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Chapter 1

Introduction

In 2016 German data centers consumed 12.4 terawatt-hours (or 12.4 · 109kWh) [1] of
electrical energy, which accounts for about 2% of Germany’s total energy consump-
tion in that year. In 2020 this rose to 16 terawatt-hours (or 16 · 109kWh) [2] or 2.9%
of Germany’s total energy consumption in that year. These figures do not account for
the energy consumption of private devices like laptops, desktop PCs or smartphones,
because they do not have large-scale dedicated and therefore easy to measure power
supplies like data centers. But due to the widespread use of consumer computer de-
vices in modern day-to-day life, it can be expected that the total power consumption of
these will also rise further.

The ever-increasing energy consumption of computers consequently leads to con-
siderations to reduce it to save energy, money and to protect the environment. Battery-
powered devices like laptops will also have the benefit of increased battery life due to
lower energy consumption. This basic notion is encapsulated in the GreenIT concept,
which aims to reduce negative impacts (e. g. energy consumption, toxicity, water use)
in the life cycle (e. g. design, manufacturing, distribution, use and disposal) of IT
products [3]. Energy consumption in the life cycle of personal computers and server
systems is the main focus of this thesis. It aims to answer fundamental questions re-
lated to the energy consumption of software to lay the groundwork for further studies
in the future. The software scope is chosen because it does not require extra hardware,
e. g. an ampere meter, to take measurements. Being able to use a readily available
program to measure energy makes this solution more accessible. Fine-tuning may be
necessary on individual devices since the same software will not run power optimal on
all devices.

4



Chapter 1. Introduction 5

The following questions are to be answered in connection with the energy con-
sumption of applications:

1. Which methods exist to measure energy consumption?
2. How granular, precise, valid and reproducible can a measurement be?
3. What is having an influence on energy consumption?
4. Does algorithm design influence it?
5. How relevant is the energy consumption of small functions?
6. Can other features like CPU load be used to approximate the energy consump-

tion?
7. Is the time expenditure in optimizing programs for less energy use worth it?

Questions four to seven are specific cases of question three. The scope of this thesis
is further narrowed down to only apply to the most widespread processor architecture
used in laptops, desktop PCs and servers, namely x86-64. All measured programs
used are written in the C programming language since it is a widespread and simple
language that has a lot of third-party tools to work with. All data supplementing this
thesis can be downloaded at https://zenodo.org/record/5559595.

https://zenodo.org/record/5559595


Chapter 2

Basic Knowledge and Literature
Review

2.1 Energy consumption

Measurements can be taken in Joule or Watt. These units can be used interchangeably
when the time frame is known. It is generally advised to use Joule for small and time-
limited measurements like the energy usage of a function. Watt is better suited for
longer or indefinitely running programs.

Power =
Energy

T ime

Formula 1: Equation for power

Ardito et al. [4] describe how methods of energy measurement can be categorized.
Three measurement techniques can be distinguished, namely instant power measure-
ment, time measurement and model estimation. This categorization scheme (see tab.
2.1) will be used in this thesis. A similar structure is used by Rieget et al. [5], where
the subdivisions included measurements with and without model derivation and power
analysis attacks from the subject area of IT security.

Instant power measurements require some sort of physical instrumentation, e. g.
an attached ampere meter or an internal measurement of a component, which is ex-
posed via an interface. The accuracy of the read-out power consumption depends on
the sampling frequency of the measurement device. Facilities for exposed internal
measurements must be implemented by the hardware vendor of the corresponding
component. Suitable software for reading out is also needed. Standards like the
Advanced Configuration and Power Interface (ACPI) exist, but these do not provide
suitable isolation techniques to get the power consumption of a single program. The
complexity of the ACPI [6] standard further disqualifies it as a simple solution for
application-level power measurement. Another solution is adding an ampere meter to
the PC’s power supply and measuring the energy consumption. Adding extra hard-
ware for measurement has the disadvantage of further complexity due to the energy

6
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Measurement
technique

Advantages Disadvantages

Instant power
measurement

Precise if the sampling
frequency is high

Physical instrumentation
needed. Difficult to
isolate a single software
application’s
contribution.

Time measurement Precise if the exact
energy stored in the
battery is known.

Requires many
repetitions of long tasks.
Difficult to isolate a single
software application’s
contribution. Automatic
power saving in low
battery levels can skew
results.

Model estimation No instrumentation is
required. Easy to isolate
a single application’s
contribution.

Precision is not always
declared.

Table 2.1: Categorization of energy measurement methods according to [4]

efficiency of the power supply. Furthermore, not every developer may have the means
and expertise to acquire and install the required hardware. Later, a way to measure
the consumption of the most power-consuming part of a PC, the processor [7], is being
presented to circumvent these problems.

Time measurement is based on the drainage of the energy stored in a battery to
calculate the consumed energy. Laptops are ideally suited for this technique because
they are already equipped with an integrated battery. The battery’s actual charge level
can be read out by the Operating System (OS) via the ACPI interface. But on desktop
and server systems this technique would mandate adding a battery to the power supply
for measuring, which comes with the same problems as described before with adding
an ampere meter. Provided one has access to a laptop, this technique is suitable to
cross-validate findings from the other two measurement techniques.

Creating a model can remove the biggest disadvantage of the previous two tech-
niques, namely the dependency on physical instrumentation. Furthermore, it becomes
possible to isolate the energy consumption of a single application. Models can em-
ploy a combination of software analysis and energy modelling [8] or use only energy
measurements to set the developed model into context [9]. Without some form of mea-
surement, it is not possible to get a concrete energy value in Joule, since no frame of
reference for energy consumption would exist. Hybrid versions between model esti-
mation and the other two techniques are therefore possible.
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2.2 The x86-64 instruction set architecture

Desrochers et al. states that "CPUs are the focus of power optimization as they make
up the largest single component of a system’s energy budget. Next in line after the
processors is the DRAM" [7]. An example is given where on a server system under
load the CPU consumes 130W of power while the DRAM only consumed 13W. Dedi-
cated Graphics Processing Units (GPUs) can have a higher power consumption, e. g.
an NVIDIA V100 can consume 250W [10]. Since dedicated GPUs are used for more
specialized use cases, they are excluded from deeper analysis in this thesis. Due to
their prominent role in energy consumption, processors used in laptop, desktop and
server computers are more closely examined. Almost all processors in these systems
are based on the x86-64 architecture and are produced by one of two major vendors,
AMD1 and Intel2. Intel has a bigger market share (see fig. 2.1), especially in the server
market (see fig. 2.2), but AMD’s market share is rising in recent years.

Figure 2.1: x86 market share [11] Figure 2.2: Server CPU market share [11]

Definitions of the machine code instructions, available data types and data type
size are all parts of the implemented Instruction Set Architecture (ISA). The hardware
design (i.e. design documents, mechanical drawings, schematics and layout data) of
x86-64 itself is closed source. Self-conducted tests and experiments are needed for a
detailed examination of processor features and inner workings because no extensive
information is available to the public. Processors implementing the x86-64 ISA, other
names are x86_64, x64, amd64 and Intel64, are the most commonly used processors
in notebooks, desktop computers and server systems to date. Smartphones and micro-
controllers use different ISAs like ARM and AVR-RISC and thus are out of the scope of
this work. ARM processors can also be used for desktop computers, but their market
share is so negligibly low, that it is not listed in most figures.

1https://www.amd.com/en (accessed 04.10.2021)
2https://www.intel.com/content/www/us/en/homepage.html (accessed 04.10.2021)

https://www.amd.com/en
https://www.intel.com/content/www/us/en/homepage.html


Chapter 2. Basic Knowledge and Literature Review 9

Figure 2.3: Intel Haswell processor die [12]

A processor (or Central Processing Unit (CPU)) can be divided into sub-domains
(see fig. 2.3). Processing cores, where most calculations take place, are the central
part of a processor. One basic core contains a control unit, arithmetic logic units and
computing registers. Other components can also be included. Modern processors con-
tain multiple cores and all these cores in combination form the core domain. Another
name for a processor core is CPU core. Other domains include the memory controller
for the DRAM. The makeup of the domains can change depending on the processor.
Two common terms regarding processor utilization are "idle" and "under load". Idle
means that the processor is not or only slightly used by programs. In contrast, a pro-
cessor under load is used to a large amount or completely by programs.
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2.3 Hardware

Three different computers and processor microarchitectures are used in this work
(see tab. 2.2). Each of them is from a different segment and therefore their properties
differ. The laptop is a Toshiba Tecra Z50, the desktop PC is custom build and the server
is a Dell PowerEdge R640. A processor generation overview (including release dates)
is given in figure 2.4. The differing number between cores and threads in table 2.2 is
due to a technology called Hyperthreading [13], which enables running two threads or
programs on one core. This feature is deactivated on the provided server system.

Processor Architecture Segment Cores Threads TDP

i5-6200U Intel Skylake Laptop 2 4 15W
Ryzen 5 1600 AMD Zen Desktop 6 12 65W
Xeon E5-2690 v4 Intel Broadwell Server 14 14 135W

Table 2.2: Available hardware for testing

Figure 2.4: x86-64 CPU microarchitectures (yellow colored ones are used in this work)

Thermal Design Power is defined as "the maximum power a processor can draw for
a thermally significant period while running commercially useful software.” [14]. This
means the Thermal Design Power (TDP) sets the dimensions of the cooling solution
since it must dissipate the waste heat associated with a specific TDP. Laptops with
limited space and air circulation can only afford processors with low TDPs like the
Intel i5-6200U. Desktop PCs have larger dimensions and dedicated fan cooling systems
for their components, therefore increasing their heat dissipation capabilities manifolds
over laptops. Data centers have centrally managed airflow cooling thus they can afford
the processors with the highest TDPs. One processor from each of these segments (see
tab. 2.2) is chosen to spot potential unexpected differences in energy consumption
behavior between them. If not further specified in the corresponding figure, the i5-
6200U laptop system is meant. Figures from two other processors are only provided
when new information can be showcased with them. Providing every figure in three
variations is not done because of space concerns.
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2.4 The C Programming language

C was developed by Dennis Ritchie for usage on the DEC PDP-11 computer running
the UNIX operating system. Brian Kerninghan, who worked on UNIX development
alongside Ritchie, is often credited for the creation of C too. He refuted such claims
in an interview saying that "I had no part in the birth of C, period. It’s entirely Dennis
Ritchie’s work. I wrote a tutorial on how to use C for people at Bell Labs, and I twisted
Dennis’s arm into writing a book with me." [15]. Despite first being used for program-
ming operating systems, C is a general-purpose programming language [16, Page XI].
It features a static typing system, which means that the type of variables is declared at
compile time and not dynamically at run time. C belongs to the imperative program-
ming paradigm, specifically the procedural paradigm. Procedures or functions are the
main structuring mechanism of the source code. C does not feature object-oriented
programming.

C programs are compiled into executable binaries. Different compilers are avail-
able. If not further specified, the C compiler from the GNU Compiler Collection (GCC)3

called gcc is used. Being a compiled language programs written in C run faster than
corresponding programs in interpreted languages.

The process of creating an executable from source code with the GCC is split into
four main steps: preprocessing, compilation, assembly and linking (see fig. 2.5) [17].
This process remains largely the same for other compiled languages such as C++ and
Fortran, the subprograms for the preprocessor and compiler may change.

Figure 2.5: GCC compilation steps

gcc can be supplied with extra options to further customize the compile process
and results. These options are also called compiler flags. The most important flags
for optimization, which means internally restructuring the compiled code to gain a
performance increase, are the -O flags. These will be later used in this thesis to
compare the energy consumption of unoptimized and optimized programs.

It was contemplated using Java instead of C. But the Java Virtual Machine (JVM), on
which Java runs, would introduce a further layer of complexity. Not only the charac-
teristics of the written code would need to be considered, but those of the JVM as well.
Since the goal of the thesis is to answer fundamental questions and not specific ones
like how the JVM behaves, it was decided against using Java instead of C. Duarte et
al. [18] also state that "We used a Java program, which means that part of the energy

3https://gcc.gnu.org/ (accessed 04.10.2021)

https://gcc.gnu.org/
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usage might be due to the Java Virtual Machine execution." [18]. It is further spec-
ified that "Other programming languages with less execution overhead will probably
generate results that can be actually attributed to the particular program." [18]. This
supports the decision of using the C programming language, which has less overhead
due to not needing an intermediate platform like the JVM for execution.

2.5 Granularity

The Granularity of a measurement describes on which level of program abstraction it
takes place (see fig. 2.6). This must be seen in the context of wanting to measure the
energy consumption of a program and if possible its subroutines.

Figure 2.6: Granularity levels

The most coarse method would be adding an ampere meter to the power supply
of a computer and measuring the difference between an idle state and the running
program. Many disturbing factors, e. g. power supply efficiency or non-contributing
power-hungry components, can influence this setup. Power supplies are used to trans-
form the AV wall power to lower DC voltages more suitable for electrical components.
The voltage is further transformed by the mainboard down for different components.
Power supplies differ in their energy efficiency. This means the same program takes
less energy to run on a PC with a more energy efficient power supply than on an
otherwise equal PC with a less energy efficient PC.

Disturbance factors like these are eliminated by only measuring a component of
interest, e. g. the processor. This only provides information about energy consumption
in the context of the processor, therefore achieving component-level granularity. Other
components such as storage or wifi cards can also be measured if a suitable interface
exists. This approach also ignores the energy efficiency from the power supply, which
makes the measurement less specific but more platform-independent.

By isolating or measuring the energy consumption of a single process (the running
program) an even finer granularity can be achieved. On this level, the program is
effectively isolated from all other processes running on the OS. Based on this even
finer-grained measurements, namely, that of the program’s subroutines, such as func-
tions, can be achieved. Some programming languages besides C like Java also provide
classes or modules, but these will be not looked into since only the imperative pro-
gramming structures of C are of interest. It must be stated that further granularity
sub-levels can exist depending on the used programming language. Granularity on
the function level already enables finding the most energy-consuming parts of the
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program. Measuring the consumption of all base instructions like addition, multipli-
cation, memory allocation etc. would enable instruction-level granularity [19]. Energy
modelling on machine code granularity would have the advantage of being indepen-
dent of the used programming languages since only an already compiled executable
would be analyzed. At the same time this has the downside of being forced to work
with machine code instructions, which are complicated to read. Molka et al. [20] did
achieve this granularity by measuring the energy consumption of arithmetic operators
and data transfers. The used method is not suitable for the use case of isolated single
applications and hence not further discussed.

The complete isolation of the target process of the rest of simultaneously running
processes (process-level granularity) on the OS is necessary to eliminate disturbing
factors. Achieving function-level granularity is judged to be enough to enable pro-
grammers to spot energy-intensive parts of their code. The efforts in this work are
mainly concentrated on achieving process- and function-level granularity.

2.6 Measurement software

A survey conducted by Rieger et al. [5] in 2017 concluded there is a lack of adequate
tools by stating "The sobering result of this survey was that there are hardly any actual
ready-to-use development tools; those that we found are all platform-specific." [5].
Non x86-64 platforms such as microcontrollers [21] or smartphones were also included
in this survey. An own survey focusing on methods working on x86-64 processors was
conducted. In the following sections, an overview of the most promising tools is given.
A big problem encountered during the research is, that code was either not available
to the public or available but not maintained. Two sources of energy measurement
software are used in this thesis. Either the software was developed during a research
project [19, 22] or it was developed by other interested parties for administrative work
[23, 24].
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2.6.1 RAPL

Intel processors of the Sandy Bridge generation (released in 2011) and newer have an
onboard power meter capability called Running Average Power Limit (RAPL). RAPL
[25] was originally developed in combination with Dynamic Voltage and Frequency
Scaling (DVFS), also called CPU throttling, and Turbo boost in mind. DVFS enables
the processor to lower its frequency and voltage with it to conserve power when the
system is idle or not under full load. Turbo boost technology enables the processor
to boost its frequency over its normal maximum for a limited time because it leads
to more waste heat energy. If this heat energy can not be dissipated quickly enough
by the installed cooling solution the processor will overheat. This is a severe factor
in laptops with their design-related smaller dimensions for radiators and heat pipes.
Therefore RAPL was developed to keep track of the consumed energy and thus waste
heat. The maximal power a processor can consume for significant periods of time with-
out producing too much heat is the TDP, making it an important metric in developing
cooling systems for a processor. This also means that over a thermally insignificant pe-
riod the TDP can be exceeded, but on average its power limit must be adhered to. This
is where the name Running Average Power Limit stems from. The first implementation
in the Sandy Bridge processors used model estimation. In later processor generations
(Haswell and newer) sensors measuring the actual electrical current were installed,
putting RAPL in the instant power measurement category described in table 2.1.

RAPL measurements can encompass four domains:

• Package (total power consumption)
• Core
• Uncore
• DRAM

The Core domain contains the CPU cores used for the computation itself. Uncore is a
catch all term for things that are neither Core or DRAM. What is part of the Uncore
domain can change depending on the processor generation. The most power hungry
component in the Uncore domain, if present, is the integrated graphics unit. Other
components can include the memory controller, IO-devices and the shared L3 cache.
DRAM refers to the power consumption of the DRAM DIMMs on the mainboard. DRAM
is also often referred to as RAM and main memory.

For each supported power domain a Machine Specific Register (MSR) filled with an
32-bit integer is exposed. It does not measure energy in Joule, instead it uses energy
units. These energy units correspond to a processor depended energy value in Joule.
The theoretical possible energy resolution is one energy unit, e. g. 61µJ for a Skylake
processor. The register as such contains the consumed energy since the last computer
startup. To compute the energy consumption in a given timeframe two measurements
are needed and the value of the earlier measurement is subtracted from the later one.
The MSRs for RAPL are updated approximately every millisecond [26]. Although in
practise a minimal interval of 100 milliseconds between measurements is chosen [26].
Under Linux the rdmsr command can be used to read out MSRs directly. For example
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the rdmsr command allows to read out the size of the energy unit on a system (see tab.
2.3): $ sudo rdmsr 0x606H

Architecture Energy unit size
Sandy Bridge 15.3µJ

Haswell 61µJ
Skylake 61µJ

Table 2.3: Energy unit sizes across different architectures

Reading out MSRs directly is error prone due to register numbers being specific
to one processor generation. A suitable middleware is needed to read out RAPL on
different systems without modification. This role is performed by the Power Capping
Framework (PowerCap)4 on Linux. RAPL was only supported on Intel processors for a
long time since it was originally developed for them. In 2020 Google engineer Victor
Ding extended the support for AMD processor generations based on the Zen archi-
tecture released in 2017. AMD supports the same interface just on different MSR
numbers. This feature was included in the Linux kernel version 5.11 released on the
14th February 20215. With that it is possible to cover all widely used x86-64 processors
in one measurement software.

The package domain encompasses the total energy consumption of the processor;
as such it is the sum of the three other domains. It is to be expected that computing
intensive workloads will mainly increase the power consumption of the Core domain,
graphical workloads should increase Uncore power consumption and memory inten-
sive workloads should increase DRAM power consumption. These assumption will be
tested later in the thesis.

RAPL has since its introduction developed into a popular way to measure energy
consumption of x86-64 systems. Next to usage in the scientific community it is also
incorporated into many libraries, projects and tools, e. g. jRAPL6, pyRAPL7 or rapl-
tools8. A lot of these were not updated in years, so only projects with recent updates
are looked into further. Promising projects will be presented in the following sections.
Similar systems exist for other computer parts like GPUs. The NVIDIA Management
Library (NVML)9 also provides a power management interface. GPU-intensive work-
loads like graphics or crypto mining can provide cases for future study due to being
energy-intensive tasks.

4https://www.kernel.org/doc/html/latest/power/powercap/powercap.html (accessed
04.10.2021)

5https://www.phoronix.com/scan.php?page=news_item&px=AMD-RAPL-Linux-Now-19h (accessed
10.10.2021)

6https://github.com/kliu20/jRAPL (accessed 04.10.2021)
7https://github.com/powerapi-ng/pyRAPL (accessed 04.10.2021)
8https://github.com/kentcz/rapl-tools (accessed 04.10.2021)
9https://developer.nvidia.com/nvidia-management-library-nvml (accessed 04.10.2021)

https://www.kernel.org/doc/html/latest/power/powercap/powercap.html
https://www.phoronix.com/scan.php?page=news_item&px=AMD-RAPL-Linux-Now-19h
https://github.com/kliu20/jRAPL
https://github.com/powerapi-ng/pyRAPL
https://github.com/kentcz/rapl-tools
https://developer.nvidia.com/nvidia-management-library-nvml
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2.6.2 CPU Energy Meter

Beyer and Wendler developed CPU Energy Meter [22]10, a software that can mea-
sure the power consumption of a processor over time. Only support for Intel CPUs
is included because the registers are read out directly and not over PowerCap. The
program works by starting it and terminating it via CTRL+C (the key combination
for program termination on Linux), after that an overview of consumption metrics is
shown (see listing 2.1). In the Bash programming language, the $ is used to indicate a
command execution and # is used for comments. The same notation is used for the list-
ings containing source code in this thesis. Executables such as ./cpu-energy-meter
and functions are written in monospace font in the text.

Listing 2.1: CPU energy meter output

# shows output
$ sudo ./cpu-energy-meter
+--------------------------------------+
| CPU Energy Meter Socket 0 |
+--------------------------------------+
Duration 3.136108 s
Package 1.797180 Joule
Core 0.172546 Joule
Uncore 0.029419 Joule
DRAM 1.605530 Joule

Superuser privileges (Linux equivalent to Admin privileges on Windows) are needed
to execute the program. This can be done by adding sudo (superuser do) before
the command itself (see listing 2.1). These privileges are needed because the MSRs
containing the RAPL measurements require superuser access to be read out. There
are no other output formats available and every measurement has to be terminated
manually since no timer is available. CPU energy meter can thus not practically be
used for extensive measurement experiments. It instead provides a quick-to-install
and easy-to-read method to try out energy measurements to get an idea of the target
CPU’s normal energy consumption.

2.6.3 PowerTOP

PowerTOP [24] uses another measurement technique (see table 2.1) than the previ-
ously presented methods which used instant power measurement with RAPL, namely
time measurement. By measuring the energy drained from the battery, the power con-
sumption of the device and its subcomponents are calculated. As this method is only
possible on devices with a directly attached battery, it can practically be used only
on laptops. PowerTOP also has the added function of making suggestions for opti-
mizations. Sodhro et al. [27] used PowerTOP in conjunction with an ampere meter to
measure the energy consumption of various web and locally executed applications. Af-

10https://github.com/sosy-lab/cpu-energy-meter (accessed 04.10.2021)

https://github.com/sosy-lab/cpu-energy-meter
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ter installation PowerTOP must be calibrated first, before taking a measurement (see
listing 2.2).

Listing 2.2: PowerTOP calibration and usage

# calibrate PowerTOP
$ sudo powertop --calibrate
# measure for 120s and write results in a html
$ sudo powertop --html=powertop.html --time=120s

Exporting to a CSV file is also supported. PowerTOP uses a different system to calcu-
late the energy consumption of a process. The ACPI standard defines C- and P-states,
which describe the powering down of subsystems and voltage reduction of a proces-
sor. For example, C0 describes an active CPU core, while in the C3-state the CPU
core is completely inactive ("sleep"). The states in between describe mixed versions
of these. If a CPU core is in the C0-state its frequency can be further regulated by
using the P-states. A core in the P0-state runs at its maximum frequency. The other
states describe cores running at lowered frequency. PowerTOP calculates the energy
consumed by a running process by logging how many times the CPU core running it
changes between different power states and setting it into context with the battery
energy drainage. This has the disadvantage that running a program that fully utilizes
a CPU core all the time without changing to a sleep state or lower power state, would
lead to PowerTOP reporting that no energy consumption did take place. On an idle
system the display of a laptop is its main power consumer (see fig. 2.7).

Figure 2.7: PowerTOP output of an idle laptop system

PowerTOP is better used for searching energy consumption hotspots on a whole
system rather than inside a single application. Later in this thesis, PowerTOP will be
used to cross-validate measurements taken with the other measurement techniques.
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2.6.4 Scaphandre

Scaphandre [23] is a freshly developed RAPL based software. At the time of writing
(09.06.2021), no scientific publications using Scaphandre for energy measurements
could be found. The main differences to the previous programs are an export option
to structure the read-out data and support to measure applications isolated from the
rest of the system. Version v0.3.0 features different exporters. For this project, the
JavaScript Object Notation (JSON) exporter will be used because most programming
languages have extensive support to work with JSON. Other exporters include support
for monitoring systems like Prometheus11, Warp1012 or riemann13. Listing 2.3 shows
an example output of the scaphandre JSON exporter, it is made human readable with
the js-beautify program. Normally the output is provided without any newlines and
whitespaces.

Listing 2.3: Scaphandre JSON output (beautified)

$ scaphandre --no-header json --step 2 --timeout 2 | js-beautify
{

"host": 828016.0,
"consumers": [{

"exe": "/usr/bin/plasmashell",
"pid": 2770,
"consumption": 157792.55

}, {
"exe": "/opt/google/chrome/chrome",
"pid": 3607,
"consumption": 78896.27

}],
"sockets": [{

"id": 0,
"consumption": 828888.0,
"domains": [{

"name": "core",
"consumption": 552902.0

}, {
"name": "uncore",
"consumption": 266203.0

}, {
"name": "dram",
"consumption": 10729.0

}]
}]

}

11https://prometheus.io/ (accessed 04.10.2021)
12https://warp10.io/ (accessed 04.10.2021)
13http://riemann.io/ (accessed 04.10.2021)

https://prometheus.io/
https://warp10.io/
http://riemann.io/
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The output is structured into three parts: system-wide metrics (like the complete
energy consumption of the host system), a list of the most energy-consuming applica-
tions and the energy consumption per domain per processor (also called CPU socket).
Multi socket systems, e. g. servers with two or four CPU sockets on one mainboard
are supported this way.

Scaphandre uses an internal model based on the CPU time (measured in jiffies)
spend in processes to calculate per-process energy consumption metrics. A jiffy cor-
responds to 0.004 (the default value) CPU seconds on modern Linux kernels. It also
states the maximal resolution of measuring the CPU time because only whole jiffies
are counted. The CPU load is defined as the number of CPU seconds used in a second,
e. g. two CPU seconds spend on a four-thread processor corresponds to a load of 0.5.
The normalization with the processor thread, the maximal load can only ever be 1.0, is
not done in every program or publication. Without normalization, the example earlier
would lead to a CPU load of 2.0. In this work, only the CPU load with normalization
is used. The amount of energy a process consumes in a time frame is calculated by
dividing the CPU time (represented as jiffies) used by a process by the total amount of
spend CPU time and multiplying the result with the total amount of energy consumed
by the host.

ProcessEnergy =
ProcessJiffies

TotalJiffies
· TotalEnergy

Formula 2: Equation for sorting efficiency [28]

This means a process consuming 10% of all CPU time in a time frame is assigned
10% of the total energy consumption in that same time frame. This approach only
takes the CPU time into account, other metrics like memory consumption, temperature
etc. are not. Scaphandre is the only software encountered achieving process-level
granularity. Measuring power consumption on AMD processors is supported on new
Linux kernels (> 5.11) over Powercap and measurements are hence not limited to Intel
processors only. Since Scaphandre offers the largest set of features of all compared
software, it will mainly be used in the experiments later on in this work.

2.6.5 C-LEM and Serapis

Couto et al. [19] developed a model named C-LEM14 which estimates the energy usage
of different base instructions of C, e. g. addition or requesting memory. This requires
reading out RAPL to get measurements for these instructions. Another model called
Serapis15 then estimates energy consumption of a Software Product Line (SPL) based
on the energy consumption of its base instructions. The concept of a SPL is being
defined as the "systematic development of products that can be deployed in a variable
way, e.g., to include different features for different clients".

14https://gitlab.com/MarcoCouto/c-lem (accessed 04.10.2021)
15https://gitlab.com/MarcoCouto/serapis (accessed 04.10.2021)

https://gitlab.com/MarcoCouto/c-lem
https://gitlab.com/MarcoCouto/serapis
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This approach combines the instant power measurement and model estimation
techniques (see tab. 2.1). No support for newer Intel CPUs like Skylake is available.
Neither documentation is bundled with the developed software nor was it be provided
at request. Therefore no own measurements could be taken and C-LEM and Serapis
are not used further in this thesis. Nevertheless, the ground concept of measuring
the energy of SPLs is worth exploring in future works since interest from the scientific
community exists. For example, Siegmund et al. [6] describe a model of optimizing
energy consumption that uses techniques gained from SPLs.

2.7 Validity

As the measurement methods used in this thesis are RAPL-based the validity of them
must be proved. Desrochers et al. [7] developed an experimental setup to measure
the DRAM energy with as little interference as possible, comparing it with the RAPL
measurements afterward. These findings are important for the validation of the DRAM
domain, especially since they were created using multiple different systems and bench-
marks. In general, not more than a 20% difference exist between the physical and
RAPL measurement [7]. For newer processors, including the Intel Haswell microar-
chitecture (see fig. 2.4), the precision is better than in previous generations. Because
all processors used in this thesis are of the Broadwell generation or newer, the DRAM
measurements can be assumed to be accurate.

Zhang et al. [29] took another approach by setting a limit for power consumption
via RAPL (similar to the TDP limit) and measuring how accurate this limit was kept.
14 out of 16 different test benchmarks achieved a mean absolute percentage error
(MAPE) of 2%, the other two achieved a worse result over 5% [29]. It is also shown
that RAPL is more accurate when a lot of energy is consumed. Reduced accuracy can
be expected when the processor runs no heavy workloads (idling). As before, newer
processors achieve better results than older ones.

Khan et al. [26] evaluated RAPL by comparing it with the wall power measure-
ments from servers inside the Taito supercomputer of the Finnish Center of Scientific
Computing. A high correlation (around 99%) of RAPL to wall power is achieved. The
estimation error (MAPE) amounts to 1.7%. The performance overhead of reading out
RAPL is considered negligible (<1%) [26]. High temperatures are also able to influ-
ence energy consumption, therefore a constant temperature must be achieved or a
varying temperature is taken into account within a model. Mazouz et al. [30] also put
forward a methodology with which the validity of RAPL can be proven. At the time of
writing this method was not used in practice. Due to these extensive tests, RAPL is
considered to be a valid way of measuring the energy consumption of a processor.
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Software

3.1 Modifying Scaphandre

Scaphandre’s most recent version v0.3.0 at the time of writing (09.06.2021) has miss-
ing features, e. g. reporting timestamps, CPU load, memory usage and CPU tempera-
ture, which need to be implemented. Some shortcomings like the missing timestamps
are already addressed on unmerged development branches on the projects GitHub
page1. Henceforth the branch #75-shortcomings-of-current-json-exporter is used
as a basis for an own fork2. A fork describes a copy of an already existing git reposi-
tory so that it can be modified by the new author without needing access to the orig-
inal repository. All source code changes (see listing 3.1) are concentrated into the
src/exporters/json.rs file because only the JSON exporter needs to be modified.
Scaphandre is written in the programming language Rust which closely resembles
C/C++ but does not use manual memory allocation. Rust is not further explained in
detail due to the close resemblance to C/C++ and the easy-to-read code. Code portions
in listing 3.1 are instead commented to give an overview about what is programmed.

Listing 3.1: json.rs code modifications

extern crate systemstat;
use systemstat::{System, Platform};
...
fn retrieve_metrics(&mut self, parameters: &ArgMatches) {
...

let sys = System::new();
let host_average_load = sys.load_average().unwrap().one;
let mut host_cpu_temp = 0.0;
let host_mem = sys.memory().unwrap();
let host_mem_free = host_mem.free;
let host_mem_total = host_mem.total;
let host_stat = match self.topology.get_stats_diff() {

Some(value) => value,

1https://github.com/hubblo-org/scaphandre (accessed 30.09.2021)
2https://github.com/tstrempel/scaphandre (accessed 30.09.2021)
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None => return,
};
let host_cpu_load = host_stat.cputime.user + host_stat.cputime.nice

+ host_stat.cputime.system;

let top_consumers = consumers
.iter()
.map(|(process, value)| {

let host_time = host_stat.total_time_jiffies();
Consumer {

exe: process.exe().unwrap_or_default(),
pid: process.pid,
consumption: ((*value as f32

/ (host_time

* procfs::ticks_per_second().unwrap() as f32))

* host_power as f32),
memory: process.stat.rss,

}
})
.collect::<Vec<_>>();

let host_report = Host {
consumption: host_power as f32,
timestamp: host_timestamp.as_secs_f64(),
average_load: host_average_load as f32,
cpu_load: host_cpu_load as f32,
cpu_temp: host_cpu_temp as f32,
mem_total: host_mem_total.as_u64(),
mem_free: host_mem_free.as_u64(),

};
...
}
struct Consumer {

exe: PathBuf,
pid: i32,
consumption: f32,
memory: i64,

}
struct Host {

consumption: f32,
timestamp: f64,
average_load: f32,
cpu_load: f32,
cpu_temp: f32,
mem_total: u64,
mem_free: u64,

}
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The JSON exporter takes a Consumer, Host and Socket struct (see the end of
listing 3.1) and serializes it into the JSON format (see listing 3.2). Host contains system
wide metrics like total power consumption or total memory. Process specific metrics
are included into Consumer. Values for energy domains, e. g. Core, Uncore and
DRAM, are listed in Socket. The fields in each struct are set in the retrieve_metrics
function by variables named after the fields with an host_ prefix.

Rust provided its own package manager cargo (the equivalent to pip in Python)
from which the package systemstat package is installed. Systemstat provides func-
tions for implementing the load average and memory usage metrics. Other than that
only functions from standard or already imported libraries are used.

Average load is simple to implement by using the load_average() function which
returns a LoadAverage object containing the average load of the last minute. Only the
one-minute average load is used for the JSON output. Later measurements showed
that a period of one minute is too large to be useful for explaining energy consumption,
intervals of a couple seconds are better suited. Therefore this metric is not mentioned
further. Analogous to load_average(), the memory() function is used to gather the
total memory of the computer system and the currently free memory.

The CPU load metric is already implemented elsewhere because Scaphandre uses
the CPU load to calculate the energy consumption of a process. It is gained by com-
puting the difference between the CPU time in a single Scaphandre time step and can
be accessed via the get_stats_diff() function. Three different CPU time values are
added to compute the total CPU time (host_cpu_load). This is due to how the Linux
Operating System (OS) categorizes CPU time into user (processes run in the context
of the user), system (system calls, everything done by the kernel) and nice (processes
run with less priority in scheduling than others). Scaphandre already provides per-
process memory metrics with process.stat.rss, this is just added as an extra field
to the Consumer struct. Temperature measurement is handled in an extra section.
Listing 3.2 shows the beautified JSON output of the modified Scaphandre. Compared
with the original Scaphandre (see listing 2.3) the timestamp, average load, memory
used per process, CPU load, CPU temperature, total and free memory are added.
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Listing 3.2: Scaphandre JSON output (beautified)

$ scaphandre --no-header json --step 2 --timeout 2 --max-top-consumers=3 \
| js-beautify
{

"host": {
"consumption": 751756.0,
"timestamp": 1630407144.7413516,
"average_load": 0.06,
"cpu_load": 0.14984131,
"cpu_temp": 31.0,
"mem_total": 8252932096,
"mem_free": 3610116096

},
"consumers": [{

"exe": "",
"pid": 2521,
"consumption": 100340.29,
"memory": 5480

}, {
"exe": "",
"pid": 2661,
"consumption": 50170.145,
"memory": 45292

}, {
"exe": "",
"pid": 1,
"consumption": 0.0,
"memory": 3344

}],
"sockets": [{

"id": 0,
"consumption": 751861.0,
"domains": [{

"name": "dram",
"consumption": 554204.0

}, {
"name": "core",
"consumption": 207308.0

}, {
"name": "uncore",
"consumption": 3737.0

}]
}]

}
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3.1.1 Temperature measurement

It is important to monitor the CPU temperature during the experiments conducted in
chapter 4. Due to DVFS the processor frequency, and thus voltage, is lowered on a high
CPU temperature. If thermal buildup (high temperatures) from one measurement is
carried over to another it could skew the results. Khan et al. [26] also showed that an
increased temperature leads to increased energy consumption. To check if a thermal
buildup is taking place, a thermal measurement was implemented into Scaphandre.
Thermal measurements can be taken by reading out the right thermal zone under
the path /sys/class/thermal/. Multiple zones were available on the development
machine (see listing 3.3).

Listing 3.3: Temperature measurement

$ ls /sys/class/thermal
thermal_zone0 thermal_zone2
thermal_zone1 thermal_zone3
$ cat /sys/class/thermal/thermal_zone*/type
acpitz
pch_skylake
iwlwifi_1
x86_pkg_temp

The systemstat package has a function cpu_temp() which returns a tempera-
ture. But this function takes the first thermal zone, which is the wrong one. The
x86_pkg_temp zone needs to be used instead. For that an own implementation was
created (see listing 3.4).

Listing 3.4: Temperature measurement in json.rs

let mut host_cpu_temp = 0.0;
if let Ok(lines) = read_lines("/sys/class/thermal/thermal_zone3/temp") {

// Consumes the iterator, returns an (optional) string
for line in lines {

if let Ok(tmp) = line {
host_cpu_temp = tmp.parse::<f32>().unwrap() / 1000.0

}
break;

}
}

These thermal zones are platform-dependent, which means on another PC
x86_pkg_temp may correspond to thermal_zone1 instead of thermal_zone3. Before
working with temperature measurements on a new system, the correct thermal zone
should be identified beforehand as shown in listing 3.3. This needs then to be changed
in Scaphandre (see listing 3.4) followed by a rebuild. The fallback temperature is
0.0, since this is the value assigned to host_cpu_temp in listing 3.4. This value only
changes when a valid temperature is read. Implementing a platform-independent
method would fall outside the scope of this work. Plots created from the tempera-
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ture data are later used to look for irregularities. Normal temperature ranges are
listed in table 3.1.

Segment Idle Under load
Desktop CPU 45°C - 55°C 70 - 80°C
Laptop CPU 60°C 82 - 88°C

Table 3.1: Typical temperatures for different processors [31]

3.1.2 The importance of synchronization

Two implementations of measuring the CPU load were evaluated (see fig. 3.1). Stan-
dard metrics refer to the already implemented ones by Scaphandre, e. g. timestamp,
total energy consumption, consumption per domain and the most energy-intensive pro-
cesses. Added metrics refer to metrics added for this thesis, e. g. average load, CPU
load, memory usage.

Figure 3.1: Visualization of the implementations

The first idea of implementation was to create an extra thread that retrieves the
metrics independent from the standard metrics. This was needed since the systemstat
rust library requires a one second long waiting period before a CPU load measurement
could be taken. For example, an one second measuring period of Scaphandre and an
extra one second period for the CPU load would add up to two seconds in total. Adding
such a significant amount of time is unacceptable. Using an extra thread with its own
timer, where this measurement takes place, would remedy the problem. The downside
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of this is that measurements for the standard and added metrics now use two different
timers. In later tests, it became clear that this implementation lead to unsynchronized
timestamps. As can be seen in the last quarter of fig. 3.2, the spikes in CPU load do
not coincide with the spikes in energy consumption. Instead, the CPU load spikes trail
the energy consumption spikes. The vpxenc application, which will be examined in the
next section, was measured to create these plots.

Figure 3.2: Graph of the unsynchronized im-
plementation

Figure 3.3: Graph of the synchronized imple-
mentation

This can be further showcased by looking at the data points of the graph (see fig.
3.4). It is to be expected that most points should lay on a straight line so that high CPU
load corresponds to high energy consumption. Instead, there are a lot of irregular
points spread out. Due to this problem, an alternative implementation was developed.
The systemstat library will be retained for every added metric besides the CPU load.
Scaphandre already uses the procfs3 library for getting metrics on processes. There
it is used to calculate the CPU time spend on a process and in total. The same results
used there are also employed for delivering the CPU load metric in the new implemen-
tation. All the added measurements will be executed after the initial ones as shown in
fig. 3.1.

3https://docs.rs/procfs/0.10.1/procfs/ (accessed 04.10.2021)

https://docs.rs/procfs/0.10.1/procfs/
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Figure 3.4: Data points of the unsynchro-
nized implementation

Figure 3.5: Data points of the synchronized
implementation

Figure 3.3 now shows that spikes in CPU load and energy consumption coincide.
By plotting the data points again (see fig. 3.5) this also becomes visible, because no
outliers are visible. This example from development shows that properly synchronized
timestamps are important to conducting experiments with energy consumption.

3.2 Test software

3.2.1 sorting

One fundamental question the thesis aims to answer is that whether algorithm design
influences energy consumption. It shall be illustrated if and how energy can be saved
by exchanging energy-intensive parts for less energy-intensive parts with the same
function. Sorting algorithms are well suited for this use case because they all take the
same input, an array of unsorted numbers, and deliver the same output, an array of
sorted numbers. The principle of having exchangeable software components so that
several programs can be created from it is further explored in SPLs.

Three sorting algorithms will be compared: selection sort, insertion sort and quick
sort [32]. All three are self-programmed in C and stem from a programming assign-
ment from 2017, they were checked for validity. These are used because they were
already available and a good showcase for own algorithm development. For compar-
ison, the quicksort function provided by the C standard libraries called qsort() will
be used. The source code is hosted at GitHub4 under the open-source MIT license.
It would go beyond the scope of this thesis to explain the operation of these standard
algorithms in depth. Important differences can be found in their time complexity (see
tab. 3.2), which means the runtime of the algorithm in relation to the input size. Three
cases can be distinguished based on the fact that the order of the input data of the

4https://github.com/tstrempel/sorting (accessed 09.10.2021)

https://github.com/tstrempel/sorting
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algorithm can be advantageous or detrimental to its runtime: worst, average and best
case.

Algorithm Worst-case Best-case Average-case

Selection sort O(n2) O(n2) O(n2)
Insertion sort O(n2) O(n) O(n2)
Quick sort O(n2) O(n log n) O(n log n)

Table 3.2: Time complexity of sorting algorithms

It is to be expected that selection sort will take the most time to run of the three
algorithms because in every case it has a time complexity of O(n2). Insertion sort has
a better best-case time complexity, its runtime will be comparable to selection sort
since the average case remains the same. The average case of quicksort only takes
O(n log n), a shorter runtime is to be expected.

The self-implemented sorting algorithms are published under the MIT license in a
Github repository5. The code can be compiled by running the make program in the
downloaded repository which contains the compiling instruction in a Makefile. gcc
and make need to be installed for a successful compilation. Listing 3.5 shows how the
program can be executed.

Listing 3.5: The sorting application

$ ./sorting <algorithm> <array_size>
$ ./sorting-O2 <algorithm> <array_size>

The type of algorithm can be selected by specifying a number for <algorithm>:

• 0: selection sort
• 1: insertion sort
• 2: quick sort
• 3: qsort

The array size can be freely chosen. One hundred arrays of the specified size will
be created and filled by a random number generator. To enable reproducibility a fixed
seed value of 42 is chosen for the random number generator. Sorting utilizes a single
CPU core. The sorting functions are contained in the sort_functions.h file and are
called selection_sort, insertion_sort and quick_sort. The creation of the arrays,
parsing the user input and starting the calculations happen in main.c. Since most
computation takes place in the sorting function it is to be expected that these also
take the most time.

No compiler optimization is enabled at first so that only the efficiency of the code
as it is can be taken. GCC can explicitly disable optimization via the -O0 flag. When no
optimization flags are provided GCC does not optimize the code, which is analogous to
providing -O0 [17]. A separate binary sorting-O2 (see fig. 3.5) is created with the -O2

5https://github.com/tstrempel/sorting (accessed 04.10.2021)

https://github.com/tstrempel/sorting
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flag. This is the recommended optimization flag [33] for most use cases. Comparing
the results of sorting algorithms compiled with -O0 or -O2 is done to simulate which
impact optimization has on energy consumption. This approach is chosen because
optimizing a program manually is out of the scope of this thesis.

3.2.2 vpxenc

Besides sorting another application is introduced to have a bigger variety of applica-
tions. An application named vpxenc6, which is used for video encoding, is chosen for
the test. vpxenc is written in C and can utilize up to five CPU cores. The standard
video encoding performance test is used. Since it is difficult to replicate a specific
benchmark with all its setting a benchmark framework called phoronix-test-suite is
used. After the installation of the Phoronix test suite 7 the benchmark can be installed
and run (see listing 3.6).

Listing 3.6: vpxenc benchmark

$ phoronix-test-suite benchmark pts/vpxenc-3.1.0

...installation...

VP9 libvpx Encoding 1.10.0:
pts/vpxenc-3.1.0
Processor Test Configuration

1: Speed 5 [Fastest - Default]
2: Speed 0 [Slowest]
3: Test All Options

** Multiple items can be selected, delimit by a comma. **
Speed: 1

1: Bosphorus 1080p
2: Bosphorus 4K
3: Test All Options

** Multiple items can be selected, delimit by a comma. **
Input: 2

... overview of computer hardware and software settings ...

6https://openbenchmarking.org/test/pts/vpxenc (accessed 04.10.2021)
7https://www.phoronix-test-suite.com/?k=downloads (accessed 04.10.2021)

https://openbenchmarking.org/test/pts/vpxenc
https://www.phoronix-test-suite.com/?k=downloads
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3.3 Python scripts

The programming language Python [34] is used to process the data provided by Scaphan-
dre to calculate statistics and render plots. A GitHub repository8 hosts the Python and
Bash scripts. The script is tested to run under Python versions 3.8 and 3.9. The code
is split into two files. processing_functions.py contains often used functions like
reading in JSON files or processing the energy metrics. In evaluation.py the plots
are generated together with important statistics of the data set, e. g. the correlation
between CPU time and energy consumption. jq9 is used as the JSON parser. Five
input parameters are required (see listing 3.7), the input data (beautified JSON file),
an output directory for the plots, the interval between measurements that is used by
Scaphandre, the TDP and the number of threads of the processor and the name of an
application of interest for which an extra plot and extra information is provided.

Listing 3.7: Executing the evaluation.py script

# argument 1: input file
# argument 2: output directory
# argument 3: scaphandre step size
# argument 4: TDP
# argument 5: application name
python evaluation.py data/energy_data_beautified.json data 1 15 4 sorting

Since all three platforms support different RAPL energy domains, each of those
has a separate script. Due to that three directories (laptop, desktop and server) are
created. An extra directory legacy is created for an old version of the Python scripts
to work with older data where not all metrics, e. g. temperature or memory usage,
are supported. Reading in old data with the normal evaluation.py script would lead
to errors. The same was done for the server energy measurements (server directory),
since the RAPL Uncore domain was missing and two processors were used simultane-
ously (dual socket system).

8https://github.com/tstrempel/masterthesis-code (accessed 10.10.2021)
9https://stedolan.github.io/jq/ (accessed 10.10.2021)

https://github.com/tstrempel/masterthesis-code
https://stedolan.github.io/jq/
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3.4 Bash scripts

A major drawback of Scaphandre is that only a timeout, which means the time Scaphan-
dre runs before termination, can be specified. There is no built-in way to run Scaphan-
dre alongside another program. Therefore a Bash program (see listing 3.8) was writ-
ten. Bash is an interpreted language used in Linux environments. The main idea
behind writing the script is to start the Scaphandre process in the background and
save its process ID provided by Linux, so the process can be killed later. Running
a command in the background via the & operator makes it possible to execute other
commands after it without needing to wait until the previous command has finished.
$! returns the process ID of the previously executed program. Waiting periods are in-
troduced via sleep to give the processor time to cool down in between measurements.

Listing 3.8: Excerpt from wrapper.sh

# sleep 120 seconds
sleep 120
mkdir "data"

# start scaphandre in the background for a long time period (one day)
$ scaphandre --no-header json --timeout 86400 --step 1 --step_nano 0 \

--max-top-consumers=200 > data/energy_data.json &
# get the processid of the running scaphandre
$ processid_scaphandre=$!
# wait some time
$ sleep 5
# start the application which should be measured
$ { time sorting 0 32000; } 2> data/log.txt &
# get the processid of the running application
$ processid_sorting=$!

# send the script into an endless queue until the application is done
$ while [ -d "/proc/$processid_sorting" ]; do sleep 1; done
# wait some time
$ sleep 1
# and then kill the scaphandre process
$ kill $processid_scaphandre

$ nice js-beautify "data/energy_data.json" > "data/energy_data_beautified.json"
$ python evaluation.py "data/energy_data_beautified.json" "data" 1 15 4 ’

sorting’ > "data/stats.txt"

After collecting the Scaphandre data in energy_data.json it needs to be restruc-
tured ("beautified") for the Python script. This can be achieved with the js-beautify
program (see listing 3.8). After that, the Python script described in the previous sec-
tion is used to create statistics and plots. The Bash script wrapper.sh encapsulates
the code in listing 3.8 into a function which can be executed with different parameters.
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This enables running sorting measurements with different parameters (algorithm and
array size) without pasting the code multiple times. wrapper-O2.sh contains the same
program logic but adapted for the sorting-O2 application.

The time command [35] reports the clock and CPU time a program spent. Alter-
natively, VTune, which will be explained in the next section, can be used. The data
collected in this script is written to multiple files via the > output_file.txt pipeline.
log.txt contains the output of the time command whereas stats.txt contains the
computed key figures like how much energy was consumed by sorting. These values
are then manually written into the masterthesis.ods file. This wasn’t automated by
an export to CSV because it was judged to take more time to automate than it would
safe. Parsing output of applications like VTune would also add to this.

Listing 3.9: The time command (CPU time is user and sys combined)

# time prefixes the original command
$ time sorting 0 4000
real 0m0.618s
user 0m0.614s
sys 0m0.003s



Chapter 3. Software 34

3.5 Intel Vtune

Figure 3.6: VTune summary

VTune [36] is a profiler devel-
oped by Intel. A profiler anal-
yses an application at runtime.
VTune supports a wide variety
of programming languages (C
is also included) and function-
alities, e. g. finding bottle-
necks or reports on the utiliza-
tion of the processor. A big
drawback of VTune is that only
Intel CPUs are supported. This
makes it impossible to use it
with the AMD desktop PC. On
the server system, there were
a couple of problems with the
installation which would need
changes to the Linux OS con-
figuration. This was not possi-
ble due to being a borrowed sys-
tem. Other important features
are an overview of how much
CPU time was spend in each
function (see fig. 3.7), the CPI
rate and microarchitecture us-
age. The Cycles per Instruction
Retired (CPI) rate approximates

how long one instruction takes, in units of processor cycles. A CPI of one is consid-
ered acceptable, the lower the CPI the better since more instructions can take place
in one cycle. CPI is a metric "for judging an overall potential for application perfor-
mance tuning" [37]. Mircoarchitecture usage describes (in %) how many features of
the processor are used by the application [38]. For example, using processor vector
operations with Advanced Vector Extensions (AVX)10 increases the mircoarchitecture
usage. Since the -O2 option activates such features, the programs compiled with it
have a higher mircoarchitecture usage than not optimized ones. VTune also includes
functionalities to optimize the program for a lower runtime and parallelism. An idea
for a future work would be to compare the energy consumption of a program before
and after optimization via VTune, since this is outside the scope of this thesis.

10https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html
(accessed 10.10.2021)

https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html


Chapter 3. Software 35

Listing 3.10: Scaphandre

$ vtune -collect hotspots -knob sampling-mode=hw -knob sampling-interval=0.5 -r
selection_sort_32000/hs_0_32000 sorting 0 32000

$ vtune-gui laptop-O0/selection_sort_32000/hs_0_32000/

Figure 3.7: VTune top-down tree

An alternative to using VTune is gprof which also has the CPU time per function
feature but has a high overhead (30-260%) [39]. VTune has built-in features to re-
duce overhead [40]. When only the CPU time spent of a program is needed the time
program [35] can be used instead.
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3.6 Correlation between CPU load and energy con-

sumption

Figure 3.8: Data points with linear regression line

One of the questions to be answered in this thesis is if the energy consumption is
correlated to the CPU load. If so the CPU load can be used in place of the real energy
consumption for energy optimization. Since it is assumed that the relation between
CPU load and the energy consumption is linear, linear regression is used. The Python
package scipy provides the function stats.linregress11 for this. The data set used
consists of a three hour long measurement of work activities, e. g. browser usage,
software development or video conferences. With this mixture of idle, middle and
heavy workloads a linear regression is made (see fig. 3.8).

The determination coefficient R2 (R-squared) indicates how much variance for a
dependent variable (the energy consumption) is explained by an independent variable
(CPU load) in a regression model. Using R2 instead of R leads to a higher weighting of
outliers far away from the regression line. The resulting R2 value of 0.95 (see 3.11) is
excellent. Only 5 percent of the variance can not be explained by the CPU load. Every
measurement taken in this work had its R value, from which R2 can be calculated,
calculated and saved into the corresponding log.txt or stats.txt file.

11https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html (ac-
cessed 10.10.2021)

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
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Listing 3.11: Printed out linear regression results

# in evaluation.py
print("Linregress:")
linregress = stats.linregress(energy_data[’consumption’], energy_data[’cpu_load

’])
print(linregress)

# in output file (log.txt or stats.txt)
Linregress:
LinregressResult(slope=0.39632862733135393, intercept=-0.12055882254904082,
rvalue=0.9754433456052097, pvalue=0.0, stderr=0.0011588784223008895,
intercept_stderr=0.004678310356445275)

# R^2
0.95148972048548457375517178097409

Figure 3.9: Energy domains Figure 3.10: Temperature

Vpxenc has a R2 value of 0.994, while the worst value in a sorting measurement
encountered in this thesis was 0.716 (selection sort with an array size of 256,000).
With that it is shown that energy consumption and CPU load strongly correlate. The
created linear regression is platform-specific and partly software specific because the
maximal amount of energy (TDP) can be drawn at a partial utilization of Core, Uncore
and DRAM or at the maximal utilization of core (see fig. 3.9). The unexplained vari-
ance can stem from faulty measurements, CPU temperature (see fig. 3.10), memory
utilization and code efficiency.
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3.7 Validity of Scaphandre

In this section, the validity of Scaphandre (and therefore RAPL) is tested further to
supplement the findings from other works (see section 2.7). There is also a section
in the next chapter dedicated to checking Scaphandre’s internal models, using data
collected in the next chapter.

3.7.1 TDP showcase

Since it is difficult to estimate if measurements are plausible without prior experience
or a frame of reference, a known external factor should be used for validation. In
this case, the TDP is used. If the power consumption of the processor under maximal
load, i. e. all processor cores are fully utilized, matches its TDP, it would support
the assumption that the measurements are correct and set a frame of reference. A
similar approach of checking the validity of power limits was used by Zhang et al. [29].
Running the processor under full load is also called "stress testing" the processor and
is used in other fields to determine the stability, e. g. thermal throttling or system
shutdowns, under excessive load. Prime9512 is a popular program for stress testing
and is easy to use, therefore it will be used in this work.

Figure 3.11: Energy consumption of RAPL
domains

Figure 3.12: Power consumption of mprime
(Prime95)

Fig. 3.11 shows the power consumption broken down into four RAPL domains
(package/total, Core, Uncore, DRAM). It becomes visible that the greatest share of
power consumption is in the Core domain, followed by the DRAM. Almost the entire
main memory is used, which in turn leads to the maximal DRAM power consumption
of around 2.92W. The Uncore power consumption is close to zero, because Prime95
does not do heavy IO or graphical workloads, it only stresses the CPU cores and the
main memory. There are other dedicated programs for stress testing IO and graphics,
which are outside of this thesis as it is limited to non-graphical applications.

12https://www.mersenne.org/ (accessed 04.10.2021)

https://www.mersenne.org/
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The TDP of 15W is marked in the figures. As can be seen in figure 3.12 under a
full stress test from the mprime (from Prime95) program the total power consumption
is close to the TDP of 15W. With this, it is shown that, since it revolves around the
reference point of the TDP, the RAPL measurements are plausible.

3.7.2 Cross-validation with PowerTOP

As it was stated in section 2.6.3, PowerTOP can not correctly measure the energy
consumption of applications that do not change the power state of the CPU cores
they are running on. An example for such an application is the sorting application
because no energy consumption is shown for it by PowerTOP. Therefore vpxenc which
was introduced in section 3.2.2 is used instead.

Three power measurements are taken with PowerTOP, which has an average of
8.95W. Scaphandre reports an energy consumption of 10.83W for the same workload.
While 21% is a large difference, the reported power consumptions are not orders of
magnitude apart from each other. This lends further credibility to the validity of RAPL
measurements because two tools with differing techniques report roughly similar val-
ues. The associated calculations for this section can be found in the PowerTOP table in
the masterthesis.ods file.

Not every measurement returns an entry specific to vpxenc, thus these are dis-
carded. This means that PowerTOP provides a poor reliability and reproducibility and
is not recommended for measuring single applications.



Chapter 4

Energy Consumption Comparison of
Sorting Algorithms

In this chapter it will be illustrated how energy consumption behaves with different
sorting algorithms and on different processors. It is similar to an experiment con-
ducted by Johann et al. [28], where the topic was also the energy consumption of
sorting algorithms.

4.1 Experiment

In the experiment the sorting program described in section 3.2.1 is used in different
configurations (see table 4.1). The array sizes for the two quick sort implementa-
tions are far higher because of the lower time complexity of the quicksort algorithm.
Therefore larger arrays can be sorted more quickly. Comparison between these and
selection and insertion sort is enabled by an overlap in the array sizes of 128,000 and
256,000. Practical experience showed that trying to measure the energy programs
with runtimes shorter than a couple of seconds is either not possible or inaccurate.
Therefore no energy consumption is listed in these cases.

Figure 4.1: Energy consumption of selection
and insertion sort

Figure 4.2: Energy consumption of the two
quicksort implementations

40
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Algorithm Array size Runtime CPU time Energy consumption

Selection sort

1,000 0.163s 0.162s NA
2,000 0.605s 0.604s NA
4,000 2.37s 2.366s NA
8,000 9.469s 9.008s 56.988J

16,000 36.767s 34.956s 255.198J
32,000 142.006s 135.083s 1016.562J
64,000 558.261s 530.764s 4135.403J

128,000 2223.103s 2113.553s 16592.252J
256,000 8862.997s 8436.781s 66328.557J

Insertion sort

1,000 0.085s 0.082s NA
2,000 0.327s 0.326s NA
4,000 1.283s 1.281s NA
8,000 5.295s 5.036s 26.488J

16,000 21.124s 20.057s 126.855J
32,000 84.194s 80.169s 547.016J
64,000 336.282s 320.082s 2245.272J

128,000 1345.458s 1280.139s 9112.377J
256,000 5387.913s 5123s 36804.944J

Quick sort

32,000 0.565s 0.563s NA
64,000 1.177s 1.75s NA

128,000 2.521s 2.381s 13.511J
256,000 5.136s 4.877s 27.087J
512,000 10.353s 9.853s 60.677J

1,024,000 20.827s 19.862s 136.805J
2,048,000 41.86s 39.891s 274.618J

qsort

32,000 0.558s NA NA
64,000 1.187s 1.184s NA

128,000 2.616s 2.465s 6.399J
256,000 5.466s 5.165s 32.639J
512,000 11.267s 10.691s 65.356J

1,024,000 23.034s 21.936s 138.721J
2,048,000 46.94s 44.749s 292.595J

Table 4.1: Measurements taken for sorting (-O0) algorithms (NA = not available)
on the laptop system (i5-6200U)

Two plots were created to showcase the energy consumption (see table 4.1) of the
previously described sorting algorithms. Selection and insertion sort were grouped
into one plot while the two quicksort implementations were grouped into another to
achieve a proper scaling, e. g. selection sort with an array size of 128,000 takes 16592J
to complete and quicksort only takes 13.5J. Behavior like this is explained by the dif-
fering average time complexity for these algorithms, O(n2) for selection and insertion
sort and O(n log n) for the quicksort implementations. The drastically longer run times
(see tab. 4.1) also lead to larger energy consumption. In figure 4.1 the energy con-
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sumption curve resembles a quadratic function, the same as the time complexity curve.
Therefore the term energy complexity will be used to describe the amount of energy
an algorithm uses in relation to its input size, e. g. the array size in sorting or the
length and resolution of a video in vpxenc. This new metric, like time complexity, can
not deliver specific values because it is platform depended. It remains to be seen in
future works if the energy complexity always resembles the time complexity.

Figure 4.2 closely resembles a linear function, since on larger input sizes the rela-
tive influence of the logarithmic portion of O(n log n) diminishes. In both figures, the
optimized algorithms (compiled with the -O2 flag) perform significantly better than the
not optimized ones (-O0 flag).

In both figures it also becomes visible, that insertion sort outperforms selection sort
even though they have the same average time complexity. The self-implemented quick-
sort algorithm performs slightly better in the experiment than the provided qsort one.
This showcases that the implementation of a specific algorithm and its data can influ-
ence its runtime and energy consumption. For example, a program using quick_sort
instead of qsort and sorting 100 arrays of a size of 256,000 would save 5.6J. This is
only a slight improvement since the laptop’s processor can consume up to 15J per sec-
ond. But changing from selection_sort to quick_sort would save 66,301 Joule and
a lot of runtime. This circumstance illustrates the need to develop efficient algorithms
not only to reduce runtime but also to reduce energy consumption. All figures and the
data they are based on can be viewed in the masterthesis.odt file in the sorting
table.

4.2 Temperature during the measurement

Figure 4.3: CPU temperature during selec-
tion sort with an array size of 128,000

Figure 4.4: CPU temperature during selec-
tion sort with an array size of 256,000

Long and heavy CPU utilization combined with the small cooling systems of laptops
thus leads to high temperatures. To monitor this, every benchmark run on the laptop
platform has temperature metrics enabled. Temperature plots are created for every
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single benchmark to enable checking for high temperatures. A two minute gap was
used between consecutive benchmarks. The most likely place for a thermal buildup is
between two long-running benchmarks. Figures 4.3 and 4.4 show such a point. As can
be seen, the light thermal buildup made in 4.3 has dissipated in the next benchmark.
Therefore a gap of 2 minutes for cooling is judged to be sufficient. The temperature
never went high enough to be of concern (see table 3.1).

4.3 Reproducibility

Reproducibility means executing the same workflow, in this case measuring a pro-
gram’s energy consumption, and getting the same results every time, e. g. the same
energy consumption. This can only be done in approximation, as it was stated in
section 2.7 that measurements are subject to a certain degree of uncertainty. The
Coefficient of Variation (CV), or relative standard deviation, is defined as the normal-
ized dispersion. By scaling with the average value µ it becomes possible to compare
the deviation across measurements with different array sizes.

CV =
σ

µ

For this test the sorting applications, specifically selection_sort (with an array size
of 8,000 and 16,000) and quick_sort (with an array size of 128000), are used. Each
of these programs are executed and measured ten times (with a two minute offset
between measurements). The CV is then computed with the mean and standard de-
viation taken over the ten measurements. Results are listed in table 4.2, also see the
reproducibility sheet in masterthesis.ods for further information. The CV stays
below 1% in all three cases, this amount of deviation is deemed acceptable. Therefore
reproducibility is achieved.

Algorithm Array size Coefficient of variation

Selection sort 8,000 0.8%
Selection sort 16,000 0.35%
Quick sort 128,000 0.86%

Table 4.2: Variation coefficients
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4.4 Differences on desktop and server platforms

Conclusions in the previous sections are based on the measurements taken on the
laptop system. All sorting benchmarks were also conducted in the desktop and server
platform. Process-based measurements are not possible on the server system, the
probable cause for this is the old Linux kernel version on it. Instead the idle (see tab.
4.3) power consumption times the amount of measurements is subtracted from the
total energy consumption to get the sorting energy consumption.

Figure 4.5: selection and insertion sort on
the server system

Figure 4.6: quicksort and qsort on the server
system

Figure 4.7: selection and insertion sort on
the desktop system

Figure 4.8: quicksort and qsort on the desk-
top system

The energy complexity, O(n2) (see fig. 4.5 and 4.7) and O(n log n) (see fig. 4.6
and 4.8), on the desktop and server systems remain the same as on the laptop sys-
tem. This confirms the platform independence of energy complexity. Ranked by en-
ergy efficiency, the laptop platform performs best followed by the desktop and server
platforms. But the computation on the laptop also took the longest amount of time
while the server system was the quickest. This is to be expected since the i5-6200U
processor the laptop uses is developed to be more energy-efficient and thus slower
than normal processors. All plots and calculations for this section can be found in the
sorting table of the masterthesis.ods file.
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4.5 Validation of process based Scaphandre measure-

ments

Validation of Scaphandre’s internal model for process-level energy consumption met-
rics can be achieved by first measuring the idle power consumption of the system.
Then the program is run and the difference between that run and idle is calculated.
Both runs are measured with Scaphandre.

Processor Idle power draw
i5-6200U 0.55W
Ryzen 5 1600 12.96W
2x Xeon E5-2690 v4 70W

Table 4.3: Idle power draw

The idle power consumption is determined by running Scaphandre on a freshly
started computer to minimize the power draw of background processes. This takes
place over 10min with one measurement every second. From the resulting data set,
the median total power consumption is computed and used as the idle power draw.
Median is used instead of the average to minimize the influence of outliers, e. g. power
consumption spikes due to a program starting. This idle power draw is compared with
the remaining power draw. If the remaining power draw matched the idle power draw
Scaphandre’s process-based measurements are valid. In section 2.7 it was established
that RAPL is less accurate near the idle load. Therefore an exact match can not be
expected.

RemainingPowerDraw =
TotalConsumedEnergy − SortingConsumedEnergy

MeasurementsTaken · Interval

The remaining power draw is calculated for every platform and every optimization
level (-O0 and -O2) separately. Interval is defined as the time between two measure-
ments. An interval of one second is used as the default in all measurements in this
thesis. The only exceptions are the measurements for selection and insertion sort with
an array size of 128,000 and 256,000 where two seconds are used as the interval. Ta-
ble 4.4 shows that on the laptop processor the remaining power draw is almost equal
to the idle power draw (see table 4.3). With optimization, the remaining power draw
is higher than previously. Possible causes for this are processor features, e. g. AVX,
enabled by the -O2 flag. Since the code got more energy efficient a bigger remaining
power draw remains.
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Processor Flag Remaining power draw

i5-6200U
-O0 0.56W
-O2 0.75W

Ryzen 5 1600
-O0 7.72W
-O2 7.04W

Table 4.4: Remaining power draw (see masterthesis.ods)

The server system is not mentioned since the idle consumption was used to compute
the energy consumption of sorting because it could not be measured otherwise. On
the Ryzen processor, the remaining power draw is a lot smaller than the idle power
draw. Causes for this can not be stated since no evaluation of the RAPL implementation
on AMD Ryzen was available at the time of writing. Regardless of that, since the
main system of this thesis (a i5-6200U based laptop) is valid, the findings can be also
considered valid. For other platforms, a larger margin of error needs to be expected.

4.6 Achieving function-level granularity

The previous sections established that CPU time strongly correlates to energy con-
sumption. Therefore the energy consumption of functions can be approximated:

FunctionEnergyConsumption =
FunctionCPUTime

TotalCPUTime
· TotalEnergyConsumption

Using this method the function energy consumption of vpxenc (see table 4.5) and
sorting (see table 4.6) are calculated. VTune (see section 3.5) is used to determine to
CPU time spend per function.

Function CPU Time Consumed Energy
Total 607.108s 2297.78J
vpx_sad64x64_avx2 101.251s 383.21J
vpx_sad32x32_avx2 62.941s 238.22J
vp9_pattern_search 32.175s 121.78J
sub_pix_var32 31.14s 117.86J
vp9_rd_pick_inter_mode_sb 29.28s 110.82J
The rest 350.321s 1325.89J

Table 4.5: vpxenc function energy consumption

Table 4.5 shows that small functions must sometimes be taken into account when
trying to optimize energy consumption. Over half the CPU Time of vpxenc was spend in
small functions (5% or less of the total CPU Time). In contrast the sorting application
spends almost all CPU time in the function selection_sort. Therefore the decision to
take small functions into account must be made depending on the application.
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Function CPU Time Consumed Energy
Total 135.083s 1016.56J
selection_sort 134.95s 1015.56J
swap 0.053s 0.4J
unknown 0.038s 0.29J
random 0.014s 0.11J
create_array 0.013s 0.1J
The rest 0.014s 0.1J

Table 4.6: sorting (selection sort (with an array size of 32000) function energy consumption

The validation can only take place by measuring the energy consumption differ-
ences between two otherwise similar programs where one function was exchanged for
another. This will need a more sophisticated SPL based approach to verify. The most
ideal application would use an established community benchmark, the CPU load would
be concentrated in a couple of big functions, which is not the case with sorting, and
these need to be easy to swap with others, which is not the case with vpxenc. No such
application was found after an initial search and developing one would be outside of
this work.
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Reproduction and Replication
Packages

To improve the quality of scientific work, findings need to be able to be reproduced. It
is important to provide a bundle or package of software called a reproduction package,
for enabling other researchers to understand, check and possibly enhance the results.
Reproducing without appropriate provisions by the original developers is difficult and
oftentimes impossible. This chapter explains the thoughts, reasons and approaches
that make up the reproduction package of this thesis. The goal is to reliably reproduce
every finding, statistical test and plot made in this thesis.

Krafczyk et al. [41] differentiates between reproduction and replication packages.
Reproducibility is being defined as "Obtaining consistent computational results using
the same input data, computational steps, methods, code, and conditions of analy-
sis" [41, Page 2] while replicability means "Obtaining consistent results across studies
aimed at answering the same scientific question, each of which has obtained its own
data." [41, Page 2]. With that, the main distinction between them lies in the source of
the input data. Researchers must thus publish their data to enable reproducibility or
describe methods to acquire new data for replication.

While it may seem better to always aim for replicability, it cannot always be as-
sumed to be possible. Experimental setups in the natural sciences can be so extensive
that rebuilding a similar one is not viable (e. g. particle accelerator). Enabling replica-
bility for this thesis would mean providing the same programs and instructions used to
get the metrics shown in the previous chapters to obtain a new set of input data. It was
decided to provide a replication package as one is needed anyway to make measure-
ments on multiple systems. Platform-dependent parameters such as the processor’s
TDP and core count must be found out beforehand and provided as arguments. A re-
production package is also provided to recreate key figures and plots from the JSON
data.

Principles and more direct practical guidelines for making a reproduction package
were provided by Krafczyk et al. [41] and were shortened to their essence for this
work.

48
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Reproduction principles: [41]

1. Provide transparency regarding how computational results are produced.
2. When writing and releasing research code, aim for ease of (re-)executability
3. Make any code upon which the results rely as deterministic as possible.

Reproduction guidelines: [41]

1. Make all artifacts that support published results available, up to legal and ethical
barriers.

2. Connect published scientific claims to the underlying computational steps and
data

3. Specify versions and unique persistent identifiers for all artifacts.
4. Declare software dependencies and their versions
5. Refrain from using hard coded parameters in code
6. Avoid using absolute or hard-coded file paths in code.
7. Provide clear mechanisms to set and report random seed values
8. Report expected errors and tolerances with any published result that include any

uncertainty from software or computational environments
9. Give implementations for any competing approaches or methods relied upon in

the article.
10. Use build systems for complex software.
11. Provide scripts to reproduce visualizations of results.
12. Disclose resource requirements for computational experiments.

Every reproduction guideline was taken into account in this and previous chapters,
e. g. a fixed seed value for sorting, explaining program parameters, always using
relative paths.

5.1 Docker

Docker containers are the de facto standard for reproduction packages and are highly
recommended for reproduction in the scientific community [41]. They can encapsulate
the used program from the underlying OS. This is achieved by using OS functional-
ities to monitor and isolate resource usage (processor, memory etc.) for a process,
to produce an isolated environment to run a process separated from the rest of the
system. Operating systems need built-in support for the technologies used by Docker
which all modern versions of Windows and Linux provide. To run the reproduction
and replication packages a docker installation1, which can run as a non-root user2, is
required.

1https://docs.docker.com/get-docker/ (accessed 30.09.2021)
2https://docs.docker.com/engine/install/linux-postinstall/ (accessed 30.09.2021)

https://docs.docker.com/get-docker/
https://docs.docker.com/engine/install/linux-postinstall/
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Figure 5.1: Structure of Docker and virtual machine based systems [42]

Alternatively to using Docker a Virtual Machine (VM) image could be provided.
Unlike Docker, VMs require running a fully featured guest OS. This makes Docker
Images smaller, faster and easier to share in comparison. One further alternative to
Docker would have been to provide a script running all necessary commands in the
right order with the right parameters. Scripts have the disadvantage that they are
not platform-independent, e. g. Windows uses Powershell as the standard scripting
language while Linux uses Bash. Thus Docker will be used as the basis for the repro-
duction package due to its simplicity and platform independence. All created Docker
images are publicly available on DockerHub3.

5.2 Reproduction package

The first step in creating a reproduction package is stating which results should be
reproduced from which input data. VTune and PowerTOP automatically create reports
after their execution. No modifications are made to these programs for this thesis.
Therefore they can be excluded from the reproduction package, screenshots and re-
sult files of these are provided in complete-data.zip. Reproducing the plots and key
figures from the JSON data collected by Scaphandre is the main focus of this pack-
age. The Dockerfile, a recipe for building the Docker image, is provided in a GitHub
repository4. Python and Bash scripts needed for producing plots and key figures are
also included. The following steps are programmed (also see the Dockerfile):

3https://hub.docker.com/ (accessed 09.10.2021)
4https://github.com/tstrempel/masterthesis-code (accessed 06.10.2021)

https://hub.docker.com/
https://github.com/tstrempel/masterthesis-code


Chapter 5. Reproduction and Replication Packages 51

1. Provide base image (Fedora Linux)
2. Install tools and Python
3. Download scripts from GitHub
4. Install Python packages based on the bundled requirements.txt
5. Download data5

6. Run the reproduction and python scripts

For writing own Docker images a base image is required. The most used base
images are official images of Linux distribution provided by their developers, these
only include the most basic set of software to keep the storage requirements low.
Because the development system used for this thesis was Fedora Linux6, it will also
be used as the base image for the reproduction package. Required packages like
python or zip are installed via the system package manager dnf. All required Python
packages are listed in the requirements.txt file from where they can be installed
by pip. This ensures that exactly the same packages and software which were orig-
inally used are used for reproduction. Zenodo7 [43] is used to host the input data
needed for the production package. Zip compression is used to reduce the size of the
data set. The resulting zip archive is downloaded by the wget application. All data
is licensed on the Creative Commons Attribution 4.0 International licence while all
source code is licensed under the MIT license (this fulfills guideline 1). The script
reproduction-docker.sh is set as the entry point of the docker image, this means
that executing the Docker image will execute this script automatically (fulfilling guide-
lines 3 and 4). reproduction-docker.sh contains the commands to create plots and
figures. The script takes approximately 1h 30min to run through. The Docker imagine
can be downloaded or self build (see listing 5.1).

Listing 5.1: Executing the reproduction package

# download the repository
$ docker pull tstrempel/reproduction:1.0
# or build it yourself
$ git clone https://github.com/tstrempel/masterthesis-code
$ cd masterthesis-code
$ docker build -t tstrempel/reproduction:1.0 - < Dockerfile

# create the data directory in your home directory before
# or choose a directory to your liking
# by changing --volume <your_directory>:/data to your liking
$ docker run --volume $HOME/data:/data -ti tstrempel/reproduction:1.0

After the download the Docker image is executed with docker run (see listing 5.1).
Per default, no data from the docker container can be put onto the host system. But
the created plots and files need to be put on the host system. This problem is solved
by using Docker volumes via -volume (or the -v shorthand). These mount a path of the

5https://zenodo.org/record/5552510 (accessed 06.10.2021)
6https://getfedora.org/ (accessed 04.10.2021)
7https://zenodo.org/ (accessed 04.10.2021)

https://zenodo.org/record/5552510
https://getfedora.org/
https://zenodo.org/
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host system to the docker image which enables an exchange of files through that path.
In the example in listing 5.1 the $HOME/data directory on the host system is mounted
at the /data directory in the Docker container. After the execution is complete the
$HOME/data directory contains the reproduced data. It may be necessary to set the
correct permissions via sudo chown -R $USER $HOME/data manually after the work is
completed since data put out by Docker containers are only accessible with superuser
privileges. The naming scheme of the created directories is <platform>-<specifier>
where platform is either desktop, laptop or server. The specifier describes what was
measured:

• idle: idle power draw
• O0: sorting benchmarks
• O2: sorting-O2 benchmarks
• legacy: older measurements
• series: measurements for the reproducibility chapter
• vc: video conference
• vpxenc: vpxenc measurements

5.3 Replication package

The replication Docker image consists of the modified Scaphandre, the sorting appli-
cation and a script replication.sh. It aims to replicate the measurements taken in
chapter 4. As was the case with the reproduction package, the Docker image can be
downloaded or build from the Dockerfile (see listing 5.2). This provides a version of
the wrapper script described in section 3.2.1 called replication.sh as an entry point.

Listing 5.2: The replication Docker image

# download the repository
$ docker pull tstrempel/replication:1.0
# or build it yourself
$ git clone https://github.com/tstrempel/replication
$ cd replication
$ docker build -t tstrempel/replication:1.0 - < Dockerfile

# create the data directory in your home directory before
# or choose a directory to your liking
# by changing --volume <your_directory>:/data to your liking
$ docker run --volume $HOME/replication:/data -ti tstrempel/replication:1.0 <

TDP> <threads> <application>

Three parameters must be provided to the Docker image, the TDP and thread count
of the processor and the application to execute (either sorting or sorting-O2). De-
pending on the used application one execution can take up to five and a half hours.
Scaphandre in version v0.3.0 contains a bug where on some platforms only the pro-
cess IDs are listed but not the process names. Therefore the replication script can not



Chapter 5. Reproduction and Replication Packages 53

contain all functionality because the program logic in the Python scripts depends on
knowing the process name. The newest release v0.4.1 (published 05.10.2021) fixes
this bug but not enough time was left to incorporate these changes in the forked
project. Therefore some features are omitted in the replication/evaluation.py
script to work around the bug.

If a smaller demonstration is desired, another container that just contains the mod-
ified Scaphandre is provided (see 5.3). The unmodified v0.4.1 version of Scaphandre
can also be used.

Listing 5.3: The Scaphandre Docker image

# download the modified repository
$ docker pull tstrempel/scaphandre:1.0
# or build it yourself
$ git clone https://github.com/tstrempel/scaphandre
$ cd scaphandre
$ docker build -t tstrempel/scaphandre:1.0 - < Dockerfile

# create the data directory in your home directory before
$ docker run -v /sys/class/powercap:/sys/class/powercap -v /proc:/proc -ti

tstrempel/scaphandre:1.0 json -t 10 -s 1

# Download and run the v0.4.1 version
$ docker pull hubblo/scaphandre
$ docker run -v /sys/class/powercap:/sys/class/powercap -v /proc:/proc -ti

hubblo/scaphandre json -t 10 -s

Here the mounted volumes on powercap and /proc allows Scaphandre to read out
all metrics from the host system. Since Scaphandre can only run on Linux the replica-
tion and Scaphandre docker images can also only be executed on a Linux host system.



Chapter 6

Conclusion and Future Work

The thesis answered fundamental questions about energy consumption on x86-64 pro-
cessors, namely the seven questions stated in the introduction:

1. Which methods exist to measure energy consumption?
2. How granular, precise, valid and reproducible can a measurement be?
3. What is having an influence on energy consumption?
4. Does algorithm design influence it?
5. How relevant is the energy consumption of small methods?
6. Can other features like CPU load be used to approximate the energy consump-

tion?
7. Is the time expenditure in optimizing programs for less energy use worth it?

The seven questions stated in the introduction are answered. Different methods of
measuring energy consumption were shown and the most promising, RAPL, was cho-
sen for further study. A selection of RAPL-based software was analyzed and Scaphan-
dre was selected to be the main measurement software of this thesis. RAPL was cross-
validated by comparing it with PowerTOP which uses a different measurement tech-
nique. The validity of RAPL was further confirmed by checking whether the maximal
power consumption corresponds with the theoretical limit (TDP). CPU load is the
main contributor (in absence of special hardware like GPUs) to the energy consump-
tion of software, this was proven by using linear regression. Other smaller factors
include the memory consumption, temperature, CPI rate and microarchitecture uti-
lization. Scaphandre was modified to report these metrics, the incorporation of these
into Scaphandre’s internal model is a possible subject for future works. The current
model is used to calculate the energy consumption (using only the CPU load) of all
processes. Incorporating the other metrics would make this model even more precise.
Regardless of slight derivations due to only using CPU load, process-level granular-
ity is achieved. Function-level granularity can be achieved the same way. CPU time
measurements per function are provided by VTune.

In chapter 4 an example application, sorting, was benchmarked to measure the
energy consumption of different sorting algorithms with different optimization on dif-
ferent platforms. An important finding is that an optimized (via -O2) sorting con-
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sumes a lot less energy. Therefore trying to optimize a program for less execution
time or CPU time respectively, can also reduce energy consumption. Further studies
using a broad range of programs are needed to ascertain that. A reproduction package
was provided to recreate metrics and plots from the data put out by Scaphandre. The
replication package includes the modified Scaphandre and a way to execute a mea-
surement similar to what was done in chapter 4. With these, the findings of this thesis
can be reproduced and expanded upon in the future.
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