depends on the
particular type/brand (e.g., Apple, Huawei, etc.) and we model that by the process
XN,i. Each firm can invest in marketing strategies in order to raise the profile of
their product and its popularity. The i-th firm’s cumulative amount of investment
that goes towards advertising is modelled by the process YN,i, where the finite-fuel
feature naturally incorporates the idea that firms set a maximum budget for adver-
tising over the period [0, T]. All firms measure their performance in terms of future
discounted revenues: they use a running profit function (x, y) 7→ f (x, y) and deduct
the (proportional) cost of advertising c0dξ. A typical example is f (x, y) = x · yα,
α ∈ (0, 1), where profits are linear in the product’s price and increasing and concave
as function of the total investment made towards advertising.
From the point of view of the i-th firm, investing ∆ξN,i > 0 has a cost c0∆ξN,i and
produces two effects. First of all it increases the popularity of the i-th firm’s product,
hence increasing the running profit to the level f (x, y + ∆ξN,i) (we are tacitly assum-
ing y 7→ f (x, y) increasing). Secondly, it has a broader impact on the visibility of
the type of product (e.g., mobile phones) and will stimulate the public’s demand for
that good. This has a knock-on effect on the trend of the prices of all the firms that
produce the same good. We model this fact via the interaction term mN

t in the price
dynamics and we assume that the drift function increases with the average spending
in advertising across all companies, i.e. m 7→ a(x, m) is non-decreasing.
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The literature on MFGs is rapidly growing. Most of the papers deal with games
where players use “regular controls” in order to optimise their payoffs. Here by
regular controls we mean those having a bounded impact on the velocity of the un-
derlying dynamics. Only few papers have studied the case of MFGs with singular
controls, which is a larger class of controls allowing for unbounded changes in the
velocity of the underlying process and possible discontinuities in the state trajecto-
ries. More specifically, Fu and Horst (2017) established an abstract existence result
for solutions of a general MFG with singular control, using the notion of relaxed
solutions. The same approach was also applied in Fu (2019) to extend the previ-
ous results to MFG with interaction through the controls as well. In both papers,
the issue of finding approximate Nash equilibria in the N-player games is left aside.
To the best of our knowledge, only the works of Cao et al. (2017) and of Guo and
Xu (2019) tackle simultaneously MFGs and N-player games with singular controls.
Their analysis is based on verification theorems and quasi-variational inequalities
specifically designed for their settings and not amenable to simple extensions. For
completeness, we also mention the two papers Hu et al. (2014), Zhang (2012), which
use a maximum principle approach to solve singular control problems with mean-
field dynamics for the state variables. A class of controls closely related to singular
controls is that of impulses, which has also received attention recently within MFG
theory. We mention the two papers Basei et al. (2019) and Zhou and Huang (2017),
where MFGs with impulse controls are considered and solved using an approach
based on quasi-variational inequalities and exploiting the stationarity properties of
their settings. Finally, the article Bertucci (2020) provides a variational characteriza-
tion of the density of jumping particles coming from an impulse control problem.

3.1.1 Model description

In this chapter, we study Nash equilibria for a class of symmetric N-player stochastic
differential games, for large N, and we characterize the solutions of the associated
MFG. Specifically, we consider a class of finite-fuel capacity expansion games with sin-
gular controls.
In order to set out our main results, we provide here a short description of the N-
player game of capacity expansion (see Section 3.4.1 for a full account). The game
is set over a finite-time horizon T given and fixed. We consider a complete prob-
ability space (Ω,F ,P) equipped with a right-continuous filtration F

.
= (Ft)t∈[0,T]

which is augmented with all the P-null sets. There are N players in the game and
the i-th player i = 1, . . . , N chooses a strategy ξN,i = (ξN,i

t )t∈[0,T] from the set of all
right-continuous non-decreasing adapted processes, affecting their own private state
variables (XN,i, YN,i). Given a drift a : R× [0, 1]→ R and a volatility σ : R→ R+,
the private states have dynamics

XN,i
t = Xi

0 +
∫ t

0
a(XN,i

s , mN
s )ds +

∫ t

0
σ(XN,i

s )dW i
s,

YN,i
t = Yi

0− + ξN,i
t , t ∈ [0, T],

(3.1)

where (W1, . . . , WN) is a N-dimensional Brownian motion. The initial conditions
(Xi

0, Yi
0−) are i.i.d. random variables with common distribution ν ∈ P(Σ), where

P(Σ) is the space of all probability measures on Σ .
= R× [0, 1]. The players interact
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through the mean-field term mN
t appearing in the drift and given by

mN
t =

1
N

N

∑
i=1

YN,i
t =

∫
Σ

y µN
t (dx, dy), t ∈ [0, T], (3.2)

where µN
t = 1

N ∑N
i=1 δ

(XN,i
t ,YN,i

t )
denotes the empirical probability measure of the play-

ers’ states with δz the Dirac delta mass at z ∈ Σ. In Equation (3.1), each ξN,i represents
the investment in additional capacity made by the i-th player. Each player aims at
maximizing an expected payoff of the form

JN,i .
= E

[∫ T

0
e−rt f (XN,i

t , YN,i
t )dt−

∫
[0,T]

e−rt c0 dξN,i
t

]
, (3.3)

for a fixed discount rate r > 0, some cost c0 > 0 and some running payoff f (the
same for all players). The optimisation is subject to the so-called finite-fuel constraint:
Y0− + ξN,i

t ∈ [0, 1] for all t ∈ [0, T] and all i = 1, . . . , N. We are interested in com-
puting (approximate) Nash equilibria of this N-player game via the MFG approach.
This requires to pass to the limit as N → ∞ and to identify the limiting MFG. The
latter must be solved (as explicitly as possible) and the associated optimal control is
then implemented in the N-player game for sufficiently large N, as a proxy for the
equilibrium strategy.

3.1.2 Methodology and original contribution

We focus on the construction of approximate Nash equilibria for the N-player game
through solutions of the corresponding MFG.
First, we formulate the MFG of capacity expansion, i.e. the limit model correspond-
ing to the above N-player games as N → ∞ (Section 3.2). Then, under mild assump-
tions on the problem’s data we construct a solution in feedback form of the MFG of
capacity expansion (Section 3.3). Our constructive approach, based on an intuitive
iterative scheme, allows us to determine the optimal control in the MFG in terms of
an optimal boundary (t, x) 7→ c(t, x) that splits the state space [0, T]×R× [0, 1] into
an action region and an inaction region; see Theorem 3.2.1 in Section 3.2. The opti-
mal strategy prescribes to keep the controlled dynamics underlying the MFG inside
the closure of the inaction region by Skorokhod reflection. Finally, whenever the
optimal boundary in the MFG is Lipschitz continuous in its second variable we can
show that it induces a sequence of approximate εN-Nash equilibria for the N-player
games with vanishing approximation error at rate O(1/

√
N) as N tends to infinity;

see Theorem 3.4.1 in Section 3.2.
While Lipschitz regularity of optimal boundaries is in general a delicate issue, we
provide sufficient conditions on our problem data that guarantee such regularity.
Since our conditions are far from being necessary, in Section 4.1 we also illustrate an
example with a clear economic interpretation which violates these conditions and
yet yields a Lipschitz boundary.

The proof of Theorem 3.2.1 on the existence of a feedback solution for the limit
MFG hinges on a well-known connection between singular stochastic control and
optimal stopping (e.g., Baldursson and Karatzas (1996); Karatzas and Shreve (1984,
1985)), which we apply in the analysis of our iterative scheme. This approach allows
us to overcome the usual difficulties arising from fixed-point arguments often em-
ployed in the literature on MFGs. Moreover, as a byproduct we also obtain that a
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connection between singular control problems of capacity expansion and problems
of optimal stopping holds in the setting of our MFG. The finite-fuel condition is not
a structural condition and it is clear that our choice of y ∈ [0, 1] is not restrictive:
indeed, we could equally consider y ∈ [0, ȳ] for any ȳ > 0 (see Remark 3.2.1). This
is suggestive that our results may, in future work, be extended to the infinite-fuel
setting by considering sequences of problems with increasing fuel and limiting ar-
guments.

3.1.3 Preliminaries and notation for mean-field games of finite-fuel ca-
pacity expansion with singular controls

Let Σ .
= R × [0, 1] and let P(Σ) denote the set of all probability measures on Σ

equipped with the Borel σ-field B(Σ). Let P2(Σ) be the subset of P(Σ) of probability
measures with finite second moment. The set Σ and the N-fold product space ΣN are
the state spaces for the controlled processes (X, Y) and (XN , YN) that are underlying
the MFG and the N-player game, respectively. Since our problems are set on a finite-
time horizon, we also consider time as a state variable and use the state space [0, T]×
Σ. Given a set A ⊂ [0, T]× Σ we denote its closure by A.
Given a filtered probability space Π .

= (Ω,F , F = (Ft)t≥0,P) satisfying the usual
conditions and a F0-measurable random variable Z ∈ [0, 1], we denote

ΞΠ(Z) .
=
{

ξ : (ξt)t≥0 is F-adapted, non-decreasing, right-continuous,

with ξ0− = 0 and Z + ξt ∈ [0, 1] for all t ∈ [0, T], P-a.s.
}

.

The set ΞΠ(Z) is the set of admissible strategies for the players in our games. The
random variable Z will be replaced by the initial value of the process Y (for the MFG)
or YN,i (for the i-th player in the N-player game). Often, we drop the dependence of
Ξ on the probability space Π and the random variable Z, as no confusion shall arise.
Finally, the parameters c0 > 0 and r ≥ 0 are fixed throughout the chapter and de-
scribe the cost of exerting control and the discount factor, respectively.

3.2 The mean-field game of finite-fuel capacity expansion with
singular controls: setting and main results

In this section we set-up the MFG associated with the N-player game described
above and we state the main result concerning the existence and structure of the
optimal control for this game; see Theorem 3.2.1. Later, in Section 3.4 we link the
MFG to the N-player game. Below we use the notation introduced in Section 3.1.3.

3.2.1 The MFG of finite-fuel capacity expansion with singular controls

Let Π = (Ω,F , F = (Ft)t≥0,P) be a filtered probability space satisfying the usual
conditions and supporting a one-dimensional F-Brownian motion W. Notice that
the initial σ-field F0 is not necessarily trivial.
Let (X0, Y0−) be a two-dimensional F0-measurable random variable with joint law
ν ∈ P(Σ) and let ξ ∈ ΞΠ(Y0−) be an admissible strategy. Then, given a bounded
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Borel measurable function m : [0, T] → [0, 1], for all t ∈ [0, T] we define the 2-
dimensional, degenerate, controlled dynamics

Xt = X0 +
∫ t

0
a(Xs, m(s))ds +

∫ t

0
σ(Xs)dWs,

Yξ
t = Y0− + ξt.

(3.4)

The goal of the representative player consists in maximizing over the set of all ad-
missible strategies ξ ∈ ΞΠ(Y0−) the following objective functional

J(ξ) = E

[∫ T

0
e−rt f (Xt, Yξ

t )dt−
∫
[0,T]

e−rtc0dξt

]
, (3.5)

where f is some running payoff function and we recall that c0 > 0 is some cost and
r ≥ 0. Assumptions on all the coefficients appearing in the state variables’ dynamics
and in the objective functional are given below. The integral with respect to the
positive random measure dξ includes possible atoms at the initial and terminal time
(corresponding to possible jumps of ξ).

Remark 3.2.1. The choice Y ∈ [0, 1] in the definition of the set Ξ of admissible strate-
gies is with no loss of generality and we could equally consider Y ∈ [0, ȳ] for ȳ > 0.
The assumption of finite fuel is consistent with real-world applications, where a firm
would set aside a certain budget to be spent over a given period [0, T].

Since we are interested in the MFG that arises from the N-player game, Equations
(3.1)-(3.3), in the limit as N → ∞, it is natural to seek for an admissible optimal
strategy ξ (given m) such that the following consistency condition holds

m(t) = E[Yξ
t ], t ∈ [0, T]. (3.6)

The precise definition of MFG solution is given in Definition 3.2.1 below. In order to
develop our methodology, it is convenient to state a version of the MFG starting from
any time t ∈ [0, T] and any realization (x, y) ∈ Σ of the states (Xt, Yt−). Therefore, let
us consider the dynamics in Equation (3.4) conditional on the initial data (t, x, y) ∈
[0, T]× Σ, i.e.

Xt,x
t+s = x +

∫ s

0
a(Xt,x

t+u, m(t + u))du +
∫ s

0
σ(Xt,x

t+u)dWt+u,

Yt,x,y; ξ
t+s = y + (ξt+s − ξt−), s ∈ [0, T − t],

(3.7)

where dWt+u = d(Wt+u −Wt). Since the increments of the control ξ ∈ ΞΠ(Y0−),
after time t, may in general depend on (t, x, y), we account for that dependence
by denoting Yt,x,y; ξ (and ξt,x,y if necessary). Instead, given a bounded measurable
function m, the dynamics of X only depends on the initial condition Xt = x, which
motivates the use of the notation Xt,x. For the original case of the process started at
time zero (i.e. t = 0), we use the simpler notation (Xx

s , Yx,y; ξ
s )s∈[0,T].

The notation introduced above is somewhat cumbersome, so we often use Pt,x,y( · ) =
P( · |Xt = x, Yt− = y) for simplicity. So for any bounded measurable function g and
any stopping time τ ∈ [0, T − t] we have

E
[

g(t + τ, Xt,x
t+τ, Yt,x,y; ξ

t+τ )
]
= Et,x,y

[
g(t + τ, Xt+τ, Yξ

t+τ)
]

,
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and, moreover, we use Px,y = P0,x,y for the special case t = 0.
It is clear that given ξ ∈ ΞΠ(Y0−) the process ξ̂s

.
= ξt+s − ξt− is right continuous,

non-decreasing and adapted with ξ̂0− = 0. Moreover, y + ξ̂ ∈ [0, 1], Pt,x,y a.s. (i.e.
conditionally on (Xt, Yξ

t−) = (x, y)) because ξ ∈ ΞΠ(Y0−). Then, it is useful to intro-
duce the set

ΞΠ
t,x(y)

.
=
{

ξ : (ξs)s≥0 is (Ft+s)s≥0-adapted, non-decreasing, right-continuous,

with ξ0− = 0 and y + ξs ∈ [0, 1] for all s ∈ [0, T − t], Pt,x,y-a.s.
}

.

Clearly ΞΠ
0,x(y) = ΞΠ(y). Here Π is fixed, so we can drop the superscript in the

definition of the set of admissible controls. We sometimes drop also the subscript x
and just write Ξt(y) = Ξt,x(y). Furthermore, when no confusion shall arise we write
ξ ∈ Ξt(y) although we refer to ξ̂ ∈ Ξt(y) with ξ̂s = ξt+s − ξt−.
Assuming that the mapping (x, y) 7→ Ex,y[Y

ξ
t ] is measurable for any admissible ξ,

we can express the consistency condition in Equation (3.6) as

m(t) =
∫

Σ
Ex,y[Y

ξ
t ]ν(dx, dy) =

∫
Σ

∫
Σ

y′µx,y; ξ
t (dx′, dy′)ν(dx, dy),

where µ
x,y; ξ
t

.
= L(Xx

t , Yx,y; ξ
t ) ∈ P(Σ) is the law of the pair (Xx

t , Yx,y; ξ
t ) and the inte-

gral with respect to ν(dx, dy) accounts for the fact that (X0, Y0−)
d∼ ν.

Turning our attention to the optimisation problem, we have that the maximal
expected payoff associated with a condition (t, x, y) ∈ [0, T]× Σ is given by

v(t, x, y) .
= sup

ξ∈Ξt,x(y)
J(t, x, y; ξ) with

J(t, x, y; ξ)
.
= Et,x,y

[∫ T−t

0
e−rs f (Xt+s, Yξ

t+s)ds−
∫
[0,T−t]

e−rsc0dξs

]
.

(3.8)

The initial objective function in Equation (3.5) and the optimisation problem in Equa-

tion (3.8) are easily linked by averaging the latter over the initial condition (X0, Y0−)
d∼

ν ∈ P(Σ). That is

Vν .
= sup

ξ∈Ξ
J(ξ) with J(ξ) .

=
∫

Σ
J(0, x, y; ξ)ν(dx, dy), (3.9)

where we write Ξ = Ξ(Y0−) for simplicity.

Now we define solutions of the MFG of capacity expansion.

Definition 3.2.1 (Solution of the MFG of capacity expansion). A solution of the MFG
of capacity expansion with initial condition ν ∈ P2(Σ) is a pair (m∗, ξ∗) with m∗ :
[0, T]→ [0, 1] a measurable function and ξ∗ ∈ Ξ such that:

(i) (Optimality property). ξ∗ is optimal, i.e.

J(ξ∗) = Vν = sup
ξ∈Ξ

E

[∫ T

0
e−rt f (X∗t , Yξ

t )dt−
∫
[0,T]

e−rtc0dξt

]
,

where (X∗, Yξ) is a solution of Equation (3.4) associated to (m∗, ξ).
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(ii) (Mean-field property). Letting (X∗, Y∗) be the solution of Equation (3.4) associ-
ated to (m∗, ξ∗), the consistency condition holds, i.e.

m∗(t) =
∫

Σ
Ex,y[Y∗t ]ν(dx, dy),

for each t ∈ [0, T].

We say that a solution ξ∗ of the MFG is in feedback form if we have ξ∗t = η(t, X, Y0−),
t ∈ [0, T], for some non-anticipative mapping

η : [0, T]× C([0, T]; R)× [0, 1]→ [0, 1]

(i.e. such that η(t, X, Y0−) = η(t, (Xs∧t)s∈[0,T], Y0−)).

We observe that the definition of MFG solution above mimics the structure of a
Nash equilibrium (NE) in classical game theory. Indeed, for a NE we first need to
compute the best response of each player while keeping the strategies of the com-
petitors fixed, and then we obtain the equilibrium as a fixed point of the best re-
sponse map. Likewise, the optimality condition (i) corresponds to computing the
best response against a given behaviour of the population described by m∗; condi-
tion (ii) is a fixed point condition, stating that m∗ has to be consistent with the best
response of the representative player.

3.2.2 Assumptions and main result

Before stating our main result regarding the existence and structure of the solution
to the MFG, we list below the assumptions needed in our approach.

Assumption 3.2.1 (Coefficients of the SDE). For the functions a : Σ → R and σ :
R→ R+ the following hold:

(i) a and σ are Lipschitz continuous with constant L > 0, i.e. for all x, x′ ∈ R and
m, m′ ∈ [0, 1] we have∣∣a(x, m)− a(x′, m′)

∣∣+ ∣∣σ(x)− σ(x′)
∣∣ ≤ L(

∣∣x− x′
∣∣+ ∣∣m−m′

∣∣).
(ii) The mapping m 7→ a(x, m) is non-decreasing on [0, 1] for all x ∈ R.

Part (i) of the assumption guarantees that given any Borel measurable function
m : [0, T] → [0, 1] the first equation in System (3.7) admits a unique strong solution
(see, e.g., Karatzas and Shreve (1987), Theorem 5.2.9). Moreover, by a well-known
application of Kolmogorov-Chentsov’s continuity theorem, there exists a modifica-
tion X̃ of X which is continuous as a random field, i.e. (t, x, s) 7→ X̃t,x

t+s is continuous
P-a.s. (see, e.g., Karatzas and Shreve (1987), pp. 397-398, or Baldi (2017), Theorem
9.9). From now on we tacitly assume that we always work with such modification
and we denote it again by X.
Part (i) of the assumption could be relaxed but at the cost of additional technicalities
in the proofs. In principle we only need sufficient regularity on the coefficients to
guarantee existence of a unique strong solution for X which is also continuous with
respect to its initial datum (t, x). Part (ii) instead is instrumental in our construction
of the optimal control in the MFG and will be used later for a comparison result
(Lemma 3.3.1). Notice that (ii) is well-suited for the application to the goodwill prob-
lem described in Section 3.1.1 in the Introduction. Typical examples that we have in
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mind for the drift are a(x, m) = (m− x) (mean-reverting), a(x, m) = mx (geometric
Brownian motion) and a(x, m) = m (arithmetic Brownian motion).

Next we give assumptions on the running profit appearing in the optimisation
problem.

Assumption 3.2.2 (Profit function). The running profit f : Σ → [0, ∞) is continu-
ous and the partial derivatives ∂y f and ∂xy f exist and are continuous on R× (0, 1).
Furthermore, we have

(i) Monotonicity: x 7→ f (x, y), y 7→ f (x, y) and x 7→ ∂y f (x, y) are increasing, with

lim
x→−∞

∂y f (x, y) < rc0 < lim
x→+∞

∂y f (x, y); (3.10)

(ii) Concavity: y 7→ f (x, y) is strictly concave for all x ∈ R.

(iii) The mixed derivative is strictly positive, i.e. ∂xy f > 0 on R× (0, 1).

The set of assumptions above is in line with the literature on irreversible in-
vestment and is fulfilled for example by profit functions of Cobb-Douglas type (i.e.
f (x, y) = xαyβ with α ∈ [0, 1], β ∈ (0, 1) and x > 0).

We conclude with some standard integrability conditions that guarantee that the
problem is well-posed and allows us to use dominated convergence theorem in some
of the technical steps in the proofs.

Assumption 3.2.3 (Integrability). There exists p > 1 such that, given any Borel mea-
surable m : [0, T] → [0, 1] and letting X be the associated solution of the SDE in
Equation (3.7), we have

Et,x,y

[∫ T−t

0
e−rs

(
| f (Xt+s, y)|p +

∣∣∂y f (Xt+s, y)
∣∣p )ds

]
< ∞,

for all (t, x, y) ∈ [0, T]×R× [0, 1]. Finally, ν ∈ P2(Σ).

Remark 3.2.2 (State space). For specific applications it may be convenient to restrict
the state space of the process X to the positive half-line [0, ∞) or to a generic (possibly
unbounded) interval (x, x). In those cases the assumptions above and the further
ones in the next sections can be adapted in a straightforward manner. In particular
the limits in Equation (3.10) are amended by letting x tend to the endpoints of the
relevant domain. If the end-points of the domain are inaccessible to the process X
all our arguments of proof continue to hold up to trivial changes in the notation. For
a more general boundary behaviour of the process some tweaks may be needed on
a case by cases basis.

We are now ready to state the main results concerning the MFG described above.
The proof requires a number of technical steps and hinges on a iterative method
whose details are provided in Section 3.3.

Theorem 3.2.1 (Solution of the MFG of capacity expansion). Suppose Assumptions
3.2.1, 3.2.2 and 3.2.3 hold. Then, there exists a upper-semi continuous function c : [0, T]×
R → [0, 1], with t 7→ c(t, x) and x 7→ c(t, x) both non-decreasing, such that the pair
(m∗, ξ∗) with

ξ∗t
.
= sup

0≤s≤t
(c(s, X∗s )−Y0−)

+, m∗(t) .
=
∫

Σ
Ex,y [Y∗t ] ν(dx, dy), t ∈ [0, T],
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is a solution of the MFG as in Definition 3.2.1.

Differently from the vast majority of papers that analyse MFGs here we are able
not only to prove existence of a solution but also to characterise the optimal control
in terms of a upper semi-continuous, monotone surface in the state space [0, T]× Σ.
Moreover, the iterative scheme that we devise for the proof of the theorem suggests
a procedure to actually construct the optimal boundary numerically.
The second key result in this chapter shows that the optimal control ξ∗ solution of
the MFG can be used (under mild additional assumptions) to construct an ε-Nash
equilibrium in the N-player game. The statement and proof of this fact are given in
Section 3.4 below, whereas in the next section we prove Theorem 3.2.1.

3.3 Construction of the solutions of the mean-field game

In this section, we provide the complete proof of Theorem 3.2.1 together with an
intuitive description of the iterative scheme that underpins it. Some of the auxiliary
results used along the way can be found in the Appendix as indicated.

3.3.1 Description of the iterative scheme

The idea is to start an iterative scheme based on singular control problems that are
analogue to the one in the MFG but without consistency condition in the mean-field
interaction.

We initialise the scheme by setting m[−1](t) ≡ 1, for t ∈ [0, T]. At the n-th step,
n ≥ 0, assume a non-decreasing, right-continuous function m[n−1] : [0, T] → [0, 1] is
given and fixed and consider the dynamics

X[n];t,x
t+s = x +

∫ s

0
a(X[n];t,x

t+u , m[n−1](t + u))du +
∫ s

0
σ(X[n];t,x

t+u )dWt+u, (3.11)

Y[n];t,x,y
t+s = y + (ξt+s − ξt−), (3.12)

for (x, y) ∈ Σ, s ∈ [0, T − t], t ∈ [0, T] and where ξ ∈ Ξ(Y0−). As already noticed we
have ξt+ · − ξt− ∈ Ξt(y) and we define the singular control problem SC[n]

t,x,y as:

vn(t, x, y) .
= sup

ξ∈Ξt(y)
Jn(t, x, y; ξ) with (3.13)

Jn(t, x, y; ξ)
.
= Et,x,y

[∫ T−t

0
e−rs f (X[n]

t+s, y + ξs)ds−
∫
[0,T−t]

e−rsc0dξs

]
. (3.14)

Now, in order to define the (n + 1)-th step of the algorithm, let us assume that we
can find an optimal control ξ [n]∗ for problem SC[n]

0,x,y for each (x, y) ∈ Σ. Set Y[n]∗ .
=

y + ξ [n]∗ and assume that (x, y) 7→ Ex,y
[
Y[n]∗

t
]

is measurable for all t ∈ [0, T]. Then,
we define

m[n](t) .
=
∫

Σ
Ex,y

[
Y[n]∗

t

]
ν(dx, dy).

The map t 7→ m[n](t) is non-decreasing and right-continuous (by dominated conver-
gence) with values in [0, 1], so we can use it to define (X[n+1], Y[n+1]) and vn+1 by
iterating the above construction.
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It is well-known in singular control theory that since y 7→ f (x, y) is concave
and the dynamics of X[n] is independent of the control ξ, then the y-derivative of
vn(t, x, y) corresponds to the value function of an optimal stopping problem. While
we re-derive this fact in Proposition 3.3.3 for completeness, here we state the optimal
stopping problem that should be associated to SC[n]

t,x,y above.

For (t, x, y) ∈ [0, T]× Σ we define the stopping problem OS[n]
t,x,y as

un(t, x, y) .
= inf

τ∈Tt
Un(t, x, y; τ) with (3.15)

Un(t, x, y; τ)
.
= Et,x

[∫ τ

0
e−rs∂y f (X[n]

t+s, y)ds + c0e−rτ

]
, for τ ∈ Tt (3.16)

and where Tt is the set of stopping times for the filtration generated by the Brownian
motion in Equation (3.11), with values in [0, T − t]. Since Wt+u −Wt = Wu in law,
it is convenient for the analysis of the stopping problems (and there is no loss of
generality) to use always the same Brownian motion in the dynamics of the process
X[n];t,x, irrespectively of t ∈ [0, T]. With this convention we have the useful fact
that Tt2 ⊂ Tt1 for t1 < t2. This stopping problem is standard (see, e.g., Peskir and
Shiryaev (2006), Chapter I, Section 2, Theorem 2.2): thanks to Assumption 3.2.3 and
continuity of the gain process

u 7→
∫ u

0
e−rs∂y f (X[n]

t+s, y)ds + c0e−ru

we know that the smallest optimal stopping time is

τ
[n]
∗ (t, x, y) = inf{s ∈ [0, T − t] : un(t + s, X[n];t,x

t+s , y) = c0}. (3.17)

Letting

Z[n]
s

.
= e−rsun(t + s, X[n]

t+s, y) +
∫ s

0
e−ru∂y f (X[n]

t+u, y)du (3.18)

we have that, under Pt,x,y

(Z[n]
s )s∈[0,T−t] is a submartingale and

(
Z[n]

s∧τ
[n]
∗

)
s∈[0,T−t] is a martingale. (3.19)

Accordingly, we define the continuation region C [n] and the stopping region S [n] of
the optimal stopping problem as

C [n] .
= {(t, x, y) ∈ [0, T]× Σ : un(t, x, y) < c0},

S [n] .
= {(t, x, y) ∈ [0, T]× Σ : un(t, x, y) = c0}.

Finally, we introduce an auxiliary set, which is useful for our analysis

H .
= {(x, y) ∈ R× [0, 1] : ∂y f (x, y)− rc0 < 0}. (3.20)

Notice that condition in Equation (3.10), Assumption 3.2.2, implies that H is not
empty. This is needed to prove that the continuation and stopping regions are not
empty either.

The rest of our algorithm of proof for Theorem 3.2.1 goes as follows:
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Step 1. Using a probabilistic approach we study in detail continuity and monotonicity
of the value function un, for a generic n ≥ 0.

Step 2. Thanks to the results in step 1 we construct a solution to OS[n]
t,x,y by determin-

ing the geometry of the stopping region S [n]. In particular we need to prove
regularity properties of the optimal stopping boundary ∂C [n] that guarantee
that we can construct a process Y[n]∗ so that the couple (X[n], Y[n]∗) is bound to

evolve in the closure C [n] of the continuation set, by Skorokhod reflection.

Step 3. We confirm that Y[n]∗ is optimal in the singular control problem SC[n]
t,x,y and that

vn can be constructed by integrating un with respect to y (as already shown in
the existing literature).

Step 4. We prove that the sequence (un)n≥0 is decreasing and use this fact to prove that
the iterative scheme converges to the MFG, in the sense that (X[n], Y[n]∗, m[n])
converges to (X∗, Y∗, m∗) from Definition 3.2.1 and that (Y∗, m∗) are expressed
as in Theorem 3.2.1.

3.3.2 Solution of the n-th stopping problem

Here we construct the solution to problem OS[n]
t,x,y for a generic n ≥ 0. In partic-

ular, t 7→ m[n−1](t) is a given right-continuous, non-decreasing function bounded
between zero and one.

First we state a simple but useful comparison result. In order to prove it, we
introduce an auxiliary state process on a filtered probability space Π = (Ω,F , F =
(F t)t≥0,P) with filtration generated by the Brownian motion W

X[n];t,x
t+s = x +

∫ s

0
a(X[n];t,x

t+u , m[n−1](t + u))du +
∫ s

0
σ(X[n];t,x

t+u )dWu, (3.21)

for x ∈ R, s ∈ [0, T − t] and t ∈ [0, T]. So that(
X[n];t,x

t+· , W ·
)
=
(

X[n];t,x
t+· , Wt+· −Wt

)
in law.

Then, for (t, x, y) ∈ [0, T]× Σ, we introduce an auxiliary stopping problem:

un(t, x, y) .
= inf

τ∈T t

Un(t, x, y; τ) with (3.22)

Un(t, x, y; τ)
.
= Et,x

[∫ τ

0
e−rs∂y f (X[n]

t+s, y)ds + c0e−rτ

]
, for τ ∈ T t (3.23)

where T t is the set of stopping times for the filtration generated by the Brownian
motion W. We observe that un(t, x, y) = un(t, x, y) for all (t, x, y) ∈ [0, T]× Σ, which
will be key to the proof of item (iii) of Proposition 3.3.1.

Lemma 3.3.1 (Comparison). Let Assumption 3.2.1 hold and recall that m[n−1] : [0, T]→
[0, 1] is non-decreasing. Then, for any t ≤ t′ we have

P
(

X[n];t,x
t+s ≤ X[n];t′,x

t′+s , ∀s ∈ [0, T − t′]
)
= 1, (3.24)

under the dynamics in Equation (3.11).
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Proof. It suffices to compare the drift coefficients of the auxiliary processes X[n];t,x

and X[n];t′,x and then apply the comparison result in (Karatzas and Shreve, 1987,
Proposition 5.2.18) (that proof does not use time-continuity of the drift and it is the
same as the proof of Proposition 5.2.13 therein). Set A(x, s) .

= a(x, m(t + s)) and
A′(x, s) .

= a(x, m(t′ + s)). Since both t 7→ m(t) and m 7→ a(x, m) are non-decreasing
(Assumption 3.2.1-(ii)), we have A(x, s) ≤ A′(x, s) for all (x, s) ∈ R × [0, T − t′].
Therefore, applying (Karatzas and Shreve, 1987, Proposition 5.2.18) we obtain Equa-
tion (3.24).

Next we prove continuity and monotonicity of the value function.

Proposition 3.3.1 (Value function of OS[n] ). Let Assumptions 3.2.1–3.2.3 hold. Then
the value function of the optimal stopping problem OS[n]

t,x,y has the following properties:

(i) 0 ≤ un(t, x, y) ≤ c0;

(ii) the map x 7→ un(t, x, y) is non-decreasing for each fixed (t, y) ∈ [0, T]× [0, 1] and
y 7→ un(t, x, y) is non-increasing for each (t, x) ∈ [0, T]×R;

(iii) the map t 7→ un(t, x, y) is non-decreasing for each fixed (x, y) ∈ Σ;

(iv) the value function is continuous, i.e. un ∈ C([0, T]× Σ; R).

Proof. (i). The upper bound is due to un(t, x, y) ≤ Un(t, x, y; 0) = c0. For the lower
bound it is enough to recall that ∂y f ≥ 0 by Assumption 3.2.2-(i).

(ii). Fix (t, y) ∈ [0, T]× [0, 1]. Let x2 > x1 and set τ2
.
= τ

[n]
∗ (t, x2, y) as in Equation

(3.17), which is optimal in un(t, x2, y). Then

un(t, x2, y)− un(t, x1, y) ≥ E

[∫ τ2

0
e−rs

(
∂y f (X[n];t,x2

t+s , y)− ∂y f (X[n];t,x1
t+s , y)

)
ds
]
≥ 0

because X[n];t,x2
t+s ≥ X[n];t,x1

t+s by uniqueness of the solution of Equation (3.11) and
x 7→ ∂y f (x, y) is increasing by Assumption 3.2.2-(i). By a similar argument we also
obtain monotonicity in y, since y 7→ ∂y f (x, y) is decreasing by Assumption 3.2.2-(ii).

(iii). For this part of the proof we use Lemma 3.3.1. Fix (x, y) ∈ Σ and take
t2 > t1 in [0, T]. Consider SC[n]

t1,x,y and SC[n]
t2,x,y with underlying dynamics given by

the auxiliary processes X[n];t1,x and X[n];t2,x. Let T t be the set of optimal stopping
times adapted to the filtration generated by the Brownian motion W and with values
in [0, T − t]. Then let τ2 = τ

[n]
∗ (t2, x, y) be optimal in un(t2, x, y) and notice that the

stopping time is also admissible for un(t1, x, y) because T t2 ⊂ T t1 . Then

un(t2, x, y)− un(t1, x, y) ≥ E

[∫ τ2

0
e−rs

(
∂y f (X[n];t2,x

t2+s , y)− ∂y f (X[n];t1,x
t1+s , y)

)
ds
]
≥ 0,

where the final inequality uses that X[n];t2,x
t2+s ≥ X[n];t1,x

t1+s for s ∈ [0, T − t2], P-a.s. by
Lemma 3.3.1 and x 7→ ∂y f (x, y) is non-decreasing by Assumption 3.2.2-(i). We con-
clude by observing that un(t, x, y) = u(t, x, y) for all (t, x, y) ∈ [0, T]× Σ.

(iv). Joint continuity of the value function can be deduced by separate continuity
in each variable and monotonicity (see, e.g., Kruse and Deely (1969)). Thanks to (ii)
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and (iii), it suffices to show that un is continuous separately in each variable.
Fix (t, x, y) ∈ [0, T]× Σ. Let xk → x as k→ ∞ and let τ∗ = τ

[n]
∗ (t, x, y) be optimal for

un(t, x, y). First we show right-continuity of un(t, · , y) and assume that xk ↓ x. For
each k, using monotonicity proven in (ii) we have

0 ≤un(t, xk, y)− un(t, x, y) (3.25)

≤E
[∫ τ∗

0
e−rs

(
∂y f (X[n];t,xk

t+s , y)− ∂y f (X[n];t,x
t+s , y)

)
ds
]

≤E
[∫ T−t

0
e−rs

∣∣∣∂y f (X[n];t,xk
t+s , y)− ∂y f (X[n];t,x

t+s , y)
∣∣∣ds
]

.

Taking limits as k → ∞, Assumption 3.2.3 allow us to use dominated convergence
so that we only need

lim
k→∞

∣∣∣∂y f (X[n];t,xk
t+s , y)− ∂y f (X[n];t,x

t+s , y)
∣∣∣ = 0, P− a.s.

The latter holds by continuity of ∂y f and continuity of the flow x 7→ X[n];t,x (which
is guaranteed by Assumption 3.2.1).
We can prove left-continuity by analogous arguments. Letting xk ↑ x and, for each k,
selecting the stopping time τk = τ

[n]
∗ (t, xk, y) which is optimal for un(t, xk, y) we get

0 ≤un(t, x, y)− un(t, xk, y)

≤E
[∫ τk

0
e−rs

(
∂y f (X[n];t,x

t+s , y)− ∂y f (X[n];t,xk
t+s , y)

)
ds
]

.

Then we can conclude as in Equation (3.25). Completely analogous arguments allow
to prove continuity of the value function with respect to y and we omit them here
for brevity.
Continuity in time only requires a small adjustment to the argument above. Let
tk → t as k → ∞, with (t, x, y) ∈ [0, T]× Σ fixed. First let us consider tk ↓ t and set
τ∗ = τ

[n]
∗ (t, x, y), which is optimal for un(t, x, y). Then τ∗ ∧ (T − tk) is admissible for

un(tk, x, y) and, by the monotonicity proven in (iii), we have

0 ≤u(tk, x, y)− u(t, x, y)

≤E
[∫ τ∗∧(T−tk)

0
e−rs

(
∂y f (X[n];tk ,x

tk+s , y)− ∂y f (X[n];t,x
t+s , y)

)
ds
]

+ E

[∫ τ∗

τ∗∧(T−tk)
e−rs∂y f (X[n];t,x

t+s , y)ds
]

≤E
[∫ T−tk

0
e−rs

∣∣∣∂y f (X[n];tk ,x
tk+s , y)− ∂y f (X[n];t,x

t+s , y)
∣∣∣ds
]

+ E

[∫ T−t

T−tk

e−rs
∣∣∣∂y f (X[n];t,x

t+s , y)
∣∣∣ds
]

.

Now we can let k → ∞ and use dominated convergence (thanks to Assumption
3.2.3), continuity of the stochastic flow t 7→ Xt,x

t+· and continuity of ∂y f (Assumption
3.2.2) to obtain right-continuity of un( · , x, y). An analogous argument allows to
prove left-continuity as well.

Thanks to the properties of the value function we can easily determine the shape
of the continuation region C [n], whose boundary ∂C [n] turns out to be a surface with
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“nice” monotonicity properties, that we subsequently use to obtain a solution of the
singular control problem SC[n]. Part of the proof is based on the following equivalent
representation of the value function:

un(t, x, y) = c0 + inf
τ∈Tt

Et,x

[∫ τ

0
e−rs

(
∂y f (X[n]

t+s, y)− rc0

)
ds
]

. (3.26)

Proposition 3.3.2 (Optimal boundary). Under Assumptions 3.2.1–3.2.3, the continu-
ation and stopping regions, C [n] and S [n], are non-empty. The boundary of C [n] can be
expressed as a function cn : [0, T]×R→ [0, 1], such that

C [n] = {(t, x, y)∈ [0, T]×Σ : y > cn(t, x)}, S [n] = {(t, x, y)∈ [0, T]×Σ : y ≤ cn(t, x)}.

The map (t, x) 7→ cn(t, x) is upper semi-continuous with t 7→ cn(t, x) and x 7→ cn(t, x)
non-decreasing (hence cn( · , x) and cn(t, · ) are right-continuous).

Proof. Thanks to (ii) in Proposition 3.3.1, for any (t, x) ∈ [0, T]×R we can define

cn(t, x) .
= inf{y ∈ [0, 1] : un(t, x, y) < c0} = inf{y ∈ [0, 1] : (t, x, y) ∈ C [n]} (3.27)

with the convention that inf∅ = 1. Since x 7→ un(t, x, y) and t 7→ un(t, x, y) are
non-decreasing we have, for any ε > 0

(t, x, y) ∈ S [n] =⇒ (t, x + ε, y) ∈ S [n]

and
(t, x, y) ∈ S [n] =⇒ (t + ε, x, y) ∈ S [n].

Then, cn is non-decreasing in both t and x.
To show upper semi-continuity we fix (t, x) and take a sequence (tk, xk)k≥1 that

converges to (t, x). Then (tk, xk, cn(tk, xk)) ∈ S [n] for all k’s and, since the stopping
region is closed, in the limit we get

lim sup
k→∞

(tk, xk, cn(tk, xk)) = (t, x, lim sup
k→∞

cn(tk, xk)) ∈ S [n].

Then, by definition of cn it must be

lim sup
k→∞

cn(tk, xk) ≤ cn(t, x).

It only remains to show that C [n] and S [n] are both non-empty. A standard argu-
ment implies that [0, T)×H ⊂ C [n] with H the open set in Equation (3.20). Indeed,
starting from (t, x, y) ∈ [0, T)×H and taking the suboptimal strategy

τH
.
= inf{s ∈ [0, T − t] : (X[n];t,x

t+s , y) /∈ H}

we easily obtain un(t, x, y) ≤ Un(t, x, y; τH) < c0 by continuity of paths of X[n] and
since Pt,x,y(τH > 0) = 1. So C [n] 6= ∅ because H 6= ∅ thanks to Equation (3.10) in
Assumption 3.2.2. We conclude with an argument by contradiction. Assume that
S [n] = ∅. Then, given any (t, x, y) ∈ [0, T)× Σ we have

un(t, x, y) = c0 + E

[∫ T−t

0
e−rs

(
∂y f (X[n];t,x

t+s , y)− rc0

)
ds
]

,
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thanks to Equation (3.26). Taking limits as x → ∞ and using monotone convergence
to pass it under the expectation and the integral (Assumption 3.2.2-(i)) we get

lim
x→∞

un(t, x, y)− c0 = E

[∫ T−t

0
e−rs

(
lim
x→∞

∂y f (X[n];t,x
t+s , y)− rc0

)
ds
]
> 0

thanks to Equation (3.10). This contradicts un(t, x, y) ≤ c0, hence S 6= ∅.

3.3.3 Solution of the n-th singular control problem

Here we follow a well-trodden path to show that the boundary cn obtained in the
section above is actually all we need to construct the optimal control in the singular
control problem SC[n].

First we provide the candidate optimal control in the next lemma.

Lemma 3.3.2. Fix (t, x, y) ∈ [0, T]× Σ and let ξ [n]∗ be defined Pt,x,y-almost surely as

ξ
[n]∗
t+s

.
= sup

0≤u≤s

(
cn(t + u, X[n]

t+u)− y
)+

with ξ
[n]∗
t− = 0.

Then, ξ [n]∗ ∈ Ξt,x(y) and realises Pt,x,y-almost surely the Skorokhod reflection of the process
(X[n], Y[n]∗) inside the continuation region C [n], where Y[n]∗ = y + ξ [n]∗. That is, Pt,x,y-
almost surely we have

(i) (X[n]
t+s, Y[n]∗

t+s ) ∈ C
[n]

for all s ∈ [0, T − t] (recall that C [n] is the closure of C [n]);

(ii) Minimality condition:

∫
[t,T]

1{Y[n]∗
s− >cn(s,X[n]

s )}dξ
[n]∗
s = ∑

t<s≤T

∫ Y[n]∗
s

Y[n]∗
s−

1{Y[n]∗
s− +z>cn(s,X[n]

s )}dz = 0. (3.28)

Proof. Clearly ξ [n]∗ is non-decreasing, adapted and bounded by 1− y. So if we prove
that it is also right-continuous we have shown that it belongs to Ξt,x(y). The proof
of right-continuity uses ideas as in De Angelis et al. (2017). For any ε > 0 we have

ξ
[n]∗
t+s ≤ ξ

[n]∗
t+s+ε = ξ

[n]∗
t+s ∨ sup

0<u≤ε

(
cn(t + s + u, X[n]

t+s+u)− y
)+

.

By upper semi-continuity of the boundary and continuity of the trajectories of X[n]

we have

lim
ε→0

sup
0<u≤ε

(
cn(t + s + u, X[n]

t+s+u)− y
)+

= lim sup
u→0

(
cn(t + s + u, X[n]

t+s+u)− y
)+
≤
(

cn(t + s, X[n]
t+s)− y

)+
≤ ξ

[n]∗
t+s

Then, combining the above expressions we get ξ
[n]∗
t+s = limε→0 ξ

[n]∗
t+s+ε as needed. Next

we show the Skorokhod reflection property. By construction we have

Y[n]∗
t+s = y + ξ

[n]∗
t+s ≥ cn(t + s, X[n]

t+s)
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so that (X[n]
t+s, Y[n]∗

t+s ) ∈ C
[n]

for all s ∈ [0, T − t] as claimed in (i). For the minimality

condition (ii) fix ω ∈ Ω and let s ∈ [t, T] be such that Y[n]∗
s− (ω) > cn

(
s, X[n]

s (ω)
)
. Then

by definition of Y[n]∗ and by upper semi-continuity of cn we have

sup
t≤u<s

(
cn
(
u, X[n]

u (ω)
)
− y
)+

> cn
(
s, X[n]

s (ω)
)
− y, (3.29)

which implies Y[n]∗
s− (ω) = Y[n]∗

s (ω). The latter and Equation (3.29) imply that there
exists δ > 0 such that(

cn
(
s, X[n]

s (ω)
)
− y
)+
≤ sup

t≤u≤s

(
cn
(
u, X[n]

u (ω)
)
− y
)+
− δ. (3.30)

By upper semi-continuity of s 7→ cn
(
s, X[n]

s (ω)
)

there must exist s′ > s such that(
cn
(
u, X[n]

u (ω)
)
− y
)+
≤
(

cn
(
s, X[n]

s (ω)
)
− y
)+

+
δ

2

for all u ∈ [s, s′). The latter and Equation (3.30) imply Y[n]∗
s− (ω) = Y[n]∗

u (ω) for all
u ∈ [s, s′). Hence dξ [n]∗(ω) = 0 on [s, s′) as needed to show that the first term
in Equation (3.28) is zero. For the second term, it is enough to notice that by the
explicit form of ξ [n]∗ we easily derive {∆ξ

[n]∗
s > 0} = {Y[n]∗

s− < c(s, X[n]
s )} for any

s ∈ [t, T]. Therefore

Y[n]∗
s− + ∆ξ

[n]∗
s =Y[n]∗

s− + ξ
[n]∗
s− ∨

(
cn(s, X[n]

s )− y
)+
− ξ

[n]∗
s−

=Y[n]∗
s− +

(
cn(s, X[n]

s )−Y[n]∗
s−

)+
= Y[n]∗

s− ∨ cn(s, X[n]
s ),

as needed (i.e. any jump of the control ξ [n]∗ brings the controlled process to the
boundary of the continuation set).

Using the lemma we can now establish optimality of ξ [n]∗ and obtain vn as the
integral of un. The proof of the next proposition follows very closely the proof of
Theorem 5.1 in De Angelis et al. (2017), except that here we have a finite-fuel problem
(see also Baldursson and Karatzas (1996); El Karoui and Karatzas (1991) for earlier
similar proofs). So we move it to the appendix for completeness.

Proposition 3.3.3 (Value function of SC[n]). Let Assumptions 3.2.1–3.2.3 hold. For any
(t, x, y) ∈ [0, T]× Σ we have

vn(t, x, y) = Φn(t, x)−
∫ 1

y
un(t, x, z)dz, (3.31)

with

Φn(t, x) .
= Et,x

[∫ T−t

0
e−rs f (X[n]

t+s, 1)ds
]

.

Moreover, ξ [n]∗ as in Lemma 3.3.2 is optimal, i.e. vn(t, x, y) = Jn(t, x, y; ξ [n]∗).

3.3.4 Limit of the iterative scheme

Now that we have characterised the solution of the n-th singular control problem,
we turn to the study of convergence of the iterative scheme.
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First we show monotonicity of the scheme in terms of the sequence of value
functions (un)n≥0 of the stopping problems.

Proposition 3.3.4 (Monotonicity of the iterative scheme). Under Assumptions 3.2.1–
3.2.3 we have un ≥ un+1 on [0, T]× Σ and cn ≥ cn+1 on [0, T]×R. Moreover, for any
(t, x, y) ∈ [0, T]× Σ we also have

X[n]
t+s ≥ X[n+1]

t+s and Y[n]∗
t+s ≥ Y[n+1]∗

t+s for s ∈ [0, T − t], Pt,x,y-a.s. (3.32)

Finally, m[n] ≥ m[n+1] on [0, T].

Proof. We argue by induction and assume that for some n ≥ 0 we have m[n−1] ≥
m[n] on [0, T]. Then, by monotonicity of the drift coefficient (Assumption 3.2.1-(ii),
we have a(x, m[n](t)) ≤ a(x, m[n−1](t)) for all (t, x) ∈ [0, T] × R. It follows from
comparison results for SDEs (see, e.g., Karatzas and Shreve, 1987, Proposition 5.2.18)
and Equation (3.11) that X[n]

t+s ≥ X[n+1]
t+s for all s ∈ [0, T − t], Pt,x-a.s., for all (t, x) ∈

[0, T] × R. By monotonicity of the profit function (Assumption 3.2.2-(i)) we have
∂y f (X[n+1]

t+s , y) ≤ ∂y f (X[n]
t+s, y) and therefore Equations (3.15) and (3.16) imply un+1 ≤

un on [0, T]× Σ. The latter and the definition of the optimal boundary in Equation
(3.27) give us cn+1 ≤ cn on [0, T] × R. Now, using the definition of the optimal
control in Lemma 3.3.2 we have Pt,x,y-a.s.

ξ
[n+1]∗
t+s = sup

0≤u≤s

(
cn+1(t + u, X[n+1]

t+u )− y
)+
≤ sup

0≤u≤s

(
cn(t + u, X[n+1]

t+u )− y
)+

≤ sup
0≤u≤s

(
cn(t + u, X[n]

t+u)− y
)+

= ξ
[n]∗
t+s ,

where the first inequality is due to cn ≥ cn+1 and the second one to X[n] ≥ X[n+1],
since x 7→ cn(t, x) is non-decreasing (Proposition 3.3.2). Monotonicity of the optimal
controls implies monotonicity of the optimally controlled processes Y[n]∗

t+s ≥ Y[n+1]∗
t+s

for all s ∈ [0, T − t] and from the latter we obtain

m[n+1](t) =
∫

Σ
Ex,y

[
Y[n+1]∗

t

]
ν(dx, dy) ≥

∫
Σ
Ex,y

[
Y[n]∗

t

]
ν(dx, dy) = m[n](t).

So the argument is complete once we show that we can find n ≥ 0 such that m[n−1] ≥
m[n] on [0, T]. The latter is true in particular for n = 0 since m[−1] ≡ 1 and m[0] ≤ 1
on [0, T].

It is clear that by construction 0 ≤ cn(t, x) ≤ 1 and 0 ≤ m[n](t) ≤ 1 for all
(t, x) ∈ [0, T]×R and all n ≥ 0. Moreover, a(x, 0) ≤ a(x, m[n](t)) ≤ a(x, 1) for all
(t, x) ∈ [0, T]×R and all n ≥ 0, so that by the comparison principle X̄0

t+s ≤ X[n]
t+s ≤

X[0]
t+s, for all s ∈ [0, T− t], Pt,x,y-a.s. for all n ≥ 0 and with X̄0 the solution of Equation

(3.11) associated to a(x, 0).
By monotonicity of the sequences (un)n≥0, (cn)n≥0 and (m[n])n≥0 we can define the
functions

u(t, x, y) .
= lim

n→∞
un(t, x, y), c(t, x) .

= lim
n→∞

cn(t, x) (3.33)

and m̃(t) .
= lim

n→∞
m[n](t),
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for all (t, x, y) ∈ [0, T]× Σ. Pointwise limit preserves the monotonicity of m̃, c and
u with respect to (t, x, y). Moreover, since un is continuous and cn, m[n] are upper
semi-continuous for all n ≥ 0 we have that

the functions u, m̃ and c are upper semi-continuous (3.34)

on their respective domains as decreasing limit of upper semi-continuous functions.
Since m̃ is also non-decreasing, then it must be right-continuous.
Notice that for each n ≥ 0 the null set in Equation (3.32) depends on n and (t, x, y)
so we denote it by Nn

t,x,y. Then we can define a universal null set Nt,x,y
.
= ∪n≥0Nn

t,x,y

and for any (t, x, y) ∈ [0, T]× Σ and all ω ∈ Ω \ Nt,x,y we define the processes X̃ and
ξ̃ as

X̃t+s(ω)
.
= lim

n→∞
X[n]

t+s(ω) and ξ̃t+s(ω)
.
= lim

n→∞
ξ
[n]∗
t+s (ω), (3.35)

for all s ∈ [0, T − t]. We can then set X̃ ≡ 0 and ξ̃ ≡ 0 on Nt,x,y and recall that the
filtration is completed with Pt,x,y-null sets, so that the limit processes are adapted.
Of course we also have

Ỹt
.
= y + ξ̃t = lim

n→∞
Y[n]∗

t

and thanks to monotone convergence we can immediately establish

m̃(t) = lim
n→∞

∫
Σ
Ex,y

[
Y[n]∗

t
]
ν(dx, dy) =

∫
Σ
Ex,y

[
Ỹt
]
ν(dx, dy). (3.36)

Notice that here we are using that (x, y) 7→ Ex,y[ξ
[n]∗
t ] is measurable, thanks to the

explicit expression of ξ [n]∗ and measurability of cn. Therefore (x, y) 7→ Ex,y[ ξ̃t ] is
measurable too as pointwise limit of measurable functions.

We now derive the dynamics of X̃ and show that ξ̃ ∈ Ξ.

Lemma 3.3.3 (Limit state processes). Suppose Assumptions 3.2.1–3.2.3 hold. For any
(t, x, y) ∈ [0, T]× Σ the process X̃ is the unique strong solution of

X̃t+s = x +
∫ s

0
a
(
X̃t+u, m̃(t + u)

)
du +

∫ s

0
σ
(
X̃t+u

)
dWt+u, s ∈ [0, T − t], (3.37)

and the process ξ̃ belongs to Ξt,x(y).

Proof. Fix (t, x, y) ∈ [0, T]× Σ. The first observation is that X̃ and ξ̃ are (Ft+s)s≥0-
adapted processes as pointwise limit of adapted processes on Ω \Nt,x,y and by Pt,x,y-
completeness of the filtration. Since ξ̃ is decreasing limit of right-continuous non-
decreasing processes (hence upper semi-continuous), then it is also non-decreasing
and upper-semi continuous. The latter two properties imply right-continuity of the
limit process ξ̃ as well. Since ξ

[n]∗
t− = 0 and ξ

[n]∗
T ≤ 1− y for all n ≥ 0 we also have

ξ̃t− = 0 and ξ̃T ≤ 1− y. Hence ξ̃ ∈ Ξt,x(y).
Let us now prove Equation (3.37). Denote by X′ the unique strong solution of Equa-
tion (3.37) and let us show that X̃ = X′. By standard estimates and using Lipschitz



3.3. Construction of the solutions of the mean-field game 71

continuity of the drift a( · ) (Assumption 3.2.1-(i))we have

Et,x

[
sup

0≤s≤T−t

∣∣∣X[n]
t+s − X′t+s

∣∣∣2]

≤ 2Et,x

[
L · T

∫ T−t

0

(∣∣X[n]
t+s − X′t+s

∣∣2 + ∣∣m[n](t + s)− m̃(t + s)
∣∣2)ds

]
+ 2Et,x

[
sup

0≤s≤T−t

∣∣∣∣∫ s

0

(
σ(X[n]

t+s)− σ(X′t+s)
)
dWt+s

∣∣∣∣2
]

.

Since σ enjoys linear growth and X[n] and X′ are solutions of SDEs with Lipschitz
coefficients, then

s 7→
∫ s

0

(
σ(X[n]

t+s)− σ(X′t+s)
)
dWt+s

is a martingale on [0, T − t] and we can use Doob’s inequality to get

Et,x

[
sup

0≤s≤T−t

∣∣∣∣∫ s

0

(
σ(X[n]

t+s)− σ(X′t+s)
)
dWt+s

∣∣∣∣2
]

≤ 4Et,x

[∫ T−t

0

(
σ(X[n]

t+s)− σ(X′t+s)
)2ds

]
≤ 4L2Et,x

[∫ T−t

0

∣∣X[n]
t+s − X′t+s

∣∣2ds
]

,

Combining the estimates above and using Gronwall’s inequality we obtain

Et,x

[
sup

0≤s≤T−t

∣∣∣X[n]
t+s − X′t+s

∣∣∣2] ≤ c
∫ T−t

0

∣∣m[n](t + s)− m̃(t + s)|2ds,

for some constant c > 0. Letting n → ∞ and using bounded convergence and the
definition of m̃ we conclude.

Next we connect u( · ) and c( · ) with an optimal stopping problem for X̃. Re-
call that u and c are upper semi-continuous by Equation (3.34) and enjoy the same
monotonicity properties of un and cn.

Lemma 3.3.4 (Limit optimal stopping problem). Suppose Assumptions 3.2.1–3.2.3 hold.
Then, for all (t, x, y) ∈ [0, T]× Σ we have

u(t, x, y) = inf
τ∈Tt

U(t, x, y; τ) with

U(t, x, y; τ)
.
= Et,x

[∫ τ

0
e−rs∂y f (X̃t+s, y)ds + c0e−rτ

] (3.38)

and
c(t, x) = inf{y ∈ [0, 1] : u(t, x, y) < c0} with inf∅ = 1.

In particular c is the boundary of the set

C .
= {(t, x, y) ∈ [0, T]× Σ : u(t, x, y) < c0} (3.39)

and, moreover, both C and S .
= ([0, T]× Σ) \ C are not empty.

Proof. Since X[n] ≥ X̃ for all n ≥ 0 and x 7→ ∂y f (x, y) is non-decreasing, for any
τ ∈ Tt we have Un(t, x, y; τ) ≥ U(t, x, y; τ) and therefore

u(t, x, y) = lim
n→∞

inf
τ∈Tt

Un(t, x, y; τ) ≥ inf
τ∈Tt

U(t, x, y; τ).
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Now, given ε > 0 we can find a stopping time τε ∈ Tt such that

inf
τ∈Tt

U(t, x, y; τ) + ε ≥ U(t, x, y; τε).

Moreover, by dominated convergence (Assumption 3.2.3) and continuity of ∂y f we
have

U(t, x, y; τε) = Et,x

[∫ τε

0
e−rs lim

n→∞
∂y f (X[n]

t+s, y)ds + c0e−rτε

]
= lim

n→∞
Un(t, x, y; τε).

So combining the above we get

inf
τ∈Tt

U(t, x, y; τ) + ε ≥ lim
n→∞

Un(t, x, y; τε) ≥ lim
n→∞

un(t, x, y) = u(t, x, y)

and since ε > 0 was arbitrary we conclude

u(t, x, y) ≤ inf
τ∈Tt

U(t, x, y; τ)

as needed for the first claim.
Let us next prove that c coincides with the optimal stopping boundary for the limit
problem. Since u ≤ un for all n ≥ 0 we have

cn(t, x) = inf{y ∈ [0, 1] : un(t, x, y) < c0} ≥ inf{y ∈ [0, 1] : u(t, x, y) < c0}

so that
c(t, x) ≥ inf{y ∈ [0, 1] : u(t, x, y) < c0}.

For the reverse inequality, let us fix (t, x) ∈ [0, T]×R, take η ∈ [0, 1] such that

η > inf{y ∈ [0, 1] : u(t, x, y) < c0}. (3.40)

Then there must be δ > 0 such that u(t, x, η) ≤ c0 − δ. By pointwise convergence,
there exists nδ ≥ 0 such that un(t, x, η) ≤ u(t, x, η) + δ/2 for all n ≥ nδ and therefore,
un(t, x, η) ≤ c0− δ/2 for all n ≥ nδ. Hence, η > cn(t, x) for all n ≥ nδ and η > c(t, x)
too. The result holds for any η ∈ [0, 1] such that Equation (3.40) is true and therefore

c(t, x) ≤ inf{y ∈ [0, 1] : u(t, x, y) < c0}.

Since y 7→ u(t, x, y) is decreasing it is clear that c is the boundary of the set C defined
in Equation (3.39).
The exact same arguments as in the proof of Proposition 3.3.2 apply to the stopping
problem with value u and allow us to show that C 6= ∅ and S 6= ∅ thanks to
Equation (3.10) in Assumption 3.2.2.

Thanks to the probabilistic representation of u we can use the same arguments
as in the proof of Proposition 3.3.1 to show that u indeed fulfils the same properties
as un.

Corollary 3.3.1. Under Assumptions 3.2.1-3.2.3 the function u satisfies (i)–(iv) in Propo-
sition 3.3.1.

In what follows we let

τ∗(t, x, y) = inf{s ∈ [0, T − t] : u(t + s, X̃t,x
t+s, y) = c0}, (3.41)
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which is optimal for the limit problem with value u(t, x, y). Continuity of the value
function allows a simple proof of convergence of optimal stopping times. The result
is of independent interest and might be used for numerical approximation of the
optimal stopping rule τ∗. We state the result here but put its proof in the appendix
as it is not be needed in the rest of the chapter.

Lemma 3.3.5. For all (t, x, y) ∈ [0, T]× Σ we have τ
[n]
∗ ↑ τ∗, Pt,x,y-a.s., as n→ ∞.

Since the dynamics of (X̃t)t∈[0,T] is fully specified and we have obtained a so-
lution of the optimal stopping problem with value u (Lemma 3.3.4), we can state a
result similar to Proposition 3.3.3.

Proposition 3.3.5. Let Assumptions 3.2.1–3.2.3 hold and let X̃ be specified as in Lemma
3.3.3. Define

v̂(t, x, y) .
= sup

ξ∈Ξt,x(y)
Ĵ(t, x, y; ξ) with

Ĵ(t, x, y; ξ)
.
= Et,x

[∫ T−t

0
e−rs f (X̃t+s, y + ξs)ds−

∫
[0,T−t]

e−rsc0dξs

]
.

(3.42)

Then, for any (t, x, y) ∈ [0, T]× Σ we have

v̂(t, x, y) = Φ(t, x)−
∫ 1

y
u(t, x, z)dz with Φ(t, x) .

= Et,x

[∫ T−t

0
e−rs f (X̃t+s, 1)ds

]
.

(3.43)

Moreover,

ξ∗t+s
.
= sup

0≤u≤s

(
c(t + u, X̃t+u)− y

)+
with ξ∗t− = 0, (3.44)

is the unique optimal control in Equation (3.42), up to indistinguishability.

Remark 3.3.1. Before passing to the proof we would like to emphasise that at this
stage we are not claiming that (m̃, ξ∗) is a solution of the MFG because m̃ is specified
in Equation (3.36) and a priori the consistency condition may not hold. Hence, a
priori v̂ is not the function v defined in Equation (3.8). Of course uniqueness of the
optimal control also holds in Proposition 3.3.3 albeit not stated there.

Proof. We only need to prove uniqueness of the optimal control as all remaining
claims are obtained by repeating verbatim the proof of Proposition 3.3.3. As usual,
uniqueness follows by strict concavity of the map y 7→ f (x, y), convexity of the set
Ξt,x(y) of admissible controls and an argument by contradiction.
For notational simplicity and with no loss of generality we take t = 0. Assume that
η ∈ Ξ0,x(y) is another optimal control. Since, η and ξ∗ are both right-continuous
they are indistinguishable as soon as they are modifications, i.e. Px,y(ξ∗s = ηs) = 1
for all s ∈ [0, T]. Arguing by contradiction assume there exists s0 ∈ [0, T) such that
3p .

= Px,y(ξ∗s0
6= ηs0) > 0. Then, there also exists ε > 0 such that Px,y(|ξ∗s0

− ηs0 | ≥
ε) ≥ 2p and, by right-continuity of the paths, there exists s1 > s0 such that

Px,y

(
inf

s0≤u≤s1
|ξ∗u − ηu| ≥ ε

)
≥ p > 0.
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Let us denote

A0
.
=

{
ω : inf

s0≤u≤s1
|ξ∗u(ω)− ηu(ω)| ≥ ε

}
. (3.45)

For any λ ∈ (0, 1), since η and ξ∗ are both optimal, we have

v̂(0, x, y) =λ Ĵ(0, x, y; η) + (1− λ) Ĵ(0, x, y; ξ∗)

=Ex

[∫ T

0
e−rs

[
λ f (X̃s, y + ηs) + (1− λ) f (X̃s, y + ξ∗s )

]
ds
]

− Ex

[∫
[0,T]

e−rsc0(λdηs + (1− λ)dξ∗s )

]
.

Now, letting ζλ .
= λη + (1− λ)ξ∗ it is immediate to check that ζλ ∈ Ξ0,x(y) and, by

strict concavity of y 7→ f (x, y) (and joint continuity of f ), we have

1A0

[
λ f (X̃s, y + ηs) + (1− λ) f (X̃s, y + ξ∗s )

]
< 1A0 f (X̃s, y + ζλ

s ), for s ∈ [s0, s1]

with 1A0 the indicator of the event in Equation (3.45). Since P0,x(A0) > 0 and s0 <
s1, the strict inequality holds for the expected values as well. Hence we reach the
contradiction

v̂(0, x, y) < Ĵ(0, x, y; ζλ),

which concludes the proof.

3.3.5 Solution of the MFG of finite-fuel capacity expansion with singular
controls

In this section we first show that ξ̃ obtained in the previous section (see Equation
(3.35)) is optimal for the control problem in Proposition 3.3.5 and then conclude that
(m̃, ξ̃) solves the MFG.

Proposition 3.3.6. Let Assumptions 3.2.1–3.2.3 hold, take ξ̃ as in Equation (3.35), m̃ as in
Equation (3.36) and X̃ as in Lemma 3.3.3. Then

v̂(t, x, y) = Ĵ(t, x, y; ξ̃), for any (t, x, y) ∈ [0, T]× Σ

and ξ̃ is indistinguishable from ξ∗ as in Equation (3.44).

Proof. We only need to prove optimality of ξ̃ as the rest follows by uniqueness of the
optimal control (Proposition 3.3.5).
Recall the value function vn of SC[n] (see Equations (3.13)–(3.14)) and its expression
from Proposition 3.3.3. Using dominated convergence we obtain

lim
n→∞

(
Φn(t, x)−

∫ 1

y
un(t, x, z)dz

)
= Et,x

[∫ T−t

0
e−rs lim

n→∞
f (X[n]

t+s, 1)ds
]
−
∫ 1

y
lim
n→∞

un(t, x, z)dz = v̂(t, x, y),

where the final equality is due to Equation (3.33), Equation (3.35) and Proposition
3.3.5. Therefore we have

lim
n→∞

vn(t, x, y) = v̂(t, x, y).
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Since vn(t, x, y) = Jn(t, x, y; ξ [n]∗), if we can show that

lim
n→∞

Jn(t, x, y; ξ [n]∗) = Ĵ(t, x, y; ξ̃),

the proof is complete. The latter is not difficult, indeed by integration by parts and
dominated convergence we have

lim
n→∞

Jn(t, x, y; ξ [n]∗)

= lim
n→∞

Et,x

[∫ T−t

0
e−rs f (X[n]

t+s, y + ξ
[n]∗
t+s )ds− c0e−r(T−t)ξ

[n]∗
T − rc0

∫ T−t

0
e−rsξ

[n]∗
t+s ds

]
= Et,x

[ ∫ T−t

0
e−rs lim

n→∞
f (X[n]

t+s, y + ξ
[n]∗
t+s )ds

− c0e−r(T−t) lim
n→∞

ξ
[n]∗
T − rc0

∫ T−t

0
e−rs lim

n→∞
ξ
[n]∗
t+s ds

]
= Et,x

[∫ T−t

0
e−rs f (X̃t+s, y + ξ̃t+s)ds− c0e−r(T−t)ξ̃T − rc0

∫ T−t

0
e−rs ξ̃t+sds

]
= Ĵ(t, x, y; ξ̃ ),

where the penultimate equality comes from Equation (3.35) and the final one is ob-
tained by undoing the integration by parts.

By construction Ỹ and m̃ fulfill the consistency condition in Equation (3.36) hence
we have a simple corollary.

Corollary 3.3.2. The pair (m̃, ξ̃) is a solution of the MFG as in Definition 3.2.1. Since ξ̃ is
indistinguishable from ξ∗ in Equation (3.44) then Theorem 3.2.1 holds with

X∗ = X̃, Y∗ = Y0− + ξ̃ = Y0− + ξ∗ and m∗ = m̃.

As a byproduct of this result and of Proposition 3.3.5 we also have that the clas-
sical connection between singular stochastic control and optimal stopping still holds
in our specific MFG.

3.4 Approximate Nash equilibria for the N-player game of
finite-fuel capacity expansion with singular controls

3.4.1 The N-player game: setting and assumptions

Here we start with a formal description of the N-player game sketched in the intro-
duction.

Let Π .
= (Ω,F , F = (Ft)t≥0,P) be a filtered probability space satisfying the

usual conditions, supporting an infinite sequence of independent one-dimensional
F-Brownian motions (W i)∞

i=1, as well as i.i.d. F0-measurable initial states (Xi
0, Yi

0)
∞
i=1

with common distribution ν ∈ P(Σ), independent of the Brownian motions. For
each N ≥ 1, define FN = (F0 ∨ FN

t )t≥0, where (FN
t )t≥0 is the augmented filtration

generated by the Brownian motions (W i)N
i=1. Then the filtered probability spaces

ΠN .
= (Ω,F , FN ,P) satisfy the usual conditions. These are the spaces on which we

define strong solutions of the N-player systems.
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Each player i = 1, . . . , N observes/controls their own private state process (XN,i, YN,i),
whose dynamics is

XN,i
t = Xi

0 +
∫ t

0
a(XN,i

s , mN
s ) ds +

∫ t

0
σ(XN,i

s )dW i
s,

YN,i
t = Yi

0− + ξN,i
t , t ∈ [0, T],

(3.46)

where ξN,i ∈ ΞΠN
(Yi

0−) is the strategy chosen by the i-th player, while mN is the
mean-field interaction term given by

mN
t =

1
N

N

∑
i=1

YN,i
t =

∫
Σ

y µN
t (dx, dy), µN

t =
1
N

N

∑
i=1

δ
(XN,i

t ,YN,i
t )

. (3.47)

The process µN
t above denotes the empirical distribution of the players’ states, with

δz the Dirac delta mass at z ∈ Σ.

In the rest of this section we use the notation

ΞN(Y0−) = {(ξ i)N
i=1 : ξ i ∈ ΞΠN

(Yi
0−) for all i = 1, . . . N }.

We also consider the dynamics of (XN , YN) conditionally on specific initial condi-
tions (x, y) .

= (xi, yi)N
i=1 drawn independently from the common initial distribution

ν. Therefore, the dynamics of the state variables under Px,y reads

XN,i
t = xi +

∫ t

0
a(XN,i

s , mN
s )ds +

∫ t

0
σ(XN,i

s )dW i
s,

YN,i
t = yi + ξN,i

t , t ∈ [0, T].

Accordingly, since the initial conditions (x, y) = (xi, yi)N
i=1 are drawn from the N-

fold product of the measure ν, denoted νN , the expected payoff of the i-th player is
given by

JN,i(ξN)
.
=
∫

ΣN
JN,i(x, y; ξN)νN(dx, dy),

where

JN,i(x, y; ξN)
.
= Ex,y

[∫ T

0
e−rt f

(
XN,i

t , YN,i
t

)
dt−

∫
[0,T]

e−rtc0dξN,i
t

]
.

Definition 3.4.1 (ε-Nash equilibrium for the N-player game). Given ε ≥ 0, an admis-
sible strategy vector ξε ∈ ΞN(Y0−) is called ε-Nash equilibrium for the N-player game
of capacity expansion if for every i = 1, . . . , N and for every admissible individual
strategy ξ i ∈ ΞΠN

(Yi
0−), we have

JN,i(ξε) ≥ JN,i([ξε,−i, ξ i])− ε,

where [ξε,−i, ξ i] denotes the N-player strategy vector that is obtained from ξε by re-
placing the i-th entry with ξ i.

In order to construct ε-Nash equilibria using the optimal control obtained in the
MFG it is convenient to make an additional set of assumptions on the profit function.



3.4. Approximate Nash equilibria for the N-player game with singular controls 77

Assumption 3.4.1. The running payoff f is locally Lipschitz, i.e.

| f (x, y)− f (x′, y′)| ≤ Λ(x, x′)(|x− x′|+ |y− y′|), (x, y), (x′, y′) ∈ Σ.

Moreover, there exists q > 1 such that the function Λ : R×R → R+ satisfies the
integrability condition

C(Λ, q) .
= sup

N∈N

sup
ξN,1

E

[∫ T

0
Λq(XN,1

t , X∗t )dt
]
< ∞ (3.48)

where XN,1 is the solution of Equation (3.46), X∗ = X̃ is the solution of Equation
(3.4) obtained in the MFG (see also Equation (3.37)) and the supremum is taken over
all admissible controls ξN,1 ∈ ΞΠN

(Y1
0−) and all N ∈N.

The integrability condition in Equation (3.48) is redundant if f is Lipschitz con-
tinuous. Since YN,1 ∈ [0, 1] there is no loss of generality in taking Λ independent of
y and the supremum over ξN,1 is not restrictive either. If Λ has polynomial growth
of order p ≥ 1, then Equation (3.48) holds thanks to the Lipschitz continuity of the
coefficients a(x, m) and σ(x) as soon as E[(X0)p·q] < ∞. Later in Section 4.1 we con-
sider and example where Λ has exponential growth and Equation (3.48) holds.

The next is an assumption on the optimal boundary found in Theorem 3.2.1.

Assumption 3.4.2. The optimal boundary (t, x) 7→ c(t, x) of Theorem 3.2.1 is uni-
formly Lipschitz continuous in x with constant θc > 0, i.e.

sup
0≤t≤T

|c(t, x)− c(t, x′)| ≤ θc|x− x′|, x, x′ ∈ R.

Lipschitz regularity of optimal stopping/control boundaries is a delicate issue in
general. However, the question can be addressed by analytical methods (see, e.g.,
Soner and Shreve (1991)) or by probabilistic methods as in De Angelis and Stabile
(2019a). In Section 3.4.3 we show how ideas from the latter paper can be used in our
context to prove that Assumption 3.4.2 indeed holds in a large class of examples.

3.4.2 Approximate Nash equilibria

Here we prove that the MFG solution constructed in Theorem 3.2.1 induces approx-
imate Nash equilibria in the N-player game of capacity expansion, when N is large
enough.

Theorem 3.4.1 (Approximate Nash equilibiria for the N-player game). Suppose As-
sumptions 3.2.1–3.4.2 hold. Recall the feedback solution (m∗, ξ∗) of the MFG of capacity
expansion constructed in Theorem 3.2.1. Recall also that

ξ∗t = η∗(t, X∗, Y0−), t ∈ [0, T],

with η∗ : [0, T]× C([0, T]; R)× [0, 1]→ [0, 1] the non-anticipative mapping defined by

η∗(t, ϕ, y) .
= sup

0≤s≤t

(
c(s, ϕ(s))− y

)+
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and with X∗ the dynamics in Equation (3.4) associated to m∗. Setting ξ̂N,i
t

.
= η∗(t, XN,i, Yi

0−),
the vector ξ̂N is a εN-Nash equilibrium for the N-player game of capacity expansion accord-
ing to Definition 3.4.1 with εN → 0 as N → ∞. Further, if q = 2 in Equation (3.48) of
Assumption 3.4.1, then the rate of convergence is of order N−1/2.

Proof. For each Brownian motion W i we introduce the following auxiliary dynamics,
which are the analogues of the solution (X∗, Y∗) of Equation (3.4) with (ξ∗, m∗) as in
Theorem 3.2.1:

Xi
t = Xi

0 +
∫ t

0
a(Xi

s, m∗(s))ds +
∫ t

0
σ(Xi

s)dW i
s,

Yi
t = Yi

0− + ζ i
t

.
= Y0− + η∗(t, Xi, Yi

0−), t ∈ [0, T], i ∈ {1, . . . , N}.
(3.49)

Notice that the initial conditions above are the same as in the dynamics of (XN,i, YN,i).
Moreover, (Xi

t, Yi
t )

∞
i=1 is a sequence of i.i.d. random variables with values in R ×

[0, 1], so that in particular the law of large numbers (LLN) holds. The rest of the
proof is structured in three steps:

(i) We prove that JN,1(ξ̂N)→ J(ξ∗) as N → ∞.

(ii) Recalling the notation [ξ̂N,−1, ξ] = (ξ, ξ̂N,2, . . . , ξ̂N,N) introduced in Definition
3.4.1 we prove

lim sup
N→∞

sup
ξ∈ΞΠN (Y1

0−)

JN,1([ξ̂N,−1, ξ]) ≤ J(ξ∗) = Vν.

(iii) Combining (i) and (ii), for any ε > 0 there exists Nε ∈N such that

JN,1(ξ̂N) ≥ sup
ξ∈ΞΠN (Y1

0−)

JN,1([ξ̂N,−1, ξ])− ε

for all N ≥ Nε.

In the three steps above we singled out the first player with no loss of generality
since the N-player game is symmetric.

(i) Let us start by observing that (X∗, Y∗, ξ∗) from Theorem 3.2.1 and (X1, Y1, ζ1)
defined above have the same law, so that

J(ξ∗) = E

[∫ T

0
e−rs f (X1

t , Y1
t )dt− c0

∫
[0,T]

e−rtdζ1
t

]
.

By triangular inequality we get

|JN,1(ξ̂N)− J(ξ∗)| ≤ E

[∫ T

0
e−rt

∣∣∣ f (X̂N,1
t , ŶN,1

t )− f (X1
t , Y1

t )
∣∣∣dt
]

(3.50)

+ c0E

[∣∣∣∣∫
[0,T]

e−rtd
(
ξ̂N,1

t − ζ1
t
)∣∣∣∣] ,

where we use (X̂N,i, ŶN,i) for the state process of the i-th player when all players
use the control vector ξ̂N . Similarly we denote by m̂N the empirical average of the
processes ŶN,i.
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We estimate the first term on the right-hand side using Assumption 3.4.1 and obtain

E

[∫ T

0
e−rt

∣∣∣ f (X̂N,1
t , ŶN,1

t )− f (X1
t , Y1

t )
∣∣∣dt
]

≤ E

[∫ T

0
e−rtΛ(X̂N,1

t , X1
t )
(
|X̂N,1

t − X1
t |+ |ŶN,1

t −Y1
t |
)
dt
]

≤ C1E

[∫ T

0
Λq(X̂N,1

t , X1
t )dt

] 1
q

E

[∫ T

0

(
|X̂N,1

t − X1
t |p + |ŶN,1

t −Y1
t |p
)
dt
] 1

p

≤ C1C(Λ, q)E
[∫ T

0

(
|X̂N,1

t − X1
t |p + |ŶN,1

t −Y1
t |p
)
dt
] 1

p

,

for some positive constant C1 = C1(T, q), using Hölder’s inequality with p = q/(q−
1) and q > 1 as in Assumption 3.4.1. For the remaining term in Equation (3.50) we
use integration by parts and ξ̂N,1

0− = ζ1
0− = 0 to obtain

E

[∣∣∣∣∫
[0,T]

e−rtd
(
ξ̂N,1

t − ζ1
t
)∣∣∣∣] = E

[∣∣∣∣∫ T

0
e−rt(ξ̂N,1

t − ζ1
t
)
dt
∣∣∣∣] ≤ E

[∫ T

0
e−rt

∣∣∣ξ̂N,1
t − ζ1

t

∣∣∣dt
]

.

Recall that ξ̂N,1
t = η∗(t, X̂N,1, Y1

0−) and ζ1
t = η∗(t, X1, Y1

0−). Then using Assumption
3.4.2 we obtain∣∣∣ξ̂N,1

t − ζ1
t

∣∣∣ ≤ sup
0≤s≤t

∣∣c(s, X̂N,1
s )− c(s, X1

s )
∣∣ ≤ θc sup

0≤s≤t

∣∣X̂N,1
s − X1

s
∣∣ (3.51)

and the same bound also holds for |ŶN,1
t −Y1

t |. Then, combining the above estimates
we arrive at

|JN,1(ξ̂N)− J(ξ∗)| ≤C1C(Λ, q)T(1 + θc)E
[

sup
0≤t≤T

|X̂N,1
t − X1

t |p
] 1

p
(3.52)

+ c0θcT E

[
sup

0≤s≤t

∣∣X̂N,1
s − X1

s
∣∣] .

Since p > 1 it remains to show that

lim
N→∞

E
[

sup
0≤t≤T

|X̂N,1
t − X1

t |p
]
= 0. (3.53)

Repeating the same estimates as those in the proof of Lemma 3.3.3 but with (X̂N,1, X1)
instead of (X[n], X′) and with (m̂N , m∗) instead of (m[n], m̃) we obtain

E
[

sup
0≤t≤T

|X̂N,1
t − X1

t |p
]
≤ C E

[∫ T

0

∣∣∣m̂N
t −m∗(t)

∣∣∣p dt
]

, (3.54)

for some constant C > 0 depending on p, T and the Lipschitz constant of the coeffi-
cients a( · ) and σ( · ).
Now, observe that

εp,N
.
=
∫ T

0
E

[ ∣∣∣∣∣ 1
N

N

∑
i=1

Yi
t −m∗(t)

∣∣∣∣∣
p ]

dt→ 0, N → ∞, (3.55)

by the LLN and the bounded convergence theorem, since (Yi
t )

N
i=1 are i.i.d. with mean
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m∗(t) (recall that η∗ is the feedback map of the optimal control in the MFG). Hence,
we have

E

[∫ T

0
|m̂N

t −m∗(t)|pdt
]
≤2p−1

∫ T

0
E

[ ∣∣∣∣∣ 1
N

N

∑
i=1

(ŶN,i
t −Yi

t )

∣∣∣∣∣
p ]

dt + 2p−1εp,N

≤2p−1
∫ T

0

1
N

N

∑
i=1

E
[
|ŶN,i

t −Yi
t |p
]

dt + 2p−1εp,N (3.56)

=2p−1
∫ T

0
E
[ ∣∣∣ŶN,1

t −Y1
t

∣∣∣p ]dt + 2p−1εp,N

≤2p−1θ
p
c

∫ T

0
E

[
sup

0≤s≤t

∣∣∣X̂N,1
s − X1

s

∣∣∣p ]dt + 2p−1εp,N

where the first inequality uses |a + b|p ≤ 2p−1(|a|p + |b|p), the second inequality
follows by Jensen’s inequality (p > 1), the equality by the fact that the processes
(ŶN,i −Yi)N

i=1 are exchangeable and the final inequality uses Equation (3.51) applied
to |ŶN,1

t −Y1
t |.

Plugging the latter estimate back into Equation (3.54) and applying Gronwall’s lemma
once again we obtain

E
[

sup
0≤t≤T

|X̂N,1
t − X1

t |p
]
≤ C′εp,N ,

for a suitable constant C′ > 0 depending on T and the other constants above. Thanks
to Equation (3.55) we obtain Equation (3.53).

(ii). This part of the proof is similar to the above but now the first player deviates
by choosing a generic admissible control ξ while all remaining players pick ξ̂N,i,
i = 2, . . . , N; we denote this strategy vector βN = [ξ̂N,−1, ξ]. In particular we notice
that the empirical average associated to this strategy reads

1
N

(
Y1

0− + ξt +
N

∑
i=2

(Yi
0− + ξ̂N,i

t )

)
= m̄N

t +
1
N
(ξt − ξ̂N,1

t ),

where m̄N
t

.
= N−1 ∑N

i=1(Y
i
0−+ ξ̂N,i

t ). One should be careful here that m̄N is different to
m̂N used in the proof of (i) above, because the deviation of player 1 from the strategy
vector ξ̂N causes a knock-on effect on the dynamics of ξ̂N,i for all i’s through the
non-anticipative mapping η∗(t, XN,i;β, Yi

0−). To keep track of this subtle aspect we
use the notations ξ̂

N,i;β
t = η∗(t, XN,i;β, Yi

0−) and ȲN,i;β
t = Yi

0− + ξ̂
N,i;β
t , for i = 1, . . . , N,

in the calculations below. Accordingly, the state process of the first player reads

XN,1;β
t = X1

0 +
∫ t

0
a
(
XN,1;β

s , m̄N
s + N−1(ξs − ξ̂

N,1;β
s )

)
ds +

∫ t

0
σ(XN,1;β

s )dW1
s

YN,1;β
t = Y1

0− + ξt, t ∈ [0, T].
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Using the above expression for XN,1;β and the same arguments as in Equation (3.54)
we obtain

E
[

sup
0≤t≤T

|XN,1;β
t − X1

t |p
]

≤ C E

[∫ T

0

∣∣∣m̄N
t + N−1(ξt − ξ̂

N,1;β
t )−m∗(t)

∣∣∣p dt
]

≤ 2p−1C E

[∫ T

0

∣∣∣m̄N
t −m∗(t)

∣∣∣p dt
]
+ 2p2p−1CTN−p,

where the final inequality uses |a + b|p ≤ 2p−1(|a|p + |b|p) and |ξt − ξ̂
N,1;β
t | ≤ 2 (by

the finite-fuel condition), and C > 0 is a suitable constant. Repeating the same steps
as in Equation (3.56) we have

E

[∫ T

0
|m̄N

t −m∗(t)|pdt
]
≤2p−1

∫ T

0
E

[ ∣∣∣∣∣ 1
N

N

∑
i=1

(ȲN,i;β
t −Yi

t )

∣∣∣∣∣
p ]

dt + 2p−1εp,N

≤2p−1
∫ T

0
E
[ ∣∣∣ȲN,1;β

t −Y1
t

∣∣∣p ]dt + 2p−1εp,N

≤2p−1θ
p
c

∫ T

0
E

[
sup

0≤s≤t

∣∣∣XN,1;β
s − X1

s

∣∣∣p ]dt + 2p−1εp,N

where we have used that (ȲN,i;β − Yi)N
i=1 are exchangeable by construction. Com-

bining the two estimates above and using Gronwall’s inequality we obtain a bound
which is uniform with respect to ξ ∈ ΞΠN

(Y1
0−). In particular we have

lim
N→∞

sup
ξ∈ΞΠN (Y1

0−)

E
[

sup
0≤t≤T

|XN,1;β
t − X1

t |p
]
≤ C′ lim

N→∞
εp,N = 0, (3.57)

where C′ > 0 is the constant appearing from Gronwall’s inequality. Since any
ξ ∈ ΞΠN

(Y1
0−) is admissible but suboptimal in the MFG with state process X1 as

in Equation (3.49) we get

sup
ξ∈ΞΠN (Y1

0−)

JN,1([ξ̂N,−1, ξ])−Vν

≤ sup
ξ∈ΞΠN (Y1

0−)

(
JN,1([ξ̂N,−1, ξ])− J(ξ)

)
≤ sup

ξ∈ΞΠN (Y1
0−)

E

[∫ T

0
e−rs

(
f
(
XN,1;β

t , Y1
0− + ξt

)
− f

(
X1

t , Y1
0− + ξt

))
dt
]

≤ sup
ξ∈ΞΠN (Y1

0−)

E

[∫ T

0
e−rtΛ

(
XN,1;β

t , X1
t
)∣∣XN,1;β

t − X1
t
∣∣dt
]

where in the final inequality we used Assumption 3.4.1. Now, arguing as in (i) and
using Equations (3.57) and (3.48) we obtain

lim sup
N→∞

sup
ξ∈ΞΠN (Y1

0−)

JN,1([ξ̂N,−1, ξ]
)
≤ Vν = J(ξ∗),



82 Chapter 3. Mean-Field Games with Singular Controls

where the final equality holds by optimality of ξ∗ in the MFG.

(iii). This step follows from the previous two. With no loss of generality we
consider only the first player as the game is symmetric. Given ε > 0, thanks to (ii)
there exists Nε > 0 sufficiently large that for any ξ ∈ ΞΠN

(Y1
0−)

JN,1([ξ̂N,−1, ξ]) ≤ Vν +
ε

2
for all N > Nε.

From (i), with no loss of generality we can also assume Nε > 0 sufficiently such large
that

JN,1(ξ̂N) ≥ Vν − ε

2
for all N > Nε.

Combining the two inequalities above we obtain that for all ξ ∈ ΞΠN
(Y1

0−) holds

JN,1(ξ̂N) ≥ JN,1([ξ̂N,−1, ξ])− ε for all N > Nε.

The final claim on the speed of convergence can be verified by taking q = p = 2
in the above estimates. The leading term in the convergence of Equation (3.52) is√

ε2,N (see Equation (3.57)). Since Equation (3.55) reads

ε2,N =
∫ T

0
Var

(
1
N

N

∑
i=1

Yi
t

)
dt =

1
N

∫ T

0
Var(Y1

t )dt

upon noticing that E
[
N−1 ∑N

i=1 Yi
t
]
= E[Y1

t ] = m∗(t) since (Yi)N
i=1 are i.i.d., the claim

follows.

3.4.3 Conditions for a Lipschitz continuous optimal boundary

Here we complement results from De Angelis and Stabile (2019a) to provide suffi-
cient conditions under which Assumption 3.4.2 holds. Notice that our problem is
parabolic and degenerate as there is no diffusive dynamics in the y-direction. There-
fore classical PDE results cannot be applied. Moreover, we extend De Angelis and
Stabile (2019a) by considering non-constant diffusion coefficients in the the dynam-
ics of X∗. Thanks to Lemma 3.3.4, the question reduces to finding sufficient condi-
tions on the data of the optimal stopping problem in Equation (3.38) that guarantee
a Lipschitz stopping boundary. In Equation (3.38) the dynamics of X̃ was obtained
from Lemma 3.3.3 and corresponds to the dynamics of X∗ in the MFG. In the rest of
this section we always use such X∗.

We make some additional assumptions on the coefficients of the SDE.

Assumption 3.4.3. We have x 7→ a(x, m) and x 7→ σ(x) continuously differentiable
with ∂xσ(x) ≥ 0 and ∂xa(x, m) ≤ ā for some ā > 0.

Thanks to this assumption we have that the stochastic flow x 7→ X∗; t,x(ω) is
continuously differentiable. The dynamics of Zt,x .

= ∂xX∗; t,x is given by (see Protter,
2005, Chapter V.7)

Zt,x
t+s = 1 +

∫ s

0
∂xa(X∗; t,x

t+u , m∗(t+u))Zt,x
t+udu +

∫ s

0
∂xσ(X∗; t,x

t+u )Zt,x
t+u dWt+u, (3.58)
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for all (t, x) ∈ [0, T]×R and s ∈ [0, T − t]. The solution of Equation (3.58) is explicit
in terms of X∗ and it reads

Zt,x
t+s = exp

[ ∫ s

0

(
∂xa(X∗; t,x

t+u , m∗(t + u))−1
2

∂xσ(X∗; t,x
t+u )2

)
du +

∫ s

0
∂xσ(Xt,x

t+u)dWt+u

]
,

(3.59)

for (t, x) ∈ [0, T]×R and s ∈ [0, T − t]. Thanks to this explicit formula we can de-
duce that (t, x) 7→ Zt,x is a continuous flow, by continuity of the flow (t, x) 7→ X∗; t,x.

Later on we will perform a change of measure using Z and for that we also re-
quire the following assumption.

Assumption 3.4.4. For all (t, x) ∈ [0, T]×R we have

Et,x

[∫ T−t

0

(
∂xσ(X∗t+u)Zt+u

)2
du
]
< +∞. (3.60)

Then

dQ
dP

∣∣∣
FT

.
= ZT exp

(
−
∫ T

0
∂xa(X∗t , m∗(t))dt

)
(3.61)

defines the Radon-Nikodym derivative of the absolutely continuous change of mea-
sure from P to Q.

Next we assume some extra conditions on the profit function.

Assumption 3.4.5. We have f ∈ C2(R× (0, 1)) and either σ(x) = σ is constant or
we have x 7→ ∂xy f (x, y) non-increasing. Moreover, the integrability condition below
holds:

sup
(t,x,y)∈K

Et,x,y

[∫ T−t

0
e−rs

( ∣∣∂yy f (X∗t+s, y)
∣∣+ (1 + Zt+s)

∣∣∂xy f (X∗t+s, y)
∣∣ )ds

]
< ∞,

for any compact K ⊂ [0, T]× Σ.

Notice that f (x, y) = xαyβ with α ∈ (0, 1] and β ∈ (0, 1) satisfies Assumption
3.4.5 combined with Assumption 3.2.1. The next proposition provides sufficient con-
ditions for Lipschitz continuity of the optimal boundary.

Proposition 3.4.1. Let Assumptions 3.2.1–3.2.3 and Assumptions 3.4.3–3.4.5 hold. If ei-
ther of the two conditions below holds:

(i) there exist α, γ > 0 such that

|∂yy f | ≥ α > 0 and |∂xy f | ≤ γ(1 + |∂yy f |) on Σ;

(ii) there exists γ > 0 such that |∂xy f | ≤ γ|∂yy f | on Σ;

then Assumption 3.4.2 holds.

The proof of the proposition uses the next lemma concerning the optimal stop-
ping time defined in Equation (3.41), whose slightly technical proof we move to the
appendix.
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Lemma 3.4.1. The mapping (t, x, y) 7→ τ∗(t, x, y) is P-almost surely continuous on [0, T]×
Σ with τ∗(t, x, y) = 0, P-a.s. for (t, x, y) ∈ ∂C.

Proof of Proposition 3.4.1. The idea of the proof combines ideas from De Angelis and
Stabile (2019a) and De Angelis and Peskir (2020). First, for δ > 0 we define

cδ(t, x) .
= inf{y ∈ [0, 1] : u(t, x, y) < c0 − δ}

with inf∅ = 1. Then it is clear that cδ( · ) > cδ′( · ) > c( · ) for all 0 < δ′ < δ by
monotonicity of y 7→ u(t, x, y). Since u is continuous then

lim
δ↓0

cδ(t, x) = c(t, x) (t, x) ∈ [0, T]×R

and if we can prove that x 7→ cδ(t, x) is Lipschitz with a constant independent of δ
we can conclude. By continuity of u we know that

u
(
t, x, cδ(t, x)

)
= c0 − δ

so that by the implicit function theorem, whose use is justified in step 2 below, we
have

∂xcδ(t, x) = −
∂xu
(
t, x, cδ(t, x)

)
∂yu
(
t, x, cδ(t, x)

) , (t, x) ∈ [0, T]×R. (3.62)

Thanks to Corollary 3.3.1 we have ∂xcδ(t, x) ≥ 0. In step 2 below wefind an upper
bound so that |∂xcδ| ≤ θc on [0, T]×R, for a suitable constant θc > 0. This concludes
the proof.

Step 1: (Gradient estimates). We fix an arbitrary (t, x, y) ∈ [0, T] × Σ and let
τ∗ = τ∗(t, x, y). Then for any ε > 0 we have

u(t, x, y + ε)− u(t, x, y)

≤ E

[∫ τ∗

0
e−rs

(
∂y f (X∗; t,x

t+s , y + ε)− ∂y f (X∗; t,x
t+s , y)

)
ds
]

=
∫ ε

0
E

[∫ τ∗

0
e−rs∂yy f (X∗; t,x

t+s , y + z)ds
]

dz,

where we used Fubini’s theorem in the final equality. Dividing by ε, letting ε → 0
and using the integrability condition from Assumption 3.4.5 we conclude

lim sup
ε→0

u(t, x, y + ε)− u(t, x, y)
ε

≤ E

[∫ τ∗

0
e−rs∂yy f (X∗; t,x

t+s , y)ds
]

.

Taking τε
∗

.
= τ∗(t, x, y + ε) in the first expression above we have

u(t, x, y + ε)− u(t, x, y)

≥ E

[∫ τε
∗

0
e−rs

(
∂y f (X∗; t,x

t+s , y + ε)− ∂y f (X∗; t,x
t+s , y)

)
ds
]

=
∫ ε

0
E

[∫ τε
∗

0
e−rs∂yy f (X∗; t,x

t+s , y + z)ds
]

dz.
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Dividing again by ε > 0 and letting ε→ 0, we can now invoke Lemma 3.4.1 to justify
that τε

∗ → τ∗ and obtain

lim inf
ε→0

u(t, x, y + ε)− u(t, x, y)
ε

≥ E

[∫ τ∗

0
e−rs∂yy f (X∗; t,x

t+s , y)ds
]

.

So, in conclusion we have shown that ∂yu exists in [0, T]× Σ and it reads

∂yu(t, x, y) = E

[∫ τ∗

0
e−rs∂yy f (X∗; t,x

t+s , y)ds
]

.

Further, in light of the fact that (t, x, y) 7→ τ∗(t, x, y) and (t, x, y) 7→ (X∗; t,x
t+s , y) are

P-a.s. continuous, we deduce that ∂yu is also continuous on [0, T]×Σ, by dominated
convergence and Assumption 3.4.5. Finally, since ∂yy f < 0 (Assumption 3.2.2-(ii)),
we have that

∂yu
(
t, x, cδ(t, x)

)
< 0, for all (t, x) ∈ [0, T]× Σ, (3.63)

because
(
t, x, cδ(t, x)

)
∈ C and τ∗ > 0 at those points.

Next we obtain a similar result for ∂xu. With the same notation as above we have

u(t, x + ε, y)− u(t, x, y)

≤ E

[∫ τ∗

0
e−rs

(
∂y f (X∗; t,x+ε

t+s , y)− ∂y f (X∗; t,x
t+s , y)

)
ds
]

=
∫ x+ε

x
E

[∫ τ∗

0
e−rs∂xy f (X∗; t,η

t+s , y)Zt,η
t+sds

]
dη.

Dividing by ε and letting ε→ 0, we use dominated convergence (Assumption 3.4.5)
and continuity of the flows x 7→

(
X∗; t,x, Zt,x) to conclude

lim sup
ε→0

u(t, x + ε, y)− u(t, x, y)
ε

≤ E

[∫ τ∗

0
e−rs∂xy f (X∗; t,x

t+s , y)Zt,x
t+sds

]
.

By a symmetric argument and continuity of the optimal stopping time we also obtain
the reverse inequality and therefore conclude

∂xu(t, x, y) = E

[∫ τ∗

0
e−rs∂xy f (X∗; t,x

t+s , y)Zt,x
t+sds

]
.

Also in this case continuity of (t, x, y) 7→ τ∗(t, x, y), due to Lemma 3.4.1, and (t, x) 7→(
X∗; t,x, Zt,x), combined with dominated convergence, imply that ∂xu is continuous

on [0, T]× Σ.

Step 2: (Bound on ∂xcδ). Since ∂yu and ∂xu are continuous and Equation (3.63)
holds, the equation in Equation (3.62) is fully justified as an application of the im-
plicit function theorem. In this step we use the probabilistic representations of ∂xu
and ∂yu to obtain an upper bound on ∂xcδ. First we recall the change of measure
induced by Z (see Equation (3.61)) and we use it to write

∂xu(t, x, y) = EQ
t,x

[∫ τ∗

0
e−rs+

∫ s
0 a(X∗t+u,m∗(t+u))du∂xy f (X∗t+s, y)ds

]
.

We want to find an upper bound for ∂xu in terms of the process under the original
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measure P. Under the measure Q we have, by Girsanov theorem, that X∗ evolves
according to

dX∗t+s =
[
a(X∗t+s, m∗(t + s)) + σ(X∗t+s)∂xσ(X∗t+s)

]
ds + σ(X∗t+s)dWQ

t+s,

where WQ
t+s = Wt+s −

∫ s
0 ∂xσ(X∗t+u)du defines a Brownian motion under Q. Anal-

ogously, under the original measure P we can define a process X̄ with the same
dynamics, i.e.,

dX̄t+s =
[
a(X̄t+s, m∗(t + s)) + σ(X̄t+s)∂xσ(X̄t+s)

]
ds + σ(X̄t+s)dWt+s,

and denote
τ̄∗

.
= inf{s ∈ [0, T − t] : c(t + s, X̄t+s) ≥ y}.

Then we have that the processes and stopping times are equal in law, i.e.

LawQ
(
X∗, τ∗

)
= LawP

(
X̄, τ̄∗

)
and we can express ∂xu in terms of the original measure as

∂xu(t, x, y) = Et,x

[∫ τ̄∗

0
e−rs+

∫ s
0 a(X̄t+u,m∗(t+u))du∂xy f (X̄t+s, y)ds

]
. (3.64)

Let us first consider x 7→ σ(x) not constant. By comparison principles we have
X̄ ≥ X∗ since ∂xσ ≥ 0 (Assumption 3.4.3), therefore ∂xy f (X̄, y) ≤ ∂xy f (X∗, y) by
Assumption 3.4.5. Since x 7→ c(t, x) is non-decreasing as pointwise limit of non-
decreasing functions (recall Proposition 3.3.2), then c(t + s, X̄t+s) ≥ c(t + s, X∗t+s),
hence implying τ̄∗ ≤ τ∗, P-a.s. Recalling that ∂xy f > 0 from Assumption 3.2.2 and
combining these few facts we have

∂xu(t, x, y) ≤ eā(T−t)Et,x

[∫ τ∗

0
e−rs∂xy f (X∗t+s, y)ds

]
,

where we also used ∂xa ≤ ā (Assumption 3.4.3). If instead σ(x) = σ is constant
then X∗ = X̄ by uniqueness of the SDE and therefore the above estimate follows
directly from Equation (3.64). Plugging this bound in Equation (3.62) and recalling
that ∂yy f < 0 we obtain

0 ≤ ∂xcδ(t, x) ≤ eā(T−t) Et,x
[∫ τ∗

0 e−rs∂xy f
(
X∗t+s, cδ(t, x)

)
ds
]

Et,x
[∫ τ∗

0 e−rs
∣∣∂yy f

(
X∗t+s, cδ(t, x)

)∣∣ds
] .

Now, if condition (i) holds we obtain

0 ≤ ∂xcδ(t, x) ≤ eā(T−t)
(γ

α
+ γ

)
, for all (t, x) ∈ [0, T]×R and any δ > 0,

whereas if condition (ii) holds we obtain

0 ≤ ∂xcδ(t, x) ≤ eā(T−t)γ, for all (t, x) ∈ [0, T]×R and any δ > 0.

So in the first case Assumption 3.4.2 holds with

θc = eāT
(γ

α
+ γ

)
,
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and in the second case with θc = γ exp(āT).

Next we provide a couple of examples meeting the requirements of Proposition
3.4.1.

Example 3.4.1 (Ornstein-Uhlenbeck dynamics with exponential-Cobb-Douglas profit).
Let a(x, m)

.
= α(m− x) for some α > 0 and σ(x) ≡ σ for some σ > 0. Given a Borel

function m : [0, T]→ [0, 1] the dynamics of X from Equation (3.4) reads

Xt = X0 +
∫ t

0
α(m(s)− Xs)ds + σWt, t ∈ [0, T]. (3.65)

Let f (x, y) .
= exyβ for some β ∈ (0, 1) and for all (x, y) ∈ Σ. Finally assume that

E[exp(qX0)] < ∞ for some q ≥ 1.

We check the assumptions of Proposition 3.4.1. Assumptions 3.2.1 and Assump-
tion 3.4.3 on the dynamics’ coefficients are trivially satisfied. The profit function f
has the monotonicity required by Assumption 3.2.2-(i) and it is strictly concave (As-
sumption 3.2.2-(ii)). Also, ∂xy f (x, y) = βexyβ−1 > 0 (Assumption 3.2.2-(iii)) and
Equation (3.10) is satisfied since

lim
x→−∞

βex

y1−β
= 0 < rc0 < lim

x→∞

βex

y1−β
= +∞

for any y ∈ (0, 1) fixed. The integrability Assumption 3.2.3 is satisfied by the Ornstein-
Uhlenbeck dynamics with initial condition as above. Assumption 3.4.4 is another
integrability assumption that reduces to finiteness of the second moment of the ex-
ponential martingale Z (which is satisfied by boundedness of ∂xa and ∂xσ). Assump-
tion 3.4.5 holds because σ is constant. Finally Assumption (ii) in Proposition 3.4.1 is
satisfied with any γ ≥ 1

1−β since

|∂xy f (x, y)| = βex

y1−β
and |∂yy f (x, y)| = β(1− β)ex

y2−β
.

We also notice that Assumption 3.4.1 holds so that Theorem 3.4.1 can be applied.

Example 3.4.2 (GBM dynamics with linear-Cobb-Douglas profit). Let a(x, m)
.
= αmx

for some α > 0 and σ(x) .
= σx for some σ > 0. Given a Borel function m : [0, T] →

[0, 1], the dynamics of X from Equation (3.4) reads

Xt = X0 +
∫ t

0
αXsm(s)ds +

∫ t

0
σXsdWs, t ∈ [0, T]. (3.66)

Non-negativity of the trajectories reduces the state space Σ to [0, ∞)× [0, 1] (see Re-
mark 3.2.2). Let f (x, y) .

= (1 + x)(1 + y)β for some β ∈ (0, 1) and for all (x, y) ∈ Σ.
Finally assume that ν ∈ P2(Σ) and that rc0 > β.
Let us check the assumptions of Proposition 3.4.1. Assumptions 3.2.1 and Assump-
tion 3.4.3 on the dynamics’ coefficients are trivially satisfied. The profit function f
has the monotonicity required by Assumption 3.2.2-(i) and is strictly concave (As-
sumption 3.2.2-(ii)). Also, ∂xy f (x, y) = β(1 + y)β−1 > 0 (Assumption 3.2.2-(iii)) and
Equation(3.10) is satisfied since

lim
x→0

β(1 + x)
(1 + y)1−β

=
β

(1 + y)1−β
< β < rc0 < lim

x→∞

β(1 + x)
(1 + y)1−β

= +∞
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for any y ∈ (0, 1) fixed. The integrability Assumption 3.2.3 is satisfied with p = 2 (or
higher provided the initial condition has finite p-th moment) thanks to sub-linearity
of the logarithm and standard estimates on the GBM dynamics. Assumption 3.4.4
is another integrability assumption that reduces to finiteness of the second moment
of the exponential martingale Z (which is satisfied by boundedness of ∂xa and ∂xσ).
Assumption 3.4.5 holds because x 7→ ∂xy f (x, y) is decreasing. Finally Assumption
(ii) in Proposition 3.4.1 is satisfied with any γ ≥ 2

1−β since

|∂xy f (x, y)| = β

(1 + y)1−β
and |∂yy f (x, y)| = β(1− β)(1 + x)

(1 + y)2−β
.

We also notice that Assumption 3.4.1 holds so that Theorem 3.4.1 can be applied.

We would like to emphasise that the conditions of Proposition 3.4.1 are far from
being necessary. While it would be overly complicated to state a general theorem
in this sense, we provide below an example with a clear economic interpretation for
which Proposition 3.4.1 is not directly applicable.
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Chapter 4

Numerical Methods for Mean-Field
Games of Finite-Fuel Capacity
Expansion with Singular Controls

Based on the constructive procedure in the proof of Theorem 3.2.1, Section 3.3, we
propose a numerical scheme to approximate the solution of a MFG of finite-fuel
capacity expansion with underlying Geometric Brownian motion (GBM hereafter)
dynamics that we introduce in Section 4.1. The numerical method is an iterative Pi-
card scheme, based on an integral equation that we derive in Section 4.2.1 for the
optimal stopping boundary of an optimal stopping problem of the form of problems
OC[n].
We then apply the iterative procedure at each step n of the proof of Theorem 3.2.1.
While convergence of the approximating optimal stopping problems to the MFG
solution is granted by Theorem 3.2.1, we here prove convergence of the iterative
numerical method. This, at each step n, grants convergence of the numerical ap-
proximating procedure to the theoretical limit represented at step n by the optimal
stopping boundary bn (or equivalently its generalized inverse cn), from which we
can construct the optimal control ξ [n]∗ of problem OC[n].
Theorem 3.2.1 combined with the numerical Picard-like iterative scheme proposed
in the present Chapter, produces a numerical method to approximate the solution of
a MFG of finite-fuel capacity expansion with underlying GBM dynamics.

4.1 A model of mean-field game of finite-fuel capacity expan-
sion with singular controls and Geometric Brownian mo-
tion

In this section, we describe the MFG with singular controls and GBM underlying
dynamics to which we tailor the numerical method.

Let us assume that a(x, m) = (µ + m)x and σ(x) = σ x for some µ ∈ R and
σ ∈ R+. Let us also assume that f (x, y) = xg(y) with g ∈ C2([0, 1]), g > 0, strictly
concave and strictly increasing. This specification corresponds to the classical model
of the goodwill problem in which firms produce a good whose price evolves as a
GBM and revenues are linear in the price of the good and increasing and concave in
the amount of investment that goes towards advertising.

On the one hand, Assumptions 3.2.1–3.2.3 are easily verified and Theorem 3.2.1
holds (i.e., our construction of the solution to the MFG holds). On the other hand,
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neither (i) nor (ii) in Proposition 3.4.1 hold, so we cannot apply directly the result on
Lipschitz continuity of the boundary which is needed for the approximation result
in Theorem 3.4.1. However, we shall now see how an alternative argument of proof
can be applied to prove that Assumption 3.4.2 remains valid.

First of all we change our coordinates by letting ψ
.
= ln x, so that the value func-

tion of the optimal stopping problem can be written as

ũ(t, ψ, y) .
= u(t, eψ, y) = inf

τ∈Tt
Et,ψ

[∫ τ

0
e−rsg′(y)eΨt+s ds + e−rτc0

]
,

where Ψt+s
.
= ln X∗t+s is just a Brownian motion with drift, i.e.,

Ψt,ψ
t+s = ψ +

∫ s

0

(
µ− σ2/2 + m∗(t + s)

)
ds + σd(Wt+s −Wt).

The optimal boundary can also be expressed in terms of (t, ψ) by putting c̃(t, ψ) =
c(t, eψ). Then the mean-field optimal control reads

ξ∗t = sup
0≤s≤t

(
c̃(s, Ψs)− y

)+
, t ∈ [0, T]

whereas the optimal stopping time for the value ũ(t, ψ, y) reads

τ∗ = inf{s ∈ [0, T − t] : c̃ (t + s, Ψt+s) ≥ y}.

Now we show that the optimal boundary c̃( · ) is indeed Lipschitz with respect to
ψ and therefore the proof of Theorem 3.4.1 can be repeated with Ψ instead of X∗ so
that the theorem holds as stated. Since ∂ψΨt,ψ

t+s ≡ 1 for s ∈ [0, T− t] and Assumption
3.4.5 holds, we can use the same arguments as in step 1 of the proof of Proposition
3.4.1 to obtain

∂yũ(t, ψ, y) = g′′(y)Et,ψ

[∫ τ∗

0
e−rs+Ψt+s ds

]
and

∂ψũ(t, ψ, y) = g′(y)Et,ψ

[∫ τ∗

0
e−rs+Ψt+s ds

]
.

Then, by the same arguments as in step 2 of the proof of Proposition 3.4.1 we obtain

∂ψ c̃δ(t, ψ) = −
∂xw̃

(
t, ψ, c̃δ(t, ψ)

)
∂yw̃

(
t, ψ, c̃δ(t, ψ)

) =
g′
(
c̃δ(t, ψ)

)
|g′′
(
c̃δ(t, ψ)

)
|
≤ κ,

for some κ > 0, where the final inequality holds because g ∈ C2([0, 1]) and strictly
concave. Therefore for the optimal boundary we have

sup
0≤t≤T

|c̃(t, ψ1)− c̃(t, ψ2)| ≤ κ|ψ1 − ψ2|, ψ1, ψ2 ∈ R,

as needed. In conclusion, the result of Theorem 3.4.1 remains valid, even though the
optimal boundary in the original parametrisation of the problem is not uniformly
Lipschitz.
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4.2 A numerical method for mean-field games of finite-fuel
capacity expansion with singular controls and Geometric
Brownian motion

4.2.1 The integral equation for the optimal boundary

Let f (x, y) .
= ex g(y) with g ∈ C2([0, 1]), positive, strictly concave and strictly in-

creasing. In this section, we derive the integral equation, Equation (4.6), for the
optimal stopping boundary b of an optimal stopping problem of the form

u(t, x, y) .
= inf

τ∈Tt
U(t, x, y; τ) with

U(t, x, y; τ)
.
= Et,x

[∫ τ

0
e−rs∂y f (Xt+s, y)ds + c0e−rτ

]
, for τ ∈ Tt (4.1)

with underlying dynamics

Xt,x
t+s = x +

∫ s

0
m(t + u)du + σ(Wt+s −Wt),

where m : [0, T]→ [0, 1] is a Borel measurable function, i.e. we consider the dynam-
ics described in Section 4.1 after the logarithmic change of coordinates. In particular,

we have that Xt,x
t+s

d∼ N (x +
∫ s

0 m(t+ u) du, σ2s), whereN (µ, σ2) denotes a Gaussian
random variable with mean µ and variance σ2.
The numerical scheme we propose is based on the following Proposition.

Proposition 4.2.1. Assume that, for all y ∈ [0, 1], u(·, y) ∈ C1,1((0, T) ×R), that the
partial derivative ∂xu(·, y) is such that

E

[∫ T−t

0

∣∣∣∂xu
(

Xt,x
t+s, y

)∣∣∣2 ds
]
< ∞ (4.2)

for all t ∈ [0, T] and that there exists ∂2
xxu(·, y), bounded and continuous on (0, T)×R \

∂Cy, where Cy is the y-section of C. Assume also that u(·, y) ∈ C1,2((0, T) ×R \ ∂Cy).
Then, the value function of the optimal stopping problem u(t, x, y) has the representation

u(t, x, y) = e−r(T−t)c0 + E
[∫ T−t

0 e−rs∂y f (Xt,x
t+s, y)ds

]
(4.3)

+E
[∫ T−t

0 e−rs
(

rc0 − ∂y f (Xt,x
t+s, y)

)
1{Xt,x

t+s≥b(t+s,y)}

]
for all (t, x, y) ∈ C. Assume also that b(T, y) = log (rc0) − log g′(y) for all y ∈ [0, 1].
Then the optimal stopping boundary b is a solution of the following integral equation

c0(1− e−r(T−t)) =
∫ T−t

0

(∫ ∞
0 e−rs∂y f (z, y)p(t, b(t, y), t + s, z)dz

)
ds

+
∫ T−t

0

(∫ ∞
b(t+s,y) e−rs (rc0 − ∂y f (z, y)

)
p(t, b(t, y), t + s, z)dz

)
ds

b(T, y) = log (rc0)− log g′(y)
(4.4)

for all (t, y) ∈ [0, T] × [0, 1], where p(t, x, t + s, z) .
= ∂zP

[
Xt,x

t+s ≤ z
]

is the transition
density of the arithmetic Brownian motion dynamics.

Remark 4.2.1. The continuity assumptions of Proposition 4.2.1, i.e. that the value
function u is continuously differentiable and that its second derivative exists bounded
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and continuous outside the stopping boundary, are standard to be verified in the op-
timal stopping literature. The assumption on the terminal condition for the optimal
stopping boundary, i.e. that b(T, y) = log (rc0)− log g′(y), is less trivial, however it
can be verified in many situations (see e.g. De Angelis and Milazzo, 2020; De Ange-
lis and Stabile, 2019b). We here hence give these assumptions for granted and leave
their proof for a later work.

Proof. Fix y ∈ [0, 1]. Let (u(k))k∈N, u(k) : [0, T]× Σ → R, u(k)(·, y) ∈ C1,2((0, T)×R)
be an approximating sequence for u(·, y) constructed via mollification, so that(

u(k)(·, y), ∂xu(k)(·, y), ∂tu(k)(·, y)
)
−→
k→∞

(u(·, y), ∂xu(·, y), ∂tu(·, y))

uniformly on compact sets and

∂2
xxu(k)(t, x, y) −→

k→∞
∂2

xxu(t, x, y)

for all (t, x) /∈ ∂Cy. Let (K(`))`∈N be an increasing sequence of compact sets such that
K(`) ↑ Cy and

τ(`)(t, x) .
= inf{s ≥ 0 : (t + s, Xt,x

t+s) ∈ ∂K(`)} ∧ (T − t).

Then, for each fixed y ∈ [0, 1] and for each ` ∈ N, we can apply Itô’s lemma up to
any s ≤ τ(`) to each u(k) getting

e−rsu(k)(t + s, Xt,x
t+s, y) = u(k)(t, x, y) +

∫ s

0
e−ru(Lt,x − r)u(k)(t + u, Xt,x

t+u, y)du

+
∫ s

0
σe−ru∂xu(k)(t + u, Xt,x

t+u, y)dWt+u

for all (t, x, y) ∈ [0, T]× Σ and s ∈ [0, τ(`)(t, x)], where

Lt,x
.
= ∂t +

σ2( · )
2

∂xx + a( ·, m( · ))∂x − r.

Taking expectations on both sides, exploiting boundedness of ∂xu and choosing s =
τ(`)(t, x) we obtain

u(k)(t, x, y) = c0e−rτ(`)(t,x) + E

[∫ τ(`)(t,x)

0
(r−Lt,x)u(k)(t + s, Xt,x

t+s, y)e−rsds

]
.

Since the process Xt,x
t+·∧τ(`) is confined to K(`), we can apply the uniform convergence

on compact sets of the sequence (u(k)(·, y))k∈N and its first derivatives to u(·, y) and
its first derivatives. Thanks to the boundedness assumption on ∂2

xxu and the fact that
P((t + s, Xt,x

t+s) ∈ ∂Cy) = 0 we can pass to the limit also in the second-order terms by
the dominated convergence theorem. We find the representation in Equation (4.3)
by letting ` ↑ ∞ and observing that τ(`) ↑ (T − t).
In particular, if we evaluate this equation at x = b(t, y) and if we set p(t, x, t+ s, z) .

=

∂zP
[

Xt,x
t+s ≤ z

]
the transition density of the arithmetic Brownian motion defined
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above, we obtain the integral equation for the optimal stopping boundary b(t, y):

c0(1− e−r(T−t)) =
∫ T−t

0

(∫ ∞

0
e−rs∂y f (z, y)p(t, b(t, y), t + s, z)dz

)
ds

+
∫ T−t

0

(∫ ∞

b(t+s,y)
e−rs (rc0 − ∂y f (z, y)

)
p(t, b(t, y), t + s, z)dz

)
ds.

Further manipulation of the integral equation, as described below, leads to an
implicit equation for the boundary b(t, y) of the form:

b(t, y) = F(t, b(·, y); T, r, σ) (4.5)

that naturally lends itself to the initialization of a Picard iterative scheme.

Indeed, the inner integrals can be computed explicitly thanks to the properties of
the Gaussian distribution. In particular the first integral reads:∫ ∞

0
e−rs∂y f (z, y)p(t, b(t, y), t + s, z)dz = g

′
(y)eb(t,y) exp

(∫ s

0
m(t + u)du +

σ2s
2
− rs

)
.

At this point, we split the second integral in two parts (one involving the function f
and one not) and we compute them separately. For the first part we have:∫ ∞

b(t+s,y)
e−rs r c0 p(t, b(t, y), t + s, z)dz = r c0 e−rs

[
1−Φ(t,b(t,y),t+s)(b(t + s, y))

]
= r c0 e−rs [1−Φ(β0(s))]

where Φ(t,x,t+s)(z) is the cumulative distribution function of the Xt,b(t,y)
t+s computed at

z, Φ(z) denotes the cumulative distribution function of a standard Gaussian random

variable at z and β0(s)
.
=

b(t+s,y)−b(t,y)−
∫ s

0 m(t+u)du
σ
√

s . For the second part we have:

∫ ∞

b(t+s,y)
e−rsg

′
(s)ez p(t, b(t, y), t + s, z)dz

= g
′
(y)eb(t,y) exp

(∫ s

0
m(t + u)du

σ2s
2
− rs

)
[1−Φ(β1(s))] ,

where β1(s)
.
=

b(t+s,y)−b(t,y)−
∫ s

0 m(t+u)du
σ
√

s − σ
√

s. Therefore, the initial integral equa-
tion becomes:

c0(1− e−r(T−t)) = rc0

∫ T−t
e−rs [1−Φ(β0(s))]ds

+ g
′
(y)eb(t,y)

∫ T−t

0
exp

(∫ s

0
m(t + u)du +

σ2s
2

+ rs
)

Φ(β1(s))ds

.
= rc0 I(1)(t, b(t, y); T, r, σ) + g′(y)eb(t,y) I(2)(t, b(t, y); T, r, σ).

Solving for b(t, y) we obtain:

b(t, y) = log c0 + log
(
(1− e−r(T−t))− rI(1)(t, b(t, y); T, r, σ)

)
− log g′(y)− log I(2)(t, b(t, y); T, r, σ), (4.6)
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where we observe that (1− e−r(T−t))− rI(1)(t, b(t, y); T, r, σ) ≥ 0.

Equation (4.6) is the starting point for our Picard iterative numerical scheme. In
order for the numerical method to be well posed, we conclude this section by proving
that, for each y ∈ [0, 1], Equation (4.6) has solution b(·, y) which is unique in the
following class:

By
.
= {β ∈ C([0, T]) : β(T) = log (rc0)− log g′(y)

and β(t) > log (rc0)− log g′(y) ∀t < T} y ∈ [0, 1]. (4.7)

Theorem 4.2.1. Assume that t 7→ b(t, y) is continuous on [0, T] for each y ∈ [0, 1]. Then,
for all y ∈ [0, 1], the integral equation (4.6) admits a unique solution in By equal to b(·, y).

Remark 4.2.2. The continuity assumption of Theorem 4.2.1, i.e. that the optimal
stopping boundary b is continuous on [0, T], is standard to be verified in the optimal
stopping literature (see e.g. De Angelis and Milazzo, 2020; De Angelis and Stabile,
2019b). Together with the continuity assumptions of Proposition 4.2.1, we her give
it for granted and leave its proof for a later work.

Proof. We follow the approach in troduced by Peskir (2005).
First, we trivially extend the auxiliary set H defined in Equation (3.20) to the whole
space [0, T]× Σ by setting

Ĥ .
= {(t, x, y) ∈ [0, T]× Σ : ∂y f (x, y)− rc0 < 0}.

Then Ĥ ⊂ C and the boundary of its y-section Ĥy ⊂ Cy is constant and equal to
β(y) .

= log(rc0) − log g′(y). Now, assume that there exists γ : [0, T] × [0, 1] → R

such that γ(·, y) ∈ By and it solves the integral equation

c0 = c0e−r(T−t) + E

[∫ T−t

0
e−rs∂y f (Xt,γ(t,y)

t+s , y)ds
]
+

+ E

[∫ T−t

0
e−rs

(
rc0 − ∂y f (Xt,γ(t,y)

t+s , y)
)
1{Xt,γ(t,y)

t+s ≥γ(t+s,y)}ds
]

for each y ∈ [0, 1]. If we set

Uγ(t, x, y) = c0e−r(T−t) + E

[∫ T−t

0
e−rs∂y f (Xt,x

t+s, y)ds
]
+

+ E

[∫ T−t

0
e−rs

(
rc0 − ∂y f (Xt,x

t+s, y)
)
1{Xt,x

t+s≥γ(t+s,y)}ds
]

for all (t, x, y) ∈ [0, T]× Σ, then trivially Uγ(T, x, y) = c0 and Uγ(t, γ(t, y), y) = c0.
Moreover, we claim that the following processes are martingales:

Ûγ,t
s

.
= e−rsUγ(t + s, Xt,x

t+s, y) +
∫ s

0
e−ru∂y f (Xt,x

t+u, y)du +

+
∫ s

0
e−ru

(
rc0 − ∂y f (Xt,x

t+u, y)
)
1{Xt,x

t+u≥γ(t+u,y)}du



4.2. A numerical method for mean-field games with singular controls 95

and

Ẑt
s

.
= e−rsu(t + s, Xt,x

t+s, y) +
∫ s

0
e−ru∂y f (Xt,x

t+u, y)du +

+
∫ s

0
e−ru

(
rc0 − ∂y f (Xt,x

t+u, y)
)
1{Xt,x

t+u≥b(t+u,y)}du.

In the following steps, we consider y ∈ [0, 1] fixed.

Step 1: Uγ(t, x, y) = c0 for all x ≥ γ(t, y). Equality is trivial when x = γ(t, y) or
when t = T. Let then t < T and x > γ(t, y). Define

τγ
.
= inf{s ≥ 0 : Xt,x

t+s ≤ γ(t + s, y)} ∧ (T − t).

Then by the martingale property

Uγ(t, x, y) = E
[
e−rτγUγ(t + τγ, Xt,x

t+τγ
, y)
]
+ E

[
c0(1− e−rτγ)

]
and we conclude by observing that Uγ(t + τγ, Xt,x

t+τγ
, y) = c0.

Step 2: Uγ(t, x, y) ≥ c0. This inequality is trivial for x ≥ γ(t, y) and for t = T. Let
then t < T and x < γ(t, y). Define

τγ .
= inf{s ≥ 0 : Xt,x

t+s ≥ γ(t + s, y)} ∧ (T − t).

Then by the martingale property

Uγ(t, x, y) .
= E

[
e−rτγ

Uγ(t + τγ, Xt,x
t+τγ , y)

]
+ E

[∫ τγ

0
e−ru∂y f (Xt,x

t+u, y)du
]

= E
[
e−rτγ

c0

]
+ E

[∫ τγ

0
e−ru∂y f (Xt,x

t+u, y)du
]

≥ u(t, x, y)

where the last inequality is a consequence of the definition of u.

Step 3: γ(t, y) ≤ b(t, y). By contradiction assume that there exists t ∈ [0, T) such
that γ(t, y) > b(t, y) and let x ≥ γ(t, y). Define

τb
.
= inf{s ≥ 0 : Xt,x

t+s ≤ b(t + s, y)} ∧ (T − t).

By the martingale property, the fact that Uγ(t, x, y) = u(t, x, y) when x ≥ γ(t, y) and
that Uγ ≥ u we obtain

E

[∫ τb

0
e−rs

(
rc0 − ∂y f (Xt,x

t+s, y)
)
1{Xt,x

t+s<γ(t+s,y)}ds
]
≥ 0.

However rc0 − ∂y f (x, y) < 0 when x > b(t, y) hence

E

[∫ τb

0
e−rs

(
rc0 − ∂y f (Xt,x

t+s, y)
)

ds
]
< 0.

We conclude by showing that P(Xt,x
t+s < γ(t + s, y)) > 0 for s > 0 sufficiently small.

Indeed, by continuity of γ and b there exists s0 > 0 such that γ(t + s, y) > b(t + s, y)
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for all s ∈ [0, s0]. Then by continuity of the trajectories there is a positive probability
that Xt,x

t+· will visit the region [b(t + s), γ(t + s)) for s ∈ [s1, s2] ⊂ [0, s0], for some
s1, s2 > 0, s2 > s1.

Step 4: γ(t, y) ≥ b(t, y). By contradiction assume that there exists t ∈ [0, T) such
that γ(t, y) < b(t, y) and let x ∈ (γ(t, y), b(t, y)). Define

τb .
= inf{s ≥ 0 : Xt,x

t+s ≥ b(t + s, y)} ∧ (T − t).

By a similar reasoning as in Step 3 we find

E

[∫ τb

0
e−rs

(
rc0 − ∂y f (Xt,x

t+s, y)
)
1{Xt,x

t+s≥γ(t+s,y)}ds

]
≥ 0.

However rc0 − ∂y f (x, y) < 0 when x ∈ (γ(t, y), b(t, y)) so we conclude as in Step 3.

Proof of the claim. We show that (Ûγ,t
s )s∈[0,T−t] and (Ẑt

s)s∈[0,T−t] are martingales.
Indeed, let τ be a stopping time with values in [0, T − t], then

E
[
Ûγ,t

τ

]
= E

[
e−rτUγ(t + τ, Xt,x

t+τ, y)
]

+ E

[∫ τ

0
e−ru∂y f (Xt,x

t+u, y)du
]
+

+ E

[∫ τ

0
e−ru

(
rc0 − ∂y f (Xt,x

t+u, y)
)
1{Xt,x

t+u≥γ(t+u,y)}du
]

.

We compute the first term on the right-hand-side by means of the definition of Uγ

as

E
[
e−rτUγ(t + τ, Xt,x

t+τ, y)
]
= c0e−r(T−t) +

+ E

[
e−rτE

[∫ T−t−τ

0
e−rs∂y f (Xt+τ+s, y)ds

∣∣∣Ft+τ

]]
+

+ E

[
e−rτE

[∫ T−t−τ

0
e−rs (rc0 − ∂y f (Xt+τ+s, y)

)
1{Xt+τ+s≥γ(t+τ+s,y)}ds

∣∣∣Ft+τ

]]
= c0e−r(T−t) +

+ E

[∫ T−t

τ
e−rs∂y f (Xt,x

t+s, y)ds
]
+

+ E

[∫ T−t

τ
e−rs

(
rc0 − ∂y f (Xt,x

t+s, y)
)
1{Xt,x

t+s≥γ(t+s,y)}ds
]

so that

E
[
Ûγ,t

τ

]
= c0e−r(T−t) + E

[∫ T−t

0
e−rs∂y f (Xt,x

t+s, y)ds
]
+

+ E

[∫ T−t

0
e−rs

(
rc0 − ∂y f (Xt,x

t+s, y)
)
1{Xt,x

t+s≥γ(t+s,y)}ds
]

= Uγ(t, x, y)

for any stopping time with values in [0, T − t]. The computation for (Ẑt
s)s∈[0,T−t] is

analogous so we conclude.
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4.2.2 The numerical method

In this section, we describe the numerical scheme for MFGs with singular controls.
Precisely, we develop a numerical Picard-like iterative scheme based on Equation
(4.6) that we then apply to each step n of the proof of Theorem 3.2.1.

Let n ∈ N be fixed. In order to clearly distinguish the n-th iteration of the itera-
tive procedure from the iterations of the numerical method, we denote with b[n] and
c[n] the optimal stopping boundaries of problem OS[n] and introduce a subscript to
denote the k-step of the numerical scheme.
Let then b[n]k (t, y) be the stopping boundary obtained after the k-th iteration of the
Picard scheme. In the following, we describe how we initialize the scheme and how
we derive b[n]k+1(t, y) from b[n]k (t, y) for each n, k ∈N.
First, we start by discretizing the state space, i.e. we introduce equispaced partitions
Πt

.
= {0 .

= t0 < t1 < . . . < tn
.
= T}, Πy

.
= {0 .

= y0 < y1 < . . . < ym
.
= 1} and

Πx
.
= {x1 < x2 < . . . < x`} with mesh ∆t =

T
n , ∆y = 1

m and ∆x = (x`−x1)
` and where

the interval [x1, x`] ⊂ R is such that it includes the support of the initial distribution
ν. Partitions will remain constant throughout all steps.

Initialization. At step n = 0 of the iterative scheme, we have m[−1]∗ ≡ 1.
In order to compute b[0]∗(t, y), we initialize the algorithm by setting b[0]0 (tj, yi)

.
=

log(rc0) − log(g
′
(yi)), for each fixed i ∈ {1, . . . , m} and for all j = 1, . . . , n, which

is the solution of ∂y f (x, y) = r c0 (see Figure 4.1). We then apply the procedure de-
scribed below (see Figure 4.2).

FIGURE 4.1: The figure displays the initialized boundary b[0]0 (t, y).
Simulation parameters are listed in Table 4.1.

From iteration k to iteration k + 1. Let n ∈ N be fixed. For each fixed i ∈
{1, . . . , m} and for all j = 0, . . . , n, let b[n]k (tj, yi) denote the values of the boundary
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FIGURE 4.2: The figure displays the numerical boundary b[0]10 (t, y) at
step n = 0 and at a iteration k = 10 of the Picard scheme superim-
posed on the initialized boundary b[0]0 (t, y). Simulation parameters

are listed in Table 4.1.

obtained after the k-th iteration. Then, the values of the (k + 1)-th iteration are com-
puted as:

b[n]k+1(tj, yi) = log c0 + log
(
(1− e−r(T−tj))− rI(1)(tj, b[n]k (tj, yi); T, r, σ)

)
− log g′(yi)− log I(2)(tj, b[n]k (tj, yi); T, r, σ),

(4.8)

for each fixed i ∈ {1, . . . , m} and for all j = 0, . . . , n. See Figure 4.3. Here, the inte-
gral with respect to the time variable is computed by a standard quadrature method.

From step n to step n + 1. Once that we have approximated the optimal bound-
ary b[n]∗(t, y), in order to compute b[n+1]∗(t, y), we first need to compute ξ

[n]∗
t =

sup0≤s≤t(c
[n]∗(s, Xs)− y)+, then Y[n]∗

t
.
= y + ξ [n]∗ and finally m[n]∗(t), by taking the

average over all possible initial positions (x, y) for the conditional expectation of
Y[n]∗

t (see Figure 4.4).
The expected value of Y[n]∗

t is computed via a Monte-Carlo method, by simulating N
trajectories of the process for all possible initial conditions (x, y) ∈ Πx ×Πy, N ∈N

large enough to the desired precision. Then integration with respect to the initial
measure ν is performed via standard numerical integration techniques.
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FIGURE 4.3: The figure displays the numerical boundary b[10]
10 (t, y) at

step n = 10 and at iteration k = 10 of the Picard scheme superim-
posed on b[10]

0 (t, y) = b[9]kmax
(t, y) where kmax is the maximum num-

ber of iterations performed at the previous step n− 1 = 9. The two
boundaries almost coincide (this is supported by the scaling of the er-
ror depicted in Figure 4.5). Simulation parameters are listed in Table

4.1.

FIGURE 4.4: The figure displays m[n]∗(t) for n = 0, . . . , 3. Colors
move from light-blue to dark-blue with n increasing. Simulation pa-

rameters are listed in Table 4.1.
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FIGURE 4.5: The figure displays how the computational error scales
with the number of iterations (k) for different steps (n) of the iterative
procedure. Color moves from light-blue to dark-blue with n increas-

ing. Simulation parameters are listed in Table 4.1.

Parameter Value
r 0.01
σ 1
µ 0.5σ2

c0 0.5
T 10
x1 −7
x` −3
ν Uniform([x1, x`])

TABLE 4.1: Simulation parameters.
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Appendix A

Technical results for mean-field
games with absorption

This appendix provides some of the technical results used in Chapter 2. More in
detail, we state existence and uniqueness of weak solutions of SDEs with sub-linear
drift. We characterize the space of laws of processes with sub-linear drift and initial
condition ν (Q defined below). We prove some regularity results on the exit time τX

with respect to measures in Q. Finally, we discuss the convergence of measures in
the 1-Wasserstein distance along test functions with sub-linear growth and possibly
discontinuous over a set of limit measure zero.

A.0.1 Existence and uniqueness of solution of SDEs with sub-linear drift

In this subsection we prove a slight variation of the well-known Beneš’ condition
(Beneš (1971)), leading to an existence and uniqueness result for weak solutions of
SDEs with a sub-linear drift. More precisely, we allow the drift to depend on a
rescaled Wiener process with a independent random initial condition. We recall that
Et(·) denotes the Doléans-Dade stochastic exponential. Moreover, given a function
f : E → R where E is a Polish space, we denote by D f the set of its discontinuity
points.

As a preliminary, we introduce the set Q of laws of stochastic processes with sub-
linear drift in the sense of Beneš to which these results apply.

Laws of processes with sub-linear drift. Let β : [0, T] × X → Rd be a progressively
measurable functional such that

|β (t, ϕ)| ≤ C (1 + ‖ϕ‖∞) , (t, ϕ) ∈ [0, T]×X

for some constant C > 0. Let (Ω,F , F = (Ft)t∈[0,T],P, X) be a weak solution of the
following SDE

Xt = ξ +
∫ t

0
β(s, X)ds + σWt, ξ

d∼ ν, t ∈ [0, T]

where W is a Wiener process independent of ξ. Existence and uniqueness of a weak
solution follows from an application of Girsanov’s theorem and Beneš’ condition
(see Lemma A.0.1 and Lemma A.0.2). Moreover such laws turn out to be absolutely
continuous with respect to the Wiener measureWν (Lemma A.0.3). Then, we denote
by Q the set of laws θ ∈ P(X ) of all continuous processes X solving the SDE above.
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Lemma A.0.1 (Beneš’ condition). Let b : [0, T]×X → Rd be a progressively measurable
functional such that

|b (t, ϕ)| ≤ C (1 + ‖ϕ‖∞) , (t, ϕ) ∈ [0, T]×X .

Let σ ∈ Rd×d be a full rank matrix. Let (Ω,F , (Ft)t∈[0,T],P) be a filtered probability space

satisfying usual conditions, supporting a random variable ξ
d∼ ν and a Wiener process W

independent of ξ. Set

Xt
.
= ξ + σWt, t ∈ [0, T].

Then

Zt
.
= Et

(∫ ·
0

σ−1b(s, X)dWs

)
, t ∈ [0, T]

is a martingale.

Proof. We follow the proof of Corollary 3.5.16 in Karatzas and Shreve (1987). Pre-
cisely let t0 = 0 < t1 < . . . < tn−1 < tn = T be a partition of the interval [0, T]. Then
thanks to the sub-linearity of the drift∫ tn

tn−1

|b(s, X)|2 ds ≤ (tn − tn−1)C2 (1 + ‖X‖∞)
2 .

Let Yn .
= (Yn

t )t∈[0,T] be defined by

Yn
t

.
= e

1
4 (tn−tn−1)C2(1+|Xt|)2

.

Notice that Yn is a sub-martingale and that by Doob’s maximal inequality (Karatzas
and Shreve, 1987, Theorem 1.3.8.iv) we have E[‖Yn‖2

∞] ≤ 4E[(Yn
T )

2]. Moreover

E
[
(Yn

T )
2] ≤ E

[
e

1
2 (tn−tn−1)C2(1+2|ξ|2+2|σ|2|WT |2)

]
= E

[
e(tn−tn−1)C2|σ|2|WT |2

]
E
[
e

1
2 (tn−tn−1)C2(1+2|ξ|2)

]
where in the equality we have used the independence between ξ and W. To con-
clude, it is sufficient to choose (tk− tk−1), k = 1, . . . , n, sufficiently small, for instance
(tk − tk−1) < min{ 1

2C2|σ|2 , λ
C2 }, and to apply Corollary 3.5.14 in Karatzas and Shreve

(1987).

Corollary A.0.1 (Moments of the stochastic exponential). Under the assumptions of Lemma
A.0.1, the process Z = (Zt)t∈[0,T] has finite moments of any order p ∈ [1, ∞), i.e. E

[
Zp

T
]
<

∞ for all p ∈ [1, ∞).

Proof. The proof follows directly from Lemma A.0.1 combined with Corollary 2 in
Grigelionis and Mackevičius (2003).

Lemma A.0.2 (Existence and uniqueness of weak solutions). Let b : [0, T]×X → Rd be a
progressively measurable functional such that

|b (t, ϕ)| ≤ C (1 + ‖ϕ‖∞) , (t, ϕ) ∈ [0, T]×X .
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Let σ ∈ Rd×d a full rank matrix. Then there exists a weak solution (Ω,F , F = (Ft)t∈[0,T],P, X, W)
of

Xt = ξ +
∫ t

0
b(s, X)ds + σdWt, ξ

d∼ ν, t ∈ [0, T].

Additionally, this solution is unique in law.

Proof. The proof follows directly from Lemma A.0.1 and Girsanov’s theorem (see
Karatzas and Shreve, 1987, Propositions 5.3.6 and 5.3.10).

A.0.2 Characterization of the set Q

Lemma A.0.3 (Laws of processes with sub-linear drift). Let θ ∈ Q. Then θ ∼ Wν, i.e. θ is
equivalent to the Wiener measureWν.

Proof. The proof follows directly from Lemma A.0.1, Girsanov’s theorem and Bayes’
rule to ensure that Z−1 given by Lemma A.0.1 is still a martingale.

Before proceeding further, we recall that τX is the first exit time from O in the path
space, i.e.

τX(ϕ) = inf {t ≥ 0 : ϕ(t) 6∈ O} , ϕ ∈ X ,

where O ⊂ Rd satisfies Assumption (H4).

Lemma A.0.4 (Regularity results). Let θ ∈ Q. Let O ⊂ Rd satisfy Assumption (H4) and
let X be the identity process on X . Then

(a) τX < ∞, θ-almost surely.

(b) The mapping ϕ 7→ τX(ϕ), from X to [0, ∞], is θ-a.s. continuous.

(c) θ(τX = t) = 0 for all t ∈ [0, T].

(d) The mapping ϕ 7→ 1[0,τX(ϕ))(t), from X to R, is θ-a.s. continuous for all t ∈ [0, T].

(e) Properties (a)-(d) hold for O = (0, ∞)×d as well.

Proof. The proof is similar to the one of Lemma D.3 in Campi and Fischer (2018).
Notice that by Lemma A.0.3 each θ ∈ Q is equivalent to Wν. So, it is sufficient to
check properties (a)-(d) forWν.

(a) This is a consequence of the law of iterated logarithms (as time tends to in-
finity) and the fact that O is strictly included in Rd.

(b) This, again, is a consequence of the law of iterated logarithms (as time tends
to zero), the smoothness of O’s boundary, the non-degeneracy of σ and the fact that
O is strictly included in Rd (Kushner and Dupuis (2013), pp. 260-261).

(c) This is a consequence of the following relations

Wν(τX = t) ≤ Wν(Xt ∈ ∂O) = 0 for all t ∈ [0, T]

where in the last equality we use the fact that the Lebesgue measure of the bound-
ary of a convex subset of Rd is identically zero (Lang (1986)), and thatWν ◦ X−1

t is
absolutely continuous with respect to the Lebesgue measure for all t ∈ [0, T].
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(d) This is a consequence of properties (b) and (c) above.
(e) When O = (0, ∞)×d it turns out that

τX(ϕ) = min
i=1,...,d

τi(ϕ), ϕ ∈ X

where τi(ϕ)
.
= inf{t ∈ [0, T] : ϕi(t) ≤ 0}, for i ∈ {1, . . . , d} and ϕ ∈ X . Then

the conclusion follows from the continuity result in dimension d = 1 (Kushner and
Dupuis (2013), pp. 260-261) applied to each τi.

A.0.3 Additional convergence results

Lemma A.0.5 (Convergence in the 1-Wasserstein distance). Let E be a Polish space with
a complete metric dE. Let θ, (θn)n∈N ⊂ P1(E) such that W1(θ

n, θ) → 0 as n → ∞. Let
f : E→ R be a measurable function such that | f (x)| ≤ C(1 + dE(x, x0)) for all x ∈ E, for
some x0 ∈ E and for some constant C > 0. Let D f be the set of its discontinuity points and
assume θ(D f ) = 0. Then∫

E
f (x)θn(dx) −→

n→∞

∫
E

f (x)θ(dx).

Proof. The proof works as in Villani (2003), proof of Theorem 7.12.iv, the only dif-
ference being that here f can have discontinuities with θ(D f ) = 0. In particular,
we perform the same decomposition as in Villani (2003), i.e. f (x) = f 1

R(x) + f 2
R(x)

with f 1
R(x) .

= f (x) ∧ (C(1 + R)) and f 2
R(x) .

= f (x) − f 1
R(x) for all x ∈ E and for

some R > 0. We have that | f 1
R| is bounded by C(1 + R) and θ(D f 1

R
) = 0 since

D f 1
R
⊂ D f . Then all limits can be performed just as in Villani (2003), proof of Theo-

rem 7.12.iv.
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Appendix B

Technical results for mean-field
games with singular controls

In this appendix we collect a number of technical results for mean-field games with
singular controls.

Proof of Proposition 3.3.3. Fix (t, x, y) ∈ [0, T] × Σ. Take any admissible control
ζ ∈ Ξt,x(y) and define, for q ≥ 0, its right-continuous inverse (see, e.g., (Revuz
and Yor, 2013, Ch. 0, Sec. 4)) τζ(q) .

= inf{s ∈ [t, T) : ζs−t > q} ∧ T. The process
τζ .

= (τζ(q))q≥0 has increasing right-continuous sample paths, hence it admits left
limits τ

ζ
−(q)

.
= inf {s ∈ [t, T) : ζs−t ≥ q} ∧ T, for q ≥ 0. It can be shown that both

τζ(q) and τ
ζ
−(q) are (Ft+s)-stopping times for any q ≥ 0.

Let now q = z− y for z ≥ y and consider the function w defined as

w(t, x, y) .
= Φn(t, x)−

∫ 1

y
un(t, x, z)dz. (B.1)

Since τζ(z− y) is admissible for un(t, x, z) we have

w(t, x, y)−Φn(t, x) ≥ −
∫ 1

y
Et,x

[
c0e−rτζ (z−y) +

∫ τζ (z−y)

t
e−rs∂y f (X[n]

s , z)ds

]
dz.

In order to compute the integral with respect to dz we observe that for t ≤ s < T we
have

{ζs−t < z− y} ⊆ {s < τζ(z− y)} ⊆ {ζs−t ≤ z− y}

by right-continuity and monotonicity of the process s 7→ ζs−t. The left-most and
right-most events above are the same up to dz-null sets. Then, applying Fubini’s
theorem more than once we obtain

w(t, x, y)−Φn(t, x)

≥ Et,x

[
−
∫ 1

y
e−rτζ (z−y)c0 dz−

∫ T

t
e−rs

∫ 1

y
∂y f (X[n]

s , z)1{s<τζ (z−y)} dz ds
]

= Et,x

[
−
∫ 1

y
e−rτζ (z−y)c0 dz−

∫ T

t
e−rs

∫ 1

y
∂y f (X[n]

s , z)1{ζs−t<z−y}dz ds
]

= Et,x

[
−
∫ 1

y
e−rτζ (z−y)c0 dz−

∫ T

t
e−rs[ f (X[n]

s , 1)− f (X[n]
s , y + ζs−t)]ds

]
= Jn(t, x, y; ζ)−Φn(t, x),
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where the final equality uses the well-known change of variable formula (see, e.g.,
Revuz and Yor, 2013, Ch. 0, Proposition 4.9)∫ 1

y
e−rτζ (z−y)dz =

∫
[t,T]

e−rsdζs−t.

By the arbitrariness of ζ ∈ Ξt,x(y) we conclude wn(t, x, y) ≥ vn(t, x, y).
For the reverse inequality we take ζs = ξ

[n]∗
t+s as defined in Lemma 3.3.2. Recall

that
τ
[n]
∗ (t, x, z) = inf

{
s ∈ [0, T − T] : z ≤ cn(t + s, X[n]; t,x

t+s )
}

.

and since s 7→ cn(s, X[n]; t,x
s )− z is upper semi-continuous, it attains a maximum over

any compact interval in [t, T). In particular, for s ∈ [t, T)

τ
[n]
∗ (t, x, z) ≤ s ⇐⇒ there exists θ ∈ [t, t + s] such that cn(θ, X[n]; t,x

θ ) ≥ z.

For any y < z, the latter is also equivalent to

ξ
[n]∗
t+s = sup

0≤u≤s

(
cn(t + u, X[n]; t,x

t+u )− y
)+
≥ z− y

and, therefore, it is also equivalent to τ
ξ [n]∗

− (z− y) ≤ s. Since s ∈ [t, T] was arbitrary

the chain of equivalences implies that τ
ξ [n]∗

− (z− y) = τ
[n]
∗ (t, x, z), P-a.s. for any z > y.

However, we have already observed that for a.e. z > y it must be τ
ξ [n]∗

− (z − y) =

τξ [n]∗(z− y), P-a.s., hence τξ [n]∗(z− y) = τ
[n]
∗ (t, x, z) as well. The latter, in particular

implies

w(t, x, y)−Φn(t, x) = −
∫ 1

y
Et,x

[
c0e−rτξ[n]∗ (z−y) +

∫ τξ[n]∗ (z−y)

t
e−rs∂y f (X[n]

s , z)ds
]
dz,

by optimality of τ
[n]
∗ (t, x, z) in un(t, x, z). Repeating the same steps as above we then

find
w(t, x, y) = Jn(t, x, y; ξ [n]∗),

which combined with vn ≤ w concludes the proof. �

Proof of Lemma 3.3.5. We have C [n] ⊂ C [n+1] ⊂ C because the sequence (cn)n≥0 is
decreasing. Then, the sequence (τ

[n]
∗ )n≥0 is increasing and limn→∞ τ

[n]
∗ ≤ τ∗, Pt,x,y-

a.s. for any (t, x, y) ∈ [0, T] × Σ. In order to prove the reverse inequality, first we
observe that t 7→ X[k]

t (ω) is continuous for all ω ∈ Ω \ Nk with P(Nk) = 0, for all
k ≥ 0. Moreover, t 7→ Xt(ω) is continuous for all ω ∈ Ω \ N with P(N) = 0. Let us
set N0

.
= (∪kNk) ∪ N and Ω0

.
= Ω \ N0 so that P(Ω0) = 1. Fix (t, x, y) ∈ [0, T]× Σ

and ω ∈ Ω0. Let δ > 0 be such that τ∗(ω) > δ (if no such δ exists, then τ∗(ω) = 0 and
τ
[n]
∗ (ω) ≥ τ∗(ω) for all n ≥ 0). Then, since s 7→ u(t + s, X̃t+s(ω), y) is continuous,

there exists ε > 0 such that

sup
0≤s≤δ

(
u(t + s, X̃t+s(ω), y)− c0

)
≤ −ε. (B.2)
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At the same time we also notice that s 7→ un(t + s, X[n]
t+s(ω), y) is continuous and

moreover

un(t + s, X[n]
t+s(ω), y) ≥ un+1(t + s, X[n]

t+s(ω), y) ≥ un+1(t + s, X[n+1]
t+s (ω), y)

by monotonicity of the sequences (un)n≥0 and (X[n])n≥0 and of the map x 7→ un(t, x, y).
So we have that un(t+ ·, X[n]

· (ω), y) is a decreasing sequence of continuous functions
of time and since the limit is also continuous, the convergence is uniform on [0, δ].
Then, there exists n0 ≥ 0 sufficiently large that

sup
0≤s≤δ

∣∣∣u(t + s, X̃t+s(ω), y)− un(t + s, X[n]
t+s(ω), y)

∣∣∣ ≤ − ε

2
, for n ≥ n0.

Using this fact and Equation (B.2) we have

sup
0≤s≤δ

(
un(t + s, X[n]

t+s(ω), y)− c0

)
≤ − ε

2

and τ
[n]
∗ (ω) > δ, for all n ≥ n0. Since δ > 0 was arbitrary, we obtain

lim
n→∞

τ
[n]
∗ (ω) ≥ τ∗(ω).

Recalling that ω ∈ Ω0 was also arbitrary we obtain the desired result. �

Proof of Lemma 3.4.1. The proof is divided in two steps: first we show that (t, x, y) 7→
τ∗(t, x, y) is lower semi-continuous and then that it is upper semi-continuous. Both
parts of the proof rely on continuity of the flow (t, x, s) 7→ X∗; t,x

t+s (ω). The latter holds
for all ω ∈ Ω \ N where N is a universal set with P(N) = 0. For simplicity, in the
rest of the proof we just write X instead of X∗.

Step 1. (Lower semi-continuity). This part of the proof is similar to that of Lemma
3.3.5. Fix (t, x, y) ∈ [0, T]× Σ and take a sequence (tn, xn, yn)n≥1 that converges to
(t, x, y) as n → ∞. Denote τ∗ = τ∗(t, x, y) and τn

.
= τ∗(tn, xn, yn) and fix an arbitrary

ω ∈ Ω \ N. If (t, x, y) ∈ S then τ∗(ω) = 0 and lim infn τn(ω) ≥ τ∗(ω) trivially. Let
δ > 0 be such that τ∗(ω) > δ. Then by continuity of the value function u and of the
trajectory s 7→ Xt,x

t+s(ω) there exists ε > 0 such that

sup
0≤s≤δ

(
u(t + s, Xt,x

t+s(ω), y)− c0
)
≤ −ε.

Thanks to continuity of the stochastic flow there is no loss of generality in assuming
that (tn + s, Xtn,xn

tn+s (ω), yn) lies in a compact K for all n ≥ 1 and s ≤ δ. Then there
exists nε > 0 such that

sup
0≤s≤δ

∣∣u(t + s, Xt,x
t+s(ω), y)− u(tn + s, Xtn,xn

tn+s (ω), y)
∣∣ ≤ ε/2

for all n ≥ nε (by uniform continuity). Combining the above we get

sup
n≥nε

sup
0≤s≤δ

(
u(tn + s, Xtn,xn

tn+s (ω), yn)− c0
)
≤ −ε/2,

which implies τn(ω) > δ for all n ≥ nε. Hence lim infn τn(ω) > δ and since δ and ω
were arbitrary we conclude lim infn τn(ω) > τ∗(ω), for all ω ∈ Ω \ N.
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Step 2. (Upper semi-continuity). For this part of the proof we need to introduce
the hitting time σ◦∗ to the interior of the stopping set S◦ .

= int(S) (which is not empty
thanks to the argument of proof of Lemma 3.3.4), i.e.,

σ◦∗ (t, x, y) .
= inf{s ∈ (0, T − t] : (t + s, Xt,x

t+s, y) ∈ S◦}.

Assume for a moment that

Pt,x,y(τ∗ = σ◦∗ ) = 1 for all (t, x, y) ∈ [0, T]× Σ. (B.3)

Then we can invoke Lemma 4 in De Angelis and Peskir (2020) (see Eq. (3.7) therein)
to conclude that (t, x, y) 7→ σ◦∗ (t, x, y) is upper semi-continuous. Hence, given (t, x, y) ∈
[0, T]× Σ and any sequence (tn, xn, yn)n≥1 converging to (t, x, y) as n → ∞, setting
τn = τ∗(tn, xn, yn) and σ◦n = σ◦∗ (tn, xn, yn), we have τn(ω) = σ◦n (ω) for all ω ∈ Ωn
with P(Ωn) = 1 for each n ≥ 1; therefore letting Ω̄ .

= ∩n≥1Ωn we have P(Ω̄) = 1
and

lim sup
n→∞

τn(ω) = lim sup
n→∞

σ◦n (ω) ≤ σ◦∗ (ω) = τ∗(ω),

with τ∗ = τ∗(t, x, y) and σ◦∗ = σ◦∗ (t, x, y), for all ω ∈ Ω̄ ∩ {τ∗ = σ◦∗} where P(Ω̄ ∩
{τ∗ = σ◦∗}) = 1.

Let us now prove Equation (B.3). We introduce the generalised left-continuous
inverse of x 7→ c(t, x), i.e.

b(t, y) = sup{x ∈ R : c(t, x) < y}.

Then it is easy to check that t 7→ b(t, y) is non-increasing. This implies that Pt,x,y(τ∗ =
σ◦∗ ) = 1 for all (t, x, y) ∈ S◦ by continuity of the paths of X. Moreover, for (t, x, y) ∈
C we have σ◦∗ = τ∗ + σ◦∗ ◦ θτ∗ , where {θt, t ≥ 0} is the shift operator, i.e., (t, Xt(ω)) ◦
θs = (t + s, Xt+s(ω)). Then, τ∗ = σ◦∗ if and only if σ◦∗ ◦ θτ∗ = 0. Since σ◦∗ ◦ θτ∗

is the hitting time to S◦ after the process (t, X, y) has reached the boundary ∂C of
the continuation set, the previous condition is implied by Pt,x,y(σ◦∗ = 0) = 1 for
(t, x, y) ∈ ∂C. So we now focus on proving the latter.

We claim that
S◦ = {(t, x, y) : x > b(t, y)}

and will give a proof of this fact in Lemma B.0.1 below. Then by the law of iterated
logarithm and non-increasing t 7→ b(t, y) we immediately obtain Pt,x,y(σ◦∗ = 0) = 1
for (t, x, y) ∈ ∂C because (t, x, y) ∈ ∂C if and only if x ≥ b(t, y). �

Lemma B.0.1. We have

S◦ = {(t, x, y) : x > b(t, y)}. (B.4)

Proof. While the claim may seem obvious, since y 7→ b(t, y) is non-decreasing, one
should notice that for it to hold we must rule out the case b(t, y) < b(t, y+) for all
(t, y) ∈ [0, T] × [0, 1). Indeed, if the latter occurs for some (t0, y0) we have {t0} ×
(b(t0, y0), b(t0, y0+))× {y0} ∈ ∂C and Equation (B.4) fails.

Here we use an argument by contradiction inspired to De Angelis (2015). As-
sume that there exists (t0, y0) ∈ [0, T]× [0, 1] such that x0

1
.
= b(t0, y0) < b(t0, y0+) =:

x0
2. Then we proceed in two steps.
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Step 1. (A PDE for the value function). Since (t, x) 7→ a(x, m∗(t)) is not continu-
ous in general we cannot immediately apply standard PDE arguments that guaran-
tee that

∂tu +
σ2( · )

2
∂xxu + a( ·, m∗( · ))∂xu− ru = −∂y f , for (t, x, y) ∈ C

(see Peskir and Shiryaev, 2006, Chapter III). However, given δ > 0 and letting Oδ
.
=

(t0− δ, t0)× (x0
1, x0

2) we haveOδ× (y0, y0 + δ) ⊂ C. Moreover, with no loss of gener-
ality we can assume δ > 0 sufficiently small and such that m∗−(t)

.
= limε↓0 m∗(t− ε)

is continuous on (t0 − δ, t0] (recall that m∗ is non-decreasing and right-continuous).
Since m∗ is non-decreasing it has at most countably many jumps on any compact
and therefore replacing m∗ with m∗− in the dynamics of X Equation (3.37) (recall that
m∗ = m̃) we obtain a new process X′ which is indistinguishable from the original
one. Then, starting from (t, x, y) ∈ Oδ × (y0, y0 + δ) and letting τO be the first exit
time of (t + s, X′t+s) from Oδ we have that

s 7→ e−r(s∧τO)u(t + s ∧ τO, X′s∧τO , y) +
∫ s∧τO

0
e−ru∂y f (X′t+u, y)du

is a continuous martingale. By standard arguments (see Peskir and Shiryaev, 2006,
Chapter III) this translates to the fact that for each y ∈ (y0, y0 + δ) the value function
u( · , y) is the unique solution in C1,2(Oδ) ∩ C(Oδ) of the boundary value problem

∂tw +
σ2( · )

2
∂xxw + a( ·, m∗−( · ))∂xw− rw = −∂y f ( · , y), on Oδ (B.5)

with w( · ) = u( · , y) at ∂POδ, where ∂POδ is the parabolic boundary of Oδ (notice
that now the claim is correct because (t, x) 7→ a(x, m∗−(t)) is continuous in Oδ).

Step 2. (Contradiction). Thanks to the result in step 1 we can now find a contra-
diction. Pick an arbitrary ϕ ∈ C∞

c ((x0
1, x0

2)), ϕ ≥ 0 and multiply Equation (B.5) by ϕ
(with w( · ) = u( · , y)). Since t 7→ u(t, x, y) is non-decreasing we have ∂tu( · , y) ≥ 0
on Oδ and therefore, for each y ∈ (y0, y0 + δ) we have

ϕ( · )
[

σ2( · )
2

∂xxu( · , y) + a( · , m∗−( · ))∂xu( · , y)− ru( · , y)
]
≤ −ϕ( · )∂y f ( · , y), on Oδ.

In the inequality above we fix t0 and integrate over (x0
1, x0

2). By using integration-
by-parts formula we obtain1

∫ x0
2

x0
1

( 1
2 ∂xx

[
σ2(x)ϕ(x)

]
− ∂x

[
a(x, m(t0))ϕ(x)

]
− rϕ(x)

)
u(t0, x, y)dx

≤ −
∫ x0

2

x0
1

∂y f (x, y)ϕ(x)dx.

1Notice that the argument seems to require σ ∈ C2(R). However, given that the final estimate in
Equation (B.6) does not depend on σ we can apply a smoothing of σ, if necessary, and then pass to the
limit at the end.
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Now, letting y ↓ y0, using dominated convergence and u(t0, x, y0) = c0 for x ∈
(x0

1, x0
2), and undoing the integration by parts we obtain

∫ x0
2

x0
1

(∂y f (x, y0)− rc0)ϕ(x)dx ≤ 0. (B.6)

Hence ∂y f (x, y0)− rc0 ≤ 0 for all x ∈ (x0
1, x0

1) by arbitrariness of ϕ ≥ 0 and conti-
nuity of x 7→ ∂y f (x, y0)− rc0. However, since S ⊆ [0, T]× (Σ \ H) (recall Equation
(3.20)), then it must be ∂y f (x, y0) − rc0 = 0 for all x ∈ (x0

1, x0
1), which contradicts

∂xy f > 0 (Assumption 3.2.2-(iii)).
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