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Abstract  12 

Information transfer and integration in the brain occurs at chemical synapses and is mediated by the 13 

fusion of synaptic vesicles filled with neurotransmitter. Synaptic vesicle dynamic spatial organization 14 

regulates synaptic transmission as well as synaptic plasticity. Because of their small size, synaptic 15 

vesicles require electron microscopy for their imaging, and their analysis is conducted manually. The 16 

manual annotation and segmentation of the hundreds to thousands of synaptic vesicles, is highly time 17 

consuming and limits the throughput of data collection. To overcome this limitation, we built an 18 

algorithm, mainly relying on convolutional neural networks, capable of automatically detecting and 19 

localizing synaptic vesicles in electron micrographs. The algorithm was trained on murine synapses but 20 

we show that it works well on synapses from different species, ranging from zebrafish to human, and 21 

from different preparations. As output, we provide the vesicles count and coordinates, the nearest 22 

neighbor distance and the estimate of the vesicles area. We also provide a graphical user interface 23 

(GUI) to guide users through image analysis, result visualization and manual proof-reading. The 24 

application of our algorithm is especially recommended for images produced by transmission electron 25 

microscopy. Since this type of imaging is used routinely to investigate presynaptic terminals, our 26 

solution will likely be of interest for numerous research groups. 27 

 28 

Significance Statement 29 

The analysis of synaptic vesicles provides important insights towards the understanding of synaptic 30 

transmission and plasticity mechanisms. However, up to date, this analysis is still a very time-31 

consuming manual process. In the present study we present a user-friendly algorithm, mainly based 32 

on convolutional neural networks, for automating the detection of synaptic vesicles in electron 33 

micrographs. This approach allows faster and more standardized analyses.  34 
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Introduction 35 

In the presynaptic terminal, synaptic vesicle abundance (Patzke et al., 2019), clustering (Milovanovic 36 

et al., 2018; Pechstein et al., 2020), recycling (Kononenko and Haucke, 2015; Tagliatti et al., 2016; 37 

Ackermann et al., 2019), and turn-over (Vijayan and Verstreken, 2017), are pivotal indicators of 38 

synaptic function and are altered in aging (Maglione et al., 2019) and in neurological diseases such as 39 

Parkinson (Diao et al., 2013) or Alzheimer disease (Marsh and Alifragis, 2018). Synaptic vesicles are 40 

held in the proximity of release sites by scaffolds and molecular bridges and the distance between 41 

synaptic vesicles and the active zone is an important parameter that regulates neurotransmitter 42 

release (Chang et al., 2018; Imig et al., 2014; Quade et al., 2019). The distribution of vesicles is 43 

controlled by activity (Chi et al., 2001; Pechstein and Shupliakov, 2010) and is thought to sustain short 44 

(Vandael et al., 2020) and long term plasticity (Rey et al., 2020; Orlando et al., 2020).  45 

To visualize synaptic vesicle release and trafficking, fluorescence microscopy techniques are available 46 

(Kavalali and Jorgensen, 2014). Nevertheless, since synaptic vesicles are very small organelles, having 47 

a diameter of 30-40 nm, electron microscopy (EM) is the state-of-the-art method for the analysis of 48 

their number, area and distribution in synapses. 49 

The study of synaptic vesicles localization is of major scientific interest in the field of neurobiology. 50 

However, the manual identification of vesicles is a tedious task, that becomes particularly time-51 

consuming for scientists that investigate giant synapses such as calyx of held synapses (Qiu et al., 52 

2015), cerebellar mossy fibers (Falck et al., 2020) or hippocampal mossy fibers boutons (hMFBs), 53 

(Rollenhagen, 2010) where thousands of vesicles can be found. Moreover, morphological manual 54 

analysis can differ depending on the researcher performing it, due to individual subjective biases. 55 

Automated methods for the detection of synaptic vesicles are therefore needed to increase the 56 

analytical throughput, to reduce manual labor and to improve standardization. 57 

In the last years, we experienced a rapid advancement in the automated analysis of natural images 58 

thanks to success of deep convolutional neural networks (CNNs) (Krizhevsky et al., 2012). In fact, CNNs 59 

architectures have already been proposed in the late 1980s, but only recently, with the availability of 60 
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large amount of labeled data and the development in computing power, they gained momentum and 61 

have started to be used in a great variety of applications, including object detection tasks (Rawat and 62 

Wang, 2017).  63 

In the field of neuroanatomy, CNNs have been proven to be an effective method for automating the 64 

segmentation of neuronal structures (Arganda-Carreras et al., 2015).  65 

Several studies in the field of connectomics have successfully employed CNNs to compute large-scale 66 

3D reconstructions of neuronal circuits (Cireşan et al., 2012; Ronneberger et al., 2015; Januszewski et 67 

al., 2018). A first successful attempt to identify synaptic vesicles in presynaptic terminals required 68 

tomographic 3D reconstructions (Kaltdorf et al., 2017). EM tomograms, while providing detailed 3D 69 

information on single vesicles, are nevertheless lengthy to acquire. 70 

In the present study, we exploited the power of CNNs and built a model capable of recognizing synaptic 71 

vesicles in electron micrographs. Our CNN model, combined with a connected-component labelling 72 

and clustering-based segmentation algorithm, efficiently detects and localizes vesicles from images of 73 

presynaptic terminals. Our algorithm performed well on transmission electron microscopy images of 74 

synapses of different species, with different resolution (tested pixel size ranging from  0.7 nm to  5 75 

nm) and prepared with different techniques. The results were optimal when vesicles were sharp and 76 

their lumen and membrane were visible. 77 

Since the algorithm worked well across these different images, and since the shape and dimension of 78 

synaptic vesicles varies only minimally, across species, brain areas and different fixation protocols, we 79 

are confident that our model can be directly applied without the need to be re-trained. 80 

Furthermore, to offer a simple and flexible tool to researchers, we developed a graphical user interface 81 

(GUI) that offers a step-by-step guidance for analyzing, displaying and proof-reading the results. This 82 

GUI allows the analysis of multiple images at once (as long as they have the same resolution) and 83 

provides the results automatically in an excel file. Furthermore, it offers the possibility to easily 84 

visualize and correct the results (both by adding missed vesicles or deleting erroneously predicted 85 

vesicles). 86 
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We are confident that our tool can significantly increase the efficiency of synaptic vesicle analysis and 87 

reduce the workload of research groups focusing on the study of presynaptic structure and function.  88 
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Materials and Methods 89 

Preparation of acute brain slices for EM imaging 90 

All animal experiments were approved by the animal welfare committee of the Charité 91 

Universitätsmedizin Berlin and the Landesamt für Gesundheit und Soziales Berlin, Germany (permit # 92 

T 0100/03). Three P27-P29 male WT C57BL/6N mice were anesthetized with isoflurane, decapitated 93 

for a project on structural plasticity (Orlando et al., 2020). Brains were quickly removed and placed in 94 

ice-cold sucrose - artificial cerebrospinal fluid (s-ACSF) containing (in mM): 50 NaCl, 25 NaHCO3, 10 95 

glucose, 150 sucrose, 2.5 KCl, 1 NaH2PO4, 0.5 CaCl2, 7 MgCl2. All solutions were saturated with 95% O2 96 

/ 5% CO2 (vol/vol), pH 7.4. Sagittal slices 350 μm thick were cut with a VT1200S vibratome (Leica) in ice 97 

cold s-ACSF solution and stored submerged in sACSF for 30 minutes at 35°C and subsequently stored 98 

at room temperature in ACSF containing (in mM): 119 NaCl, 26 NaHCO3, 10 glucose, 2.5 KCl, 1 NaH2PO4, 99 

2.5 CaCl2 and 1.3 MgCl2 saturated with 95% O2 / 5% CO2 (vol/vol), pH 7.4. No more than 6 h after the 100 

preparation acute slices were immersed in a solution containing 1.2% glutaraldehyde in 66 mM 101 

NaCacodylate buffer for 1 hr at room temperature. After washes in 0.1 M NaCacodylate buffer slices 102 

were then postfixed in 2% OsO4 in dH2O for 1 hr at room temperature. Slices were then washed and 103 

en bloc stained with 1% uranyl acetate in dH2O and dehydrated in solutions with increasing ethanol 104 

concentration. Final dehydration was obtained incubating slices in Propylene oxide and then the 105 

infiltration of Epoxy resin was obtained by serial incubations in increasing resin / propylene oxide 106 

dilutions. Samples have been finally flat embedded in Epon (#E14120-DMP, Science Services) for 48 107 

hrs at 60°C. The stratum lucidum in the CA3 region of the hippocampus was identified using a light 108 

microscope and 70 nm sections of these regions of interest were cut with an Ultracut UCT 109 

ultramicrotome (Leica) equipped with an Ultra 45 diamond knife (Diatom) and collected on pioloform-110 

coated copper slot grids (#EMS2010-Cu, Science Services). Synapses were identified and imaged using 111 

a EM 900 Zeiss Transmission Electron Microscope, or a Tecnai G2 20 (FEI Thermo Fisher Scientific) 112 

(RRID: SCR_021365) operated at 80-120 keV and equipped with a Proscan 2K Slow-Scan CCD-Camera 113 

(Carl Zeiss, Oberkochen, Germany) and a Veleta 2K x 2K CCD camera (Olympus), respectively. 114 
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 115 

Preparation of hippocampal cultures for EM imaging 116 

Primary neuronal hippocampal cultures were prepared as previously described (Orlando et al., 2019). 117 

Briefly, primary neuronal cultures were generated from both sexes of postnatal mice from the 118 

C57/BL6N strain aged postnatal day 0-2 (P0-2) (permit # T0220/09). Brains were removed and placed 119 

in 4°C cooled Hank’s Buffered Salt Solution (HBSS; GIBCO Life Technologies, Germany). Hippocampi 120 

were carefully dissected out and placed in Neurobasal-A Medium supplemented with B27, Glutamax, 121 

(all from GIBCO Life Technologies), and penicillin/streptavidin (Roche, Germany; full-NBA) at 37°C in a 122 

heated shaker. Full-NBA was replaced with Dulbecco’s Modified Eagle Medium (DMEM; GIBCO), 123 

supplemented with 1 mM CaCl2 and 0.5 mM EDTA (enzyme solution), containing papain (22.5 U/mL; 124 

CellSytems GmbH, Germany) and incubated for 45-60 min. The digestion was stopped by removing the 125 

enzyme solution and replacing it with an inactivating solution of DMEM supplemented with albumin 126 

(2.5 mg/mL) and tripsin-inhibitor (2.5 mg/mL; both Sigma-Aldrich). The inactivating solution was 127 

removed after 5 min and replaced with full-NBA. Tissue was dissociated mechanically, and cells were 128 

counted on a neubauer chamber. Dissociated cells were plated on 6 mm carbon-coated sapphire disks 129 

(Wohlwend, Sennwald, Switzerland) at a density of approximately 250 cells/mm2. At 13-15 days of 130 

growth in vitro (DIV), primary hippocampal neurons grown on sapphire discs were transferred to the 131 

chamber of a high-pressure freezing machine (EM ICE (RRID: SCR_021367) or HPM 100 (RRID: 132 

SCR_021366), Leica Microsystems, Wetzlar, Germany) and cryo-fixed in extracellular solution 133 

containing the following (in mM): 140 NaCl, 2.4 KCl, 10 HEPES (Merck), 10 glucose (Carl Roth), 2 CaCl2, 134 

(Sigma-Aldrich), 4 MgCl2 (Carl Roth); 300 mOsm; pH 7.4. Cryo-fixation was followed by freeze-135 

substitution in anhydrous acetone containing 1% glutaraldehyde, 1% osmium tetroxide and 1% milliQ 136 

water in an automated freeze-substitution device (AFS2, Leica). The temperature was kept for 5h at 137 

−90°C, brought to −20°C (5°C/h), kept for 12h at −20°C and then brought to +20°C (5°C/h). Once at 138 

room temperature, samples were en-bloc stained in 0.1% uranyl acetate in acetone, infiltrated in 139 

increasing concentration of Epoxy resin (Epon 812, EMS) in acetone and embedded in pure resin for 140 

48h at 65°C. Sapphire discs were removed from the cured resin block by thermal shock. 50 nm thick 141 
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sections were obtained using an Ultracut UCT ultramicrotome (Leica) equipped with an Ultra 45 142 

diamond knife (Diatome) and collected on formvar-coated 200-mesh formvar-coated copper grids 143 

(#EMS200-Cu, Science Services). Sections were counterstained with uranyl acetate and lead citrate and 144 

synapses were identified and imaged using a Tecnai G2 20 (FEI Thermo Fisher Scientific) operated at 145 

80-120 keV and equipped with a Veleta 2K x 2K CCD camera (Olympus). Images of chemically-fixed 146 

cultured hippocampal neurons (Fig.3C), where obtained with a JEM-1011 (JEOL) transmission electron 147 

microscope. For details on the sample preparation see https://www.protocols.io/view/chemical-148 

fixation-and-embedding-of-cultured-cells-bwsbpean. 149 

 150 

Development of a vesicle classifier 151 

All programming was done with python 3.6 or python 3.7 (Python Software Foundation, 152 

https://www.python.org/) either using a business-oriented laptop with a Windows 7 Professional 153 

operating system or a High Performance Compute (HPC) / GPU Server (GPU: NVIDIA GeForce RTX 2080) 154 

with a Ubuntu 18.04 LTS or an openSUSE Leap 15.2 operating system. 155 

To train the image classifier we used 21 electron micrographs, of which 19 images of mossy fibers 156 

boutons from acute hippocampal slices of three mice and two images of small synapses from cryo-157 

fixed hippocampal neurons from one litter/culture (dataset train 1, Table 1). From these images we 158 

generated 34,805 patches (40 x 40 pixels, 90.8 x 90.8 nm) and we manually labelled them as either 159 

containing or not containing a vesicle. This training dataset had a ratio of 2.84 between classes non 160 

containing (negative) or containing (positive) a vesicle. We used this slightly unbalanced dataset 161 

because a perfectly balanced one yielded slightly worse results (results not shown) and adding negative 162 

examples improved it. Among negatives examples, we also included black patches (4184). This allows 163 

users to use a black mask in case they want to exclude a part of an image from the analysis. We further 164 

applied data augmentation using the torchvision python library (https://pytorch.org/), to increase the 165 

variability of the training dataset, since this technique has been proven to increase model performance 166 

and reduce overfitting (Shorten and Khoshgoftaar, 2019). We employed spatial (10% rotation), color 167 

augmentation (20% variation in brightness, contrast and saturation) and Gaussian noise (mean 0 and 168 
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sigma 0.1 with a probability of 0.2 and mean 0, sigma 0.05 with a probability of 0.1). We evaluated the 169 

model by averaging the results over four rounds of cross-validation performed by further splitting the 170 

training dataset into training (75%) and validation (25%) subsets.  171 

To test the performance of the classifier on patches, we used patches (4,209) obtained from six 172 

different images, of which four images of mossy fibers boutons from acute hippocampal slices of two 173 

mice and two images of small synapses from cryo-fixed hippocampal neurons from one litter/culture 174 

(dataset test 1, Table 1). Similar to the training dataset, the testing dataset was also slightly 175 

unbalanced, having a ratio of 2.94 between negative and positive classes, and did also contain black 176 

patches within the negative examples (146). 177 

The classifier was built on pytorch, an open-source machine learning library for python 178 

(https://pytorch.org/), (Paszke et al., 2019). The network consists of four convolutional layers followed 179 

by one 2x2 max pooling layer and three fully connected layers. All convolutional layers have 180 

convolutional filters of size 7x7 and all inputs to the convolutional layers are padded with two zeros 181 

pixels on both sides. We applied the Rectified Linear Unit (ReLU) activation function in all layers and 182 

added dropout between the fully connected layers as well as between the last two convolutional layers 183 

to regularize the network (Srivastava et al., 2014). To train our classifier we used the cross-entropy loss 184 

function, the ADAM optimization algorithm (Kingma and Ba, 2017) and set the learning rate at 0.0002.  185 

To detect and localize the large number of vesicles present in an image from a presynaptic terminal, 186 

we fed the CNN with 40x40 image patches cropped from the original EM images with a sliding window 187 

with a 4x4 pixels stride. Image padding was applied to optimize the detection of vesicles at the edge 188 

of an image. This consists of adding 20 pixels with zeros at each side of the images before letting them 189 

being analyzed by the classifier. 190 

 Furthermore, to guarantee a good vesicle prediction on images with different resolutions, we included 191 

a step to rescale input images to have the same pixel size as the one used for training the network 192 

(2.27 nm).  193 

For every iteration, our classifier assigned to the corresponding pixel the probability to belong to a 194 

vesicle. A patch corresponding to the coordinates -20:+19,-20:+19 with respect to the evaluated pixel 195 
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was used by the classifier to extract information. As output, we obtained a probability map expressing 196 

the likelihood of each pixel in the micrograph to belong to a vesicle. On this output probability, pr., we 197 

applied a cut-off value of 0.5, such that if a pixel was predicted to be within a vesicle (pr. ≥ 0.5) we set 198 

pr. = pr.; otherwise, we set pr. = 0. The probability map was then resized to match the size of the 199 

original image, using a bilinear interpolation and smoothened, using a low-pass filter, by convolving 200 

the image with a normalized box filter with a 3x3 kernel size. Finally, the range of pixel values was 201 

converted from 0-1 to 0-255. A probability map tells how likely it is that each pixel in an image belong 202 

to an object rather than to the background but does not distinguish single objects. In order to identify 203 

separated objects (potential synaptic vesicles) we applied a threshold-based segmentation and a 204 

connected-component labelling algorithm on the probability map with a 3x3 structuring element with 205 

a squared connectivity equal to one. Occasionally the objects distinguished by the connected-206 

component labelling algorithm contained a small group of vesicles rather than a single one. Therefore, 207 

to identify and separate each vesicle, we applied a k-means clustering algorithm on the detected 208 

‘objects’ (Fig.2D-E). 209 

To make the most accurate guess on the number of vesicles present in each ‘object’, we checked the 210 

number of peaks in the portions of the probability map corresponding to each ‘object’. The number of 211 

peaks with a Euclidian distance larger than 34 nm (which represents roughly the diameter of a vesicle) 212 

turned out to be a very good estimator of the number of vesicles and it was therefore used to define 213 

the number of clusters in the k-means clustering algorithm. Finally, we set a threshold of 330 nm2 214 

(corresponding to the area of 64 pixels) and excluded clusters with an area smaller than this value, 215 

since very small clusters likely correspond to false positives. This threshold was set to slightly higher 216 

values in images with a relatively low resolution, since the large rescaling of the probability map is 217 

likely to generate larger clusters (pixel size >= 2.3 nm: threshold 407 nm2; pixel size >= 3.3 nm: 218 

threshold 484 nm2; pixel size >= 4.3 nm: threshold 562 nm2; pixel size >= 5.3 nm: threshold 639 nm2; 219 

pixel size >= 6.3 nm: threshold 716 nm2). The validity of this approach, namely applying a k-means 220 

clustering algorithm and setting a threshold for cluster dimension, in improving the performance of 221 

our model is shown in Fig.2D-F and described in the results section. 222 
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The sequential application of the described CNN, connected-component labelling and clustering-based 223 

segmentation algorithm was very effective in detecting presynaptic vesicles. Indeed, we observed a 224 

very low number of false negatives. However, false positives were numerous (for details see the 225 

Results section and Fig.2B). To reduce these, we included a final step: we let patches, with a size of 80 226 

x 80 pixels, centered around the detected vesicles to be evaluated a second time by an additional CNN. 227 

This was performed after padding the images by adding 40 pixels with zeros at each side. This second 228 

CNN, that we named refinement classifier, has the same network architecture, loss function and 229 

optimization algorithm as the first one. It only differs in the learning rate: 0.0004 instead of 0.0002. 230 

The detected vesicles produced as final output by our algorithm are all the ones predicted as positives 231 

by this refinement classifier.  232 

To train this second refinement classifier we used 16 electron micrographs, of which 10 images of 233 

mossy fibers boutons from acute hippocampal slices from three mice and six images of small synapses 234 

from cryo-fixed hippocampal neurons from one litter/culture (dataset train 2, Table 1). All images, 235 

except one, were different from the ones used to train the first classifier. From these images we 236 

generated 6,245 patches (80 x 80 pixels, 181.6 x 181.6 nm) and we manually labelled them as either 237 

containing or not containing a vesicle. As the first training dataset, this was also slightly unbalanced, 238 

having a ratio of 2.18 between negative and positive classes. Similarly, to our first model, we applied 239 

data augmentation as a strategy to increase the variability of the training dataset. We employed spatial 240 

(10% rotation), color augmentation (20% variation in brightness, contrast and saturation) and Gaussian 241 

noise (mean 0, sigma 0.1 with a probability of 0.1).  242 

Finally, to test the refinement classifier we used 1,912 patches obtained from eight different images, 243 

of which five images of mossy fibers boutons from acute hippocampal slices from two mice and three 244 

images of small synapses from cryo-fixed hippocampal neurons from one litter/culture (dataset test 2, 245 

Table 1). This second testing dataset had a ratio of 2.32 between negative and positive classes.  246 

Our algorithm produces, as output, an excel file containing a summary result sheet with the total 247 

number of detected vesicles for each analyzed image and then a separate sheet for each image 248 

containing the vesicle position, the distance to the nearest vesicle (nearest neighbor distance, nnd) in 249 
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nm and the estimated area for each detected vesicle in nm2. The vesicle position was measured as the 250 

x, y coordinates of the center of the cluster obtained after applying the connected-component labelling 251 

and clustering-based segmentation algorithm on the probability map produced by the CNN. The nnd 252 

was calculated as the shortest Euclidian distance from the position of one vesicle to the position of all 253 

remaining ones. To calculate the vesicles area, we took advantage of two facts: 1) that pixels 254 

corresponding to the membrane delimiting the vesicles have generally lower values (darker) with 255 

respect to the pixels corresponding to the vesicles lumen and to the vesicles immediate surroundings 256 

(brighter) and 2) that vesicles shape (elliptical-circular) and dimension (diameter circa between 30 and 257 

55 nm) is relatively stereotypical across species, brain areas and different fixation and imaging 258 

protocols. Briefly, we created a 40x40, 0-1 matrix and we drew elliptical or circular shapes on it with 259 

the thickness of three pixels (6.81 nm) and with different radius and ratios (major / minor axis) 260 

assigning the value of one to the pixels corresponding to the drawn shape and zero otherwise. Then, 261 

we multiplied this matrix with a 40x40 patch centered at each detected vesicle (so that the position of 262 

the detected vesicle corresponded to the pixel in the 21st column and 21st row of the image patch), and 263 

calculated the average pixel value on the elliptical shape of the so obtained matrix. We repeated this 264 

measurement trying all combinations of elliptical-circular shapes with radius-axis comprised between 265 

7 and 12 pixels (15.89-27.24 nm) with the only condition that the major and minor axis could not differ 266 

by more than 4 pixels (9.08 nm). We also repeated the measurement moving the matrix up to three 267 

pixels in all directions (up, down, left, right) since the initially determined position may not always 268 

correspond to the exact center of a vesicle. Since occasionally the pixels corresponding to the vesicle’s 269 

membrane were not homogeneously dark, we also added a term to penalized asymmetry, namely 270 

0.03*standard deviation of the mean pixel values for the four quadrants of the matrix obtained after 271 

multiplication. The elliptical shape and position obtaining the lowest intensity value, calculated as 272 

described above, was considered the one delimiting the vesicle. We finally calculated the vesicles area, 273 

knowing the major and minor radius with the following formula: major radius * minor radius *π * area 274 

of one pixel in nm2. 275 

 276 
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Quantification of the performance of the algorithm 277 

To quantify the performance of our algorithm in detecting presynaptic vesicles, we used electron 278 

micrographs from three different preparations: hMFBs from chemically-fixed acute hippocampal 279 

slices, small hippocampal synapses from cryo-fixed cultured neurons and small hippocampal synapses 280 

from chemically-fixed cultured neurons. This dataset (dataset test final, Table 1) was composed of 281 

entirely different images than those used to train (dataset train 1, train 2) and test (dataset test 1, test 282 

2) the first and the refinement classifier. Moreover, we selected various publicly available images to 283 

further test the ability of our model to generalize (dataset external Table 1).  284 

The performance was evaluated by calculating precision, recall and F1 score with the followings 285 

formulae: 286 

 287 

݊݋݅ݏ݅ܿ݁ݎ݌ = ݏ݁ݒ݅ݐ݅ݏ݋݌ ݁ݑݎݐݏ݁ݒ݅ݐ݅ݏ݋݌ ݁ݑݎݐ  +  288 ݏ݁ݒ݅ݐ݅ݏ݋݌ ݁ݏ݈݂ܽ

 289 

݈݈ܽܿ݁ݎ = ݏ݁ݒ݅ݐ݅ݏ݋݌ ݁ݑݎݐݏ݁ݒ݅ݐ݅ݏ݋݌ ݁ݑݎݐ  +  290 ݏ݁ݒ݅ݐܽ݃݁݊ ݁ݏ݈݂ܽ

 291 

1ܨ ݁ݎ݋ܿݏ =  2 ∗ ݊݋݅ݏ݅ܿ݁ݎ݌ ∗ ݊݋݅ݏ݅ܿ݁ݎ݌݈݈ܽܿ݁ݎ + ݈݈ܽܿ݁ݎ  292 

 293 

The vesicles predicted by the algorithm were compared with human annotations performed by two 294 

different postdoctoral researchers. In the figures where human annotations are graphically displayed 295 

on an EM image, the annotations from one of the two postdoctoral researchers are used. Precision, 296 

recall and F1-score were calculated using either researcher’s results as ground truth and then by 297 

averaging the two values.  298 

The following procedure was used to determine true positives, false positives and false negatives. 299 

We considered true positives only those cases where we could find a 1-1 association between ground 300 

truths (human annotations) and algorithm predictions.  301 
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To achieve this, we first selected ground truth/prediction pairs, by running a loop over all ground truths 302 

and searching, for each, its nearest prediction. If the Euclidean distance, between ground truth and 303 

the closest prediction, fell within 28.89 nm we considered the two coordinates a pair. The chosen 304 

distance corresponds to the lower boundary of the diameter of a synaptic vesicle. This distance was 305 

set, because the human annotation and the algorithm prediction, referring to the same vesicle, are 306 

often found in the very close proximity (within a distance corresponding to the diameter of a vesicle) 307 

but rarely in the exact same location. All ground truths which remained unpaired were considered false 308 

negatives. The same procedure was repeated by running a loop over all predictions. We used the 309 

averaged count of true positives (resulting from looping over predictions and ground truths). All 310 

predictions which remained unpaired were considered false positives. 311 

Finally, we also compared the number of manually detected vesicles (as the average between the 312 

vesicle counts from the two human annotations) with the number of vesicles detected by our algorithm 313 

(Extended Data Fig. 3-1).  314 

Table 1 315 

Dataset  Tot. images  Acute slices 
Neur. cultures 

(cryo/chem.fix.) 

Patches / Full 

images 
Usage 

train 1 21 19 2/0 Patch. 34,805 Train 1° cl. 

test 1 6 4 2/0 Patch. 4,209 Test 1° cl. 

train 2 16 10 6/0 Patch. 6,245 Train 2° cl. 

test 2 8 5 3/0 Patch. 1,912 Test 2° cl. 

test final 27 11 7/9 Full images 27 Evaluation 

external 10 0  2/8  Full images 27 Evaluation 

 316 

 317 

Vesicles detection using ilastik 318 

We used ilastik, an already available machine learning-based algorithm for analysis of (bio)images 319 

(Berg et al., 2019), to validate the results of our model. 320 
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To detect synaptic vesicles with ilastik we used two workflows, sequentially: Cell Density Counting and 321 

Object Classification [Inputs: Raw Data, Pixel Prediction Map]. We chose the Cell Density Counting 322 

workflow since it is suitable for circular objects of the same size (as synaptic vesicles). We trained the 323 

algorithm by using manual annotations from the same images employed for training our first classifier. 324 

Cell Density Counting produces the density of objects as output, therefore, to be able to use the Object 325 

Classification workflow we converted the density images into probability. To do so, for each pixel, x, in 326 

a density image (image) we calculated the probability as a new pixel value, xnew, as following: 327 

 328 

௡௘௪ݔ =  x −  min(݅݉ܽ݃݁)max(݅݉ܽ݃݁) − min(݅݉ܽ݃݁) 329 

 330 

We then used the same images employed for testing our first classifier to tune some parameters 331 

(threshold and size filter) in order to optimize the object classification task (vesicles versus other 332 

organelles or background). Finally, we tested the performance of ilastik on the same image sets used 333 

to evaluate the performance of our model (dataset test final, Table 1).  334 

 335 

Statistics 336 

Results are provided as mean ± standard error of the mean. To test differences in the performance of 337 

the model before and after the application of certain steps we performed a One-Way Repeated-338 

Measures ANOVA and after having verified that at least one step changed the algorithm’s performance 339 

significantly, we run multiple pairwise paired-ttest applying the Bonferroni correction for setting the 340 

significance of p-values. For clarity, we present both the original (p) and the Bonferroni corrected (p*) 341 

p-values. To test differences in the performance between two models or between model and humans 342 

we performed paired-ttests. To measure the correlations strength between two variables we 343 

calculated the Pearson correlation coefficient. P-values below 0.05 were regarded as statistically 344 

significant and they are provided approximated at the fourth decimal. In graphs, one asterisk indicates 345 

statistically significant differences or correlations. 346 
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 347 

Generation of a Graphical User Interface 348 

For making our algorithm easily accessible to everyone we generated a Graphical User Interface (GUI) 349 

with the widget toolkit Tk using the python interface tkinter 350 

(https://docs.python.org/3/library/tkinter.html). The GUI has the purpose of guiding the experimenter 351 

through the required steps to conduct the automatic vesicle analysis and offers a tool to display the 352 

results. The results are provided in an excel file and include the number of vesicles per image and, for 353 

each predicted vesicle, the x, y coordinates, the nearest neighbor distance and the estimated area. 354 

Furthermore, the GUI includes a manual proof-reading tool which allows users to easily add (false 355 

negatives) or remove (false positives) predictions from each analyzed image. These manual changes 356 

are automatically incorporated in the result excel file. 357 

All documentations and the instructions about how to use the GUI can be found in the README file in 358 

the GitHub repository at the address specified in the subsection Code accessibility. 359 

 360 

Code accessibility 361 

The codes described in the paper for training the classifiers and for using the GUI are freely available 362 

online at: https://github.com/Imbrosci/synaptic-vesicles-detection. Beyond the source codes, a 363 

README file, a requirements.txt file as well as the weights of the trained models are also available at 364 

the same address. The codes used for data analysis are freely available online at: 365 

https://github.com/Imbrosci/synaptic-vesicles-detection-extra. All codes are available as Extended 366 

Data 1.  367 
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Results 368 

Evaluation of the algorithm 369 

To develop an algorithm for the automated recognition of synaptic vesicles, we created, as a first step, 370 

a vesicle classifier based on CNNs. The model consists of four convolutional layers followed by one 2x2 371 

max pooling layer and three fully connected layers (Fig. 1A). To train the CNN we generated a large 372 

dataset of labelled image patches obtained from micrographs of hMFBs or from small hippocampal 373 

synapses either containing or not containing a synaptic vesicle. The training dataset was then further 374 

split (75%/25%) to perform four rounds of cross-validation.  375 

First, we evaluated the effect of tuning some hyperparameters on the performance of the model. 376 

Specifically, we tried to vary the size of the convolutional filters (5x5, 7x7 and 9x9 pixels) as well as the 377 

number of the filters for the first, second, third and fourth convolutional layer: 8-16-32-64, 16-32-64-378 

128 or 32-64-128-256. We selected the model hyperparameters with the highest average four-fold 379 

cross-validation performance (lowest average loss and highest F1-score). This model turned out to 380 

have convolutional filters of 7x7 pixel size and 16-32-64-128 filters (for the first, second, third and 381 

fourth layer, respectively) (Fig. 1A). Subsequently, we used the entire training dataset (dataset train 1, 382 

Table 1) to train a model with the chosen hyperparameters and evaluated its performance on a test 383 

dataset generated with the same procedure as the training dataset (from labelled image patches) but 384 

from different micrographs (dataset test 1, Table 1). Fig. 1B-F showed the loss, accuracy, precision, 385 

recall and F1-score for both training and test datasets. The loss rapidly decreased, while the other 386 

measurements rapidly increased within the first few epochs in both training and test dataset. Between 387 

epochs 10 and 25 the performance of the model clearly reached a plateau (Fig. 1B-F). We further 388 

calculated the receiver operating characteristic (ROC) curve (Fig. 1G) on the test dataset. The area 389 

under the ROC curve (AUC) was 96.1%. All together these statistics indicate that our model has a very 390 

strong predictive power in this image classification task. We selected the weights from the epoch 391 

achieving the highest F1-score on the test dataset (dataset test 1, Table 1) and after which we observed 392 

an increase in the loss in three consecutive epochs (epoch 21).  393 
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To have a visual confirmation of the classification results, we selected 39 image patches either 394 

containing or not containing a vesicle from our test dataset (Fig. 1H). The number in the first square 395 

bracket, on top of each image, represents the label assigned manually (0 = no vesicle, 1 = vesicle), 396 

whereas the number in the second square brackets represents the label predicted by the classifier. 397 

Our classifier outputs the probability of a patch to contain a vesicle which was then converted into 0 398 

or 1 with a cutoff value of 0.5. As can be seen by comparing the manual labels and predictions, the 399 

great majority of the images were classified correctly by our model. 400 

Next, we tested the performance of our algorithm on 11 electron micrographs of a hMFB containing 401 

hundreds of vesicles (subset of dataset test final, Table 1) and compared the results to human labelled 402 

data (Fig. 2A). To this end, we incorporated the vesicle classifier in a sliding window algorithm and run 403 

thereafter a connected-component labelling and a k-means clustering algorithm as described in detail 404 

in the Materials and Methods section. Fig. 2B (top) showed that this approach was sufficient to detect 405 

the great majority of the vesicles, corroborating the high sensitivity of the model. However, a not 406 

negligible number of false positives were present, especially within intracellular organelles, such as 407 

mitochondria, or along synaptic membranes. To reduce the number of false positives we let the 408 

detected vesicles to be evaluated a second time by the refinement classifier (for details see Materials 409 

and Methods). The weights selected for performing this second round of prediction derived from the 410 

epoch achieving the highest F1-score on the test dataset (dataset test 2) (epoch 47th). This ‘double’ 411 

prediction eliminated the great majority of false positives, especially within mitochondria and other 412 

intracellular organelles (Fig. 2B, bottom) causing a large increase in the precision of the model. At the 413 

same time, the recall was affected to a lesser extent and remained relatively high. Overall, after the 414 

prediction by the second CNN, the F1-score of the model improved significantly (p < 0.0001, p* < 415 

0.0001), (Fig. 2C, Table 2, Table 5).  416 

A clustering-based segmentation algorithm is likely to be effective in reducing merge errors (which 417 

produce false negatives). However, it may also cause an increase in false positives due to split errors. 418 

Therefore, we wanted to confirm if our clustering strategy, applied after the first CNN, improved the 419 

performance of the algorithm. Our results showed that adding the k-means clustering algorithm to our 420 
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model increased significantly the F1-score (p = 0.0016, p* = 0.0049), (Table 5). This was because the 421 

recall of the model increased to a greater extent with respect to the decrease in the precision (Fig. 2E, 422 

Table 2). Therefore, we can conclude that the reduced merge errors exceeded the few split errors 423 

generated by this strategy. An example showing merge errors eliminated by our clustering-based 424 

segmentation algorithm is displayed in Fig. 2D (before clustering: bottom, left panel and after 425 

clustering: bottom, right panel, see arrows). Finally, we evaluated the effect of setting a threshold to 426 

exclude too small clusters from being considered as vesicles. Our analysis showed that introducing this 427 

threshold improved significantly the F1-score of the model (p < 0.0001, p* < 0.0001), (Table 5). This 428 

was due to a marked increase in the precision of the model without a significant effect on the recall 429 

(Fig. 2F, Table 2). An example showing false positives eliminated by the application of a threshold 430 

setting a minimal cluster dimension is displayed in Fig. 2D (without threshold: bottom, middle panel 431 

and with threshold: bottom, right panel, see arrows).  432 

Table 2 433 

Data Precision Recall F1-score 

w/o refinement 49.62±2.87%, n=11 95.78±0.60%, n=11 64.73±2.32%, n=11 

w/o clustering 78.58±1.17%, n=11 79.02±1.93%, n=11 78.38±1.18%, n=11 

w/o size threshold 71.63±1.12%, n=11 82.78±1.80%, n=11 76.38±0.90%, n=11 

final 77.87±1.15%, n=11 82.34±1.87%, n=11 79.63±1.11%, n=11 

 434 

Next, we tested the performance of our algorithm on images from different preparations and 435 

hippocampal synapses (dataset test final, Table 1) (Fig. 3A-C). 436 

The number of vesicles detected by the algorithm was similar to the number of manually detected 437 

vesicles in all three preparations (Extended Data Fig. 3-1). The performance of the model was also 438 

relatively high (Table 3), even though there were differences between preparations: the precision was 439 

higher in neuronal cultures with respect to acute slices, while the recall was highest in chemically-fixed 440 

and lowest in cryo-fixed neuronal cultures (Fig. 3D). To better interpret the quality of these results we 441 
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also evaluated the difference between human-based analysis conducted by two researchers, 442 

independently. When we compared the results from the two human-based analysis with each other 443 

(considering the manual analysis of either one or the other researcher as ground truth) we obtained 444 

F1-scores which were statistically significantly higher than the results obtained by the algorithm (p-445 

values for differences in F1-score, acute slices: p = 0.0004, cryo-fixed: p = 0.0068, chemically-fixed: p = 446 

0.0004), (Table 5). Nonetheless, the F1-scores of human-analysis were only a few % points higher with 447 

respect to the result of the algorithm (from +3.96 % in acute slices to a maximum of +10.52 % in cryo-448 

fixed neuronal cultures) and they were lower than 100% (see Table 3), suggesting that a margin of 449 

uncertainty may be inevitable since present in analyses conducted by humans.  450 

Table 3 451 

Data Precision Recall F1-score (alg.) F1-score (human) 

acute slices 77.87±1.15%, n=11 82.34±1.87%, n=11 79.63±1.11%, n=11 83.59±1.71%, n=11 

cryo-fixed n.c. 85.10±1.30%, n=7 78.13±4.69%, n=7 80.82±2.38%, n=7 91.33±0.93%, n=7 

chem.-fixed n.c. 87.53±1.96%, n=9 87.24±1.53%, n=9 87.22±1.37%, n=9 92.99±0.70%, n=9 

 452 

Furthermore, to fill the gap that remains between human and machine performance we added a proof-453 

reading tool to our GUI which allows to evaluate and correct the predictions done by the algorithm, 454 

whenever necessary. Further details to use this function can be found in the README file in the GitHub 455 

repository at the address specified in the subsection Code accessibility in the Materials and Methods 456 

section. 457 

To further evaluate our results, we compared our algorithm with ilastik, a well-established, machine 458 

learning-based tool for (bio)image analysis (Berg et al., 2019). Our strategy to detect synaptic vesicles 459 

with ilastik was to use two workflows, sequentially: Cell Density Counting and Object Classification (for 460 

details see Materials and Methods). An example of the results from ilastik can be found in the Extended 461 

Data Fig. 3-2. The performance of ilastik in detecting synaptic vesicles with the chosen process was 462 

statistically significantly lower in comparison to our model for all three preparations (dataset test final, 463 



 

 20 

Table 1), (p-values for differences in F1-score, acute slices: p < 0.0001, cryo-fixed: p = 0.0003, 464 

chemically-fixed: p = 0.0056), (Table 4-5).  465 

Table 4 466 

Data Precision (ilastik) Recall (ilastik) F1-score (ilastik) F1-score (alg.) 

acute slices 50.60±3.19%, n=11 66.92±4.60%, n=11 56.89±3.36%, n=11 79.63±1.11%, n=11 

cryo-fixed n.c. 63.30±4.52%, n=7 62.62±2.45%, n=7 62.16±2.25%, n=7 80.82±2.38%, n=7 

chem.-fixed n.c. 74.15±3.24%, n=9 71.24±5.97%, n=9 70.48±4.14%, n=9 87.22±1.37%, n=9 

 467 

Evaluation of the robustness of the algorithm to noise and changes in contrast 468 

Next, we evaluated the effect of adding Gaussian noise or varying the image contrast on the 469 

performance of our model. We first added artificial Gaussian noise to six different electron 470 

micrographs (three of hMFBs from chemically-fixed acute hippocampal slices and three of small 471 

hippocampal synapses from chemically-fixed neuronal cultures) (subset of dataset test final, Table 1). 472 

The noise was applied on images with the range of pixel values normalized to 0-1. We used a Gaussian 473 

distribution with zero mean and gradually increase standard deviation (sigma).  474 

Up to a relative high level of noise (sigma 0.2), the model’s precision improved, while increasing the 475 

noise caused a decline in the model’s recall. This was due to a large increase in the number of false 476 

negatives. This suggests that, on noisy images, the model is very conservative in deciding about the 477 

presence of a vesicle. Above a certain level of noise both precision and recall dropped. Due to this 478 

different behavior between precision and recall, the F1-score declined relatively slowly (Fig. 4A-B).  479 

We then artificially decreased or increased the level of contrast in the same electron micrographs used 480 

in Fig. 4A-B. We observed a large plateau in model performance so that it was only marginally affected 481 

in images with a contrast level between 0.05 and 1.5 times the level of the original images. In general, 482 

the F1-score remained almost unchanged for a large range of contrasts demonstrating the robustness 483 

of our model to changes in this parameter (Fig. 4C-D).  484 

 485 

Evaluation of the robustness of the algorithm on publicly available images  486 
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Finally, to test the limits of our model, we evaluated its performance on images with pixel size ranging 487 

from 0.69 to 5.15 nm, coming from different sample preparations, different species and acquired with 488 

different microscopes in other laboratories (dataset external, Table 1). 489 

We tested two images from electron tomography of cryo-fixed mice synapses (pixel size = 5.15 nm, 490 

(Imig et al., 2020; video S1 and S2)) and obtained a precision of 73.93 ± 7.45 %, a recall of 83.68 ± 0.73 491 

% and an F1-score of 78.32 ± 4.54 % (Fig. 5A), the vesicles number detected manually and by the model 492 

was 534.75 ± 283.25 and 580.5 ± 267.50, respectively; one transmission electron microscopy image 493 

from a chemically-fixed zebrafish synapse (pixel size = 1.61 nm, 494 

http://cellimagelibrary.org/images/6230) and obtained a precision of 86.21 %, a recall of 77.54 % and 495 

an F1-score of 81.64 % (Fig. 5B), the vesicles number detected manually and by the model was 129 496 

and 116, respectively; six images from serial block face SEM of chemically-fixed synapses (pixel size = 497 

5 nm, (Jorstad et al., 2015), https://github.com/NeuroMorph-498 

EPFL/NeuroMorph/tree/master/NeuroMorph_Datasets/EM_stack) and obtained a precision of 81.52 499 

± 2.10 %, a recall of 53.78 ± 1.39 % and an F1-score of 64.59 ± 1.44 % (Fig. 5C), the vesicles number 500 

detected manually and by the model was 133.25 ± 14.17 and 86.67 ± 7.94 respectively, and finally an 501 

image from electron tomography of chemically-fixed human synapses (pixel size = 0.69 nm, 502 

(Rollenhagen et al., 2020; movie 2)) obtaining a precision of 86.76 %, a recall of 49.08 % and an F1-503 

score of 61.10 % (Fig. 5D), the vesicles number detected manually and by the model was 67 and 34, 504 

respectively. The precision of the model was similar across all images and comparable to the one 505 

obtained with our own images. However, one limitation of our algorithm was that the recall was more 506 

variable, mainly due to the fact that vesicles that were not sharp or that did not have a clearly visible 507 

membrane were often false negatives. 508 

 509 

Parameters provided by the algorithm  510 

Beyond the vesicle count and the position of each detected vesicle, our algorithm provides the nearest 511 

neighbor distance (nnd) and the estimated area of each vesicle. We compared the values obtained by 512 

our system with the ones measured manually in 22 images of small hippocampal synapses (10 from 513 
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cryo-fixed and 12 from chemically-fixed neuronal cultures) (subset of dataset test final, Table 1) and 514 

observed significant correlations for all three parameters (Fig. 6A-C, vesicles count: r = 0.88 p < 0.0001, 515 

nnd: r = 0.63, p = 0.0015, area: r = 0.76, p < 0.0001), (Table 5).  516 
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Discussion 517 

In the present study we present a successful application of deep CNNs for the automated recognition 518 

of nanoscale organelles (synaptic vesicles) in electron microscopy images. 519 

Recent studies showed that the distribution of synaptic vesicles can underlie neuromodulation (Patzke 520 

et al., 2019, 2021) and synaptic plasticity (Rey et al., 2020; Orlando et al., 2020; Reshetniak and Rizzoli, 521 

2021). Therefore, automating synaptic vesicles detection constitutes an important tool for researchers 522 

interested in synaptic function and plasticity. 523 

Deep neural networks are acquiring growing importance in many aspects of our lives. They contribute 524 

to the extraordinary advances of many digital applications, such as automatic speech recognition, 525 

natural language processing, object recognition and cancer diagnosis just to mention a few (Shrestha 526 

and Mahmood, 2019). CNNs are a class of deep neural networks heavily employed in the field of 527 

computer vision. Thanks to their unique architectures, inspired by the visual cortex, they achieved 528 

unpreceded results in visual tasks ranging from image classification and object detection to 529 

autonomous driving (Rawat and Wang, 2017).  530 

CNNs have already found different applications in the field of neuroanatomy. In particular, they 531 

showed to achieve very high accuracy in the segmentation of neuronal structures and they have been 532 

employed for the computation of 3D reconstruction of neuronal micro-circuitry in connectomics 533 

studies (Cireşan et al., 2012; Ronneberger et al., 2015; Januszewski et al., 2018). Despite these 534 

advanced applications of CNNs, the automated segmentation of synaptic vesicles remains a challenge 535 

due to vesicle size, which is often smaller than the z resolution of 3D reconstructions. A recent 536 

application of the CDeep3M software (Steinkellner et al., 2020) seems to be nowadays the only tool 537 

capable to localize synaptic vesicles but it still requires a re-training of the segmentation algorithm. 538 

We therefore devoted our effort in the development of a ready-to-use software specialized in the 539 

detection of synaptic vesicles from transmission electron microscopy images. 540 

For training our CNN-based vesicle classifier we used  90x90 nm images patches, the majority of which 541 

was obtained from micrographs of hMFBs and a smaller portion from images of hippocampal cultured 542 
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neurons. Hippocampal MFBs are a particular type of synapse showing a peculiar form of presynaptic 543 

plasticity (Nicoll and Schmitz, 2005). Each hMFB, similarly to other large synapses (e.g. neuromuscular 544 

junctions, calyx of held, cerebellar mossy fibers), contains up to thousands synaptic vesicles thus 545 

constituting an excellent model for establishing the automation of synaptic vesicles detection.  546 

When we evaluated the performance of our vesicle classifier on the test dataset, consisting of patches 547 

from a different set of images, either containing or not containing a synaptic vesicle, we obtained a 548 

predictive power above 96% (Fig. 1). This result suggests that our model efficiently learned to extract 549 

relevant features for predicting the presence or the absence of a vesicle in an image.  550 

The network architecture of our vesicle classifier was inspired by LeNet-5 (Le Cun et al., 1989), a 551 

pioneer image classification CNN that became famous for its ability to automatically recognize 552 

handwritten digits, and slightly modified to increase performance (Fig. 1). Despite the fact that, 553 

recently, more sophisticated CNN architectures have been developed and employed in neuron 554 

segmentation studies (Cireşan et al., 2012; Ronneberger et al., 2015; Januszewski et al., 2018), here 555 

we show that the relatively simple architecture we chose is sufficient for detecting structures which 556 

are largely homogeneous in size and shape as synaptic vesicles.  557 

To detect and localize multiple synaptic vesicles from an entire image from a hMFB, we incorporated 558 

the vesicle classifier in a sliding window detection algorithm. Despite sliding window detectors are 559 

generally highly computationally expensive, the computational cost of our algorithm was acceptable 560 

because small clear synaptic vesicles have a very similar size and shape and therefore, we need to use 561 

just a single window size to slide through the image. 562 

When tested on micrographs of mossy fibers presynaptic terminals, our CNN model, combined with a 563 

connected-component labelling and a k-means clustering algorithm, effectively detected and localized 564 

the great majority of synaptic vesicles. However, we could still systematically observe false positives 565 

especially within mitochondria and along membranes. This was expected since these organelles 566 

contain vesicular structures which strongly resemble synaptic vesicles. We managed to largely 567 

overcome this limitation by implementing a second network, so called refinement classifier, which 568 

functions as a check-point to confirm or reject all vesicles predicted as such by the first CNN. Thanks 569 
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to this additional step, we managed to eliminate a large portion of false positives and significantly 570 

improved the performance (F1-score) of our model (Fig. 2B-C, Table 2). 571 

We also tested our clustering-based segmentation algorithm, and the threshold setting for excluding 572 

too small clusters and confirmed the importance of these steps, which follow the first CNN, in 573 

improving the performance of our model. (Fig. 2D-F, Table 2). 574 

After the evaluation of all single steps built in our model, we tested its overall performance on 575 

chemically-fixed acute slices, cryo-fixed and chemically-fixed neuronal cultures from the mouse 576 

hippocampus. The model performed well in all three sample preparations, reaching a mean F1-score 577 

just below 80% ( 79.6%) in hMFBs from acute slices, 80.8% in cryo-fixed neuronal cultures and 578 

87.2% in chemically-fixed neuronal cultures (Fig. 3, Table 3). In considering the performance achieved 579 

by our model, we should point out that even manual analyses are likely to have some margin of error. 580 

Indeed, when we compared the human annotations performed by two postdoctoral researchers, we 581 

realized that they did not coincide entirely, but they display marginal differences. This highlights that 582 

morphological manual analyses of this kind are susceptible to human subjectivity. This is likely due to 583 

the fact that consistent portion of vesicles are not clearly distinguishable in an electron micrograph, 584 

mainly because synaptic vesicles are three-dimensional (3D) structures, and the image is a two-585 

dimensional (2D) projection of a 3D section. 586 

The uncertainty present in the analysis conducted by humans suggests that it may be impossible to 587 

reach a performance near 100% and it implies that the manually originated training dataset may also 588 

not be completely unbiased. In this regard, we want to highlight that, even if our model inevitably 589 

inherits the bias present in the manual labels, it will still offer the advantage of using the very same 590 

detection strategy for every tested image, making it a very useful tool for groups comparisons (for 591 

instance control versus treatment).  592 

Next, to verify if our algorithm brings about a substantial improvement in the automate detection of 593 

synaptic vesicles with respect to already available tools, we analyzed the same images using ilastik, an 594 

interactive machine learning-based tool specialized in (bio)image analysis (Berg et al., 2019). The 595 

results of our algorithm were significantly better than the ones obtained with ilastik on the same sets 596 
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of images (Table 4). Therefore, despite ilastik remains a very useful and flexible tool for a large variety 597 

of image analyses, our solution is superior on the specific task of detecting synaptic vesicles. 598 

Finally, to offer the possibility to refine the automatic analysis, we also provide a proof-reading tool to 599 

easily add-delete false negatives and positives, respectively. 600 

Next, we evaluated the robustness of our model in face of changes in noise and contrast. Interestingly, 601 

the precision of the model improved when Gaussian noise was added to the original micrographs (up 602 

to a relatively high level of noise, sigma =0.2). The introduction of noise caused also an increase in false 603 

negatives, as seen by the decline in recall. The sum of these two effects caused the overall model 604 

performance (F1-score) to be relatively constant up to a low-moderate level of noise (sigma 0.075) and 605 

to then decline (Fig. 4A-B). Since we consider unlikely that recent image acquisition systems produce 606 

images with a noise higher than to the one simulated in this study with a sigma >= 0.075, we are 607 

confident that differences in noise level are unlikely to significantly affect our model. The performance 608 

of the model was only marginally affected when tested on images with a large range of contrast levels. 609 

As for the noise, changing contrast negatively affected the recall more than the precision. However, in 610 

general the F1-score remained almost unchanged in images with contrast level far more extreme that 611 

what is usually produced by transmission electron microscopy (Fig. 4C-D). The reported robustness of 612 

our model to changes in noise and contrast is likely the result of introducing noise and changes in 613 

contrast as data augmentation strategy while training the networks. 614 

As ultimate test, to evaluate to what extent our model performs well, we used images taken from 615 

either public repositories or from the Extended Data of two publications (Imig et al., 2020; Rollenhagen 616 

et al., 2020) (Fig. 5). These included images of synapses from different species, taken at different 617 

resolutions and prepared with different protocols. Remarkably, the precision of the model was 618 

similarly high in all kind of images tested and comparable with the precision obtained on our own 619 

images. However, the recall showed important differences, and it was relatively low in some of the 620 

tested images, thereby affecting the F1-score. Based on these results, we can deduce that our 621 

algorithm is very precise in detecting vesicles across a broad range of different image types but its 622 

efficiency in recognizing vesicles might have consistent variations depending on the vesicle 623 
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appearance. For instance, in images acquired with a scanning electron microscope, as in Fig. 5C, false 624 

negatives were mainly present if vesicles were not sharp or their lumen was not recognizable. For 625 

rendering the application of our model possible also to these cases we still offer the possibility to refine 626 

the results with our proof-reading tool or to re-train the model with one own images, by providing in 627 

our GitHub repository the source code of the vesicle classifiers and the codes to train them (see 628 

README file of the GitHub repository at the address specified in the Materials and Methods section). 629 

Taken together our results show that our algorithm generalizes well and we are confident that most 630 

people working on transmission electron microscopy images can directly use the weights from our 631 

trained models (the weights can also be found in the public GitHub repository). The main reasons why 632 

we believe the model is likely to work on the majority of transmission electron microscopy images are 633 

the following: 1) it was trained on images from both chemically-fixed and cryo-fixed samples; 2) the 634 

shape and dimension of synaptic vesicles varies only marginally across species, brain area and 635 

preparation techniques; 3) transmission electron microscopy produces images with good resolution 636 

allowing to distinguish the membrane delimiting the vesicles as well as their lumen; 4) we included a 637 

step to rescale all input images before being evaluated by our CNNs. This allows the model to work 638 

with images of different resolutions.  639 

Finally, our algorithm does not only count the number of vesicles, but it also outputs the position, the 640 

nearest neighbor distance, and the estimated area for each detected vesicle (Fig. 6). The provided 641 

values can be used for measuring many parameters such as synaptic vesicle density, vesicle distribution 642 

inside the terminal, and distance from the active zone. These measurements are all important for 643 

gaining insight into synaptic function and modulation. 644 

Furthermore, thanks to the provided GUI, our solution has the great advantage of being easy to use by 645 

life-science researchers with little programming experience.  646 

It is conceivable that future versions of the algorithm will be trained to further recognize and 647 

distinguish other intracellular organelles. The recently developed family of object detection 648 

algorithms, R-CNNs, are well suited for achieving these goals. By combining a region proposal network 649 
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(RPN) with a CNN, they can effectively and accurately localize objects of different size and shape within 650 

an image (Girshick et al., 2015).  651 

In summary, in the present study we developed and evaluated an algorithm to automate the analysis 652 

of synaptic vesicles in transmission electron microscopy images. We believe that the implementation 653 

of this automatic method can strongly increase the throughput of research focusing on synapses 654 

structure and function.  655 

 656 

Extended Data 657 

Extended Data 1. Codes and README files. 658 

Code files used for training the classifiers and for using the GUI: 659 

 CNNs_GaussianNoiseAdder.py (it contains the two convolutional neural networks and some 660 

lines to add Gaussian noise to the training dataset as data augmentation strategy); 661 

 first_classifier_training.py and second_classifier_training.py (they contain the codes used to 662 

train the first and the refinement classifier and to evaluate their performance on the training 663 

and validation datasets); 664 

 Gui_vesicle_detection.py (it is needed to generate the GUI and to conduct image analysis, 665 

result visualization and proof-reading); 666 

 running_analysis.py (the execution of this code launches the GUI). 667 

Codes used for the analyses: 668 

 ROC_AUC_calculator.py (it generates the ROC curve and calculates the AUC score from the 669 

first vesicle classifier); 670 

 performance_checker.py (it evaluates the performance of the algorithm by calculating true 671 

positives, false positives and false negatives using human annotations as ground truth); 672 

 density_to_probability_transformer.py (it transforms density images from the Cell Counting 673 

workflow of ilastik into probability maps and save them); 674 
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 performance_checker_(ilastik).py (it has the same function as performance_checker.py but on 675 

results from ilastik). 676 

 677 

Extended Data Figure 3-1 678 

Comparison between synaptic vesicles count detected by humans and by the algorithm. Number of 679 

vesicles detected manually and by the algorithm in micrographs from A, hMFBs from chemically fixed 680 

acute hippocampal slices, B, small hippocampal synapses from cryo-fixed cultured neurons, C, small 681 

hippocampal synapses from chemically-fixed cultured neurons. 682 

 683 

Extended Data Figure 3-2 684 

Example of synaptic vesicles detection using ilastik. A, Raw micrograph (left), probability map (middle) 685 

and segmentation map (right) of a hMFB from a chemically-fixed acute hippocampal slice. The hMFB 686 

was isolated by applying a black mask on the surrounding. The probability map was obtained by 687 

converting the density image produced by the Cell Density Counting workflow. The segmentation map 688 

was then obtained using the Object Classification [Inputs: Raw Data, Pixel Prediction Map] workflow. 689 

B, On the left, a portion of the micrograph in A, with all manually detected vesicles tagged by the white 690 

dots. On the right the same image, with all the vesicles predicted by ilastik tagged by the dots. The 691 

correctly guessed vesicles (true positives) are represented in white, the wrongly predicted vesicles 692 

(false positives) in blue and the missed vesicles (false negatives) in red. 693 

694 
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Table legends 814 

Table 1. Description of the datasets. Description of the datasets used to train and test the first and second 815 

(refinement) classifiers and for evaluating the final performance of the model. The term “acute slices” refers to 816 

images of hMFBs from chemically-fixed acute hippocampal slices, “neur. cultures” refers to images of small 817 

hippocampal synapses from either cryo- or chemically-fixed cultured neurons.  818 

Table 2. Improvement of the model performance by applying additionally the refinement classifier and post-819 

processing steps. Performance of the model (precision, recall and F1-score) on images of hMFBs from chemically-820 

fixed acute hippocampal slices (subset of dataset test final) without refinement classifier, without clustering-821 

based segmentation, without removal of too small clusters and with all steps included. Data are presented as 822 

mean ± standard error of the mean. 823 

Table 3. Evaluation of the model performance on images from different preparations. Performance of the 824 

model (precision, recall and F1-score) on images of hMFBs from chemically-fixed acute hippocampal slices (acute 825 

slices) and of small hippocampal synapses from either cryo- or chemically-fixed neuronal cultures (cryo-fixed n.c. 826 

and chemically-fixed n.c., respectively), (dataset test final) and F1-score obtained comparing the annotations of 827 

two humans with each other. Data are presented as mean ± standard error of the mean. 828 

Table 4. Evaluation of the performance of ilastik and comparison with our model. Performance of ilastik 829 

(precision, recall and F1-score) on the same images used in Table 3 (dataset test final) and F1-score obtained 830 

with our model. Data are presented as mean ± standard error of the mean. 831 

Table 5. Statistical Table. 832 

 833 

Figure legends 834 

Figure 1. Architecture and performance of the vesicle classifier. A, Architecture of the convolutional neural 835 

network and diagrams showing the B, cross-entropy loss, C, accuracy, D, precision, E, recall, F, F1-score and G, 836 

receiver operating characteristic (ROC) curve on the training and test dataset (black and blue, respectively). H, 837 

Prediction of the vesicle classifiers on 39 image patches from the test dataset. The number in the first square 838 

brackets, on top of each image, represents the label assigned manually whereas the number in the second square 839 

brackets represents the prediction done by the classifier. The value 0 indicates that the label/prediction was 840 

negative (no vesicle) while the value 1 indicates a positive label/prediction (vesicle). In this representative 841 
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example 38 out of 39 images were predicted correctly. Red and black colors are used to indicate wrong and 842 

correct predictions, respectively. 843 

 844 

Figure 2. Evaluation of single steps built in the algorithm. A, Micrograph showing a hMFB, from a chemically-845 

fixed acute hippocampal slice, with all manually detected vesicles tagged by the white dots. Only vesicles 846 

belonging to the synaptic terminal delimited by the blue line were manually labelled and predicted. B, 847 

Magnification of the rectangular area shown in A with vesicles predicted by the algorithm. The vesicles were 848 

predicted either without (top), or with the contribution of the refinement CNN (bottom). On the left, the 849 

positions of the predicted vesicles are tagged by the white dots and false positives and false negative are marked 850 

by the semi-transparent blue and red circles, respectively. On the right, beyond the position of the predicted 851 

vesicles (white dots), the estimated vesicles areas is also represented as overlaid semi-transparent pink mask. C, 852 

F1-score without and with the contribution of the refinement CNN. D, EM image of a small portion of a hMFB 853 

(top, left), from a chemically-fixed acute hippocampal slice, same portion overlaid with the probability map 854 

generated by the first CNN as semi-transparent blue mask (top, middle), probability map alone (top, right), the 855 

green open circles point at three erroneously merged vesicles before clustering, while the two blue circles point 856 

at two clusters falling below the threshold size for being considered as vesicles. Vesicles detected without 857 

clustering-based segmentation (bottom, left), the arrows point at three merge errors. Vesicles detected without 858 

setting the size threshold for excluding very small clusters (bottom, middle), the arrows point at two false 859 

positives. Vesicles detected after implementing both clustering-based segmentation algorithm as well as after 860 

the threshold for excluding too small clusters (bottom, right), note that here both errors types are eliminated. E, 861 

F1-score without and with the contribution of the clustering-based segmentation algorithm and of F, the size 862 

threshold for excluding very small clusters.  863 

 864 

Figure 3. Evaluation of the performance of the algorithm on different sample preparations. A, Portion of a 865 

micrograph of a hMFB from a chemically-fixed acute hippocampal slice with all manually detected vesicles tagged 866 

by the white dots (left), with all predicted vesicles tagged by the white dots and false positives and false negatives 867 

marked by the semi-transparent blue and red circles, respectively (middle) and with all predicted vesicles tagged 868 

by the white dots and their estimated areas represented by the overlaid semi-transparent pink mask (right). 869 

Same as in A but here the micrographs show small hippocampal synapses from B, a cryo-fixed and a C, chemically-870 
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fixed neuronal culture. D, Precision, recall, F1-score of the algorithm for the three different sample preparations 871 

and F1-score obtained by comparing the results from the two human-based analysis (F1-s. man). For this analysis, 872 

only vesicles belonging to one synaptic terminal were manually labelled and predicted. Extended Data Figure 3-873 

1 shows the comparison between synaptic vesicles count detected by humans and by the algorithm. Extended 874 

Data Figure 3-2 shows an example of synaptic vesicles detection using ilastik. 875 

 876 

Figure 4. Performance of the model with different levels of noise and contrast. A, Precision (pink), recall (blue) 877 

and F1-score (black) at increasing noise levels. B, Portions of micrograph of a hMFB with increasing level of noise 878 

(from left to right) with all predicted vesicles tagged by the white dots. The level of noise in the images in the 879 

middle and on the right is marked by the grey rectangles in A. C-D, Same as in A-B but instead of noise, different 880 

levels of contrast were tested. The contrast level in the images on the left (low contrast) and on the right (high 881 

contrast) is marked by the grey rectangles in C. For this analysis, only vesicles belonging to one synaptic terminal 882 

were manually labelled and predicted. On A and C, the dots represented the mean and the bars the standard 883 

error of the mean. 884 

 885 

Figure 5. Performance of the algorithm on images available online. A-D, Portion of micrographs containing 886 

synaptic vesicles with all manually detected vesicles tagged by the white dots (left), with all predicted vesicles 887 

tagged by the white dots and with false positives and false negatives marked by the semi-transparent blue and 888 

red circles, respectively (middle) and with all predicted vesicles tagged by the white dots and their estimated 889 

areas represented by the overlaid semi-transparent pink mask (right). The image in A, is a portion of a virtual 890 

section of an electron tomogram from a cryo-fixed mouse hMFB (Imig et al., 2020); the image in B, belongs to a 891 

synapse from a chemically-fixed zebrafish optic tectum (http://cellimagelibrary.org/images/6230); C, represents 892 

a portion of a synapse from a serial block face scanning electron microscopy (https://github.com/NeuroMorph-893 

EPFL/NeuroMorph/tree/master/NeuroMorph_Datasets/EM_stack); D, represents a virtual slice of an electron 894 

tomogram of a chemically-fixed human synapse from the temporal lobe neocortex. Images in A, B and D were 895 

obtained with a transmission electron microscope, whereas the image in C was obtained with a scanning electron 896 

microscope. For this analysis, all vesicles present in the images were manually labelled and predicted. 897 

 898 
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Figure 6. Correlations of parameters obtained by human analysis or by the algorithm. Correlations between 899 

algorithm and human results for A, total vesicles count, B, nearest neighbor distance (n.n.d.) and C, estimated 900 

vesicle area. Each dot represents the average value for an image. The black lines represent the linear regressions. 901 
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Table 1 

Dataset  Tot. images  Acute slices 
Neur. cultures 

(cryo/chem.fix.) 

Patches / Full 

images 
Usage 

train 1 21 19 2/0 Patch. 34,805 Train 1° cl. 

test 1 6 4 2/0 Patch. 4,209 Test 1° cl. 

train 2 16 10 6/0 Patch. 6,245 Train 2° cl. 

test 2 8 5 3/0 Patch. 1,912 Test 2° cl. 

test final 27 11 7/9 Full images 27 Evaluation 

external 10 0  2/8  Full images 27 Evaluation 
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Table 2 

Data Precision Recall F1-score 

w/o refinement 49.62±2.87%, n=11 95.78±0.60%, n=11 64.73±2.32%, n=11 

w/o clustering 78.58±1.17%, n=11 79.02±1.93%, n=11 78.38±1.18%, n=11 

w/o size threshold 71.63±1.12%, n=11 82.78±1.80%, n=11 76.38±0.90%, n=11 

final 77.87±1.15%, n=11 82.34±1.87%, n=11 79.63±1.11%, n=11 
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Table 3 

Data Precision Recall F1-score (alg.) F1-score (human) 

acute slices 77.87±1.15%, n=11 82.34±1.87%, n=11 79.63±1.11%, n=11 83.59±1.71%, n=11 

cryo-fixed n.c. 85.10±1.30%, n=7 78.13±4.69%, n=7 80.82±2.38%, n=7 91.33±0.93%, n=7 

chem.-fixed n.c. 87.53±1.96%, n=9 87.24±1.53%, n=9 87.22±1.37%, n=9 92.99±0.70%, n=9 
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Table 4 

Data Precision (ilastik) Recall (ilastik) F1-score (ilastik) F1-score (alg.) 

acute slices 50.60±3.19%, n=11 66.92±4.60%, n=11 56.89±3.36%, n=11 79.63±1.11%, n=11 

cryo-fixed n.c. 63.30±4.52%, n=7 62.62±2.45%, n=7 62.16±2.25%, n=7 80.82±2.38%, n=7 

chem.-fixed n.c. 74.15±3.24%, n=9 71.24±5.97%, n=9 70.48±4.14%, n=9 87.22±1.37%, n=9 
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Data type Compared groups Test Results df 

F1-score (%) – Fig.2 Final vs no refin., no 
cluster, no size thr. 

repeated 
measures 

ANOVA 
F= 40.33 3 

Data type Compared groups Test Confidence level df    95% Bonferroni corr. 
F1-score (%) – Fig.2 Final vs no refin. paired-ttest 10.44 – 19.36 % 9.18 – 20.62 % 10 

F1-score (%) – Fig.2 Final vs no cluster paired-ttest  0.60 – 1.90 % 0.41 – 2.08 % 10 

F1-score (%) – Fig.2 Final vs no size thr. paired-ttest 2.34 – 4.15 % 2.08 – 4.41 % 10 

F1-score (%) – Acute slices – Fig.3  Algorithm vs humans paired-ttest -5.67 – -2.25 % - 10 

F1-score (%) – Cry. fix. n.c. – Fig.3 Algorithm vs humans paired-ttest -16.89 – -4.15 % - 6 

F1-score (%) – Che. fix. n.c. – Fig.3 Algorithm vs humans paired-ttest -8.10 – -3.45 % - 8 

F1-score (%) – Acute slices Algorithm vs ilastik paired-ttest 16.20 – 29.27 % - 10 

F1-score (%) – Cry. fix. n.c. Algorithm vs ilastik paired-ttest 12.42 – 24.89 % - 6 

F1-score (%) – Che. fix. n.c. Algorithm vs ilastik paired-ttest 6.46 – 27.01 % - 8 

Vesicle count – Fig.6 Algorithm vs humans Pearson corr. 0.7288 – 0.9494 - 42 

Vesicle n.n.d. – Fig.6 Algorithm vs humans Pearson corr. 0.2838 – 0.8309 - 42 

Vesicle area – Fig.6 Algorithm vs humans Pearson corr. 0.4979 – 0.8949 - 42 

 

 


