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Introduction

Over the past year and a half, SARS-CoV-2, the etiologi-
cal agent of the COVID-19 pandemic, led to a total of
almost 200 million cases, causing more than 4 million of
deaths globally (Johns Hopkins University, CSSE) [1].

While we are facing rising daily hospitalizations
(https://ourworldindata.org/covid-hospitalizations,
accessed on July 31, 2021) [2], attributable to novel
emerging variants of the virus [3, 4], we also observe
a decrease in both hospitalizations due to severe forms
of the disease and deaths in several parts of the world,
thanks to the launch of massive vaccination campaigns
[2]. To date, 4 billion vaccine doses have been adminis-
tered [1]. Despite of the efforts of global organizations to
face this health emergency, including the COVAX plan
which aims to achieve the vaccination coverage in devel-
oping countries [5], we are still far from reaching the
desired results and the end of this pandemic especially in
emerging countries.

As we discussed in our recent review on “COVID-
19 one year into the pandemic: from genetics and
genomics to therapy, vaccination, and policy” [6], vac-
cines represent one of the most valuable aid to halt the
SARS-CoV-2 spread. The emergence of novel variants
of concern (VOC) aroused concern among the scien-
tific community, since they are associated with a rise

*Correspondence: juergen.reichardt@jcu.edu.au

6 Australian Institute of Tropical Health and Medicine, James Cook
University, Smithfield, QLD 4878, Australia

Full list of author information is available at the end of the article

B BMC

%> and Juergen K. V. Reichardt®

of viral transmissibility [7], and with a reduction in the
therapeutic response to both monoclonal antibodies and
antibody activity in vaccinated individuals [8]. Neverthe-
less, results arising from the analysis of vaccine coverage
against the emerging Delta variant are promising [9].

It is known that the mRNA vaccines, both BNT162b2
(Pfizer/BioNTech) and mRNA-1273 (Moderna), can
potentially be implemented to match the need of a
response against SARS-CoV-2 mutations. For this reason,
it is crucial to increase the genomic surveillance in the
different departments of public health systems all over
the world [10].

In the same publication [6], we arrive at the conclusion
that not only the virus, but significantly also the syner-
gic relationship with the host represents the core of the
understanding of mechanisms underpinning the infec-
tious cycle, transmission, resistance and susceptibility
to SARS-CoV-2. In addition, we also expressed concern
about effects that environmental pollution may exert on
susceptibility to SARS-CoV-2 by diminishing immune
responses. We are aware that increased knowledge of
this aspects is fundamental to unveil the clinical course
and a more targeted therapeutical approach for patients
affected by COVID-19.

In this editorial, we focus on genetic and genomics
susceptibility factors to COVID-19, and we aim to sum-
marize the current knowledge in the literature providing
an updated, easy to consult and constantly revised tool,
through an update of Table 2 from our recent review [6].

©The Author(s) 2021, corrected publication 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver
(http//creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a

credit line to the data.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://ourworldindata.org/covid-hospitalizations
http://crossmark.crossref.org/dialog/?doi=10.1186/s40246-021-00356-x&domain=pdf

Colona et al. Hum Genomics (2021) 15:57

Discussion

Going beyond the one-year landmark into the pandemic
caused by SARS-CoV-2, we perceive that an in-depth
analysis of human genetic susceptibility to the severity of
the disease is becoming increasingly crucial.

Table 1 summarizes ultra-rare, rare and common
human variants, haplotypes, and susceptibility gene poly-
morphisms detected in several studies, through various
approaches [11-17].

Genome-wide association studies (GWAS) led to the
identification of susceptibility alleles in several genes,
which are linked to severe and/or life-threatening pheno-
types. So far, some of the risk values turned out to be too
low (OR<2; odds ratio) to be considered as predictive
genomic markers. Nevertheless, it cannot be excluded
that the additive effect of these alleles could contribute to
a polygenic risk score analysis [18]. On the other hand,
high penetrance alleles of genes encoding for proteins
involved in crucial homeostasis pathways might be useful
for patient stratification and may potentially impact the
prognostic field and the pharmacological treatment [19,
20]. However, we have to consider that in a polygenic and
multifactorial disease such as COVID-19, several genetic
and epigenetic factors are able to regulate phenotypic
expression, complicating a possible genotype—pheno-
type correlation analysis. Pathway analyses are to be con-
sidered. In fact, genes encoding for proteins involved in
molecular mechanisms of innate immunity and humoral
response were among the first candidate genes to be ana-
lyzed [19-21].

Innate immunity represents the first immediate, non-
specific and autonomous defense line of our immune
system and plays a fundamental role against patho-
gens, including SARS-CoV-2 [22]. Innate immune sys-
tem deficits can be the basis of heterogeneity in clinical
phenotypes and of the outcome of patients affected by
COVID-19. This evidence is supported not only by recent
discoveries in the genetic field [11, 20, 23], but also by
the description of novel mechanisms for the interac-
tion network between viral proteins and host factors
[24]. As mentioned in our recent review [6], identify-
ing the functional role of rare variants will allow us to
unveil the pathogenetic mechanisms, but also to improve
the efficiency of predictive tests for the benefit of a bet-
ter therapeutical approach in the context of a personal-
ized medicine. Environmental factors also need to be
considered.

Zhang et al. [20] and Bastard et al. [21] described the
presence of alleles underpinning altered type 1b Inter-
feron (IFN-1b) response in critical patients, and proved
that anti-interferon antibodies in the serum of affected
individuals in critical conditions are capable of halt-
ing the IFN activity. Furthermore, the presence of
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these antibodies in patients with severe phenotype that
required hospitalization to intensive care units (ICU) was
successfully proved, establishing a correlation with an
high mortality rate [25]. In a further study [26] a signifi-
cant difference in the amount of inflammatory cytokines
emerged in a comparison between cells collected through
bronchoalveolar lavage (BAL) in SARS-CoV-2 positive
patients and cells collected from patients afflicted by
pneumonia of bacterial or viral origin. This shows us how
the virus-triggered pyroptosis induces a profound alter-
ation of the immune response, which is also and above
all influenced by the host genetic background. A work
[19] coordinated by the international consortium CHGE
(Covid Human Genetic Effort, https://www.covidhge.
com/about) shows that 3% of COVID-19 patients who
harbor Loss-of-Function (LoF) variants in loci of genes
involved in the response to viral infection pathway has
a severe/life-threatening phenotype, estimating an OR
around 9 in an autosomal dominant model, and between
50 and 100 in an autosomal recessive model (Table 1).

In addition, further evidence shed a light on the ability
of SARS-CoV-2 to adopt several strategies to antagonize
the IFNs system, with a subsequent reduction in the type
I IFN response [27-29]. It is known, indeed, that the elab-
orate IFNs system exerts its function in various aspects of
the immune response, both innate and adaptive, also fill-
ing a role in the immunosurveillance [30]. It follows that
congenital defects of this network, together with several
comorbidities, are responsible for an inauspicious clini-
cal course and can be counted among severity and sus-
ceptibility alleles with an higher-risk estimation impact
(Table 1).

In an interesting association study from the 2020 per-
formed in the United Kingdom, based on a cohort of
2,244 severely affected patients, Pairo-Castineira et al.
[11] identified novel potential susceptibility alleles listed
below and shown in Table 1: rs74956615 (3’'UTR variant
of TYK2; OR =1.6; AF =0.03); rs143334143 (intronic var-
iant of CCHCRI; OR=1.9; AF =0.09); rs9380142 (3’'UTR
variant of HLA-G; OR=13; AF=0.29); rs2109069
(intronic variant of DPP9; OR=1.4; AF=0.33);
rs10735079 (intronic variant of OASI/3; OR=1.3;
AF=0.64); rs2236757 (intronic variant of IFNAR2;
OR=1.3; AF=0.71); rs3131294 (intronic variant of
NOTCH4; OR=1.5; AF=0.90); rs73064425 (intronic
variant of LZTFLI; OR=2.1; AF=0.08). In this study, a
reduced expression of IFNAR2 and a high expression of
TYK?2, both involved in the IFN type I immune response
pathway, have been associated with severe forms of
COVID-19 [11]. Particularly, the putative role of TYK2,
a tyrosine kinase belonging to the Janus proteins family
(JAKs), in the disease severity progression allowed some
researchers to speculate on a possible use of specific class
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Table 1 Genetic risk factors for severe COVID-19

SARS-CoV-2 susceptibility gene variant or haplotype Risk Frequency [MAF] References

estimated

[OR]
TLR3, UNC93B1, TICAM1, TBK1, IRF3, IRF7, IFNART, IFNAR2 (autoso- 9 <0.001 Zhang et al. [20]
mal-dominant model)
IRF7, IFNART (autosomal-recessive model) >50 <0.001 Zhang et al. [20]
rs769208985—missense variant of FURIN N.A <0.001 Latinietal. [71]
rs150892504—missense variant of ERAP2 N.A 0.002 Hu et al. [60]
rs138763430—missense variant of BRF2 N.A 0.002 Hu et al. [60]
rs147149459—missense variant of ALOXE3 N.A 0.002 Hu et al. [60]
rs117665206—missense variant of TMEM 181 N.A 0.006 Hu et al. [60]
rs114363287—missense variant of TMPRSS2 N.A 0.006 Latini et al. [71]
1s61756766—missense variant of TNFRSF13C 12.3 0.008 Russo et al. [61]
157626962—missense variant of SCN5A 8.7 0.008 SeyedAlinaghi et al. [62]
rs1805128—missense variant of KCNET 9.0 0.009 SeyedAlinaghi et al. [62]
HLA-DRB*27:.07 N.A 0.02 Novelli etal. [51]
rs72711165—intronic variant of TMEM65 1.2 0.02 COVID-19 H.G.I. [66]
rs115492982—intronic variant of MRPS21 25 0.02 Dite et al. [63]
1s74956615—3'UTR variant of TYK2 16 0.03 Pairo-Castineira et al. [11]
rs2034831—intronic variant of ITGA4 1.2 0.05 Dite et al. [63]
rs76374459—intronic variant of LZTFL1 1.2 0.05 Dite et al. [63]
1s35652899—intronic variant of LZTFL1 1.2 0.05 Dite et al. [63]
rs10490770—intronic variant of LZTFL1 2.0 0.06 COVID-19 H.GLl. [66]
rs333—CCR5-A32 0.7 0.07 Cuesta-Llavona et al. [76]
rs73064425—intronic variant of LZTFL1 2.1 0.08 Pairo-Castineira et al. [11], Ellinghaus et al. [23]
rs11385942—intronic variant of LZTFL1 1.8 0.07 Ellinghaus et al. [23]
rs1886814—intronic variant of FOXP4 13 0.07 COVID-19 H.GL.I. [66]
rs76488148—intronic variant of GYG1 13 0.07 Dite et al. [63]
1s2271616—5'UTR variant of SLC6A20 1.1 0.08 COVID-19 HGLI. [66]
HLA-DQB1*06:02 N.A 0.08 Novelli et al. [51]
rs143334143—intronic variant of CCHCR1 19 0.09 Pairo-Castineira et al. [11]
HLA-DRB1*15:01 N.A 0.10 Novelli et al. [51]
rs12252:G allele of IFITM3 2.2 0.13 Alghamdi et al. [52]
rs4801778—intronic variant of PLEKHA4 10 0.16 COVID-19 H.G.I. [66]
rs6598045—>5'UTR variant of IFITM3 N.A 0.19 Kim et al. [53]
rs429358—missense variant of APOE 23-24 0.20 Kuo et al. [65]
rs12610495—intronic variant of DPP9 N.A 0.25 Moon et al. [41]
rs12329760—intronic variant of TMPRSS2/MX1 0.9 0.25 Andolfo et al. [72]
rs2298661—missense variant of TMPRSS2/MX1 0.9 0.25 Andolfo et al. [72]
1s3787946—intronic variant of TMPRSS2/MX1 0.9 0.28 Andolfo et al. [72]
1s9983330—intronic variant of TMPRSS2/MX1 09 0.28 Andolfo et al. [72]
rs9380142—3'UTR variant of HLA-G 13 0.29 Pairo-Castineira et al. [11]
1s2109069—intronic variant of DPP9 14 0.33 Pairo-Castineira et al. [11], COVID-19 H.G.I. [66]
rs9985159—intronic variant of TMPRSS2/MX1 0.9 033 Andolfo et al. [72]
Rs75603675—missense variant of TMPRSS2 N.A 0.36 Latinietal. [71]
rs1405655—intronic variant of NR1H2 1.1 0.37 COVID-19 H.G.I. [66]
rs12329760—missense variant of TMPRSS2 09 0.39 Hou et al. [73]
rs657152—intronic variant of ABO 13 041 Ellinghaus et al. [23]
1s677800—intronic variant of ABO N.A 0.55 Moon et al. [41]
1$6020298—intronic variant of TMEM189-UBE2V'1 1.2 0.58 Wang et al. [74]

rs10735079—intronic variant of OAS1/3 13 0.64 Pairo-Castineira et al. [11]
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Table 1 (continued)
SARS-CoV-2 susceptibility gene variant or haplotype Risk Frequency [MAF] References

estimated

[OR]
rs8065800—intronic variant of MAPT 1.7 0.65 COVID-19 H.G.I. [66]
rs10774671—intronic, splicing variant of OAST 1.1 0.67 COVID-19 HGLI. [66]
rs13050728—intronic variant of IFNAR2 09 0.69 COVID-19 H.G.I. [66]
rs2236757—intronic variant of IFNAR2 13 0.71 Pairo-Castineira et al. [11]
rs3131294—intronic variant of NOTCH4 1.5 0.90 Pairo-Castineira et al. [11]
HLA-A*11 N.A N.A Fricke-Galindo et al. [54]
HLA-A*11:01:01:01 23 N.A Khor et al. [56]
HLA-A*25:01 N.A N.A Fricke-Galindo et al. [54]
HLA-B*46:01 2.1 N.A Lin et al. [53], Fricke-Galindo et al. [54]
HLA-B*51:01 N.A N.A Fricke-Galindo et al. [54]
HLA B*54:01 54 N.A Linetal. [55]
HLA-C*01 N.A N.A Fricke-Galindo et al. [54]
HLA-C*01:02 N.A N.A Fricke-Galindo et al. [54]
HLA-C*05 N.A N.A Fricke-Galindo et al. [54]
HLA-C*12:02:02:01-HLA*52:01:02:02 2.3 N.A Khor et al. [56]
HLA-C*14:02 N.A N.A Fricke-Galindo et al. [54]
HLA-C*17 N.A N.A Bonaccorsi et al. [57]
HLA-DQB1*04 N.A N.A Fricke-Galindo et al. [54]
HLA-DQB1*08 N.A N.A Fricke-Galindo et al. [54]
HLA-E*0101/0103 21-2.7 N.A Vietzen et al. [58]
KLRC2%! 26-7.1 N.A Vietzen et al. [58]
ACET /D genotype 25 N.A Verma et al. [69]
C9orf72 with HREs > 10 units 24 N.A Zanella et al. [64]
€2129_2132del, p.GIn710Argfs*18—frameshift variant of TLR7 N.A N.A van der Made et al. [42]
€.2383G>T, p.Val795Phe—missense variant of TLR7 N.A N.A van der Made et al. [42]
C.644A>G, p.Asn215Ser—missense variant of TLR7 N.A N.A Solanich et al. [43]
c2797 T>C, p.Trp933Arg—missense variant of TLR7 N.A N.A Solanich et al. [43]
901 T>C, p.Ser301Pro—missense variant of TLR7 N.A N.A Fallerini et al. [44]
€.3094G > A, p.Ala1032Thr— missense variant of TLR7 N.A N.A Fallerini et al. [44]
€2759G > A, p.Arg920Lys—missense variant of TLR7 N.A N.A Fallerini et al. [44]
€.863C>T, p.Ala288Val—missense variant of TLR7 N.A N.A Fallerini et al. [44]
€.1342C>T, p.Ala448Val—missense variant of TLR7 N.A N.A Fallerini et al. [44]
655G > A, pVal219lle—missense variant of TLR7 N.A N.A Fallerini et al. [44]
rs140312271—missense variant of ACE2 N.A N.A Novelli et al. [75]

MAF Major Allele Frequency; N.A. Not Applicable; OR Odds Ratio

of JAK inhibitor compounds. This class enlists the mono-
clonal antibody baricitinib. Several studies reported the
efficiency of the compound whether in association or
not with a steroid therapy, and/or with other compounds
(e.g., Remdesivir) [31-36].

DPP9 is located on chromosome 19p13.3 and encodes
for a serine protease, the dipeptidyl peptidase 9, and is
involved in several stages of the inflammatory response
[37-39]. Variants affecting this locus are known to be
associated with idiopathic pulmonary fibrosis [40]. From
our rapid literature review, a second intronic variant of

DDP9 gene has been accounted among the risk allele
for COVID-19 (rs12610495, Table 1) [41]. The latter is
another example of how a predisposition to an altered
pathophysiology, due to a specific genetic background of
the host, might lead the patient through a poor prognosis.

It is noteworthy the discovery of two rare and deleteri-
ous germinal variants of the TLR7 gene in two couples of
young male siblings with no reported comorbidities and
displaying a severe COVID-19 phenotype: the frameshift
variant with maternal segregation ¢.2129_2132del,
p.GIn710Argfs*18 and the missense variant ¢.2383G>T,
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p-Val795Phe (Table 1) [42]. The alteration of the response
to type I and type II IFN subsequent to imiquimod
administration, a TLR7 receptor agonist, confirmed
the importance of the maintenance of TLR pathway in
COVID-19 pathogenesis [42, 43]. These results found
confirmation in a recent independent cohort study per-
formed in Italy, which highlighted the presence of del-
eterious variants of TLR7 in 2.1% of severely affected
males in comparison with asymptomatic individuals [44].
The specific missense variants are reported in the third
section of Table 1. It is known that complete deficit of
TLR7 is extremely rare because members of TLRs family
(TLR3, TLR7, TLR8 e TLRY) carry out specific and non-
redundant activities for the host survival [45, 46]. Vari-
ants of the TLR7 gene are associated with the immune
response against single-stranded RNA virus and to the
onset of autoimmune disease such as systemic lupus ery-
thematosus (SLE) [47].

Several scientific contributions focused on the poten-
tial relevance of HLA complex polymorphisms for SARS-
CoV-2 susceptibility (Table 1) [23, 48-58] and for the
disease severity extent [59].

The estimate of predictive models deserves a sepa-
rate discussion. Due to the availability of international
biobanks, it has been possible to identify and confirm
novel susceptibility loci for COVID-19 [60-66]. Thir-
teen novel susceptibility loci have been linked to several
aspects of SARS-CoV-2 infection as a result of a recent
meta-analysis performed by COVID-19 Host Genet-
ics Initiative (COVID-19 H.G.L.) [67]. However, many of
those overlap previously reported associations [11, 23,
41], among which the ABO loci variants (Table 1) [23, 41]
and the 5’UTR variant of SLC6A20 (rs2271616; OR=1.1;
AF=0.08. Table 1), which seem to have a major role in
infection susceptibility and in the negative progression of
the disease [67].

It has been proved that expression levels of genes
encoding for proteins involved in the viral uptake (e.g,
ACE2, TMPRSS2, FURIN) change with age, which
depicts a biological rationale for the broad phenotypic
spectrum of COVID-19 [68]. Age and sex, indeed, rep-
resent non-genetic factors that primarily influence dis-
ease severity [69], but not exclusively. Verma et al. [70]
reported a correlation between ACE I/D (OR=2.5.
Table 1) polymorphism and a cluster of patients affected
by diabetes mellitus and high blood pressure.

Blume et al. [71] identified a new isoform of ACE2,
mainly expressed in rhino-oropharynx mucosa. This is
downregulated in response to IFN, but not from SARS-
CoV-2. For this reason, we think that characterization of
ACE2 promoter functional elements and its regulatory
factors represents a fundamental support for the under-
standing of viral molecular mechanisms. Several studies
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showed that the presence of rare or novel variants of
those genes might be responsible for diversification of the
response (Table 1) [72-76].

Last but not least, nowadays, the role of co-receptor 5
(CCR5) deletion 32 in coronavirus susceptibility is still
controversial [77-80].

Conclusions

The current COVID-19 pandemic has had, and will con-
tinue to have, a significant impact on humanity. We are
aware that not only will society change, but also the way
of approaching science. As scientists, we can only be
proud of how so many highly skilled research laborato-
ries have been able to put aside their differences to coop-
erate and achieve extraordinary results [6], opening the
way to translational research [81] and personalized medi-
cine [82].

Furthermore, it is clear that precision medicine has the
potential to reduce side effects and to reduce hospitali-
zation costs and duration [83]. Studying new therapeutic
approaches [84—88], unveiling new molecular mecha-
nisms [88-90], understanding the implications of pos-
sible susceptibility alleles in the exposed population [91,
92], will allow us to broaden our contribution to the fight
against the current coronavirus outbreak and against
upcoming agents which, inevitably, will show up in the
near future [93]. With this goal, we make the commit-
ment to constantly update the tool provided within this
paper with new data, in order to have an even more pre-
cise, in-depth and proactive overview.
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