
Numerical Methods for Finite Temperature

Effects in Quantum Field Theory

A thesis submitted to the

College of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements

for the degree of Master of Science

in the Department of Physics and Engineering Physics

University of Saskatchewan

Saskatoon

By

Siyuan Li

©Siyuan Li, December 2021. All rights reserved.

Unless otherwise noted, copyright of the material in this thesis

belongs to the author.

Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this thesis in

any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department

or the Dean of the College in which my thesis work was done. It is understood that any

copying or publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

i

Disclaimer

Reference in this thesis to any specific commercial products, process, or service by trade

name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement,

recommendation, or favoring by the University of Saskatchewan. The views and opinions of

the author expressed herein do not state or reflect those of the University of Saskatchewan,

and shall not be used for advertising or product endorsement purposes.

Requests for permission to copy or to make other uses of materials in this thesis in whole or

part should be addressed to:

Department of Physics & Engineering Physics

University of Saskatchewan

116 Science Place, Rm 163

Saskatoon, SK S7N 5E2

Canada

OR

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9 Canada

ii

Abstract

The basic structure of quantum field theory that is used to describe the Standard Model

of fundamental interactions of nature is usually formulated for zero temperature. However,

the effects of temperature are extremely important for understanding a number of physical

processes such as the electroweak phase transition and quark-gluon plasma. The extension

of quantum field theory to non-zero temperature is achieved by modifying the propagators

in loop integrations represented by Feynman diagrams. The Python-language-based package

pySecDec is designed for numerical calculation of dimensionally regulated loop integrals.

The research goal for my thesis is to develop a methodology to numerically calculate loop

integrations for finite temperature effects in quantum field theory by adapting pySecDec

functions and implementing them for such purpose. In this thesis, the methodology is used

on one-loop self-energy to achieve numerical calculation results. The pySecDec methodology

is validated in comparison to existing analytic results for this topology.

iii

Acknowledgements

This thesis is a brief presentation of my first academic journey. I received tremendous

help from some of the kindest person I know.

Professor Steele, one of my supervisors, who have supported and mentored me not only

in academia but also in life, have contributed a great amount in this work.

Professor Harnett, who offers me the opportunity to this research field and this institution,

without whom the code in this research would never worked. I will keep the “pipeline”

burning.

My mother, who have been giving me everything she can and everything I have.

Professor Chizma and professor Cooper, who kindly helped me to get this position as

a MSc student and this gruesome life as a young scientist. I will forever remember that I

wouldn’t be able to start my academia journey without you.

My dear fellow young researcher Bábara, with whom we shared the strangest but awesome

connection.

And thank you to Debbie and Marj, my “moms” away from home, who have taken care

of everything other than the science that no one understands.

I would also like to express my gratitude towards Jason, Zhi Wei, Robin, Kaden, Thamirys,

Alex, Bernard, Bardia, Yueying, Weiwen, my family, Amanda and all those who offered me

a hand at my lows. All of you have given me strength and power along the way.

This thesis is powered by all the support and love I have received. And I hope it will

bring not only intellectual contribution but also humanity to the world.

iv

Contents

Permission to Use i

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

List of Abbreviations x

1 Introduction to Thermal Field theory 1
1.1 Quantum Field Theory . 2

1.1.1 Path Integrals . 2
1.1.2 Wick Rotation . 6

1.2 Thermal Field Theory . 6
1.2.1 Matsubara Formalism . 8
1.2.2 Finite-temperature Correlation Functions 12

2 pySecDec Benchmarking for Feynman Diagrams at Zero Temperature 14
2.1 TBI Massless Integral . 15
2.2 TBI Massive Case . 18

2.2.1 Cutting Rules . 21

3 Methodology 24
3.1 The Cut-off Method . 24
3.2 Large n Behavior . 25
3.3 The ‘Reverse’ Wick Rotation . 28
3.4 The Subtraction . 30

4 Numerical Calculation of the
Self-Energy Topology at Finite Temperature 35
4.1 Calculations in d = 2 and d = 3 Spacetime 35

4.1.1 Benchmarking in the Lower Dimensions 36
4.1.2 Relationship with Respect to External Momenta 37
4.1.3 Relationship with Respect to Temperature 39
4.1.4 Small Temperature Behavior in 2-dimensional Spacetime 42

4.2 Calculations in d = 4 Spacetime . 44

5 Conclusion 49

v

5.1 Future Directions in Field Theory . 50

A TBI Comparison with massive TBI Integrals 56

B Integration Code and Results for Testing
Convergence in Πs 57

C Integration Code for Benchmarking Π0 Cut-off in 2-dimensional Spacetime 62

D Integration Code for Calculating the relation between Πs and external
momentum p
in 2-dimensional Spacetime 67

E Integration Code for Calculating the relation between Πs and Tempera-
ture Factor β
in 2-dimensional Spacetime 70

vi

List of Figures

1.1 The functional integral Eq. (1.1) sums over all paths q(t) connecting (x0, t0)
to (xf , tf). 3

1.2 The Wick rotation of p0 contour from Minkowski momentum (real axis) to
Euclidean momentum (imaginary axis). 7

1.3 The integration contour C of thermal time for the density operator e−βH in
the complex time plane. 9

1.4 Simplified contour C of thermal time (taking initial thermal time ti −→ 0). . . 10
1.5 The one-loop self-energy Feynman diagram with scalar fields. 12

2.1 One-loop self-energy Feynman diagram (TBI) with scalar fields. 14
2.2 Comparison between the ε−1 , ε0 and ε1 coefficients comparison graphs for

analytical and numerical results for the one-loop self-energy massless integral
Eq. (2.3). The vertical axes labels represent terms of the corresponding coeffi-
cients (e.g., the coefficients comparison of the real part of ε−1 is shown in the
top-left graph). The errors between the analytical and numerical results are at
the scale of 10−4, while the uncertainties from the numerical results are at the
scale of 10−2. The errors are much smaller than the numerical uncertainties. 17

2.3 Comparisons between the ε−1, ε0 and ε1 coefficients of analytical and numerical
results for the one-loop self-energy integral Eq. (2.8) (m1 = 1.27GeV, m2 = 0).
Similar to Fig. 2.2, the errors are magnitudes smaller than the numerical
uncertainties. 19

2.4 Comparison between the ε−1, ε0 and ε1 coefficients of analytical and numerical
results for the one-loop self-energy integral Eq. (2.9) (m1 = m2 = 1.27GeV).
Similar to Fig. 2.2, the errors are magnitudes smaller than the numerical
uncertainties. 20

2.5 Examples of the loop integrals that have been calculated using pySecDec . . 21
2.6 Four-point, one-loop topology with equal internal masses 22
2.7 The ε0 coefficient for the four-point, one-loop Feynman integral with equal

propagator masses (m = 4.18GeV) along with an expanded plot on the RHS.
The imaginary part remains zero until q2 ' 26.21GeV2. 22

3.1 The pySecDec-computed numerical finite-temperature correlation function terms
an (blue) are compared with the approximate value an ≈ 1

32|n|π2 by calculat-
ing the difference ΠT − an as a function of n. The finite-temperature terms
were calculated with the parameter values of m1 = m2 = 1.1, pE0 = 2π

β
, β =

0.3,p2 = 5. 27
3.2 The numerical calculation results from pySecDec of zero-temperature cor-

relation function Π0 (blue), finite-temperature correlation function ΠT (yel-
low) and finite-temperature correction Πs (green). The parameter values are
m1 = 1.1,m2 = 2, pE0 = 2π

β
, β = 0.3,p2 = 1 and maximum |n| up to 300. . . . 32

vii

3.3 The plot between ln(Cn) and ln(n) shows a linear relation with a slope −γ ≈
−3.57 corresponding to Cn ≈ a

nγ . The data in the figure was generated with
the same parameters as in Fig. 3.2. 33

4.1 Comparing the numerical calculation results from the pySecDec-implemented
methodology Eq. (3.28) and direct subtractions from complete pySecDec re-
sults of both zero and finite-temperature correlation functions at d = 2 space-
time (with the parameter values of m1 = 1.1,m2 = 1.2, pE0 = 2π/β, β =
0.1, p1 = 1.3 and maximum |n|, i.e., the parameter A up to 100. The Python
code including pySecDec files that were coded to perform the comparison cal-
culations in this figure is included in Appendix C, along with the MATHEMATICA
notebook for the plot analysis. 37

4.2 Comparing the numerical calculation results from pySecDec-implemented method-
ology and direct subtractions from complete pySecDec results of both zero and
finite-temperature correlation functions at d = 3 spacetime (with the parame-
ter values of m1 = 1.1,m2 = 1.2, pE0 = 6, β = 0.1,p = (1.3, 1.4) and maximum
|n| up to 100 (i.e., the parameter A)). 38

4.3 The effects of the external momentum on the d = 2 finite-temperature cor-
rections Eq. (3.1) of the one-loop self-energy topology (with the parameter
values m1 = 1.1,m2 = 1.2, β = 0.3, pE0 and p varying in the range [−20, 20]
and maximum |n| at 100 (i.e., the parameter A)). The python code including
pySecDec program that was coded to perform the comparison calculations in
this figure is included in Appendix D, along with the MATHEMATICA notebook
for the plot analysis. 39

4.4 The effects of the external momentum on the d = 3 finite-temperature correc-
tion Πs (Eq. (3.1)) of the one-loop self-energy topology (with same parameter
values as in Fig. 4.3). 40

4.5 The finite-temperature correction Πs plotted with respect to β (left) and
1/β (right) respectively for d = 2 spacetime. The slope on the right plot
is approximately 0.00199939. The parameters used in the calculation are
m1 = 1.1,m2 = 1.2, p = (7, 8, 0, 0). The python code including pySecDec
program that was coded to perform the comparison calculations in Fig. 4.5 is
included in Appendix E, along with the MATHEMATICA notebook for the plot
analysis. 41

4.6 The plot of the finite-temperature correction Πs as a function of β (left) and
1/β (right) at d = 3 spacetime. The slope on the right plot is approximately
0.00130617. The parameters used in the calculation are m1 = 1.1,m2 =
1.2, pµ = (7, 8, 9, 0). 42

4.7 A plot of the finite-temperature correction Πs as a function of 1/β at fixed
pE0 in d = 2 spacetime. The parameters used in the calculation are m1 =
1.1,m2 = 1.2, pE0 = 7, p1 = 8, |n|max = A = 1000. 43

viii

4.8 The plot of the finite-temperature correction Πs with respect to 1/β in d =
2 spacetime. The parameters used in the calculation are m1 = 1.1,m2 =
1.2, β = 2π

7
, pE0 = 7l, p1 = 8, |n|max = A = 100 and l are integers. The discrete

restriction on pE0 (red dots) gives a relation with Πs (orange line) without the
oscillation-like behavior. 45

4.9 The effects of the external momentum pE0 and |p| on the d = 4 finite-temperature
corrections Eq. (3.1) of the one-loop self-energy topology (with the parameter
values of m1 = 1.5, m2 = 1.2, β = 0.3, pE0 and where ±|p| varies in the range
[−10, 10] and maximum |n| up to 1000 (i.e., the parameter A)). 46

4.10 Above we have plotted the finite-temperature correction Πs with respect to
β (left) and 1/β (right) respectively for d = 4 spacetime. The slope in the
right plot is approximately 0.00302586. The intercept of the right plot is
approximately 0.0314978. The parameters used are m1 = 1.1, m2 = 1.2,
p = (7, 8, 9, 6). Truncation at maximum |n| is up to 100 (i.e., the parameter
A = 100) . 47

4.11 The plot shows the Πs behavior at small temperature. The finite-temperature
correction Πs goes to zero as temperature goes to zero. The parameters used
are the same as in Fig. 4.10. 48

5.1 On the LHS is a plot of the finite-temperature correction Πs with respect
to T = 1/β at d = 4 spacetime for the self-energy topology. On the RHS
is the log-log plot for the Πs vs T relation. The slope on the right plot
is approximately 1.99946. The mass parameter used in the calculation is
m = 1.1. The maximum |n| is up to 100 (i.e., the parameter A = 100). . . . 51

5.2 Two-Point, two-loop Feynman diagram with scalar fields. 52

A.1 ε−1 , ε0 and ε1 coefficients comparison graphs for analytical and numerical
results for the one-loop self-energy integral (m1 = m2 = 4.18GeV). 56

ix

List of Abbreviations

LHS Left-hand Side

RHS Right-hand Side

VEV Vacuum Expectation Value

QCD Quantum Chromodynamics

QFT Quantum Field Theory

PI Path Integral

x

1 Introduction to Thermal Field theory

Most of the basic monographs and interest in quantum field theory (QFT) have been

based on classical mechanics, classical electrodynamics, and quantum mechanics. The ther-

mal background for ordinary QFT is normally considered as zero temperature. There has

been growing interest over the years in many physical processes that are affected by temper-

ature. One of the examples would be the thermal equilibrium background for particles in

the early universe. This thermal bath provides particles with their temperature-related typ-

ical energy [1]. Other examples include the electroweak phase transition [2], the quark-gluon

plasma being studied at the large hadron collider (LHC), and gravitational wave signals from

strong first-order phase transitions in extensions of the Standard Model (e.g., hidden sector

dark matter models) [3, 4].

But before we dig into field theories at finite temperature, we will first start with an

introduction to QFT and some of its results that are relevant to this thesis in Section 1.1.

Chapter 1 will move on to the concept of thermal field theory and the formulation of the

one-loop self-energy topology. With the basic theory and formula introduced, we will per-

form QFT benchmarking calculations using the numerical program we chose (pySecDec) in

Chapter 2. After the Chapter 2 study confirming that the computation program pySecDec

is suitable and reliable for our topic, Chapter 3 will show the methodology development for

thermal field theory correlation function calculations of the one-loop self-energy topology.

Chapter 4 will then show the numerical computational results using our methodology pro-

posed in Chapter 3 with respect to multiple situations and physical variables. Finally, a

conclusion will be presented in Chapter 5 for the complete thesis and possible future appli-

cations.

1

1.1 Quantum Field Theory

In the theories of elementary particle interactions, quantum field theory treats subatomic

processes as field interactions instead of quantization of particles as in quantum mechanics.

Emerging from the Lagrangian, rises the Feynman diagram which provides a diagrammatic

method to analyze the mathematical expressions of subatomic particle interactions, also

known as the Feynman rules. Along with the Feynman rules, Feynman diagrams provide a

pictorial expression for these amplitudes in particle physics. This thesis will be mostly based

on the Feynman integral of two-point, one-loop Feynman diagram topologies.

The analytic calculations for loop topologies are quite difficult [5], but the numerical side

of loop topology calculation techniques is also developing [6] and providing a promising field of

loop integral calculation to the cases that are beyond the limitation of analytic methods. This

thesis develops and implements new techniques that use pySecDec, which will be introduced

more in detail in Chapter 3, to adapt these numerical approaches to finite temperature. One

of the motivations of this numerical algorithm development is to compute finite-temperature

correlation functions that occur in quantum chromodynamics (QCD). The QCD sum rules

(or Shifman–Vainshtein–Zakharov sum rules) is a method that relates the theory of quarks

to the theory of how hadrons interact since the conventional perturbative techniques do not

apply to the strong coupling nature of hadrons. The basic concept of QCD sum rules is called

duality. If we account for all QCD interactions, that will include all hadron interactions. And

with understanding and experience from this research, we hope we can extend the scope of

this numerical method to more cases in QCD and contribute to the study of QCD sum rules

at finite temperature.

1.1.1 Path Integrals

The basic concepts of Feynman rules can be introduced from many perspectives. The path-

integral (PI) formalism is one of the most common ways to show how Feynman integrals are

constructed. Following the train of thought from Ref. [7], we can discuss the foundational

structure of the loop integral that this thesis is focusing on. In quantum mechanics, the

2

x

t

x0 xf

t0

tf q(t)

Figure 1.1: The functional integral Eq. (1.1) sums over all paths q(t) connecting
(x0, t0) to (xf , tf).

transition matrix element between initial and final states is represented as

〈xf ; tf | x0; t0〉 = N

∫
[dq(t)] exp

[
i

∫
L (q, q̇) dt

]
, (1.1)

where
∫
[dq(t)] is the integral over trajectories q(t) connecting the initial state (x0, t0) to

the final state (xf , tf), N is the normalization factor, L (q, q̇) is the Lagrangian, and the

expression in the exponential is the action S. The right hand side (RHS) of Eq. (1.1) is the

PI formalism of this transition matrix element. We can see that this fundamental quantity

is now written in the form of a functional integral. Equation (1.1) sums up all the possible

paths from the initial state to the final state as shown in Fig. 1.1.

Now moving on to field theory, we have a similar representation. Analogous to classical

physics, we have classical mechanics and classical field theory. Equation (1.1) transforms into

a vacuum-to-vacuum transition amplitude

〈0 |O| 0〉 = N

∫
[dφ]O exp

[
i

∫
L (φ, ∂µφ) d

4x

]
, (1.2)

3

where
∫
[dφ] means integration over all field configurations and O is any combination of field

operators. We can therefore write PI formula Eq. (1.2) as a field theory Green’s function

〈0 |T (φ(x1)φ(x2)...φ(xn)) | 0〉 = N

∫
[dφ]φ(x1)φ(x2)...φ(xn) exp

[
i

∫
L (φ, ∂µφ) d

4x

]
, (1.3)

where T is the time-ordering symbol1. Then, the generating functional Z [J] that stands for

the vacuum-to-vacuum transition amplitude with an external source J(x) can be written as

Z [J] = N

∫
[dφ] exp

[
i

∫
L(φ(x), ∂µφ(x)) d4x+ i

∫
J(x)φ(x) d4x

]
. (1.4)

From Eq. (1.4) we can easily see

∂Z [J]

i ∂J(x)

∣∣∣∣
J=0

= N

∫
[dφ]φ(x) exp

[
i

∫
L(φ(z), ∂µφ(z))d4z

]
. (1.5)

The RHS of Eq. (1.5) is the expectation value of φ(x) which can be seen from Eq. (1.3):

∂Z [J]

i ∂J(x)

∣∣∣∣
J=0

= 〈0|T (φ(x)) |0〉 . (1.6)

Generalizing, we have

∂Z [J]

i ∂J(x1)

∂Z [J]

i ∂J(x2)
...

∂Z [J]

i ∂J(xn)

∣∣∣∣
J=0

= 〈0|T (φ(x1)φ(x2)...φ(xn)) |0〉. (1.7)

With Eq. (1.7) in mind, we will now look at the λφ4 theory,

L(φ, ∂µφ) = L0(φ, ∂µφ) + Lint(φ), (1.8)

in which
L0(φ, ∂µφ) =

1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2 + iζφ2, for free field

Lint(φ) = − λ

4!
φ4,

(1.9)

where ζ → 0+. The term iζφ2 gives the path integral a damping factor to ensure convergence

1To avoid confusion with the time-ordering symbol T , T will be used to represent temperature, as outlined
later in the thesis.

4

of Eq. (1.4) in Minkowski space. This term is related to the Wick rotation which will

be discussed later. Between the two parts in Eq. (1.9), we can evaluate the part of Z[J]

corresponding to L0 (free field) exactly

Z0[J] = exp

[
i

∫
d4x d4y J(x)∆(x− y)J(y)

]
, (1.10)

∆(x− y) =

∫
d4k

(2π)4
eik·(x−y)

k2 −m2 + iζ
, (1.11)

where the Euclidean four-momentum k = (k0,k). The quantity ∆(x − y) is essentially the

inverse of the operator ∂2
µ − m2 for the free field Lagrangian. Now, the interacting part of

the Lagrangian can be written as

Z[J] = exp

∫

d4xLint

(
∂

i∂J(x)

)
︸ ︷︷ ︸

φ(x)

Z0[J], (1.12)

where the interaction Lagrangian is represented as

Lint = − λ

4!
φ4 → − λ

4!

∂4

∂J4(x)
. (1.13)

Returning back to the derivation of the propagator, we can find the functional differentiation

by simply using derivative on the external source function J first.

∂J(y)

∂J(x)
= δ(x− y). (1.14)

Then the free-field Feynman propagator can be derived combining Eqs. (1.10) and (1.14):

〈0|T (φ(x1)φ(x2)) |0〉 =
1

i

∂

∂J(x1)

1

i

∂

∂J(x2)
Z0[J]

∣∣∣∣
J=0

= ∆(x1 − x2).

(1.15)

Feynman rules for vertices can easily be obtained from Eqs. (1.10) and (1.12). Path Integral

quantization formalism gives an elegant derivation of Feynman rules from the perspective of

5

quantum physics.

1.1.2 Wick Rotation

The essential purpose of the Wick rotation is to adapt a known solution in Euclidean space

to a similar problem in Minkowski space. In ordinary QFT, Wick rotations are also used

to avoid poles along integration contours. The poles will be located at p0 = ±(Ep − iζ),

displaced above and below the real axis [8] as shown in Fig. 1.2.

In the more general situation of QFT, the Wick rotation substitutes the temporal com-

ponent of the Minkowski space pM0 with ipE0 in Euclidean space. That turns the norm square

of the four-momentum from

pE
2 = pE0

2
+ p2 (1.16)

into

pM
2 = pM0

2 − p2 = −pE0
2 − p2 = −pE

2, (1.17)

where pE is the four momentum in Euclidean space and similarly, pM is the four momentum

in Minkowski space.

From Fig. 1.2, we can see that the rotated contour avoids the poles. As a systematic

way of working with Feynman integrals, the Wick rotation provided inspiration to the thesis

methodology since the pySecDec calculation tool we use works on Minkowski, as opposed

to Euclidean integrals. Later in Section 3.3, we will come back to this application of Wick

rotations.

1.2 Thermal Field Theory

In this section, we will introduce the finite-temperature QFT following the treatment of

Refs. [9] and [1].

In order to develop a finite-temperature QFT, or thermal field theory, it is beneficial

to look at a point in a large thermal system. Since there will be energy exchange with its

thermal surrounding, the energy of this point fluctuates. This thermal reservoir situation

can be described using the canonical ensemble. In equilibrium statistical thermodynamics,

6

p0

ip0

−Ep

Ep

Figure 1.2: The Wick rotation of p0 contour from Minkowski momentum (real axis)
to Euclidean momentum (imaginary axis).

the general density matrix for a canonical ensemble can be defined as

ρ(β) = e−βH, (1.18)

where β represents the inverse of the equilibrium temperature2 and H is the Hamiltonian

of the particular ensemble (for a canonical ensemble, the dynamical Hamiltonian H = H).

Then the partition function of the system can be defined as [9]

Z(β) = Tr ρ(β) = Tr e−βH . (1.19)

From Eq. (1.19), we can derive the ensemble average (expectation value) of an observable

A

〈A〉β = Z−1(β) Tr (ρ(β) A) = Tr (e−βHA)

Tr e−βH , (1.20)

2We assume that the Boltzmann constant kB = 1; otherwise, β = 1/ (kBT). In addition, we are using
‘nature’s units’ where ~ = c = 1. Here, temperature has the dimensions of energy.

7

as well as the average of the correlation function of any two operators,

〈AB〉β = Z−1(β) Tr [ρ(β) AB]. (1.21)

Denoting the eigenstates of the Hamiltonian as |n〉, we have

H|n〉 = En|n〉. (1.22)

In this case, the trace of the product e−βHA can be written as

Tr (e−βHA) =
∑
n

e−β En 〈n|A |n〉. (1.23)

It is easy to see that the zero-temperature limit comes from the ground state of the Hamil-

tonian. Therefore, the vacuum expectation value (VEV) of the observable A is

lim
T →0

Tr (ρA) = 〈0|A |0〉, (1.24)

where T is temperature.

Thus, we are viewing Eq. (1.20) as an extension of the zero-temperature theory already

known. Equations (1.20) and (1.21) determine expectation values by extending ordinary

perturbation theory at the zero-temperature background, and this extended theory is called

finite-temperature QFT [1].

1.2.1 Matsubara Formalism

The most direct evaluation method for expectation values such as Eqs. (1.20) and (1.21) for

the particular ensembles is using the trace product Eq. (1.23) and standard perturbation

theory. However, this straightforward method will be very difficult as the number of states

contributing to the sum is large.

The perturbative rules from quantum mechanics for the density operator or even the

finite-temperature Feynman rules (which will be discussed later in this section) are expressed

in coordinate space, which is usually not very suitable for explicit calculations. The Fourier

8

transform is the mathematical technique used to decompose a set of rules from coordinate

space to momentum space. Ideally, all the propagators in the Feynman rules can be Fourier

transformed. But the situation here is complicated by thermal effects.

In order to define the contour for thermal time evolution, the density operator is redefined

analogous to the approach of Feynman rules at zero temperature:

e−βH = e−βH0 U(ti − iβ, ti) = e−βH0 T exp

[
i

∫ ti−iβ

ti

∫
all space

LI(φin(x)) dx0 d
3x

]
, (1.25)

where H0 is the free-particle Hamiltonian, U is the time evolution operator, T is the time-

ordering symbol, ti is the time at which the ensemble is prepared in thermal equilibrium,

φin(x) is the initial field at coordinate x, and L1 is the interaction term in the Lagrangian.

The contour is then C = [ti,+∞] ∪ [+∞, ti] ∪ [ti, ti − iβ] as shown in Fig. 1.3.

Re(t)

Im(t)

ti

ti − iβ

Figure 1.3: The integration contour C of thermal time for the density operator e−βH

in the complex time plane.

It is clear that C has a nontrivial shape, which makes it difficult to compute Fourier

transforms. The solution chosen here is the imaginary time formalism, also called the Mat-

subara formalism, which provides a diagrammatic approach to sum over discrete imaginary

frequencies [1, 10]. Since any physical quantity from a thermal equilibrium system is time-

independent, the contour C can be simplified into the diagram in Fig. 1.4, with variable

τ ∈ [0, β) and x0 denoted as −iτ .

9

Re(t)

Im(t)

ti → 0

−iβ

Figure 1.4: Simplified contour C of thermal time (taking initial thermal time ti −→ 0).

Due to the periodicity/anti-periodicity of the Feynman diagram integrand field φ 3 the

integration can easily be Fourier-transformed into frequency space

G0(τx, x, τy, y) = T
+∞∑

n=−∞

∫
d3p

(2π)3
eiωn(τx−τy)e−ip·(x−y) G0(ωn,p), (1.26)

where the Matsubara frequencies are ωn = 2πnT for bosons (periodic) and 2π(n + 1
2
)T for

fermions (anti-periodic) for temperature T . For free bosonic scalar fields,

G0(ωn,p) =
1

ω2
n + p2 +m2

(1.27)

with ωn T -dependent. Equation (1.27) gives the free-field propagator of the Feynman rules

for perturbative calculations in the Matsubara formalism.

By using the Matsubara formalism, the continuous integration turns into the summation

over discrete Matsubara frequencies. The newly derived Feynman rules can be applied to the

3This symmetry is known as Kubo-Martin-Schwinger symmetry where all bosonic path-ordered correlators
take identical values at the two endpoints of the contour C [1].

10

scalar one-loop tadpole topology integral in the λφ4 theory and it gives

=
λ

2
T
∑
n

∫
d3p

(2π)3
1

ω2
n + p 2 +m2

=
λ

2

∫
d3p

(2π)32EP

∫ β

0

dτ
∑
n

δ(τ − nβ)
[
(1 + nB(EP))e

−EP τ + nB(EP)e
EP τ
]

=
λ

2

∫
d3p

(2π)32EP

[1 + 2nB(EP)]

= λ

[
Λ2

16π2
+

T 2

24
+ . . .

]
,

(1.28)

where Λ is an ultraviolet cutoff that restricts the d3p integration range and nB(EP) ≡

1/
(
eβEP − 1

)
is the Bose-Einstein distribution. The first term in Eq. (1.28) corresponds to

the ultraviolet divergence at zero temperature. The second term is ultraviolet finite from the

exponential decrease of the Bose-Einstein distribution at large energy.

Thus, in the Matsubara formalism, the temperature dependence is solely in the propaga-

tors of the loop integral. The rest of the loop integral (e.g., the vertices) are identical with

zero-temperature QFT.

Just as it was introduced in Section 1.1.1, the path integral formalism gives another

approach to find thermal field theory Feynman rules other than the Matsubara formalism [9].

If we define t1 − t2 = −iβ, then the partition function Eq. (1.4) would look like

Z ′ [J] = N ′
∫

[dφ] exp (S ′), (1.29)

where N ′ is the normalization factor and the action is

S ′ =

∫ β

0

dt

∫
L′d3x+ βµN. (1.30)

The contour would look like the one in Fig. 1.4. Both S ′ and L′ are in Euclidean space given

by the Matsubara formalism. The path integral representation comparing to the original in

zero-temperature QFT has a finite interval for the time dimension integration. The Feynman

11

rules are embedded in the path integral and it gives a nontrivial dependence on β [9] providing

the temperature effect in the path integral formalism.

1.2.2 Finite-temperature Correlation Functions

The Matsubara formalism gives the means to transform a Feynman integral into its finite-

temperature version, as demonstrated above. The propagators are adapted to their finite-

temperature version as in Eq. (1.27). We will study the one-loop self-energy for a scalar

field in a λφ3 theory. In this simplest case, we are using spin-zero bosons. The Feynman

diagram of the self-energy topology is shown below in Fig. 1.5. In QFT at zero temperature,

the Feynman integral for such a diagram can easily be written down by applying the famous

Feynman rules [8],

p

k + p

k

p

Figure 1.5: The one-loop self-energy Feynman diagram with scalar fields.

Π0(p, p0) =
1

2

∫
d4k

(2π)4
1

k2 +m1
2
× 1

(k + p)2 +m2
2
, (1.31)

where m1 and m2 are the masses of the internal fields. A wick rotation has been performed

to obtain Eq. (1.31). The subscript of the correlator Π0 indicates that this is the correlation

function for zero temperature.

Now we want to develop the finite-temperature Feynman integral for such topology. The

energy integral is now quantized. The temporal k0 integral needs to be discretized to an

infinite summation over integer parameter n due to the implementation of the Matsubara

frequencies ∫
d4k

(2π)4
→ 1

β

∑
n

∫
d3k

(2π)3
. (1.32)

The correlation function Eq. (1.31) requires adaptation to represent the same one-loop topol-

12

ogy with temperature dependence taken into consideration, including the discretization as in

Eq. (1.32) and the implementation of the Matsubara frequencies ωn = 2πnT :

ΠT (p, p0) =
1

2β

∞∑
n=−∞

∫
d3k

(2π)3
1

4n2π2

β2 + k2 +m1
2
× 1

(2nπ
β

+ p0)2 + (k + p)2 +m2
2
, (1.33)

where the subscript on the correlator ΠT means finite temperature. In the Matsubara formal-

ism, the energy of the external momentum p0 is assumed to be discrete in finite-temperature

correlation function at the values of 2πl
β

(l is any integer) [9].

Equation (1.33) will be the core correlation function for the majority of this thesis.

The numerical method outlined below is heavily based on the divergences associated with

Eq. (1.33).

13

2 pySecDec Benchmarking for Feynman

Diagrams at Zero Temperature

The program package pySecDec is designed to numerically calculate loop integrals in

QFT using the sector decomposition approach [6].

One full calculation of a Feynman diagram requires two different Python documents. The

“generate” file contains part of the information of one particular diagram such as the topology,

the dimensionality and the prefactor. The remaining “integrate” file requires the input of

the numerical values of particle masses and kinematics for the calculation. Before developing

strategies to apply pySecDec to finite-temperature QFT, multiple zero-temperature loop

integrations were done through the Plato cluster at the University of Saskatchewan and

compared against analytical results [11, 12] as summarized in Ref. [13].

m1

m2

Figure 2.1: One-loop self-energy Feynman diagram (TBI) with scalar fields.

The example used in the pySecDec numerical calculation and reference comparison is the

Feynman diagram topology representing the one-loop self-energy integral (TBI) as shown in

Fig. 2.1. The TBI integral uses TARCER notation which reduces the general propagator

integral expressions to basic integrals in MATHEMATICA [14]. The TBI integral, following the

TARCER convention, is

TBI
[
d, q2, {{ν1,m1}, {ν2,m2}}

]
=

1

π
d
2

∫
ddk

[k2 −m1
2 + iζ]ν1 [(k − q)2 −m2

2 + iζ]ν2
, (2.1)

14

where ζ → 0+, m1 and m2 are the masses of the two internal lines and the parameters ν1

and ν2 are propagator weights, i.e., exponents.

The masses of the two internal lines (m1 and m2) in the Feynman diagram above can

be specified in pySecDec. To simplify the numerical calculations, we rewrote Eq. (1.31) by

multiplying numerators and denominators of both propagators by 1
p2

Π0(p, p
0) =

λ2

2

∫
d4k

(2π)4
1/p2(

k2

p2
+ m1

2

p2

) × 1/p2(
(k+p)2

p2
+ m2

2

p2

)
=

λ2

2(2π)4

∫
d4
(
k

p

)
1(

k
p

)2
+ m1

2

p2

× 1(
k
p
+ 1
)2

+ m2
2

p2

.

(2.2)

Since we are using the particle physics convention of ~ = c = 1, both particle masses and

momenta have the dimensions of energy. All the expressions in brackets are dimensionless.

So technically, what only matters for numerical benchmarking are the ratios m1
2

p2
and m2

2

p2
.

In Section 2.2, masses are chosen as the mass of a charm quark and a bottom quark for the

numerical investigation. Numerical calculations of the loop integral were performed along a

grid of points lying just above the positive real axis in the complex q2-plane where q is the

external momentum in Fig. 1.5.

2.1 TBI Massless Integral

Corresponding to the diagram of Fig. 2.1, the analytical result of the loop integral with both

propagator masses zero is taken from Ref. [12] and simplified in Ref. [13],

TBI [4 + 2ε, q2, {ν1, 0}, {ν2, 0}]

=
i

(4π)2

[
− q2

4π

]ε
(q2)2−ν1−ν2

Γ [2− ν1 + ε] Γ [2− ν2 + ε] Γ [ν1 + ν2 − 2− ε]

Γ [ν1] Γ [ν2] Γ [4− ν1 − ν2 + 2ε]
,

(2.3)

where the space-time dimension is d = 4+ 2ε, and we expand about ε = 0. Coding Eq. (2.3)

in MATHEMATICA and setting ν1 and ν2 to 1, we have the analytical result of a massless TBI

integral. In order to compare with pySecDec imported data results, the analytical formula

required an extra factor of (2π)4+2ε(− i
π2+ε). This additional factor is from the convention

15

of pySecDec. A scalar Feynman graph G in d dimensions at one loop with N propagators,

where the propagators can have powers of νj, has the momentum-space representation of

G =

∫
d dκ

1∏N
j=1 Pj

νj({k}, {q},mj
2)
, (2.4)

d dκ =
µ4−d

iπ
d
2

d dk, Pj
νj = ((k − qj)

2 −mj
2 + iζ), (2.5)

where µ denotes the renormalization scale, qj are external momenta, and k is the loop mo-

mentum [6]. By comparison, the convention in Ref. [11] has the integral expression of

G = lim
ζ→0+

1

µd−4

∫
d dk

(2π)d
1

[k2 −m2 + iζ]n
. (2.6)

Equations (2.4) and (2.6) give a coefficient difference of

1

iπ
d
2

×
[

1

(2π)d

]−1

= (2π)d
(
− i

πd/2

)
, (2.7)

where d = 4 + 2ε.

Importing the pySecDec integration output for the one-loop self-energy Feynman integral,

we have the comparison graph shown in Fig. 2.2. The method of comparing the analytic and

numerical results is through extracting the coefficients of ε−1 , ε0, and ε1 from the ε expansion

of the results for both real and imaginary parts.

According to Fig. 2.2, the pySecDec output of the TBI massless integral matches well

with the Ref. [12] analytic formula, providing a reliable benchmark on the implementation

of pySecDec, including the necessary prefactors.

16

5 10 15 20 25 30
q
2

-2.0

-1.5

-1.0

-0.5

Re[ϵ-1]

5 10 15 20 25 30
q
2

-1.0

-0.5

0.5

1.0

Im[ϵ-1]

5 10 15 20 25 30
q
2

-2

-1

1

2

Re[ϵ0]

5 10 15 20 25 30
q
2

1

2

3

4

5

6

Im[ϵ0]

5 10 15 20 25 30
q
2

1

2

3

Re[ϵ1]

5 10 15 20 25 30
q
2

-6

-4

-2

2

4

6

Im[ϵ1]

pySecDec numerical calculation result

Analytical result

Figure 2.2: Comparison between the ε−1 , ε0 and ε1 coefficients comparison graphs for
analytical and numerical results for the one-loop self-energy massless integral Eq. (2.3).
The vertical axes labels represent terms of the corresponding coefficients (e.g., the
coefficients comparison of the real part of ε−1 is shown in the top-left graph). The
errors between the analytical and numerical results are at the scale of 10−4, while the
uncertainties from the numerical results are at the scale of 10−2. The errors are much
smaller than the numerical uncertainties.

17

2.2 TBI Massive Case

The TBI analytical results for massive internal lines come in two types. One of them are

integrals with equal masses and the other are integrals with unequal masses, including the

case of one massless internal line and one massive line. Starting with the latter case, the loop

integral in terms of the Gauss hypergeometric function is [12, 13]

TBI [4 + 2ε, q2, {ν1,m},{ν2, 0}] =
i

(4π)2
[− q2

4π
]
d
2
−2 (q2)2−ν1−ν2 zν1+ν2− d

2

Γ [d
2
− ν1] Γ [ν1 + ν2 − d

2
]

Γ [ν1] Γ [d
2
]

2F1 [ν1 + ν2 −
d

2
,
d

2
− ν1;

d

2
; z],

(2.8)

where z = 1

1−m2

q2

and m is the one nonzero propagator mass. Equation (2.8) and the pySecDec

numerical values were compared in MATHEMATICA as in the previous example. However, since

the hypergeometric function has ε-dependent parameters, the analytical result (2F1 factor)

needs to be expanded around ε using the MATHEMATICA HypExp package [15]. In this pySecDec

integration, the charm quark mass (m = 1.27GeV)[16] was used to generate numerical data1.

Similarly, the analytical formula Eq. (2.8) was multiplied by a factor of (2π)4+2ε(− i
π2+ε) from

Eq. (2.7). From Fig. 2.3, the pySecDec result agrees with Ref. [13].

Another type of the TBI integral with massive internal lines involves two internal prop-

agators with the same mass. Once again, the charm mass was applied in the following loop

integral (Ref. [11, 13]):

TBI [4 + 2ε, q2, {ν1,m},{ν2,m}] =
i

(4π)2

[
−m2

4π

] d
2
−2

(−m2)2−ν1−ν2

×
Γ [ν1 + ν2 − d

2
]

Γ [ν1 + ν2]
3F2

[
ν1 ν2 ν1 + ν2 − d

2
1
2
(ν1 + ν2)

1
2
(ν1 + ν2 + 1)

;
q2

4m2

]
.

(2.9)

As shown in Fig. 2.4, the generated graphs show excellent agreement as in the previous two

cases. The same calculations for TBI massive integrals were done with bottom quark mass

and the results are included in Appendix A. Therefore, pySecDec’s outputs show reliable

loop integral calculation performance regarding one-loop self-energy integrals. These bench-

1The unit of particle mass is eV/c2.

18

marks have also allowed determination of the proper conversion factors needed to transform

pySecDec output into comparable analytical data.

2 4 6 8 10
q
2[GeV2]

-1.0

-0.8

-0.6

-0.4

-0.2

Re[ϵ-1]

2 4 6 8 10
q
2[GeV2]

-1.0

-0.5

0.5

1.0

Im[ϵ-1]

2 4 6 8 10
q
2[GeV2]

-0.5

0.5

1.0

Re[ϵ0]

2 4 6 8 10
q
2[GeV2]

0.5

1.0

1.5

2.0

2.5

Im[ϵ0]

2 4 6 8 10
q
2[GeV2]

-1

1

2

3
Re[ϵ1]

2 4 6 8 10
q
2[GeV2]

-3

-2

-1

1

Im[ϵ1]

pySecDec numerical calculation result

Analytical result

Figure 2.3: Comparisons between the ε−1, ε0 and ε1 coefficients of analytical and nu-
merical results for the one-loop self-energy integral Eq. (2.8) (m1 = 1.27GeV, m2 = 0).
Similar to Fig. 2.2, the errors are magnitudes smaller than the numerical uncertainties.

19

10 20 30 40
q
2[GeV2]

-1.0

-0.8

-0.6

-0.4

-0.2

Re[ϵ-1]

10 20 30 40
q
2[GeV2]

-1.0

-0.5

0.5

1.0

Im[ϵ-1]

10 20 30 40
q
2[GeV2]

-2.0

-1.5

-1.0

-0.5

Re[ϵ0]

10 20 30 40
q
2[GeV2]

0.5

1.0

1.5

2.0

2.5

3.0
Im[ϵ0]

10 20 30 40
q
2[GeV2]

0.5

1.0

1.5

2.0

Re[ϵ1]

10 20 30 40
q
2[GeV2]

1

2

3

4

5

6

Im[ϵ1]

pySecDec numerical calculation result

Analytical result

Figure 2.4: Comparison between the ε−1, ε0 and ε1 coefficients of analytical and
numerical results for the one-loop self-energy integral Eq. (2.9) (m1 = m2 = 1.27GeV).
Similar to Fig. 2.2, the errors are magnitudes smaller than the numerical uncertainties.

20

2.2.1 Cutting Rules

After benchmarking pySecDec against one-loop self-energy Feynman integrals, more trials

and tests were performed using the Plato platform including one/two-loop three/four-point

functions as in Figs. 2.5 and 2.6.

The processing time for any “generate” file with non-zero masses was significantly longer

than any massless Feynman integral. Also two-loop functions requires more time to run

integrations compared to one-loop functions. All of the integrations for three-point and four-

point functions are calculated at their symmetric points (p21 = p22 = p23 = p24) as outlined

below.

Three-point, one-loop diagram Four-point, two-loop diagram

Figure 2.5: Examples of the loop integrals that have been calculated using pySecDec

As the general analytical formula for N -point one-loop integrals from Ref. [11] is difficult

to implement due to complicated notations and expressions, the cutting rules [8] were used to

benchmark 4-point one-loop pySecDec results. By calculating a four-point one-loop function

with identical internal masses (Fig. 2.6) along the above-cut contour, the imaginary coeffi-

cient for ε0 is plotted in Fig. 2.7. The coefficient remains zero until a certain threshold value

of q2. The coefficient then takes off and continues increasing as q2 increases. This behavior

was expected as the integral has a branch point on the real axis followed by a branch cut.

21

m

mm

m

p1

p2

p3

p4

Figure 2.6: Four-point, one-loop topology with equal internal masses

Figure 2.7: The ε0 coefficient for the four-point, one-loop Feynman integral with
equal propagator masses (m = 4.18GeV) along with an expanded plot on the RHS.
The imaginary part remains zero until q2 ' 26.21GeV2.

The cutting rules (Cutkosky rules) [8] are generally used to find the imaginary part of a

Feynman diagram. For the same Feynman diagram, the threshold for the integral to have

an imaginary part can be retrieved by using the cutting rules,

2 Im

p1

p2 p3

p4
 =

∫
dΠ

∣∣∣∣∣∣∣∣∣∣∣ pj

pi

q1

q2

∣∣∣∣∣∣∣∣∣∣∣

2

. (2.10)

where
∫
dΠ represents all possible intermediate-state particles.

Since we are working at the symmetric point, and p4 = p1 + p2 + p3, we can easily derive

22

the expression

− pi · pj =
p21
3

=
p22
3

=
p23
3

=
q2

3
, (2.11)

where i, j = 1, 2, 3, i 6= j and q2 is defined as q2 = p21 = p22 = p23. From the right hand side of

Eq. (2.10), we have
pi + pj = q1 + q2,

⇒ (pi + pj)
2 = (q1 + q2)

2,

⇒ p2i + p2j + 2pi · pj = q21 + q22 + 2q1 · q2.

(2.12)

As all the internal lines have the same mass m,

2 q2 − 2

3
q2 = 2m2 + 2 q1 · q2. (2.13)

Since q1 · q2 = E1E2 − q1 · q2 > 0, the relation between q2 and mass is then

q2 >
3

2
m2 . (2.14)

The cutting rules allow us to find the kinematical region where the internal lines can be

on shell [8]. In this case, the region is q2 > 3
2
m2 which agrees with the pySecDec integration

result in Fig. 2.7 as
3

2
m2 =

3

2
× (4.18 GeV)2 ≈ 26.209. (2.15)

The cutting rules can be generalized to finite temperature [9] and could also be applied

to future finite-temperature N -point integral benchmarking as well as for new results.

23

3 Methodology

The main quantity of interest of the thesis methodology is Πs, the difference between

the finite-temperature (ΠT) and the zero-temperature (Π0) correlation function, also named

finite-temperature correction,

Πs = ΠT − Π0. (3.1)

For the one-loop self-energy topology that we are working on in this thesis (Fig. 2.1), the

finite-temperature correction can be found using Eqs. (1.33) and (1.31). If both ΠT and

Π0 are convergent, we can just simply subtract them to determine the correction term Πs.

In the case of 2-dimensional and d = 3 spacetime, both ΠT and Π0 are convergent, and

the calculations went as expected without any mathematical problems (those results will

be demonstrated and discussed in Chapter 4). When we climbed up to d = 4 spacetime (1

temporal dimension and 3 spatial dimensions), we ran into divergences in both ΠT and Π0. In

this chapter, we will face the long-term enemies of loop integral calculations, the divergences,

and discuss the development of a numerical method for calculating finite-temperature effects

of the self-energy topology.

3.1 The Cut-off Method

Most quantum field theories do not hold up to an arbitrarily high energy limit as every phys-

ical theory has its own range of validity. Thus, physicists developed regularization methods

to deal with these momentum integrations. The concept of a cutoff is not foreign to QFT,

rather it is one of the most straightforward and intuitive regulators for ultraviolet (UV) di-

vergences. An example can be found in Ref. [17]. To regularize the divergence for a loop

integral in the continuum limit, a lattice cutoff at momentum k = 1
a

while a → 0 was applied

24

as the upper limit of the integration:

Σinf =

∫
d4k

1

(k2 + µ2)2
before applying cut-off

⇒ Σcut−off =

∫
k20+k2< 1

a2

dk0 d
3k

1

(k2
0 + k2 + µ2)2

after applying cut-off

= 2

∫ 1
a

0

dk
k3

(k2 + µ2)2

= 2 ln 1

a
as a → 0.

(3.2)

The hard cut-off neglects the domain of integration beyond a certain value (often represented

by the symbol Λ) and ‘regularizes’ the integral in the simplest way. The disadvantage of this

naive approach is also very obvious. It breaks Lorentz invariance and most symmetries in the

theory [18]. However, since thermal effects already break Lorentz symmetry by providing a

preferred reference frame,1 we can use the cut-off method to regularize divergences associated

with the temporal infinite summation in ΠT in Eq. (1.33), and with the k0 integration in Π0

in Eq. (1.31). In the spatial dimensions, which are still continuous integrations, pySecDec

will calculate integrals using dimensional regularization [19] which obeys gauge invariance.

3.2 Large n Behavior

We need to further understand the thermal correlation functions. Looking at the thermal

correlation function of the self-energy Feynman integral (Eq. (1.33)), it is easy to find the

approximate form when |n| is large compared to the field masses m1, m2 and the external

momentum (pE0 ,p).

ΠT =
1

2β

∑
n

∫
d3k

(2π)3
1

(4n
2π2

β2) + k2 +m1
2
× 1

(2nπ
β

+ pE0)
2 + (k + p)2 +m2

2

≈ 1

2β

∑
n

∫
d3k

(2π)3
1

(2nπ
β
)2 + k2 × 1

(2nπ
β
)2 + k2 , for |n| � 1

=
1

2β

∑
n

∫
d3k

(2π)3
1(

m′2 + k2
)2

(3.3)

1This is particularly evident in the Matsubara formalism as the temporal dimension is discretized.

25

where m′ = 2nπ
β

. For the expression in the last line of Eq. (3.3), there is an identity that can

carry the approximation process further [20]

Φ(m, d,B) =

∫
ddk

(2π)d
1

(k2 +m2)B
=

1

(4π)
d
2

Γ
(
B − d

2

)
Γ(B)

1

(m2)B− d
2

. (3.4)

In the case of Eq. (1.33), d = 3 − 2ε. The convention for ε is temporarily changed here to

align with Ref. [20]. Using Eq. (3.4), we can rewrite Eq. (3.3) as the following expression:

ΠT ≈ 1

2β

∑
n

1

(4π)
3
2
+ε

Γ
(
1
2
+ ε
)

1︸ ︷︷ ︸
expand ε to O(ε)

1(
2nπ
β

)2(1+2ε)

≈ 1

2β

∑
n

√
π

(4π)
3
2

β

2π (n2)
1
2
+ε

=
∑
n

1

32π2

1

|n|1+2ε
.

(3.5)

So we have all the individual terms of the summation for ΠT as

ΠT ≈
∑
n

an, (3.6)

an ≈ 1

32|n|π2
, |n| � 1. (3.7)

Equation (3.7) is a very promising relation. It means that the individual terms from finite-

temperature correlation functions that are being summed are gradually becoming smaller

and less significant in the sense of numerical calculation. Also, because of the 1
|n| behavior,

the series does not converge. An upper limit nmax provides a suitable regulation method

to apply to the divergent ΠT . In Fig. 3.1, we plot numerical confirmation of Eq. (3.7). As

Eq. (3.7) is independent of any momentum or mass values, random values are chosen for the

pySecDec numerical calculations. The ‘reverse’ Wick rotation method needed to calculate

ΠT will be outlined in Section 3.3.

26

-1000 -500 500 1000
n

-0.00001

0.00001

0.00002

Numerical Results

Finite-temperature Correlator Summation Terms an

an-
1

32 n π2

Figure 3.1: The pySecDec-computed numerical finite-temperature correlation func-
tion terms an (blue) are compared with the approximate value an ≈ 1

32|n|π2 by calcu-
lating the difference ΠT − an as a function of n. The finite-temperature terms were
calculated with the parameter values of m1 = m2 = 1.1, pE0 = 2π

β
, β = 0.3,p2 = 5.

We can see from Fig. 3.1 that an is in good agreement with the approximate value of
1

32|n|π2 when n is large (|n| & 100). Also, Fig. 3.1 demonstrates that the pre-factor (see

Eq. (2.7)) that was implemented in pySecDec is correct. The relation an ∼ 1
|n| proves that

ΠT is divergent as the series
∑

n
1
|n| diverges. To regulate this divergence, the ΠT series for

the self-energy topology will be cut off at a large value of nmax = A. We will chose A through

numerical experiments in Chapter 4, where A will be related to the k0 cut-off within Π0.

Thus,

ΠT (p, p
E
0) =

1

2β

A∑
n=−A

∫
d3k

(2π)3
1

ω2
n + k2 +m1

2
× 1

(ωn + pE0)
2 + (k + p)2 +m2

2
, (3.8)

where A → ∞.

27

3.3 The ‘Reverse’ Wick Rotation

The next step is to put the cut-off discussion aside and look at the self-energy finite-

temperature correlation function Eq. (1.33) itself. We still need to find a method to numer-

ically calculate it using pySecDec despite the integral not being in the form of a Feynman

integral. We regulate the temporal dimension divergence in ΠT with the cut-off method, and

we use the pySecDec dimensional-regularization regulator for the spatial integrations:

ΠT (p, p
E
0) =

1

2β

∞∑
n=−∞

∫
d3k

(2π)3
1

ω2
n + k2 +m1

2
× 1

(ωn + pE0)
2 + (k + p)2 +m2

2
, (3.9)

where ωn = 2nπ
β

is the Matsubara frequency and the superscripts E are stating that this

function is in Euclidean space. As discussed in Section 3.2, the summation over n diverges

even with ΠT calculated using dimensional regularization. Hence the n range is chosen to

be −A ≤ n ≤ A corresponding to a cut-off. As for the spatial integrations in Eq. (3.9), we

can still utilize pySecDec to numerically evaluate them. The spatial integral in Eq. (3.9) is

expressed as

I(p ; Λ1,Λ2) =

∫
dDk

(2π)D
1

k2 + Λ1
2 × 1

(k + p)2 + Λ2
2 , (3.10)

where D is defined as the number of spatial dimensions. Since d is generally used to represent

the number of space-time dimensions of a Feynman integral, we have d = D + 1. With

Eq. (3.10), Eq. (3.9) can be written as

ΠT (p, p
E
0) =

1

2β

∞∑
n=−∞

I(p ;m1
2 + ω2

n,m
2
2 + (pE0 + ωn)

2). (3.11)

The spatial integral in Eq. (3.11) is a partial Feynman integral as it includes the spatial

dimensions but not the temporal dimension. But it cannot be input directly into pySecDec,

because pySecDec calculates for space-time dimensions in Minkowski space, not pure spatial

integrals. In order to evaluate the function I using pySecDec, we need to perform manip-

ulations on the momentum to give I a form suitable for pySecDec. We define momentum

components as

pm1 = ip1, k
m
1 = ik1, dk

m
1 = i dk1, (3.12)

28

where p1 and k1 are the first components of the spatial momentum vectors p and k respec-

tively from the integral I.2 The superscript m in Eq. (3.12) represents Minkowski. Now,

Eq. (3.10) becomes

I(p ; Λ1,Λ2) =

∫
dDk

(2π)D
1

k2 + Λ1
2 × 1

(k + p)2 + Λ2
2

= −i

∫
dkm

1 dk2 dk3 . . . dkD
(2π)D

× 1

−(km
1)

2 + k2
2 + k2

3 + . . .+ k2
D + Λ2

1

× 1

−(km
1 + pm1)

2 + . . .+ (kD + pD)2 + Λ2
1

= −i

∫
dDkm

(2π)D
1

km · km − Λ2
1

× 1

(km + pm) · (km + pm)− Λ2
2

,

(3.13)

where

km · km = (km
1)

2 − k2
2 − k2

3 − . . .− k2
D, (3.14)

(km + pm) · (km + pm) = (km
1 + pm1)

2 − . . .− (kD + pD)
2, (3.15)

and D represents the number of integrated spatial dimensions. Equation (3.13) now is in

the form of a Minkowski Feynman integral and can be numerically computed on pySecDec,

where Λ1 and Λ2 implicitly include an iζ term as in Eq. (1.31). So we have

(km
1)

2 = (ik1)
2 = −k2

1 and (pm1)
2 = (ip1)

2 = −p21. (3.16)

Note that a standard Wick rotation of Eq. (3.13) km
1 → ik1 (see Ref. [8]) justifies the defini-

tions in Eq. (3.12). From Eq. (3.16), we also have the relations

km · km = −k2
1 − k2

2 − k2
3 − . . .− k2

D = −k2, (3.17)

(km + pm) · (km + pm) = −(k1 + p1)
2 − . . .− (kD + pD)

2 = −(k + p)2. (3.18)

2The choice of sign in Eq. (3.12) will be justified below.

29

Similarly,

pm · pm = −p21 − p22 − p23 − . . .− p2D = −p2. (3.19)

Equations (3.17), (3.18) and (3.19) can be referred to when inputting momentum values

of this Minkowski-space-form integral to pySecDec. Thus, we have an expression for the

finite-temperature correlation function for the purpose of pySecDec numerical computation.

ΠT (p, p
E
0) =

1

2β

∞∑
n=−∞

∫
d3k

(2π)3
1

ω2
n + k2 +m1

2
× 1

(ωn + pE0)
2 + (k + p)2 +m2

2

= −i
1

2β

∞∑
n=−∞

∫
d3km

(2π)3
1

(km)2 − Λ2
1

× 1

(km + pm)2 − Λ2
2

,

(3.20)

where p = (p1, p2, p3), pm1 = ip1, km
1 = ik1, Λ2

1 = m1
2+ω2

n+ iζ and Λ2
2 = m2

2+(pE0 +ωn)
2+ iζ.

With the integrals sorted in Eq. (3.11), we will turn to the summation over n in the next

section.

3.4 The Subtraction

The divergent sum in the finite-temperature correlation function ΠT denies us the possibility

of subtractions between fully computed finite-temperature and zero-temperature correlators.

Yet, from the previous section, a solution with a cut-off regulator and a ‘reverse’ Wick

rotated integral was proposed for the finite-temperature case. Now we will work with the

zero-temperature correlator and see if we can develop a methodology to find the finite-

temperature corrections of the one-loop self-energy topology.

Taking the β → ∞ (T → 0) limit of Eq. (1.33) via

lim
β→∞

1

β

∑
n

→ 1

2π

∫
dkE

0 , (3.21)

we find

Π0(p, p
E
0) =

1

2

∫
ddkE

(2π)d
1

(kE)2 +m1
2
× 1

(kE + pE)2 +m2
2
. (3.22)

Analogous to the finite-temperature correlation function, Eq. (3.10) can be used to re-express

30

Eq. (1.31) as well:

Π0(p, p
E
0) =

1

2

∫
dkE

0

2π

∫
dDk

(2π)D
1

k2 +m1
2 + (kE

0)
2
× 1

(k + p)2 +m2
2 + (kE

0 + pE0)
2

=
1

2

∫
dkE

0

2π
I
(
p ; m1

2 + (kE
0)

2,m2
2 + (kE

0 + pE0)
2
)
.

(3.23)

The integral I in Eq. (3.23) can be computed in pySecDec using a ‘reverse’ Wick rotation

as in the finite-temperature case previously discussed. The difficulty in subtraction is due to

the temporal dimension integration dk0. With the discrete temporal dimension summation

in Eq. (3.11) and continuous temporal integral in Eq. (3.23), we need to fit one of them to the

other’s structure. Breaking down one integration region into numerous equally divided subin-

tervals seems to be the most obvious approach. The idea is to divide the zero-temperature

temporal momentum integral into numerous smaller-region momentum integrals:

1

4π

∫
dkE

0 I0(k
E
0) →

1

4π

A−1∑
n=−A

∫ 2π(n+1)/β

2πn/β

dkE
0 I0(k

E
0), (3.24)

where I0(k
E
0) = I

(
p ; m1

2 + (kE
0)

2,m2
2 + (kE

0 + pE0)
2
)
. (3.25)

The integrations from 2πn/β to 2π(n+1)/β in kE
0 can be computed using Simpson’s rule in

Python’s SimPy package.

The finite-temperature summation looks like

1

2β

+A∑
n=−A

IT (ωn), (3.26)

where IT (ωn) = I
(
p ;m1

2 + ω2
n,m

2
2 + (pE0 + ωn)

2
)
. (3.27)

We can see that both Eqs. (3.24) and (3.26) have been broken down into pieces that corre-

spond to different values/ranges of k0. The next step is to match them up along with the

integrals I for both correlators of zero temperature and finite temperature. Subtractions will

be performed for each pair of I0(kE
0) and IT (ωn). To put them in the bigger picture with

31

Eqs. (3.11) and (3.23),

Πs = ΠT − Π0

=
1

2β

∞∑
n=−∞

IT (ωn)−
1

2

∫
dkE

0

2π
I0(k

E
0)

≈ 1

2

(
A∑

n=−A

IT (ωn)

β
−

A−1∑
n=−A

∫ 2π(n+1)/β

2πn/β

dkE
0

2π
I0(k

E
0)

)
.

(3.28)

Equation (3.28) should give us convergent numerical calculation results for the finite-temperature

corrections of the one-loop self-energy topology, because the divergence in the series should

cancel the divergence of the k0 integration. We can perform a test calculation to see if

the divergent thermal correlator and divergent zero-temperature correlator (both in d = 4

spacetime) now have a convergent difference. The results are shown in Fig. 3.2.

Zero Temperature

Finite Temperature (β = 0.3)

Finite Tempearture Correction (Finite-Zero)

50 100 150 200 250 300
max n

0.02

0.04

0.06

0.08

Regulated Correlator

Figure 3.2: The numerical calculation results from pySecDec of zero-temperature
correlation function Π0 (blue), finite-temperature correlation function ΠT (yellow) and
finite-temperature correction Πs (green). The parameter values are m1 = 1.1,m2 =
2, pE0 = 2π

β
, β = 0.3,p2 = 1 and maximum |n| up to 300.

It is clear from Fig. 3.2 that the zero-temperature and finite-temperature correlators with

expected divergences produced a convergent subtraction correction Πs using the method of

32

Eq. (3.28). To look into this convergence from a mathematical perspective, define Cn

Cn = An − An+1, (3.29)

where An represents individual terms from the summation in Eq. (3.28),

An =
IT (ωn)

β
−
∫ 2π(n+1)/β

2πn/β

dkE
0

2π
I0(k

E
0). (3.30)

Since the value of Cn drops dramatically as n increases, we decided to use a log-log plot to

find a relation between Cn and n of the form

Cn ≈ a

nγ
, (3.31)

where γ is defined positive for easier analysis which will be demonstrated later in this section

and a is a constant. We will investigate the convergence properties of Eq. (3.28) by plotting

ln(Cn) versus ln(n) using the same set of data as in Fig. 3.2. The results are shown in Fig. 3.3

1 2 3 4 5
ln(n)

-25

-20

-15

-10

-5

ln(Cn)

Figure 3.3: The plot between ln(Cn) and ln(n) shows a linear relation with a slope
−γ ≈ −3.57 corresponding to Cn ≈ a

nγ . The data in the figure was generated with the
same parameters as in Fig. 3.2.

Figure 3.3 shows a clear linear relation before the numerical noise starts to dominate the

33

results as n becomes larger. The relative numerical uncertainties from pySecDec are at the

scale of 10−4 while most of the data in the Cn terms are at an even smaller scale, around

10−9. From the assumed power law behavior Eq. (3.31),

Cn ≈ a

nγ
⇒ ln(Cn) ≈ −γ ln(n) + ln(a), (3.32)

where ln(a) is defined as the intercept in Fig. 3.3. Thus we find

Cn = An − An+1 ≈
a

nγ
, (3.33)

with γ ≈ 3.57 > 1. Figure 3.3 and Eq. (3.31) demonstrate that the difference between

successive terms in the summation in Eq. (3.28) is rapidly decreasing and approximately

following the relation of Eq. (3.31) corresponding to a convergent series. The cut-off method

developed here was used to successfully calculate the regulated finite-temperature correlation

function for the one-loop self-energy topology. The Python code that applied our methodol-

ogy, Eq. (3.28), to perform the test shown in Figs. 3.2 and 3.3 can be found in Appendix B,

along with the MATHEMATICA notebook for the data analysis.

Additionally, from this test, we can see that the cut-off at |n|max = 300 is more than

enough to get a numerically accurate result since the convergence of the finite-temperature

correction term from Fig. 3.2 stabilized quickly after around |n|max = 6. We will choose

|n|max = 100, which occurs before the numerical scatter in Fig. 3.3, as our cut-off threshold

for later numerical calculations presented in Chapter 4.

34

4 Numerical Calculation of the

Self-Energy Topology at Finite Temperature

Now that we have introduced thermal field theory and the cut-off methodology Eq. (3.28)

to numerically calculate the correlation function in Eq. (1.33) of the self-energy topology as

in Fig. 1.5, we can investigate the computations and analyze the results from the developed

methods. We will start with lower dimensions where the correlation functions are convergent.

That allows us to directly calculate them with pySecDec and benchmark the results using

the developed methodology from Chapter 3 that uses Eq. (3.28) for the same cases (using the

same parameters). Then we will move on to d = 4 spacetime in which both zero-temperature

and finite-temperature correlators diverge and we need to retrieve the numerical results for

the finite-temperature correction from our method.

4.1 Calculations in d = 2 and d = 3 Spacetime

At lower spacetime dimensions such as d = 2 and d = 3 respectively, we have the correlation

functions in the form of

ΠT (p1, p0) =
1

2β

∞∑
n=−∞

∫
dk1
2π

1
4n2π2

β2 + k2
1 +m1

2
× 1

(2nπ
β

+ p0)2 + (k1 + p1)2 +m2
2

(4.1)

ΠT (p, p0) =
1

2β

∞∑
n=−∞

∫
d2k

(2π)2
1

4n2π2

β2 + k2 +m1
2
× 1

(2nπ
β

+ p0)2 + (k + p)2 +m2
2
. (4.2)

These cases can be computed directly using pySecDec as both of them converge after the

cut-off regularization on the temporal dimension is taken to A → ∞ in the summation. Also,

the zero-temperature correlator can be computed from Eq. (1.31) but with lower dimensional

integrals. Since we have both Π0 and ΠT from pySecDec computations, the subtraction can

35

be handled easily. In the benchmark analysis presented below, two main aspects will be

studied. The first compares the direct evaluation of Π0 using pySecDec with the cutoff at

2πA/β. The second aspect explored is the numerical convergence of the truncated series

of ΠT , again parameterized by A. We will now examine Eqs. (4.1) and (4.2) as the finite-

temperature piece of the finite-temperature correction Πs.

4.1.1 Benchmarking in the Lower Dimensions

Starting with a lower dimension, we will now focus on the d = 2 = 1+ 1 (D = 1) case where

the finite-temperature correction is

Πs(p1, p0) = ΠT − Π0

=
1

2β

A∑
n=−A

∫
dk1
2π

1
4n2π2

β2 + k2
1 +m1

2
× 1

(2nπ
β

+ p0)2 + (k1 + p1)2 +m2
2

− 1

2

∫
d2k

(2π)2
1

k2 +m1
2
× 1

(k + p)2 +m2
2
,

(4.3)

where pµ = (p0, p1). The benchmark calculation results for our methodology in the d = 2

case are shown in Fig. 4.1.

Figure 4.1 shows that the two methods for evaluating Π0 (the cut-off and direct evaluation)

are in close agreement for A > 6 (the data points overlap almost completely). Furthermore,

the finite-temperature correction stabilizes for A > 6, indicating rapid numerical convergence

of the truncated series for ΠT . The differences between Πs given by the two methods are at the

scale of 10−7 at larger maximum n. Meanwhile, the numerical uncertainty from the pySecDec

calculations gave an error scale at 10−4 and therefore confirm the reliability of the developed

methodology Eq. (3.28) in d = 2 spacetime. Similarly, we will now perform an analogous

calculation in d = 3 spacetime (one temporal dimension and two spatial dimensions, i.e.,

d = 1 + 2 (D = 2)).

In Fig. 4.2, we have good agreement between the two methods in d = 3 as well. Similar

to the d = 2 case above, the difference between the two sets of data is at the scale of

10−4 with numerical uncertainty at 10−3, which allows us to consider the difference between

the two methods to be negligible. Thus, from the convergent zero- and finite-temperature

36

Subtraction Methodology

Direct Subtraction from pySecDec Integrations

20 40 60 80 100
max n

0.0002

0.0004

0.0006

0.0008

0.0010

2-Dimensional Finite-Temperature Correction Numerical Results

Figure 4.1: Comparing the numerical calculation results from the pySecDec-
implemented methodology Eq. (3.28) and direct subtractions from complete pySecDec
results of both zero and finite-temperature correlation functions at d = 2 spacetime
(with the parameter values of m1 = 1.1,m2 = 1.2, pE0 = 2π/β, β = 0.1, p1 = 1.3 and
maximum |n|, i.e., the parameter A up to 100. The Python code including pySecDec
files that were coded to perform the comparison calculations in this figure is included
in Appendix C, along with the MATHEMATICA notebook for the plot analysis.

correlation functions at lower dimensions, we have successfully benchmarked the methodology

that breaks down the temporal dimension (see Eq. (3.28)) that is necessary for the higher-

dimensional divergent calculations in d = 4 spacetime.

4.1.2 Relationship with Respect to External Momenta

Before diving into applying the methodology in higher dimensions, we examine some inter-

esting relationships between finite-temperature corrections and input parameters at lower

dimensions since the calculations are easier without divergences. One of the physical quan-

tities that can be altered in the calculation is the external momentum pµ = (p0,p). Since

in our methodology, we can vary the p0 and p variables separately, this gives us a chance to

look into their effects on Πs.

The variable p contains two components: the temporal component pE0 and the spatial

component p. We can account for both in one plot and look for trends or relations with the

37

Subtraction Methodology

Direct Subtraction from pySecDec Integrations

20 40 60 80 100
max n

0.005

0.010

0.015

0.020

0.025

0.030

0.035

3-Dimensional Finite-Temperature Correction Numerical Results

Figure 4.2: Comparing the numerical calculation results from pySecDec-implemented
methodology and direct subtractions from complete pySecDec results of both zero and
finite-temperature correlation functions at d = 3 spacetime (with the parameter values
of m1 = 1.1,m2 = 1.2, pE0 = 6, β = 0.1,p = (1.3, 1.4) and maximum |n| up to 100 (i.e.,
the parameter A)).

finite-temperature correction function Πs in Eq. (3.1) for the one-loop self-energy topology.

The temperature in the calculation will be held at β = 0.3.

Figure 4.3 shows that the finite-temperature correction Πs peaks at p = 0, and decreases

when either pE0 or p increases. That means that the thermal effects from the temperature

are largest when the external momentum of the one-loop self-energy topology goes to zero.

A similar pattern can be found in Πs at d = 3 as well (see Fig. 4.4).

Looking at Eq. (4.1) and Eq. (4.2), we can understand the numerical pattern that is

shown in Figs. 4.3 and 4.4. The spatial momentum components are always squared in the

calculation; therefore, the results are symmetric with respect to the variable p. The sign

of the temporal component of external momentum pE0 contributes due to the expression

(2nπ
β

+ p0)
2 in the denominator of ΠT . However, we have noted in Section 3.4 that the cutoff

at |n|max = A = 100 should be large enough for our study. Therefore, the asymmetry from

this expression is relatively small.

38

Figure 4.3: The effects of the external momentum on the d = 2 finite-temperature
corrections Eq. (3.1) of the one-loop self-energy topology (with the parameter values
m1 = 1.1,m2 = 1.2, β = 0.3, pE0 and p varying in the range [−20, 20] and maximum |n|
at 100 (i.e., the parameter A)). The python code including pySecDec program that was
coded to perform the comparison calculations in this figure is included in Appendix D,
along with the MATHEMATICA notebook for the plot analysis.

4.1.3 Relationship with Respect to Temperature

Studying the temperature effects in thermal field theory is one of the key objects of this

thesis. In this subsection, we will explore temperature effects in lower dimensions to see if

there is a mathematical relationship between temperature T and the temperature correction

correlator Πs for the self-energy integral. With constant values for the external momentum,

the thermal parameter β has been varied over a range of values. The d = 2 plot in Fig. 4.5

(left) of Πs as a function of β shows an interesting trend indicating that there may be a

reciprocal function relation. Therefore, an inverse plot Fig. 4.5 (right) was made to look into

the possibility that Πs ∼ 1
β
.

The physical quantity 1/β has a clear linear relation with Πs for 1
β
� 1. Recall that,

by definition, the inverse of β is the temperature T , so one immediate result is that when

39

Figure 4.4: The effects of the external momentum on the d = 3 finite-temperature
correction Πs (Eq. (3.1)) of the one-loop self-energy topology (with same parameter
values as in Fig. 4.3).

temperature goes to zero, the finite-temperature correction goes to zero as well. The small

T behavior is examined in more detail in Section 4.1.4. The difference between ΠT and Π0

disappears as expected. To analyze the linear trend indicated in Fig. 4.5 (right), we will

investigate the behavior at large n
β

(i.e., large n behavior similar to Section 3.2 and large T).

Similar to Eq. (3.5), in d = 2 dimension we have the approximate relation

ΠT ≈ 1

2β

∑
n

1

(4π)
1
2

Γ
(
3
2

)(
4n2π2

β2

)3/2
≈ β2

2

∑
n

1

32π3|n|3
; (n 6= 0).

(4.4)

From Eq. (4.4), the n 6= 0 terms give the relation of ΠT ∼ β2, or ΠT ∼ 1
T 2 . For n = 0, we

can easily see that ΠT ∼ 1
β

from Eq. (4.1), or ΠT ∼ T (n = 0). Then,

Πs = ΠT − Π0 = ΠT |n6=0 +ΠT |n=0 − Π0. (4.5)

40

0.0002 0.0004 0.0006 0.0008 0.0010 0.0012
β

5

10

15

20

Πs

2000 4000 6000 8000 10000
1/β

5

10

15

20

Πs

Figure 4.5: The finite-temperature correction Πs plotted with respect to β (left)
and 1/β (right) respectively for d = 2 spacetime. The slope on the right plot is ap-
proximately 0.00199939. The parameters used in the calculation are m1 = 1.1,m2 =
1.2, p = (7, 8, 0, 0). The python code including pySecDec program that was coded to
perform the comparison calculations in Fig. 4.5 is included in Appendix E, along with
the MATHEMATICA notebook for the plot analysis.

Since Π0 does not have any T -dependence, it will act as a constant, so that Πs ∼ ΠT at large

temperature (T � 1). T dominates 1
T 2 . Therefore,

ΠS ∼ T at large T (4.6)

which agrees with the general linear shape in the numerical plot in Fig. 4.5 (right). The slope

itself can be calculated using the first term of Eq. (4.3) for the n = 0 term. We find

slope2d =
1

2

∫
dk1
2π

1

k2
1 +m1

2
× 1

p20 + (k1 + p1)2 +m2
2

≈ 0.00199942 (calculated by MATHEMATICA).
(4.7)

The slope calculated in Eq. (4.7) has good agreement with the numerical result from Fig. 4.5

(right) at 0.00199783.

For d = 3 spacetime, we have analogous results. At large n in Eq. (4.2),

ΠT ≈ 1

2β

∑
n

1

4π

Γ (1)

Γ (2)

1(
2nπ
β

)2
≈ β

32π2

∑
n

1

|n|2
; (n 6= 0).

(4.8)

41

Combining Eqs. (4.8), (4.2), and Π0 is a constant, we find for d = 3

Πs ∼
1

T
(n 6= 0) (4.9)

Πs ∼ T (n = 0). (4.10)

Equation (4.10) will be dominant at large T and give the numerical result shown in Fig. 4.6

(right). Referring again to the first term of Eq. (4.2), the slope in d = 3 spacetime is

slope3d =
1

2

∫
d2k

(2π)2
1

k2 +m1
2
× 1

p20 + (k + p)2 +m2
2

≈ 0.00130947 (calculated by pySecDec),
(4.11)

which agrees with that of the plot shown in Fig. 4.6 (right).

0.02 0.04 0.06 0.08 0.10 0.12
β

0.02

0.04

0.06

0.08

0.10

0.12

Πs

20 40 60 80 100
1/β

0.02

0.04

0.06

0.08

0.10

0.12

Πs

Figure 4.6: The plot of the finite-temperature correction Πs as a function of β (left)
and 1/β (right) at d = 3 spacetime. The slope on the right plot is approximately
0.00130617. The parameters used in the calculation are m1 = 1.1,m2 = 1.2, pµ =
(7, 8, 9, 0).

4.1.4 Small Temperature Behavior in 2-dimensional Spacetime

The primary goal of this research is to develop a proof of concept for a numerical method to

calculate Feynman integrals in thermal field theory. We have been choosing largely arbitrary

values for the external momentum in spacetimes with different numbers of spatial dimensions.

However, due to the nature of the imaginary time formalism (Matsubara formalism), pE0 is

42

assumed to be discrete at finite temperature,

pE0 =
2πl

β
, l = 0,±1,±2, (4.12)

Whether we set the external momentum pE0 or β as constant and alter the other, we can

change either β or l to treat pE0 and β separately. So far, from Figs. 4.1 and 4.2 as well as the

slope confirmation in Section 4.1.3, we have great agreement in our data indicating that the

numerical methodology proposed in Chapter 3 works for arbitrary external four-momentum.

7

2π

7

4π

7

6π

7

8π

7

10π

1/β0

0.0005

0.001

0.0015

0.002

Πs

Figure 4.7: A plot of the finite-temperature correction Πs as a function of 1/β at
fixed pE0 in d = 2 spacetime. The parameters used in the calculation are m1 = 1.1,m2 =
1.2, pE0 = 7, p1 = 8, |n|max = A = 1000.

While working with the numerical calculation presented in Fig. 4.5, a certain oscillatory

behavior was found at small temperature (T) as shown in Fig. 4.7, which exhibits a pattern

of peaks. Since

pE0 = 7 =
2πl

β
, (4.13)

43

the temperature parameter would actually be restricted to the discrete values of

1

β
= T =

7

2πl
, (4.14)

where l is integer. The maxima are showing up at exactly those discrete T values (where

l ∈ {1, 2, 3, 4, 5}) even though the condition of Eq. (4.12) was not purposely imposed during

the computation. The denominator factor from Eq. (4.1)

1

(2nπ
β

+ p0)2 + (k1 + p1)2 +m2
2

(4.15)

gives the origin of this intriguing resonance effect in ΠT . In order to look into this phenomenon

from a different perspective, we set β = 2π
7

for the next trial calculation shown in Fig. 4.8.

Therefore, temperature T = 1
β
= 7

2π
and

pE0 =
2πl

β
= 7l. (4.16)

This should give us resonant peaks at multiples of 7 in temporal momentum values in the

plot of Πs as a function of 1
β
. To view the resonant phenomenon, pE0 will range through

intermediate values in between each 7l.

From Fig. 4.8, we can see that the resonance peaks shows up at multiples of 7 as we

predicted. We can also see that, if we choose the pE0 values strictly following the restriction

in Eq. (4.16), the relation should present in a smooth line (orange line in Fig. 4.8) as Πs is

a deceasing function of pE0 . This is a reflection of the discretization in temporal dimension

from the Matsubara formalism.

4.2 Calculations in d = 4 Spacetime

Mostly in physics, when talking about spacetime, we are referring to a model with three di-

mensions of space and one dimension of time. The frequently used concept of four-momentum

also includes these dimensions. The difficulty in working in d = 4 spacetime when calculat-

ing correlation functions for the one-loop self-energy topology is that both zero- and finite-

44

7 14 21 28 35 42 49 56 63 70
p0
E

0.0005

0.001

0.0015

0.002

0.0025

0.003

Πs

Figure 4.8: The plot of the finite-temperature correction Πs with respect to 1/β in
d = 2 spacetime. The parameters used in the calculation are m1 = 1.1,m2 = 1.2, β =
2π
7
, pE0 = 7l, p1 = 8, |n|max = A = 100 and l are integers. The discrete restriction on pE0

(red dots) gives a relation with Πs (orange line) without the oscillation-like behavior.

temperature correlators diverge. Now, with the Chapter 3 development and Section 4.1

benchmarking of the methodology which allows us to work with the divergent numerical cal-

culations with the chosen regulators (cut-off) and programming methodology (reverse Wick

rotation), we can finally show some computation results in the d = 4 spacetime. Consider

the finite-temperature correction for the self-energy topology:

Πs ≈
1

2

(
A∑

n=−A

IT (ωn)

β
−

A−1∑
n=−A

∫ 2π(n+1)/β

2πn/β

dkE
0

2π
I0(k

E
0)

)
, (4.17)

where IT (ωn) =

∫
d3k

(2π)3
1

ω2
n + k2 +m1

2
× 1

(ωn + pE0)
2 + (k + p)2 +m2

2
, (4.18)

and I0(k
E
0) =

∫
d3k

(2π)3
1

k2 +m1
2 + (kE

0)
2
× 1

(k + p)2 +m2
2 + (kE

0 + pE0)
2
. (4.19)

45

Just like in the lower spacetime dimensions d = 2 and d = 3, the external momenta and

temperature parameter are the variables we are interested in. Using the constant value

β = 0.3, Fig. 4.9 shows the plot of Πs as a function of p in d = 4 spacetime.

Figure 4.9: The effects of the external momentum pE0 and |p| on the d = 4 finite-
temperature corrections Eq. (3.1) of the one-loop self-energy topology (with the pa-
rameter values of m1 = 1.5, m2 = 1.2, β = 0.3, pE0 and where ±|p| varies in the range
[−10, 10] and maximum |n| up to 1000 (i.e., the parameter A)).

As expected, the external momentum gives the maximum peak at p = 0, similar to the

lower dimensional results in Figs. 4.3 and 4.4. This is a very good sign, indicating that the

methodology was successfully applied to the d = 4 spacetime case of the one-loop self-energy

topology. The complete numerical method provides convergent Πs correlator results and

shows the expected pattern with respect to the external momentum as shown in Fig. 4.9.

Next, we will hold the external momentum and field masses constant so we can look

into the relation between the the temperature β and finite-temperature correction Πs on the

correlation function.

46

0.2 0.4 0.6 0.8 1.0
β

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Πs

20 40 60 80 100
1/β

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Πs

Figure 4.10: Above we have plotted the finite-temperature correction Πs with respect
to β (left) and 1/β (right) respectively for d = 4 spacetime. The slope in the right plot is
approximately 0.00302586. The intercept of the right plot is approximately 0.0314978.
The parameters used are m1 = 1.1, m2 = 1.2, p = (7, 8, 9, 6). Truncation at maximum
|n| is up to 100 (i.e., the parameter A = 100)

Referring to Chapter 3, Eq. (3.5) gives an approximation of the large T behavior of ΠT ,

ΠT ≈ 1

2β

∑
n

1

(4π)
3
2

Γ
(
1
2

)
1

1(
2nπ
β

)2× 1
2

=
1

32π2

∑
n

1

|n|
(n 6= 0).

(4.20)

Equation (4.20) suggests that ΠT (n 6= 0) is independent of T . For the n = 0 term, similar

to the d = 2 and d = 3 cases in Section 4.1.3, we have the relation ΠT ∼ T as well as the

linear slope between ΠT and T from Eq. (1.33). Because Π0 is considered to be constant

since the cutoff brought by 2πA/β should be negligible, we again have a linear relation and

slope between Πs and T of

slope4d =
1

2

∫
d3k

(2π)3
1

k2 +m1
2
× 1

p20 + (k + p)2 +m2
2

≈ 0.00302636 (calculated by pySecDec).
(4.21)

Figure 4.10 shows excellent agreement in the linear relation prediction and the slope value of

Eq. (4.21). We can also see that the n 6= 0 terms give the Πs-axes intercept a shift upwards

to the value 0.0314723 (the intercept was calculated from Fig. 4.10 (right) by MATHEMATICA).

47

From Eq. (4.20), we have calculated the intercept from the n 6= 0 terms to be

100∑
n=−100

1

32π2|n|
= 0.0328495. (4.22)

The intercept from the linear fit of Fig. 4.10 (right) also agrees with prediction from Eq. (4.20)

to the second decimal. A small difference between the plot intercept and calculated intercept

is expected because the actual intercept would also rely on the value of Π0 which may have a

small cutoff effect. Considering the linear relation only applies at larger temperature, as 1/β

becomes smaller, Πs deviates away from the linear trend and approaches zero as 1/β goes to

zero (see Fig 4.11).

0.2 0.4 0.6 0.8
1/β

0.2

0.4

0.6

0.8

Πs

Figure 4.11: The plot shows the Πs behavior at small temperature. The finite-
temperature correction Πs goes to zero as temperature goes to zero. The parameters
used are the same as in Fig. 4.10.

48

5 Conclusion

There now exist powerful computational tools including pySecDec [6] to perform numeri-

cal calculations for QFT Feynman diagram loop integrals. We were curious to see if we could

apply these computational tools to finite-temperature QFT. By the end of this thesis, we

have conquered the first step towards this ambitious goal.

By utilizing the imaginary time formalism (Matsubara formalism) [9, 1, 10], we have

reached an expression (Eq. (1.33)) for the one-loop self-energy topology (Fig. 2.1). We chose

the Matsubara formalism as the approach because its representation of the correlation func-

tion Eq. (1.33) is in a form in which we can employ the powerful computation functionality

of pySecDec. One key technique we developed is called the ‘reverse’ Wick rotation (see

Section 3.3) in order to apply pySecDec to our expression of finite-temperature correlation

function. We ‘reverse’ Euclideanized the input momentum so that pySecDec would only

integrate on the spatial dimensions of the Feynman integrals. To benchmark, as well as to

study the use of pySecDec on the chosen topology (Fig. 2.1), several calculations were per-

formed for zero-temperature correlation functions for the designated topology (Fig. 2.1). In

Chapter 2, we used pySecDec to numerically compute the QFT Feynman integrals of TBI

topology (Eq. (1.31)) under certain masses’ values. Meanwhile, we used MATHEMATICA to

compute the same integrations by directly coding them in. The results from both programs

match perfectly and allow us to proceed with pySecDec as a reliable tool for numerical cal-

culation. After confirming pySecDec is suitable for the form of zero-temperature correlation

function Eq. (1.31), we applied the program to the finite-temperature correlation function

Eq. (1.33) in thermal field theory.

A major challenge first came in the form of divergences. Even though pySecDec has

dimensional regularization embedded in the program, the discretized temporal summation

over n in ΠT revealed a new divergence. As the summation index n goes from −∞ to +∞,

49

the correlator ΠT diverges and requires a regulator. The method chosen for ΠT is the cut-off

method. We found the appropriate cut-off (A = 100) for the chosen parameters by observing

the convergence behavior for different maximum cut-offs in Fig. 3.2.

The other major challenge we encountered was also related to the divergence of ΠT . If

ΠT diverges and the zero-temperature correlator Π0 (which can be regulated by pySecDec

directly) also diverges, then the physical variable Πs = ΠT − Π0 converges. Our solution is

to break down the temporal integration over k0 in Π0 so we can find corresponding terms

between ΠT and Π0 as shown in Eq. (3.28). Equation (3.28) also applies a cutoff at 2πA/β

on the zero-temperature correlator Π0. Since in lower dimension spacetimes such as d = 2

and d = 3, both finite-temperature correlator ΠT and zero-temperature correlator Π0 are

convergent, we were able to test the Cut-off methodology in these spacetimes. Comparison

calculations (Figs. 4.1 and 4.2) were performed in lower dimensions to confirm that the Π0

cut-off along with the A truncation on ΠT are negligible within numerical error at large

cut-off A.

With a reliable methodology developed, we successfully calculated an example of Πs in

Section 4.2 in d = 4 spacetime where the finite-temperature ΠT and zero-temperature Π0 for

the one-loop self-energy topology separately diverge but yield a convergent finite-temperature

correction Πs.

5.1 Future Directions in Field Theory

This thesis is a proof of concept for adapting QFT numerical loop calculation methods to

thermal field theory. It is also a starting point for including more complicated topologies in

this new numerical calculation methodology.

We have been focusing on the one-loop self-energy topology for scalar field in this the-

sis. Another possible starting topology would be the self-energy tadpole topology. Equa-

tion (1.28) contains an expanded version of such correlator topology in thermal field theory.

The reason that we did not choose this topology for the proof of concept of our methodology

is that the tadpole topology diverges in d = 2 spacetime and higher spacetime dimensions

give even worse divergences. Therefore, we would not have a benchmark reference for our

50

methodology. Now that we have a reliable numerical method for the one-loop self-energy

topology, we are able to apply it to the tadpole topology to find the known Πs(T) ∼ T 2

relationship from Eq. (1.28) (Ref. [1]):

ΠT = λ

[
Λ2

16π2
+

T 2

24
+ . . .

]
. (5.1)

The expression for Πs for the tadpole topology for numerical calculation is

Πtadpole
s = Πtadpole

T − Πtadpole
0

=
1

2β

A∑
n=−A

∫
d3k

(2π)3
1

(2nπ
β
)2 + k 2 +m2

− 1

2

A∑
n=−A

∫ 2π(n+1)/β

2πn/β

dkE
0

2π

d3k

(2π)3
1

k2 +m2
.

(5.2)

A log-log plot can provide a direct visual confirmation for the relation Πs(T) ∼ T 2,

ln(Πs) = 2 ln(T) + constant. (5.3)

0.5 1.0 1.5 2.0
Τ

20000

40000

60000

80000

100000

120000

Πs

-4 -3 -2 -1
ln(Τ)

2

4

6

8

10

12

ln(Πs)

Figure 5.1: On the LHS is a plot of the finite-temperature correction Πs with respect
to T = 1/β at d = 4 spacetime for the self-energy topology. On the RHS is the log-log
plot for the Πs vs T relation. The slope on the right plot is approximately 1.99946.
The mass parameter used in the calculation is m = 1.1. The maximum |n| is up to 100
(i.e., the parameter A = 100).

Figure 5.1 shows excellent agreement with the Πs ∼ T 2 relation because the log-log plot

provides a slope close to 2.

Both the TBI (Fig. 2.1) and the tadpole (Eq. (1.28)) topologies have one-loop structure in

their Feynman diagrams. They are the simplest cases for numerical calculations which allowed

51

us to focus only on the basic single loop calculations. Now that we have a methodology

built for the one-loop self-energy topology, in theory, we can compute higher-loop Feynman

diagrams with scalar fields. Each loop will bring in a discretized summation for its temporal

dimension. For example, a two-point, two-loop topology will have a Feynman integral with

two scalar loops. Each loop has its own summation over an index. That means a pair of

summations over n1 and n2, and would require cut-offs in n1, n2 and their corresponding Π0

integrations.

m1

m2

m3

m4

Figure 5.2: Two-Point, two-loop Feynman diagram with scalar fields.

Using the same basic ideas developed in this thesis, we can compute thermal field the-

ory correlators that have more than one loop. Our methodology can be generalized to the

Feynman rules for any topology with loop structure in thermal field theory.

The cut-off methodology from Chapter 3 is a robust way to calculate the finite-temperature

correction for the one-loop self-energy correlation function. However, when we were studying

the large n behavior in the summation in Section 3.2, within the dimensional regularization

d = 4− 2ε we reached an expression for..................................... ΠT as in Eq. (3.5). If we use

ζ function to transform the expression [20]

∞∑
n=1

1

n1+2ε
≡ ζ(1 + 2ε), (5.4)

which gives the ε expansion

ζ(1 + 2ε) =
1

2ε
+ γE + ϑ(ε). (5.5)

52

Now combining with Eq. (3.5), ΠT now has an expression with 1
ε

as

ΠT ≈
∑
n

1

32π2|n|1+2ε

≈ 2

32π2

(
1

2ε
+ γE

)
,

(5.6)

where the factor of 2 comes from the negative and positive values of n. Equation (5.6) does

not include the n = 0 term. Then we have the finite-temperature correction in terms of ε at

large temperature T limit (equivalent to large n limit)

lim
T →∞

= ΠT (n = 0) +
2

32π2

(
1

2ε
+ γE

)
− Π0. (5.7)

It can easily be verified that Π0 has a 1
32π2ε

divergence, which leaves Eq. (5.7) finite as ε → 0.

Thus with Eq. (5.7), we can calculate ΠT and Π0 purely in dimensional regularization without

cutoff. We can possibly generalize this method to more topologies. This is another promising

approach for thermal field theory finite-temperature correction numerical calculations that

could be developed in future work.

53

Bibliography

[1] F. Gelis, Quantum Field Theory: From Basics to Modern Topics (Cambridge University

Press, 2019).

[2] M. Gogberashvili, Advances in High Energy Physics 2018, 1–5 (2018).

[3] J. Ellis, M. Lewicki, and J. M. No, Journal of Cosmology and Astroparticle Physics

2020, 050–050 (2020).

[4] W. Huang, F. Sannino, and Z. Wang, Physical Review D 102 (2020).

[5] V. A. Smirnov, Analytic tools for Feynman integrals (Springer, 2013).

[6] S. Borowka, G. Heinrich, S. Jahn, S. Jones, M. Kerner, J. Schlenk, and T. Zirke, Com-

puter Physics Communications 222, 313–326 (2018).

[7] T.-P. Cheng and L.-F. Li, Gauge theory of elementary particle physics (Oxford university

press, 1994).

[8] M. E. Peskin, An introduction to quantum field theory (CRC press, 2018).

[9] A. Das, Finite temperature field theory (World scientific, 1997).

[10] T. Matsubara, Progress of theoretical physics 14, 351 (1955).

[11] A. I. Davydychev, J. Math. Phys. 32, 1052 (1991).

[12] P. Pascual and R. Tarrach, QCD: Renormalization for the Practitioner, Lecture notes

in physics (Springer-Verlag, 1984).

[13] R. Kleiv, Qcd sum rule studies of heavy quarkonium-like states, 2014, arXiv: 1407.2292.

54

[14] R. Mertig and R. Scharf, Comput. Phys. Commun. 111, 265 (1998), arXiv: hep-

ph/9801383.

[15] T. Huber and D. Maitre, Comput. Phys. Commun. 175, 122 (2006), arXiv: hep-

ph/0507094.

[16] K. Nakamura et al., Journal of Physics G Nuclear and Particle Physics 86 (2010).

[17] J. C. Collins and J. C. Collins, Renormalization: an introduction to renormalization, the

renormalization group and the operator-product expansion (Cambridge university press,

1985).

[18] M. D. Schwartz, Quantum field theory and the standard model (Cambridge University

Press, 2014).

[19] G. Leibbrandt, Reviews of Modern Physics 47, 849 (1975).

[20] M. Laine and A. Vuorinen, Basics of Thermal Field Theory (Springer International

Publishing, 2016).

55

Appendix A

TBI Comparison with massive TBI Integrals

Appendix A includes the graphs for MATHEMATICA analytic calculation results comparing
with pySecDec numerical calculation results. The mass values for the internal lines are
defined 4.18 GeV to align with the bottom quark mass. By exploring a different mass input,
we were ensuring that pySecDec is accurate across a wide range of physical scale.

50 100 150 200 250 300
q
2[GeV2]

-1.0

-0.8

-0.6

-0.4

-0.2

Re[ϵ-1]

50 100 150 200 250 300
q
2[GeV2]

-1.0

-0.5

0.5

1.0

Im[ϵ-1]

50 100 150 200 250 300
q
2[GeV2]

-4

-3

-2

-1

Re[ϵ0]

50 100 150 200 250 300
q
2[GeV2]

0.5

1.0

1.5

2.0

2.5

Im[ϵ0]

50 100 150 200 250 300
q
2[GeV2]

-4

-3

-2

-1

Re[ϵ1]

50 100 150 200 250 300
q
2[GeV2]

2

4

6

8

10

Im[ϵ1]

pySecDec numerical calculation result

Analytical result

Figure A.1: ε−1 , ε0 and ε1 coefficients comparison graphs for analytical and numerical
results for the one-loop self-energy integral (m1 = m2 = 4.18GeV).

56

Appendix B

Integration Code and Results for Testing

Convergence in Πs

Appendix B includes the python code involving pySecDec program to test if the method-
ology proposed in Eq. (3.28) gives a convergent finite-temperature correction Πs. The calcu-
lation results are shown in Fig. 3.2. The MATHEMATICA code that generates Fig. 3.2 and the
log-log plot Fig. 3.3 are also attached after the python code.

from __future__ import print_function
from pySecDec.integral_interface import IntegralLibrary
import sympy as sp
import numpy as np
import scipy.integrate as si

load c++ library
zero_temp_cal = IntegralLibrary('/home/siyuan/Documents/

↪→ self_energy_3D_corrected/self_energy_3D_corrected_pylink.so')
finite_temp_cal = IntegralLibrary('/home/siyuan/Documents/

↪→ self_energy_3D_corrected/self_energy_3D_corrected_pylink.so')

choose integrator
pySecDec integration method

zero_temp_cal.use_Vegas(flags=0) # ``flags=2``: verbose --> see Cuba manual
finite_temp_cal.use_Vegas(flags=0)

parematers

n_range = np.linspace (-300,300, 601) # Memory error, start small
m1, m2 = 1.1,2

beta = 0.1

Momentum input
p_vec = np.array([1,0,0])
pp = np.sum(np.square(p_vec))
#l = 1
#p0 = 2*l*np.pi/beta
p0 = 7

57

Function Definitions
def m1Sq(n):

return m1**2 + (2*np.pi*n/beta)**2
def m2Sq(n):

return m2**2 + (2*np.pi*n/beta + p0)**2
def zero_psd(p_0, k_0E):

raw_zero = zero_temp_cal(complex_parameters = [-pp], real_parameters=[(
↪→ m1**2+k_0E**2), (m2**2+(k_0E+p_0)**2)])

str_raw_zero = raw_zero[2]
convert complex numbers from c++ to sympy notation for zero temp 0+1D

↪→ integral before integrate it over the n interval
str_raw_zero = str_raw_zero.replace(',','+I*')
convert to sympy expressions
zero_psd_result = sp.sympify(str_raw_zero.replace('+/-','*value+error*')

↪→)
zero_psd_result_err = sp.sympify(str_raw_zero.replace('+/-','*value+

↪→ error*'))
return zero_psd_result.coeff('eps',0).coeff('value')

Set variables
sub_sum = 0

Start summation over index n
for n in n_range:

#psd calculation of 0+nD integral
raw_finite = finite_temp_cal(complex_parameters = [-pp], real_parameters

↪→ =[m1Sq(n), m2Sq(n)])

#integrate over n and (n+1) interval
k_0E_range = np.linspace(2*(n)*np.pi/beta, 2*(n+1)*np.pi/beta, 7) #x

#p_0 over grid for manual integral

y = [zero_psd(p0, k_0E) for k_0E in k_0E_range]

int_zero = si.simps(y, k_0E_range)

#convert finite temp to proper format before the subtraction
str_raw_finite = raw_finite[2]
str_raw_finite = str_raw_finite.replace(',','+I*')
finite_psd_result = sp.sympify(str_raw_finite.replace('+/-','*value+

↪→ error*'))
finite_psd = finite_psd_result.coeff('eps',0).coeff('value')

58

the subtraction
sub_raw = finite_psd/(2*beta) - int_zero/(4*np.pi)

#print the subtration results conrresponding to each individual n
print('{ "%s" , "%s" , "%s" ,"%s" , "%s","%s" , "%s"},' % (n, sp.re(

↪→ sub_raw), sp.im(sub_raw), sp.re(finite_psd/(2*beta)), sp.im(
↪→ finite_psd/(2*beta)), sp.re(int_zero/(4*np.pi)), sp.im(int_zero
↪→ /(4*np.pi))))

59

Integration Result Analysis for Testing Convergence in Πs
Input variables :

n = -300~300
m1 = 1.1
m2 = 2
p0 = 7
p1 = 1

In[4003]:= files = {"1+3D_data_corrected_v8.m", "1+3D_data_corrected_mit_err_v9.m"};

data = Get[#, Path → NotebookDirectory[]] & /@ files;

1+3D corrected version 8
In[4005]:= subresult3Dstrv8 = data[[1]][[All, 2]];

sub3Dstrrepv8 = StringReplace[subresult3Dstrv8, {"e" → "×10^"}];

subresult3Dv8 = ToExpression[sub3Dstrrepv8];

In[4008]:= TableTotal

subresult3Dv8Length[subresult3Dv8] + 1 2 - n ;; Length[subresult3Dv8] + 1 2 + n,

n, 1, Length[subresult3Dv8] - 1 2;

In[4009]:= ftreal3Dv8 = data[[1]][[All, 4]]; zeroreal3Dv8 = data[[1]][[All, 6]];

In[4010]:= ftreal3Dv8 = data[[1]][[All, 4]];

ftstrrepv8 = StringReplace[ftreal3Dv8, {"e" → "×10^"}];

ft3Dv8 = ToExpression[ftstrrepv8];

In[4013]:= n3Dv8 = ToExpression[data[[1]][[All, 1]]];

In[4014]:= errv9str = StringReplace[data[[2]][[All, 8]], {"e" → "×10^"}];

In[4015]:= errv9 = ToExpression[errv9str];

In[4016]:= zero3Dv8 = data[[1]][[All, 6]];

zerostrrepv8 = StringReplace[zero3Dv8, {"e" → "×10^"}];

zero3Dv8 = ToExpression[zerostrrepv8];

In[4019]:= subv8 = TableTotalsubresult3Dv8Length[subresult3Dv8] + 1 2 - n ;;

Length[subresult3Dv8] + 1 2 + n, n, 1, Length[subresult3Dv8] - 1 2;

ftv8 = TableTotalft3Dv8Length[ft3Dv8] + 1 2 - n ;; Length[ft3Dv8] + 1 2 + n,

n, 1, Length[ft3Dv8] - 1 2;

zerov8 = TableTotalzero3Dv8Length[zero3Dv8] + 1 2 - n ;;

Length[zero3Dv8] + 1 2 + n, n, 1, Length[zero3Dv8] - 1 2;

In[4022]:= errsumv9 = TableTotalerrv9Length[errv9] + 1 2 - n ;; Length[errv9] + 1 2 + n,

n, 1, Length[errv9] - 1 2;

Printed by Wolfram Mathematica Student Edition

In[4023]:= ListPlot[{zerov8, ftv8, subv8},

PlotLegends → Placed[{"Zero Temperature", "Finite Temperature (β = 0.3 GeV)",

"Finite Tempearture Correction(Finite-Zero)" }, {0.75, 0.5}],

ImageSize → Large, AxesLabel → {"max n", "Regulated Correlator"}]

Out[4023]=

Zero Temperature

Finite Temperature (β = 0.3 GeV)

Finite Tempearture Correction(Finite-Zero)

50 100 150 200 250 300
max n

0.02

0.04

0.06

0.08

Regulated Correlator

In[4024]:= cauchyv8 = Table[subv8[[n]] - subv8[[n + 1]], {n, 1, Length[subv8] - 1}];

In[4025]:= testv8 = Table[cauchyv8[[n]] - cauchyv8[[n + 1]], {n, 1, Length[cauchyv8] - 1}];

In[4026]:= loglog = Table[{Log[n], Log[testv8[[n]]]}, {n, 1., 298.}];

In[4027]:= ListPlot[loglog, AxesLabel → {"ln(n)", "ln(Cn)"}, GridLines → Automatic]

Out[4027]=

1 2 3 4 5
ln(n)

-25

-20

-15

-10

-5

ln(Cn)

2 pi_s_convergence_test.nb

Printed by Wolfram Mathematica Student Edition

Appendix C

Integration Code for Benchmarking Π0 Cut-off

in 2-dimensional Spacetime

Appendix C includes the python code utilizing pySecDec package to compare Πs = ΠT −
Π0 calculated from two slightly different methods. One with truncated ΠT and exact Π0.
the other with truncated ΠT and Π0 with cut-off at 2π|n|max/β. The code gives the example
of the d = 2 spacetime calculation code. The d = 3 spacetime would be similar but with
different .so file and input physical variables, which is presented in the caption of Fig. 4.2.
The computation result is plotted in Fig. 4.1.

Following is the python code for Πs = ΠT − Π0 with Π0 calculated uses only pySecDec
in d = 2 spacetime.

from __future__ import print_function
from pySecDec.integral_interface import IntegralLibrary
import sympy as sp
import numpy as np
import scipy.integrate as si

load c++ library
zero_temp_cal = IntegralLibrary('/home/siyuan/Documents/

↪→ self_energy_2D_corrected/self_energy_2D_corrected_pylink.so')
finite_temp_cal = IntegralLibrary('/home/siyuan/Documents/

↪→ self_energy_1D_corrected/self_energy_1D_corrected_pylink.so')

choose integrator
pySecDec integration method

zero_temp_cal.use_Vegas(flags=0) # ``flags=2``: verbose --> see Cuba manual
finite_temp_cal.use_Vegas(flags=0)

parematers
n_range = np.linspace (-100,100, 201)
m1, m2 = 1.1,1.2

l = 1
beta = 0.1

Momentum input
p_vec = np.array([1.3,0,0])
pp = np.sum(np.square(p_vec))

62

#Function Definitions
def m1Sq(n):

return m1**2 + (2*np.pi*n/beta)**2
def m2Sq(n):

return m2**2 + (2*np.pi*n/beta + p0)**2
def zero_psd(p_0):

raw_zero = zero_temp_cal(complex_parameters = [-(p_0)**2-pp],
↪→ real_parameters=[(m1**2), (m2**2)])

str_raw_zero = raw_zero[2]
convert complex numbers from c++ to sympy notation for zero temp 0+1D

↪→ integral before integrate it over the n interval
str_raw_zero = str_raw_zero.replace(',','+I*')
convert to sympy expressions
zero_psd_result = sp.sympify(str_raw_zero.replace('+/-','*value+error*')

↪→)
zero_psd_result_err = sp.sympify(str_raw_zero.replace('+/-','*value+

↪→ error*'))
return zero_psd_result.coeff('eps',0).coeff('value')

#Set variables
p0 = 2*np.pi/beta
ft_sum=0

for n in n_range:
#psd calculation of 0+nD integral
raw_finite = finite_temp_cal(complex_parameters = [-pp], real_parameters

↪→ =[m1Sq(n), m2Sq(n)])

#convert finite temp to proper format before the subtraction
str_raw_finite = raw_finite[2]
str_raw_finite = str_raw_finite.replace(',','+I*')
finite_psd_result = sp.sympify(str_raw_finite.replace('+/-','*value+

↪→ error*'))
finite_psd = finite_psd_result.coeff('eps',0).coeff('value')
finite_psd_err = finite_psd_result.coeff('eps',0).coeff('error')/(2*beta

↪→)

the subtraction
ft_sum = ft_sum + finite_psd/(2*beta)

63

#print the subtration results conrresponding to each individual n
print('{ "%s" , "%s" , "%s", "%s" },' % (n, sp.re(ft_sum), sp.re(

↪→ finite_psd/(2*beta)),sp.re(finite_psd_err)))

zero_temp = zero_psd(p0)

print('{"%s", "%s"}' %(sp.re(zero_temp)/2,sp.im(zero_temp)/2))

Following is the python code for Πs = ΠT − Π0 with Π0 calculated uses cut-off at
2π|n|max/β referring to Eq. (3.28).

from __future__ import print_function
from pySecDec.integral_interface import IntegralLibrary
import sympy as sp
import numpy as np
import scipy.integrate as si

load c++ library
zero_temp_cal = IntegralLibrary('/home/siyuan/Documents/

↪→ self_energy_1D_corrected/self_energy_1D_corrected_pylink.so')
finite_temp_cal = IntegralLibrary('/home/siyuan/Documents/

↪→ self_energy_1D_corrected/self_energy_1D_corrected_pylink.so')

choose integrator
pySecDec integration method
zero_temp_cal.use_Vegas(flags=0) # ``flags=2``: verbose --> see Cuba manual
finite_temp_cal.use_Vegas(flags=0)

Parameters:
l = 1
p0 = 2*l*np.pi/beta
beta = 0.1
p0 = 2*np.pi/beta # Euclidean
p_vec = np.array([1.3,0,0])
pp = np.sum(np.square(p_vec))
m1, m2 = 1.1, 1.2

n_range = np.linspace(-50, 50, 101) # Memory error, start small

first mass-squared parameter for finite temp correlator
def m1Sq(n):

return m1**2 + (2*np.pi*n/beta)**2

second mass-squared parameter for the finite temp correlator
def m2Sq(n):

64

return m2**2 + (2*np.pi*n/beta + p0)**2

def zero_psd(p_0, k_0E):
"""Compute

Parameters

p_0 : Real

Euclideanized p0 (external momentum).
k_0E : Real

Euclideanized k0 (loop momentum).

Returns

Sympy expression.

Spatial integral at zero temp from pySecDec libraries.
"""
zero temperature spatial integral
raw_zero = zero_temp_cal(complex_parameters=[-pp],

real_parameters=[(m1**2 + k_0E**2),
(m2**2 + (k_0E + p_0)**2)])

str_raw_zero = raw_zero[2]
convert complex numbers to sympy notation
str_raw_zero = str_raw_zero.replace(',','+I*')
convert to sympy expressions
zero_psd_result = sp.sympify(str_raw_zero.replace('+/-', '*value+error*'

↪→))
zero_psd_result_err = sp.sympify(str_raw_zero.replace('+/-', '*value+

↪→ error*'))
return zero_psd_result.coeff('eps', 0).coeff('value')

fin_corr = 0 # running sum of finite temp correlator
zero_corr = 0 # running sum of zero temp correlator
nmax = 100 # max series index
nmin = -nmax # min series index
intervals = 51 # intervals used in Simpson's rule
for n in range(nmin, nmax + 1):

finite temp spatial integral
raw_finite = finite_temp_cal(complex_parameters=[-pp],

real_parameters=[m1Sq(n), m2Sq(n)])

convert finite temp output
str_raw_finite = raw_finite[2]

65

str_raw_finite = str_raw_finite.replace(',','+I*')
finite_psd_result = sp.sympify(str_raw_finite.replace('+/-',

'*value+error*'))
finite_psd = finite_psd_result.coeff('eps',0).coeff('value')
update running sum
fin_corr += finite_psd/(2*beta)

If n is NOT nmax, integrate the zero temp spatial integral over the
n to (n + 1) interval
if n < nmax:

k_0E_range = np.linspace(2*n*np.pi/beta, 2*(n + 1)*np.pi/beta,
↪→ intervals)

y = [zero_psd(p0, k_0E) for k_0E in k_0E_range]
int_zero = si.simps(y, k_0E_range)
update running sum
#zero_corr += int_zero/(4*np.pi)

the subtraction
sub_raw = finite_psd/(2*beta) - int_zero/(4*np.pi)

print the subtration results conrresponding to each individual n

print('{ "%s" , "%s" , "%s" ,"%s" , "%s","%s" , "%s"},' %
(n,
sp.re(sub_raw), sp.im(sub_raw),
sp.re(finite_psd/(2*beta)), sp.im(finite_psd/(2*beta)),
sp.re(int_zero/(4*np.pi)), sp.im(int_zero/(4*np.pi)))
)

66

Appendix D

Integration Code for Calculating the relation

between Πs and external momentum p

in 2-dimensional Spacetime

This section will present the calculation python code for finite-temperature correction
Πs with respect to external momentum p in d = 2 spacetime. The temperature factor is
controlled at a constant of β = 0.3. The calculation result was plotted in Fig. 4.3. The
MATHEMATICA file for the mesh plot Fig. 4.3 of the data generated from the python code is
also attached at the end of this section.

The redundant part of loading .so files and setting up mass functions for the correlator
of the one-loop self-energy topology are as in Appendix C and omitted here.

Variable values
p0_min = -20
p0_max = -p0_min
p1_min = -20
p1_max = -p1_min
nmax = 100 # max series index
nmin = -nmax # min series index
intervals = 50 # intervals used in Simpson's rule

for p0 in range(p0_min,p0_max,2):
sub_sum = 0
for p1 in range(p1_min,p1_max,2):

sub_raw = 0
for n in range(nmin, nmax + 1):

finite temp spatial integral
raw_finite = finite_temp_cal(complex_parameters=[-p1**2],

real_parameters=[m1Sq(n), m2Sq(n)
↪→])

convert finite temp output
str_raw_finite = raw_finite[0]
str_raw_finite = str_raw_finite.replace(',','+I*')
finite_psd_result = sp.sympify(str_raw_finite.replace('+/-

↪→ ',
'*value+

67

↪→ error
↪→ *'))

finite_psd = finite_psd_result.coeff('eps',0).coeff('value
↪→ ')

update running sum
fin_corr += finite_psd/(2*beta)

If n is NOT nmax, integrate the zero temp spatial
↪→ integral over the

n to (n + 1) interval
if n < nmax:

k_0E_range = np.linspace(2*n*np.pi/beta, 2*(n + 1)*np.
↪→ pi/beta, intervals)

y = [zero_psd(p0, k_0E, p1) for k_0E in k_0E_range]
int_zero = si.simps(y, k_0E_range)

the subtraction
sub_raw = finite_psd/(2*beta) - int_zero/(4*np.pi)

sub_sum = sub_sum + sub_raw

print('{ "%s" , "%s" , "%s" "%s" },' %
(p0, p1,
sp.re(sub_sum), sp.im(sub_sum)))

68

Integration Result Mesh - Plot for Πs vs External Momentum p = (p0, p1)

in 2 d Spacetime

In[746]:= files = {"pi_vs_p_1+1D_addition.m"};

data = Get[#, Path → NotebookDirectory[]] & /@ files;

For 1 + 1 D

n = -100~ 100
m1 = 1.1
m2 = 1.2
p0 = -20 ~ 20
p1 = -20 ~ 20
β = 0.3

In[748]:= data2Dv2str = data[[1]][[All, {1, 2, 3}]];

data2Dv2strrep = StringReplace[data2Dv2str[[All, 3]], {"e" → "×10^"}];

In[750]:= data2Dv2col1 = ToExpression[data2Dv2str[[All, 1]]];

data2Dv2col2 = ToExpression[data2Dv2str[[All, 2]]];

data2Dv2col3 = ToExpression[data2Dv2strrep];

data2Dv2 = Transpose[{data2Dv2col1, data2Dv2col2, data2Dv2col3}];

In[759]:= ListPlot3D[data2Dv2, Mesh → All, AxesLabel → {"p0", "p1", "Πs"},

PlotRange → Full, LabelStyle → Directive[12]]

Out[759]=

Printed by Wolfram Mathematica Student Edition

Appendix E

Integration Code for Calculating the relation

between Πs and Temperature Factor β

in 2-dimensional Spacetime

This section will present the calculation python and MATHEMATICA code for finite-temperature
correction Πs with respect to thermal β and temperature T = 1

β
in d = 2 spacetime. The

external momentum is set at constant values of p = (7, 8, 0, 0). The calculation result was
plotted in Fig. 4.5. As in Appendix D, the repeated part of code would be omitted.

#Set variables
p1 = 8

for T_100 in range(T_min,T_max+1):
sub_sum = 0
sub_raw = 0
ft_sum=0
T = T_100/100
beta = 1./T
#p0 = 2*np.pi/beta
p0 = 7
for n in n_range:

#psd calculation of 0+nD integral
raw_finite = finite_temp_cal(complex_parameters = [-(p1)**2],

↪→ real_parameters=[m1Sq(n),m2Sq(n)])

#convert finite temp to proper format before the subtraction
str_raw_finite = raw_finite[2]
str_raw_finite = str_raw_finite.replace(',','+I*')
finite_psd_result = sp.sympify(str_raw_finite.replace('+/-','*

↪→ value+error*'))
finite_psd = finite_psd_result.coeff('eps',0).coeff('value')
finite_psd_err = finite_psd_result.coeff('eps',0).coeff('error')

↪→ /(2*beta)

update running sum
fin_corr += finite_psd/(2*beta)

70

If n is NOT nmax, integrate the zero temp spatial integral
↪→ over the

n to (n + 1) interval
if n < nmax:

k_0E_range = np.linspace(2*n*np.pi/beta, 2*(n + 1)*np.pi/beta,
↪→ intervals)

y = [zero_psd(p0, k_0E, p1) for k_0E in k_0E_range]
int_zero = si.simps(y, k_0E_range)

the subtraction
sub_raw = finite_psd/(2*beta) - int_zero/(4*np.pi)

sub_sum = sub_sum + sub_raw

print('{ "%s" , "%s" , "%s" "%s" },' % (p0, p1, sp.re(sub_sum), sp.
↪→ im(sub_sum)))

71

Integration Result Plot for Πs vs β (and 1/β) in 2 d Spacetime

In[5100]:= files = {"1+1D_beta.m"};

data = Get[#, Path → NotebookDirectory[]] & /@ files;

data2Dbetav2str = data[[1]][[All, 2]];

1 + 1 D

In[5103]:= data2Dbetav2strrep = StringReplace[data2Dbetav2str, {"e" → "×10^"}];

data2Dbetav2 = ToExpression[data2Dbetav2strrep];

In[5105]:= data2Dv2beta1 = ToExpression[data[[1]][[All, 1]]];

data2Dv2beta = Transpose[{data2Dv2beta1, data2Dbetav2}];

ListPlot[data2Dv2beta, AxesLabel → {"β", "Πs"}]

Out[5107]=

0.02 0.04 0.06 0.08 0.10 0.12
β

0.05

0.10

0.15

0.20

Πs

In[5108]:= Tv2 = Transpose1. data2Dv2beta1, data2Dbetav2;

In[5111]:= Tv2[[70, 2]] - Tv2[[20, 2]] Tv2[[70, 1]] - Tv2[[20, 1]]

Out[5111]= 0.00199939

In[5110]:= ListPlot[Tv2, PlotRange → All, AxesLabel → {"1/β", "Πs"}]

Out[5110]=

20 40 60 80 100
1/β

0.05

0.10

0.15

0.20

Πs

Printed by Wolfram Mathematica Student Edition

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Abbreviations
	Introduction to Thermal Field theory
	Quantum Field Theory
	Path Integrals
	Wick Rotation

	Thermal Field Theory
	Matsubara Formalism
	Finite-temperature Correlation Functions

	pySecDec Benchmarking for Feynman Diagrams at Zero Temperature
	TBI Massless Integral
	TBI Massive Case
	Cutting Rules

	Methodology
	The Cut-off Method
	Large n Behavior
	The `Reverse' Wick Rotation
	The Subtraction

	Numerical Calculation of the Self-Energy Topology at Finite Temperature
	Calculations in d = 2 and d = 3 Spacetime
	Benchmarking in the Lower Dimensions
	Relationship with Respect to External Momenta
	Relationship with Respect to Temperature
	Small Temperature Behavior in 2-dimensional Spacetime

	Calculations in d = 4 Spacetime

	Conclusion
	Future Directions in Field Theory

	TBI Comparison with massive TBI Integrals
	Integration Code and Results for Testing Convergence in s
	Integration Code for Benchmarking 0 Cut-off in 2-dimensional Spacetime
	Integration Code for Calculating the relation between s and external momentum p in 2-dimensional Spacetime
	Integration Code for Calculating the relation between s and Temperature Factor in 2-dimensional Spacetime

