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Summary statement:  

The H4K20me2 demethylase DPY-21 has both catalytic and non-catalytic roles in condensin 

DC-mediated X chromosome repression. Here we found that the non-catalytic activity regulates 

the dynamics of condensin DC binding on the X chromosomes. 
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ABSTRACT 

Condensin is a multi-subunit SMC complex that binds to and compacts chromosomes. Here we 

addressed the regulation of condensin binding dynamics using C. elegans condensin DC, which 

represses X chromosomes in hermaphrodites for dosage compensation. We established 

fluorescence recovery after photobleaching (FRAP) using the SMC4 homolog DPY-27 and 

showed that a well-characterized ATPase mutation abolishes its binding. Next, we performed 

FRAP in the background of several chromatin modifier mutants that cause varying degrees of X-

chromosome derepression. The greatest effect was in a null mutant of the H4K20me2 

demethylase DPY-21, where the mobile fraction of condensin DC reduced from ~30% to 10%. 

In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Hi-C data in the 

dpy-21 null mutant showed little change compared to wild type, uncoupling Hi-C measured long-

range DNA contacts from transcriptional repression of the X chromosomes. Together, our results 

indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC 

binding, which is important for transcription repression.   

  

INTRODUCTION 

The evolutionarily conserved structural maintenance of chromosomes (SMC) complexes use the 

energy from ATP hydrolysis to regulate chromosome structure in various nuclear processes 

(Hirano, 2016). Condensin is an SMC complex that regulates DNA compaction for chromosome 

segregation during cell division and genome organization for transcription regulation during 

interphase (Paul et al., 2018a). The current model for how condensins compact DNA is through a 

process called loop extrusion (Cacciatore and Rowland, 2019; Goloborodko et al., 2016). Unlike 

a related SMC complex called cohesin, the proteins and chromatin factors that regulate the 

dynamics of condensin binding are less clear (Paul et al., 2018b). Here we addressed this 

question using the Caenorhabditis elegans dosage compensation system, where X-specific 

condensin binding and function is better understood and serves as a model for the metazoan 

condensins (Albritton and Ercan, 2018).   
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In C. elegans, X chromosome dosage compensation is mediated by a specialized condensin that 

forms the core of the dosage compensation complex (DCC) (Meyer, 2005). This X-specific 

condensin (hereafter condensin DC) is distinguished from the canonical condensin I by a single 

SMC-4 variant called DPY-27 (Csankovszki et al., 2009). The current model of condensin DC 

binding to the X chromosomes posits that SDC-2, along with SDC-3 and DPY-30, initiate X-

specific binding of the complex to a small number of recruitment elements on the X (rex) 

(Albritton et al., 2017; Csankovszki et al., 2004; Jans et al., 2009). Robust binding of condensin 

DC to the X chromosomes requires multiple rex elements (Albritton et al., 2017). The complex 

binding is enriched at active promoters, enhancers, and other accessible sites (Ercan et al., 2009; 

Street et al., 2019). Similar to other SMC complexes, condensin DC likely translocates along 

DNA through loop extrusion and mediates long-range DNA contacts enriched on the X 

chromosomes (Anderson et al., 2019; Crane et al., 2015; Jimenez et al., 2021). A subset of the 

strong rex sites also serve as blocks to condensin DC movement, insulating DNA contacts and 

forming loop-anchored topologically associating domains (TADs) (Crane et al., 2015; Jimenez et 

al., 2021).  

  

Condensin DC physically interacts with DPY-21 (Yonker and Meyer, 2003), a Jumonji domain-

containing histone demethylase that converts H4K20me2 to H4K20me1 (Brejc et al., 2017), 

resulting in increased H4K20me1 and reduced H4K30me2/3 on the X chromosome (Vielle et al., 

2012; Wells et al., 2012). This leads to deacetylation of H4K16 mediated by SIR-2.1 (Wells et 

al., 2012). As a result, the two dosage compensated X chromosomes in hermaphrodites contain 

higher H4K20me1 and lower H4K16ac levels. Furthermore, condensin DC and dpy-21 are also 

required for lower levels of H3K27ac on the X chromosome (Street et al., 2019). An increase of 

H4K20me1 and decreased acetylation mirror the histone modification changes on metazoan 

mitotic chromatin (Schmitz et al., 2020), providing a link between canonical condensin and 

condensin DC binding to chromatin. 

  

In this study, we analyzed the effect of several mutants that regulate H4K20 methylation and 

H4K16 acetylation on the dynamics of condensin DC binding using fluorescence recovery after 

photobleaching (FRAP). We established FRAP in C. elegans intestine cells using a GFP-tagged 

DPY-27 and validated the system by demonstrating that condensin DC mobility increases upon 
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depletion of its recruiter SDC-2. We found that introducing a well-characterized mutation in the 

ATPase domain of DPY-27 eliminated its binding to the X chromosomes as measured by FRAP 

and ChIP-seq. Mutants that regulate H4K20me and H4K16ac showed subtle effects on 

condensin DC binding dynamics as measured by FRAP. The most substantial effect was in the 

dpy-21 null mutant, which reduced the fraction of mobile DPY-27 from ~30% to ~10%. Unlike 

the null mutant, the dpy-21 JmjC catalytic mutant did not affect condensin DC mobility, 

suggesting that DPY-21 role in regulating condensin DC binding dynamics is non-catalytic. We 

performed Hi-C analysis in a dpy-21 null and (JmjC) catalytic mutant and observed little change 

in long-range DNA contacts, including those between the rex sites (Brejc et al., 2017). Together, 

our results suggest that DPY-21 has a noncatalytic role in regulating the dynamics of condensin 

DC binding to the X chromosomes, which is important for its function in transcription 

repression. 

 

RESULTS 

FRAP measurement of condensin DC binding in vivo 

To analyze condensin DC binding in vivo, we used FRAP, which measured functionally relevant 

dynamics of condensin binding in budding yeast (Thadani et al., 2018) and condensin I and II 

complexes in human cells (Gerlich et al., 2006; Walther et al., 2018). We set up the FRAP 

system using DPY-27, the SMC4 homolog that distinguishes condensin DC from I (Fig. 1A). To 

fluorescently label DPY-27, we added a Halo tag endogenously at the C-terminus using 

CRISPR/Cas9 genome editing. Unlike dpy-27 mutants, which are lethal or dumpy, the resulting 

animals were phenotypically wild-type, indicating that the tagged protein complements protein 

function. This was also supported by subnuclear localization of DPY-27::Halo, which is typical 

of X-specific localization of the DCC (Fig. 1B) (Csankovszki et al., 2004; Jans et al., 2009). 

DPY-27::Halo did not photobleach sufficiently in our hands, and endogenous tagging by GFP 

did not produce a strong signal. Thus, we turned to expressing a GFP-tagged copy of DPY-27 

using a heat-inducible promoter to perform FRAP. First, we characterized the expression of the 

transgene by incubating adults at 35°C for 1 hour then moving them to the normal growth 

temperature of 20°C. After 3 hours at 20°C, excess DPY-27::GFP was visible across the nuclei, 
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but after 8 hours, localization was constrained to a subnuclear domain suggesting that the 

remaining protein bound specifically to the X chromosomes (Fig. 1C). 

  

We validated that DPY-27::GFP forms a complex and binds to DNA as expected in three ways. 

First, we analyzed the localization of DPY-27::GFP after 8 hours of recovery in intestine cells in 

the presence of the Halo-tagged endogenous protein. DPY-27::GFP colocalized with DPY-

27::Halo, indicating proper localization (Fig. 1B, Fig. S1A). Second, DPY-27::GFP was detected 

in immunoprecipitation of DC subunits, supporting the complex formation capabilities of DPY-

27::GFP (Fig. 1D, Fig. S1B). Third, DPY-27::GFP was enriched on the X chromosomes, and the 

ChIP-seq binding pattern followed that of DPY-26, the kleisin subunit of condensin DC (Fig. 

S1C, Fig. 2C, ).   

  

We chose intestine cells for performing FRAP, where the nuclei are large due to polyploidy, and 

subnuclear localization of the complex is easily detected (Fig. 1E). Previous studies also used 

these cells to analyze condensin DC binding by immunofluorescence (Brejc et al., 2017; 

Csankovszki et al., 2004; Wells et al., 2012; Yonker and Meyer, 2003). In addition, controlling 

DPY-27::GFP expression in intestines was easier than in embryos, where nuclei were small (Fig. 

S1D) and there was variability in heat-induced expression of DPY-27::GFP (Fig. S1E). 

  

To further validate the FRAP assay in the intestine cells, we compared DPY-27::GFP recovery to 

that of free NLS::GFP and histone H2B::GFP (Fig. 1E-H). FRAP allows two types of 

quantitative measurements on protein mobility. First is the proportion of mobile molecules, 

calculated from the percentage of the recovered signal at the bleached area by replacing bleached 

molecules. Second is the recovery speed, where a fast recovery indicates diffusion, transient 

binding slows down the recovery, and stable binding increases the immobile fraction (Mueller et 

al., 2013). As expected, the mobile fraction of free GFP (Fig. 1G) was much higher than that of 

histone H2B. H2B::GFP minimally recovered during the experiment time frame and was 

therefore excluded from the half-life recovery plot (Fig. 1H). This result is in line with FRAP 

experiments in human cell lines reporting a mobile fraction for most H2B-GFP of 4% with a T-

half recovery of over 2 hours (Kimura and Cook, 2001).  
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DPY-27::GFP mobile fraction was ~30% and half time of recovery ~2.6 seconds. FRAP results 

from different experimental set-ups with different imaging settings and analysis strategies can 

differ significantly (Mazza et al., 2012). However, the time scale for DPY-27::GFP is similar to 

recovery half-times reported in Saccharomyces cerevisiae for Smc4, ~2 and ~6 seconds in G1 

and M phase respectively (Thadani et al., 2018) and different from residence times reported for 

human condensin I and II (Gerlich et al., 2006; Walther et al., 2018). During metaphase, human 

condensin I has a residence time of ~3 min with a mobile fraction of 80% (Gerlich et al., 2006; 

Walther et al., 2018). Condensin II, which binds to chromatin throughout the cell cycle, has a 

residence time of  >5 min with a mobile fraction of 40% (Gerlich et al., 2006; Walther et al., 

2018). Our results indicate that DPY-27 has a higher chromosome-bound fraction than human 

condensin I and II but has comparable recovery half-times to those reported in yeast.  

 

A conserved mutation to the DPY-27 ATPase domain eliminates its binding in the presence 

of the wild-type protein.  

If FRAP measures changes in condensin DC binding dynamics, we reasoned that knockdown of 

its recruiter SDC-2, and a well-characterized ATP hydrolysis mutation that is known to eliminate 

the function of other SMC4 homologs, should affect DPY-27 binding dynamics. In condensins, 

the two heads of SMC2 or SMC4 form the two halves of the ATPase domain; each head 

interacting with the other in the presence of an ATP molecule, hydrolysis of which dissociates 

the heads (Hirano, 2016). To test if the ATP hydrolysis by DPY-27 is necessary for its binding to 

DNA, we inserted a walker B mutation (E to Q, Fig. 2A) that nearly eliminates ATP hydrolysis 

in human (Vian et al., 2018), Xenopus (Kinoshita et al., 2015), yeast (Hirano and Hirano, 2004; 

Thadani et al., 2018), and chicken (Hudson et al., 2008). Unlike wild-type DPY-27::GFP, DPY-

27(EQ)::GFP failed to show subnuclear enrichment indicative of localizing to the X chromosome 

(Fig. 2B, Fig. S2D-E). The conclusion that ATP hydrolysis by DPY-27 is required for its 

localization to the X was further supported by ChIP-seq analysis of DPY-27::GFP and DPY-

27(EQ)::GFP in embryos. Thus, unlike wild-type, the ATPase mutant failed to bind to the X 

chromosomes in the presence of endogenous DPY-27 (Fig. 2C, Fig. S2A). 
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Next, we asked if the ATPase mutant improperly interacted with chromatin and showed a 

dominant-negative effect. The mobility of DPY-27(EQ)::GFP was slightly lower than that of 

unbound DPY-27::GFP generated by knockdown of condensin DC recruiter SDC-2, thus the 

mutant may incorrectly associate with chromatin (Fig. 2D, Fig. S2B). Supporting a small 

dominant-negative effect, mRNA-seq analysis of embryos expressing DPY-27(EQ)::GFP 

showed slightly higher X chromosome upregulation than those expressing DPY-27::GFP (Fig. 

S2C). X upregulation upon wild type DPY-27::GFP expression may be due to dosage imbalance 

within the complex. Additional X upregulation in the EQ mutant may be due to a negative effect 

on DPY-27 as proposed for SMCL-1, an SMC-like protein with an ATPase hydrolysis mutation 

(Chao et al., 2017). 

  

To test if the failure of DPY-27(EQ)::GFP to bind is due to its inability to form a complex, we 

performed co-immunoprecipitation experiments in embryos and young adults (Fig. 2E, Fig. 

S2F). We noticed that both wild-type and EQ mutant DPY-27::GFP interacted well with MIX-1 

(SMC-2 homolog). However, DPY-27::GFP co-IPed better with DPY-26 (kleisin subunit of 

condensin I and DC) compared to DPY-27(EQ)::GFP, suggesting that ATPase mutation affects 

SMC-kleisin interaction. Lack of X-specific localization measured by both imaging (Fig. 2B) 

and ChIP-seq (Fig. 2C) suggests that a combination of inability to form a complex and reduced 

ATP hydrolysis eliminates binding of DPY-27(EQ)::GFP. 

 

Recombinant DPY-28 HEAT repeat domain bind to histone H3 and H4 peptides in vitro 

We wondered if histone modifications on chromatin regulate dynamics of condensin binding and 

took a candidate approach, considering histone modifiers that were shown to have a role in C. 

elegans dosage compensation, set-1 H4K20me1 and set-4  H4K20me2 transferases, dpy-21 

H4K20me2 demethylase,  and sir-2.1 H4K16 deacetylase (Kramer et al., 2015; Wells et al., 

2012) (Fig. 3A). A catalytic mutant of DPY-21, dpy-21(JmjC) that nearly eliminated its 

demethylase activity also showed dosage compensation defects, albeit at a lower level than the 

null mutant (Brejc et al., 2017). Similarly, we found that sir-2.1 null mutant also leads to a slight 

X derepression (Fig. S3A) and dumpiness, a phenotype indicating dosage compensation 

problems (Fig. S3B).  
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We first considered how condensin DC might interact with histones (Fig. 3B). HEAT repeats, a 

helical protein structural motif that mediates protein and DNA interactions, are present in the 

CAPD and CAPG subunits of condensins (Yoshimura and Hirano, 2016). Recombinant HEAT 

repeat domains from condensin II interacted with H4 peptides monomethylated at lysine 20 (Liu 

et al., 2010). We asked if the HEAT repeats in condensin I/DC also interact with histone tails. 

The HEAT repeats in CAPG-1 are predicted to bind DNA (Kschonsak et al., 2017). Thus, we 

focused on the DPY-28 (CAPD-2 homolog) and identified its HEAT repeat domain using 

homology to human hCAP-D2 and pfam HEAT predictions (Fig. 3C).  

 

We performed an in vitro in-solution peptide binding assay using the recombinant protein (Fig. 

S3C) and 23 aa N terminal H4 peptides that are unmodified, mono, di, and trimethylated at 

lysine 20, and unmodified and tetra-acetylated H3 (K4,9,14,18) and H4 (K5,8,12,16) (Fig. S3D). 

Recombinant DPY-28 HEAT repeat domain interacted with unmodified 23 aa H4 and 20 aa H3 

N-terminal peptides (Fig. 3D). Tetra-acetylation and trimethylation of lysine 20 reduced the 

interaction (Fig. 3D). Thus, histone modifications have the potential to regulate condensin DC 

interaction with chromatin. 

 

SET-4, SIR-2.1, and catalytic activity of DPY-21 do not regulate condensin DC binding 

While there is a potential for condensin DC interaction with histones, previous studies showed 

little effect of chromatin modifier mutants on condensin DC localization, except a slight 

reduction of DPY-27 ChIP-seq signal across promoters in the dpy-21 null mutant (Brejc et al., 

2017; Kramer et al., 2015; Vielle et al., 2012; Wells et al., 2012). We performed DPY-27 ChIP-

seq in sir-2.1 null embryos, and again, did not see a significant difference in condensin DC 

binding to the X chromosomes compared to wild-type (Fig. 3E). To further rule out the effect of 

chromatin modifiers, we used X;V fusion chromosomes, where the gradual spreading of 

condensin DC into the autosomal region may be more sensitive for detecting binding changes 

(Ercan et al., 2009; Street et al., 2019). We were unable to obtain a homozygous X;V fusion in 

the dpy-21 null background, thus we analyzed dpy-21(JmjC) and set-4 null mutants (Fig. 3F, Fig. 

S3F). In both wild-type, dpy-21(JmjC) and set-4 null backgrounds, ChIP-seq replicates showed 

variable changes in condensin DC spreading into the autosome (Fig. 3G). Thus, set-4, sir-2.1, 
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and the catalytic activity of dpy-21 do not regulate condensin DC binding as measured by ChIP-

seq.  

 

DPY-21 has a non-catalytic activity that increases the mobile fraction of condensin DC  

Since the histone modifiers showed little effect on condensin DC binding as measured by ChIP-

seq, we used our established FRAP system in mutants and knockdown conditions to study these 

proteins’ influence on condensin DC dynamics. In set-1 knockdown, set-4 null, sir-2.1 null, and 

dpy-21(JmjC) mutants, DPY-27 FRAP recovery was largely similar to that of wild-type, with a 

small but statistically significant reduction in mobility in set-4 null (Fig. 4A, Fig. S4A). The 

most dramatic difference was observed in the dpy-21 null mutant (Fig. 4A). The dpy-21 null 

mutant reduced the percentage of mobile DPY-27::GFP from ~30% to ~10% (Fig. 4B). A 

control experiment bleaching DPY-27::GFP outside of the X indicated that the effect of the dpy-

21 null mutant is largely specific to the X (Fig. S4B). Thus, DPY-21 increases the proportion of 

mobile condensin DC molecules on the X chromosomes.  

  

Previous analysis of condensin DC localization by immunofluorescence in the dpy-21 null 

mutant had not reported an effect except an increase in the volume of the X chromosomes in 

dpy-21 null and JmjC mutants (Brejc et al., 2017; Lau et al., 2014). We wondered if the 

reduction of mobile condensin DC produces a difference in the confocal imaging of DPY-

27::Halo signal compared to wild type. Indeed, we noticed stronger puncta of DPY-27 signal 

within the X chromosomal domain in the dpy-21 null mutant, which appears as a long tail of high 

pixel intensities in the distribution (Fig. 4C, Fig. S4C).  

 

3D DNA contacts as measured by Hi-C does not change significantly in the dpy-21 null 

Since dpy-21 null mutation decreased the number of mobile condensin DC molecules as 

measured by FRAP, we hypothesized that DPY-21 might act similar to the cohesin unloader 

WAPL (Haarhuis et al., 2017). To test this idea, we performed Hi-C analysis in dpy-21 null 

embryos and repeated Hi-C in dpy-21(JmjC(y607)) mutants while confirming the strain (Fig. 

S5D) (Brejc et al., 2017). While a subtle reduction in insulation was observed across a few rex 

sites that act as TAD boundaries, the overall TAD structure was similar to that of wild-type in 
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dpy-21(JmjC(y607)) and dpy-21 null embryos on the X chromosomes (Fig. 5A, B) and 

autosomes (Fig. S5A). The range of DNA interactions in the dpy-21(JmjC(y607)) and dpy-21 

null mutant are shown in Fig. 5C and Fig. S5B (Brejc et al., 2017).  

 

To highlight condensin DC-mediated X-specific 3D contacts, we normalized contact frequency 

across the same distance on the X to autosomes. This analysis reaffirmed that compared to 

autosomes, DNA contacts between 50 kb to 1 Mb range (approximated based on X/A > 1) are 

more frequent on the X (Fig. 5D, Fig. S5C). We reasoned that if DPY-21 protein functions as the 

unloader for condensin DC, a rightward shift in X-enriched contacts would be observed in dpy-

21 null as condensin DC stays loaded on DNA to form larger loops. However, the range of X-

enriched contacts did not increase in both JmjC and null mutant (Fig. 5D). Furthermore, in 

contrast to stronger loops observed in the cohesin unloader WAPL mutant, interactions between 

rex sites weakened in the dpy-21 null mutant (Fig. 5E, Fig. S5E). Thus, we conclude that DPY-

21 does not act as a condensin DC unloader.  

 

A previous analysis of the JmjC mutant had shown a stronger effect on rex-rex interactions 

(Brejc et al., 2017). To address whether the difference between our Hi-C data and the published 

data in the same JmjC mutant arises from data processing, we ran all the replicates through our 

analysis pipeline and compared results in several ways. The X chromosome TAD structure (Fig. 

S6A) and average insulation strengths across rex sites were stronger in our data compared to the 

Hi-C data from Brejc et al. (Fig. S6B). In both data sets, there was a reduction in the distance 

range of 3D contacts upon dpy-21(JmjC) mutation (Fig. S6D). The X-specific reduction in the 

range of 3D DNA contacts was less prominent in our data (Fig. S6D). The strength of the rex-rex 

interactions (distances within Mb scale) were more variable between biological replicates and 

between the two sets of Hi-C experiments (Fig. S5E,  Fig. S6E). While rex-rex interactions 

diminished in the published dpy-21(JmjC) mutant data (Brejc et al., 2017), they largely remained 

in our Hi-C data. It is not clear what underlies this difference.  
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The presence of stronger Hi-C interactions in our data may be due to the collection of older 

embryos establishing dosage compensation (Kramer et al., 2015). Alternatively, technical 

differences in the Hi-C protocols could be the reason. One notable technical difference is 

crosslinking. Brejc et al. formaldehyde crosslinked previously frozen embryos, while we 

crosslinked embryos both live before freezing and after isolating nuclei. Extensive crosslinking 

may have captured transient interactions in Hi-C. Consistently, compared to Brejc et al., our data 

show more pronounced TAD structures (Fig. S6A) and X-enriched contacts (Fig. S6C-D). These 

features are thought to arise from the dynamic process of loop extrusion (Fudenberg et al., 2017). 

It is possible that the rex-rex interactions are differentially captured by the two crosslinking 

methods.  

 

DISCUSSION 

In vivo and in vitro studies show that SMC complex function requires ATPase activity (Hassler 

et al., 2018; Hirano, 2016). In C. elegans condensin DC, four out of five subunits are also within 

the condensin I complex, thus their functional homology is apparent (Csankovszki et al., 2009). 

The single subunit that distinguishes condensin DC from condensin I is DPY-27, the SMC4 

homolog (Csankovszki et al., 2009; Hagstrom et al., 2002). Here we showed that a single amino 

acid mutation that has been shown to slow down ATP hydrolysis and impair the function of 

SMC4 proteins in other organisms also eliminates DPY-27 binding to the X chromosomes (Fig. 

2). This observation adds to evidence that the evolutionarily conserved SMC complex activity is 

conserved in condensin DC (Albritton and Ercan, 2018; Lau and Csankovszki, 2014; Wood et 

al., 2010). 

  

Although ATPase activity is strictly conserved, there may be differences in how different SMC 

complexes and organisms are affected by ATPase mutations. In Xenopus extracts, incorporating 

the EQ mutation in SMC-2 and SMC-4 did not abolish loading to chromosomes analyzed by 

immunofluorescence (IF) (Kinoshita et al., 2015). Similar results were obtained in chicken cell 

culture and yeast where SMC-2 and SMC-4 EQ single mutants were able to bind chromosomes 

at levels comparable to the WT but were not competent in chromosome compaction (Hudson et 

al., 2008; Thadani et al., 2018). In Bacillus subtilis, ChIP-seq experiments showed that the EQ 
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mutant SMC bound to parS loading sites but had reduced spreading along the chromosome 

(Minnen et al., 2016). Similarly, mammalian EQ mutant cohesin binding at loading sites was less 

affected than at CTCF sites (Vian et al., 2018). Thus, different binding modes may have different 

ATPase requirements, and although the EQ mutation reduced ATP hydrolysis in all SMC 

complexes analyzed so far, future work is needed to characterize the specific effect of this 

mutation on condensin DC. 

 

In addition to DNA loop extrusion, ATPase activity may also contribute to SMC complex 

formation and stability in vivo, perhaps by controlling the structural changes that occur through 

the cycle of ATP binding and hydrolysis (Lee et al., 2020). While in chicken, no measurable 

effect of ATPase mutation was reported for complex formation measured by pull-down 

experiments (Hudson et al., 2008), in budding yeast, ATP binding mutation reduced the 

interaction between SMC-4 and the kleisin subunit (Thadani et al., 2018). In B. subtilis, ATPase 

mutations reduced the SMC homodimer’s proper interaction with the ScpA bridging protein as 

measured by crosslinking assay (Wilhelm et al., 2015). We have also noticed reduced co-IP 

interaction with the kleisin subunit by DPY-27(EQ). These observations suggest that the ATPase 

cycle affects the formation of condensins in vivo. 

  

Enrichment and depletion of H4K20me1 and H4K16ac on the X chromosomes have little 

effect on condensin DC binding measured by ChIP-seq in vivo 

In vitro, condensin prefers binding to free DNA (Kong et al., 2020; Kschonsak et al., 2017; 

Piazza et al., 2014), and in vivo ChIP-seq analysis of condensins in various organisms revealed 

that condensins accumulate at accessible regions of the genome (Jeppsson et al., 2014; Uhlmann, 

2016). Interestingly, a recent study found that condensin is able to extrude DNA fragments 

containing 3-4 nucleosomes, and the nucleosomes increased the velocity and processivity of 

condensin II in vitro (Kong et al., 2020). In addition to nucleosomes themselves, chromatin 

modifications, histone variants, and linker histone were proposed to regulate condensin binding 

(Choppakatla et al., 2021; Kim et al., 2009; Kimura and Hirano, 2000; Liu et al., 2010; Petty et 

al., 2009; Tada et al., 2011; Tanaka et al., 2012; Yuen et al., 2017).  
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The potential for HEAT repeat domains in CAP-D3 and CAP-G2 to interact with histones was 

put forward for human condensin II (Liu et al., 2010). Here, we found that the recombinant 

HEAT repeat domain of DPY-28 interacts with histone H3 and H4 tail peptides (Fig. 3). Yet, 

mutants that reduce X-enrichment of H4K20me1 and increase X-depletion of H4K16ac did not 

affect condensin DC binding as measured by ChIP-seq and showed subtle changes in FRAP 

(Figs 3, 4). It remains unclear if the combined effects of multiple histone modifications, variants, 

and linker histones on the X chromosomes regulate condensin DC binding.  

 

A non-catalytic activity of DPY-21 regulates the dynamics of condensin DC binding and is 

required for transcription repression on the X chromosomes.  

DPY-21 is an H4K20me2 demethylase that interacts with condensin DC and is important for 

dosage compensation (Brejc et al., 2017; Yonker and Meyer, 2003). Comparison of the null and 

catalytic mutants indicated that DPY-21 plays both a structural and catalytic role in X 

chromosome repression (Brejc et al., 2017). The catalytic role of dpy-21 decreases H4K20me2/3 

and increases H4K20me1 on the X chromosomes and contributes to repression. Here, we showed 

that DPY-21’s non-catalytic role increases the mobile fraction of condensin DC on the X 

chromosomes, which is critical for transcription repression. 

 

How do the catalytic and noncatalytic activities of DPY-21 contribute to repression? DPY-21 

mediated enrichment of H4K20me1 leads to reduction of H4K16ac on the X chromosomes, 

which may reduce binding of general activator(s), contributing a portion of the observed 2-fold 

repression provided by condensin DC (Sheikh et al., 2019). Our work suggests that a non-

catalytic activity of DPY-21 contributes to repression by regulating the kinetics of condensin DC 

diffusion. In the dpy-21 null mutant, but not in the JmjC mutant, the fraction of mobile condensin 

DC reduced from ~30% to ~10%. Interestingly, in the dpy-21 null mutant, condensin DC binding 

to promoters slightly decreases (Kramer et al., 2015), and the DPY-27::Halo signal shows higher 

intensity spots. It is possible that, without DPY-21, condensin DC is more frequently “trapped” 

in an immobile configuration that reduces condensin DC presence and activity at promoters that 

represses transcription initiation.   
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How does DPY-21 increase the proportion of the mobile condensin DC complexes? Hi-C 

analysis in the dpy-21 null mutant argues against a role akin to the cohesin unloader WAPL 

(Haarhuis et al., 2017; Nuebler et al., 2018). The noncatalytic activity of DPY-21 may be 

structural, similar to those reported for other histone-modifying enzymes, including 

demethylases. For example, a range of noncatalytic activities for the Lysine-specific demethylase 

1 (LSD1 or KDM1A) have been discovered, including the role of LSD1 as a scaffolding protein, 

destabilizing other proteins by promoting self-ubiquitylation, inhibiting autophagy, or protecting 

other proteins from proteasome-dependent degradation (Gu et al., 2020; Miller et al., 2020). 

JmjC domain-containing demethylases also show noncatalytic activities. Kdm2b, the H3K36 

demethylase, recruits PRC1 to unmethylated CpG islands via its zinc finger domain  (He et al., 

2013). Similarly, the H3K36 demethylase dKDM4A in Drosophila regulates heterochromatin 

position-effect variegation independent of its catalytic activity (Colmenares et al., 2017). In 

fission yeast, overexpression of the histone demethylase Epe1 causes heterochromatin defects by 

recruiting the histone acetyltransferase complex SAGA, independent of the demethylase activity 

(Bao and Jia, 2019). For DPY-21 so far, structural work is limited to 407 aa that includes the 

JmjC domain (Brejc et al., 2017). Secondary structure prediction tools suggest that the rest of the 

1641 aa long protein is highly unstructured. Intrinsically disordered protein domains promote 

protein-protein and protein-nucleic acid interactions (Davey, 2019). DPY-21 could directly or 

indirectly interact with condensin DC, regulate its binding to histone tails and control its 

mobility.  

 

Interestingly, while X chromosomes are upregulated ~2-fold in the dpy-21 null mutant, Hi-C 

showed minimal change at the chromosome-wide level. This could be due to condensin-DC 

mediated DNA loops not being sufficient for repression or the lack of temporal or gene-level 

resolution of Hi-C data. Higher-resolution assays such as Micro-C may detect shorter-range 

DNA contacts that may be relevant to condensin-mediated repression (Swygert et al., 2019). The 

temporal dynamics of condensin DC may be important for repression, which could be addressed 

by high-resolution live imaging of condensin DC association with DNA. Here, our results 

suggest that the dynamics of condensin DC binding to chromatin is important for its function, 

and DPY-21 regulates both histone modifications and condensin DC mobility to repress X 

chromosome transcription (Fig. 6). 
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MATERIALS AND METHODS 

Strains and Worm Growth 

A list of strains, genotypes, and primer sequences are provided in Tables S1, S2. Unless noted, 

worms were grown and maintained using standard methods at 20-22°C on NGM plates 

containing OP50-1 strain of E. coli as food.  

  

Generation of DPY-27::GFP and DPY-27(EQ)::GFP strains: An inducible GFP-tagged copy of 

DPY-27 was expressed from the chrII MosSCI site (~8.4 Mb) (Frøkjær-Jensen et al., 2008) 

under the control of a heat-shock inducible hsp 16-41 promoter and the dpy-27 3’ UTR. The Hsp 

16-41 promoter was amplified from pCM1.57 using primers SE123 F&R, and dpy-27 3’UTR 

was amplified from genomic DNA using primers SE124F&R and were inserted into pCFJ151 at 

the XhoI site. The resulting plasmid contained a SphI site between the promoter and the 3’ UTR, 

which was used for NEB Infusion cloning with the full-length dpy-27 and a GFP-3xflag 

sequence. Amplification of the dpy-27 sequence was done from genomic DNA using primers 

SE135F&R. GFP-3x flag sequence was amplified from a plasmid kindly provided by Susan 

Strome, using primers SE136 F&R. ATPase mutagenesis of DPY-27 was performed by 

incorporating the E to Q mutation at the conserved ATPase domain as shown in Fig. 2A. 

  

Generation of DPY-27::Halo strain: The CRISPR/Cas9 system was used to insert the Halo tag at 

the C-terminus of DPY-27 (Dokshin et al., 2018). A 20 bp crRNA (LS37) was designed to target 

the end of the last dpy-27 exon. The dsDNA donors consisting of a 15 bp flexible linker 

(GlyGlyGlyGlySer) and the Halo tag flanked by 35 bp homology arms were generated by PCR 

using 5’ SP9 (TEG) modified primers AM29F&R and pLS19 as a template. The injection mix 

containing S.pyogenes Cas9 3NLS (10 μg/μl, IDT), crRNA (2 nmol, IDT), tracrRNA (5 nmol, 

IDT), dsDNA donors, and pCFJ90 (pharynx mCherry marker) was prepared as previously 

described (Dokshin et al., 2018). ~40 F1s that were positive for the co-injection marker were 

transferred to individual plates and allowed to have progeny. F2 progeny was screened by PCR 

with primers LS40F&R. Sanger sequencing of positive PCR products showed in-frame insertion 

of the Halo tag along with 18 bp of unknown sequence that did not affect the function of the 

tagged protein (Table S5). 
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Generation of X;V, set-4(n4600) and X;V,dpy21(y607 JmjC) strains: ERC57 (set-4 (n4600) II; 

X;V (ypT47)) strain was generated by crossing YPT47 with the set-4 null deletion mutant strain 

MT14911. For X;V, dpy21(same as y607 JmjC) strain, a single amino acid substitution 

(H1452A), that disrupts the demethylase activity of dpy-21 (Brejc et al., 2017), was incorporated 

in the X;V (ypT47) strain using CRISPR/Cas9. A 200 bp single-stranded oligonucleotide repair 

template (BR16_oligo) was used to change the codon 1452 from CAC to GCC. The introduction 

of the changed codon generated a NotI restriction site that was used to screen and confirmed by 

Sanger sequencing (Table S6). BR17F&R primers amplify a 514 bp region that encompasses the 

mutation site, and NotI digestion generates two fragments of 216 bp and 298 bp only in the 

mutated allele. 

 

Genomic Data Access 

The new genomic data is available at Gene Expression Omnibus (GEO) series numbers 

GSE169458, and individual accession numbers of the new and published data sets used in this 

study are listed in Tables S4, S7, and S8. 

  

ChIP-seq  

For the ChIP-seq analyses of GFP tagged DPY-27 in embryos, gravid adults were heat-shocked 

at 35°C for 30 min and transferred to room temperature for two hours for recovery. Embryos 

were collected by bleaching, and ChIP was performed as described previously (Ercan et al., 

2007). Two micrograms of anti-GFP (Abcam ab290) and anti-DPY-26 antibodies were used with 

1-2 mg of embryo extract. Detailed antibody information is given in Tables S3and S7. The ChIP-

seq analysis of the X;V fusion strains was performed in early L3 larvae by hatching embryos in 

M9 overnight. The next day, L1s were plated on NGM media containing HB101 bacteria and 

incubated at 20°C for ~24 hours. ChIP in larvae was performed by grinding frozen larvae a few 

minutes in mortar and pestle cooled in liquid nitrogen, followed by crosslinking in PBS 

containing 1% formaldehyde for 10 min, quenching with 125 mM glycine for 5 min, and 

preparing ChIP extract as in embryos. X;V wt rep2 was prepared by live crosslinking larvae. 

Two micrograms of anti-DPY-27 were used with 1-2 mg of extract per ChIP. Half of the ChIP 

DNA and approximately 20-80 ng of the input control DNA were used to make Illumina TruSeq 

libraries as previously described (Albritton et al., 2017). For each data set, at least two biological 
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replicates were generated, as listed in Table S7. Single-end sequencing was performed in 

Illumina HiSeq500 or NextSeq. 

  

ChIP-seq data analysis: We used bowtie2 version 2.3.2 to align 50-75 bp single-end reads to 

WS220 with default parameters (Langmead and Salzberg, 2012). Bam sorting and indexing was 

performed using samtools version 2.1.1 (Ramirez-Gonzalez et al., 2012). BamCompare tool in 

Deeptools version 3.3.1 was used to normalize for the sequencing depth using CPM and create 

ChIP/Input ratios with a bin size of 10 bp and 200 bp read extension (Ramírez et al., 2016). Only 

reads with a minimum mapping quality of 20 were used, and mitochondrial DNA, PCR 

duplicates, and blacklisted regions were removed (Amemiya et al., 2019). The average coverage 

data was generated by averaging ChIP-Input enrichment scores per 10 bp bins across the 

genome.  For alignments and sliding window analysis of replicates, ChIP/Input ratios were z-

scored using the standard deviation and mean of autosomes or chromosomes I to IV in normal 

and X;V karyotypes, respectively. 

  

mRNA-seq 

mRNA-seq analysis of sir-2.1 null mutant strain VC199 (sir-2.1) was performed as described 

and compared to previously published mRNA-seq data (Kramer et al., 2015). Briefly, embryos 

and L2/L3 larvae were collected for at least three biological replicates. After collection, worms 

were stored in Trizol (Invitrogen). RNA was purified using the manufacturer’s protocol after 

freeze-cracking samples five times. RNA was cleaned up using Qiagen RNeasy kit, and mRNA 

was purified using Sera-Mag Oligo (dT) beads (Thermo Scientific) from 1 µg of total RNA. 

Stranded Illumina libraries were prepared as described (Kramer et al., 2015), and sequencing was 

done with Illumina HiSeq-2000 to produce single-end 50-75 bp reads. We aligned reads to the 

WS220 genome version using Tophat version 2.1.1 with default parameters (Kim et al., 2013). 

Count data was calculated using HTSeq version 0.6.1 (Anders et al., 2015) and normalized using 

the R package DESeq2 (Love et al., 2014). 
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Hi-C  

CB428 (dpy-21(e428)) and TY5686 (dpy-21(y607)) gravid adults were bleached to isolate 

embryos, which were crosslinked in 50 mL M9 containing 2% formaldehyde, washed with M9 

and PBS, and pelleted at 2000 g 1 min to store at -80°C. Approximately 50 µl of the embryo 

pellet was resuspended and crosslinked a second time using the same conditions, washed once 

with 50 mL 100mM Tris-Cl pH 7.5 and twice with 50 mL M9. The embryo pellet was 

resuspended in 1 ml embryo buffer (110 mM NaCl, 40 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 25 

mM HEPES-KOH pH 7.5) containing 1 unit chitinase (Sigma) and digested approximately 15 

minutes. Blastomeres were then washed with embryo buffer twice by spinning at 1000g 5 min. 

The pellet was resuspended in 1 mL Nuclei Buffer A (15 mM Tris–HCl pH 7.5, 2 mM MgCl2, 

0.34 M Sucrose, 0.15 mM Spermine, 0.5 mM Spermidine, 1 mM DTT, 0.5 mM PMSF, 

1xCalbiochem Protease Inhibitor cocktail I, 0.25% NP-40, 0.1% Triton X-100), centrifuged at 

1000 g for 5 minutes at 4°C then resuspended in 1.5 mL Nuclei Buffer A. The embryos were 

dounced ten times with a loose pestle A and ten times with a tight pestle B. The cellular debris 

was spun down 1 min at 200 g. The supernatant containing nuclei was kept on ice. The pellet 

was resuspended in 1.5 mL Nuclei Buffer A, and the douncing process was repeated four times. 

Each supernatant was checked for absence of debris by DAPI stain and pooled and spun down at 

1000 g for 10 mins at 4°C. Approximately ~20 µl of nuclei were used to proceed to the Arima 

Hi-C kit, which uses two 4-base cutters, DpnII (^GATC) and HinfI (G^ANTC), followed by 

KAPA Hyper Prep Kit for library preparation per the protocol provided by Arima. Paired-end 

Illumina sequencing was performed with Nextseq or Novaseq. 

  

Hi-C data analysis: 150 bp reads were trimmed using fastx toolkit version 0.0.14 to match 

replicates generated by 100-bp paired-end sequencing. The Hi-C data was mapped to ce10 

(WS220) reference genome using default parameters of the Juicer pipeline version 1.5.7 (Durand 

et al., 2016). Because Hi-C data generated from the Arima Hi-C kit used two restriction 

enzymes, dpnII (^GATC) and hinfI (G^ANTC), while the published Hi-C data used only one, 

dpnII (^GATC), the corresponding restriction sites files were used for the juicer pipeline. The 

mapping statistics from the inter_30.txt output file are provided in Table S8. The inter_30.hic 

outputs were converted to h5 using the hicConvertFormat of HiCExplorer version=3.5.1 for 

genome-wide normalization and sample-to-sample depth normalization. (Ramírez et al., 2018; 
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Wolff et al., 2018; Wolff et al., 2020). The inter_30.hic files were first converted to cool files, 

and the correction method was removed using the --correction_name none option. Then, cool 

files were converted to h5 files to be used in HiCExplorer. The replicates of the same 

experimental condition were combined using hicSumMatrices. The count values of each 

replicate were normalized to match those of the most shallow matrix using hicNormalize with 

the option --smallest. The same method was used for the summed matrices. Lastly, the 

hicCorrectMatrix function was applied to each matrix to correct for sequencing bias with the 

following parameters: --correction_method ICE, -t 1.7 5, --skipDiagonal, --chromosomes I II III 

IV V X.  The distance decay curves were generated by computing the average contact for a given 

distance using the 5000 bp-binned normalized matrix using hicPlotDistVsCounts with 

parameters --perchr, maxdepth 20,000,000. The outputs from --outFileData were plotted in R. 

The curves were normalized to unity to compare different samples by setting the sum of contacts 

in the distance range of 5000 bp to 4 Mb range to 1 for each chromosome. To analyze X-specific 

changes, we calculated P(s,chrX)/P(s,chrA) by dividing the P(s) of the X chromosome by the 

average P(s) of all autosomes at every distance, s. The insulation scores were computed using the 

10kb-binned normalized matrix with the function hicFindTADs using parameters: --

correctForMultipleTesting fdr, --minDepth 80000, --maxDepth 200000, --step 40000. The meta-

loops were computed using the 10 kb-binned normalized matrix with the hicAggregateContacts 

function of hicexplorer with parameters: --range 100000:3000000, --avgType mean, --transform 

obs/exp, --plotType 3d, --vMin 0.8 --vMax 2 --BED 17 strong rexes (Albritton et al., 2017). A 

400 bp window for the 17 strong rex sites defined in (Albritton et al., 2017) was used as center 

regions with an additional 250 kb up and downstream regions. The pileup analysis at rex sites 

was done using cooltools (https://github.com/open2c/cooltools) by converting the corrected 

matrix from hicexplorer format to cool format using hicConvertFormat function.  

  

Immunoprecipitation and Western blots 

Immunoprecipitations (IPs) of GFP-tagged DPY-27 proteins were performed from protein 

extracts prepared using 200 µL of young adult worms heat-shocked at 35°C for one hour and let 

to recover at 20°C for the indicated times. For IPs from embryos, heat-shocked adults were 

bleached after recovery to obtain ~100 µl embryos. Worms were dounced in lysis buffer (40 mM 

HEPES pH 7.5, 10% glycerol, 150 mM NaCl, 1 mM EDTA, and 0.5% NP-40) complemented 
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with protease inhibitors (Calbiochem cocktail I) and sonicated for 5 min (30 sec on and 30 sec 

off in a Bioruptor). Extracts were centrifuged at 17,000 g for 15 min at 4°C, and 2 mg of protein 

were incubated overnight with 2-3 µg of the indicated antibody. Immunocomplexes were 

collected with protein A Sepharose beads at 4°C for 2 hours. Beads were washed thrice with 1 

ml of immunoprecipitation buffer (50 mM HEPES-KOH pH 7.6, 1 mM EDTA, 0.05% Igepal, 

and 150 mM NaCl). IPed proteins were eluted by boiling in SDS sample buffer and analyzed by 

SDS-PAGE and immunoblotting using an anti-DPY-27 antibody (1:2000). Detection was 

performed using ECL Plus reagents (#PI80196, ThermoFisher). 

  

Worm size analysis 

Quantification of the worm size was performed in the young adult stage. Worms were allowed to 

lay eggs for 4 hours, and the progeny was grown at 20°C to a young adult stage. Worms were 

washed with M9, anesthetized with 10 mM levamisole, and placed on a fresh NGM plate without 

OP50 to achieve an even and clear background. Worms were singled with an eyelash, and 

images of about 30 worms were acquired using a Dino-Lite eyepiece camera (AM7025X) on a 

Zeiss stereomicroscope with a 1X magnification. For analysis, the background was subtracted 

using Fiji (Schindelin et al., 2012) with a rolling ball radius of 50 px (light background). The Fiji 

plugin WormSizer (Moore et al., 2013) was used to analyze the worms’ size and width, and plots 

were created using Python. (https://github.com/ercanlab/2021_Breimann_et_al) 

 

RNAi conditions 

For RNAi experiments, bacteria strains from the Ahringer RNAi library were verified by Sanger 

sequencing and used for knockdown experiments (set-1, sdc-2, as well as pop-1 (controls for 

efficiency of the RNA plates) and empty vector (negative control). Single colonies of bacteria 

were picked and grown in 10 mL LB with 50 μg/mL ampicillin overnight (at 37°C shaking at 

300 rpm), then transferred to a 400 mL LB with 50 μg/mL ampicillin culture and after 2 hours 

when the culture reached OD ~1 induced with 0.1 mM ITPG and grown for another 3 hours. 

Bacteria were concentrated 10-fold and seeded onto 10 cm NGM plates supplemented with 50 

μg/mL ampicillin, 2 μg/mL tetracycline, and 1mM IPTG. Worms were synchronized by 

bleaching, and L1s were placed on the seeded plates. Worms were used for FRAP experiments 
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after 72 hours at 20°C (young adult stage). FRAP experiments for the set-1 RNAi condition were 

performed in germline-less worms, indicating successful protein knockdown (Vielle et al., 2012).   

 

Heat shock, fluorescent labeling, and mounting worms for imaging 

JF549-HaloTag and JF635-HaloTag ligands were a generous gift from Luke D. Lavis and 

Jonathan B Grimm (Grimm et al., 2015; Grimm et al., 2017) and were incorporated into worms 

by feeding based on (Wu et al., 2019) with the following modifications. L4 worms were washed 

and collected in small eppendorf tubes with 200 µl M9, concentrated OP50, and 2.5 µM HaloTag 

dye. Tubes rotated at RT for about 17 hours, and worms were then placed on fresh OP50 plates 

for at least 4 hours to reduce the background signal of the unbound HaloTag ligand. 

  

For imaging experiments using the heat shock inducible DPY-27::GFP, worms were grown to 

young adult stage and heat-shocked for 1 hr at 35°C, recovered at RT for 8 hr (unless otherwise 

labeled). Worms were settled in M9 at 4°C for 10 min, and 40 µl were transferred to a well 

depression microscopy slide with the addition of 10 µl of 50 mM levamisole (LGC). After 10 

minutes, the worms were transferred onto a 10% agarose pad on a microscope slide and covered 

with a 1.7 µm objective slide (high precision, no.1.5H, Marienfeld). Excess liquid was removed 

using a lab tissue (Kimtech precision wipe), and the edges of the objective slide were sealed with 

a two-component silicone glue (picodent twinsil speed). 

  

Confocal microscopy and FRAP 

Confocal imaging and FRAP were performed on a scanning confocal microscope (Leica SP8) 

using an HC PL APO 63x 1.3 NA glycerol objective (Leica) and Leica Application Suite X 

(version 3.5.5.19976). For wGFP, the white light laser was set to 482 nm with 10-15% laser 

intensity, and the emission detection was set to 488 - 520 nm with a HyD hybrid photodetector 

and gain of 162%. For JF549, the white light laser was set to 549 nm with 10% laser intensity, 

and the emission detection was set to 554-651 nm with a HyD detector and gain of 200% and 

gating between 0.3 - 6.0. For JF635, the white light laser was set to 633 nm with 10% laser 

intensity, and the emission detection was set to 638-777 nm with a HyD detector and gain of 

100% and gating between 0.30 - 6.00. 
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For FRAP in the intestine nuclei, 20 pre-bleach images were acquired, followed by a point 

bleach (smallest possible bleach spot) of 700 ms with 100 % laser power and subsequent 

acquisition of ~500 recovery images using 10-15% laser power. The scan speed was set to 600 

Hz, with bidirectional scanning (phaseX: 29.752) in a frame size of 256 x 256 pixels (Pixel dwell 

time 0,002425 s). The pinhole was set to 1 AU, and a 7x digital zoom was used to zoom in to 

single intestine nuclei of young adult worms. The FRAP experimental protocol can be found 

here: https://dx.doi.org/10.17504/protocols.io.bpkymkxw 

 

  

FRAP data analysis 

Image analysis of the fluorescence recovery at the bleach point was performed using a custom-

written script in MATLAB (MathWorks). First, lateral drift in pre- and post-bleach image stacks 

was corrected using DFT-based sub-pixel image registration (Guizar-Sicairos et al., 2008). The 

area of each intestine nucleus was then manually segmented. The bleached region was 

determined by automated thresholding (Otsu’s Method) of an image of the difference of the 

mean pre-bleach images and the mean of the first five post-bleach images. Acquisition bleaching 

was detected in the mean intensity of the whole nucleus region of interest in the post-bleach 

images. This decrease in intensity was fitted with a monoexponential decay and used to correct 

the acquisition bleaching during fluorescence recovery. To correct for differences in initial 

intensity and extent of photobleaching, such that different datasets could be directly compared, 

each acquisition bleaching corrected curve was then normalized to an initial value of 1 and an 

immediate post-bleach value of 0. To estimate the fraction of fluorescent proteins that can 

diffuse into the bleached region during the experiment’s time course (mobile fraction) and the 

recovery time constant (�), the post bleach recovery was fitted with monoexponential function 

with nonlinear least-squares-based fitting. The mobile fraction was calculated from the 

monoexponential fit at each experiment’s last recorded recovery time point. The recovery half-

time (t1/2), corresponding to the time required to recover half of the fluorescence maximum, is 

estimated directly from the data. The mean normalized relative intensity of all repeats for each 

experimental condition was calculated and plotted for each time point with the standard error of 

the mean (s.e.m.) using Python. The MATLAB analysis script can be found here: 

https://github.com/ercanlab/2021_Breimann_et_al  
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Intensity distribution analysis 

To compare the protein expression and X-enrichment of DPY-27::GFP and DPY-27(EQ)::GFP 

images were recorded at 3 and 8 hours after a 1-hour heat-shock at 35°C. 2D images were 

manually segmented for the nuclear region, and pixel intensity values for the GFP tagged 

proteins were recorded for at least 20 images per condition. To compare the average density of 

pixel intensities per condition, the pixel intensities were binned to ranges of 20, summed for all 

images of one condition, and divided by the number of used images using Python.  

To compare image intensities of endogenous DPY-27::Halo in wild-type and dpy-21 null 

conditions, worms were stained with HaloTag-JF549, as described above, and z-stack images 

were recorded to capture the complete intestinal nuclei. To compare DPY-27::Halo enrichment 

at the X chromosome between different conditions, the HaloTag signal was segmented in 3D 

using autocontex pixel classification in ilastik, resulting in a simple segmentation that assigns the 

most probable class for each pixel (Berg et al., 2019). Using Fiji (Schindelin et al., 2012), a 

binary 3D mask was created from the ilastik segmentation using Otsu’s method and used to 

segment the HaloTag signal. Binned pixel intensities were recorded from both conditions, and 

density plots were created using Python https://github.com/ercanlab/2021_Breimann_et_al.  

 

Recombinant protein and peptide binding assay 

The DNA encoding for amino acids 351-661 of the DPY-28 protein was amplified from cDNA 

using the primers DPY 28 351F & DPY-28 660R (Table S2). The cDNA template was prepared 

from total RNA using SuperScript III (Invitrogen) according to the manufacturer's protocol. The 

PCR product was digested with BamHI and EcoRI and cloned into corresponding sites in pGEX-

5X-2. The plasmid was transformed to a BL21 codon + E. coli strain to be induced with 1 mM 

IPTG for 3 hours at 25°C and purified using standard GST protein purification using GE 

Healthcare Glutathione Sepharose 4B based on the manufacturer's protocol, and the protein 

amount was quantified using a Bradford assay. The peptides were kindly provided by Brian 

Strahl (Fig. S3D). Briefly, 60 µl of the magnetic streptavidin beads (Dynabeads M280; 

Invitrogen) were washed twice with 1 ml recombinant protein binding buffer (rPBB) (50 mM 

Tris pH 8, 0.3 M NaCl, 0.1% Igepal CA360) and incubated rotating 1 hour with 1 nmol peptide 

at 4°C. The beads were washed twice with rPBB and incubated with 40 pmol of recombinant 

protein for 3 hours, rotating at 4°C. The beads were washed 5 min thrice with rPBB and 
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resuspended in 30 µl SDS sample buffer, and 15 µl was run on a 4-12% Bis-Tris MOPS gel 

(Invitrogen) transferred to a PVDF membrane and was blocked with 1xPBST (0.1%Tween-20) 

containing 5% dry milk. Bound peptides were visualized using an anti-GST antibody (GE 27-

4577-50) 1:2,000, Anti-goat-HRP (Promega V8051) 1:10,000 ECL-Plus (GE), and the Typhoon 

Scanner. 
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Fig. 1) Fluorescence recovery after photobleaching (FRAP) analysis of condensin DC binding. 

A)   Left panel illustrates condensin DC along with the rest of the DCC subunits. The 

right panel indicates the expression of GFP tagged DPY-27 under the control of a heat-

shock inducible promoter at the Chr II MosSCI site. 

B)  DPY-27::GFP subnuclear localization to the X chromosomes 8 hours after heat-

induced expression (top row) was validated by colocalization with the endogenously 

tagged DPY-27::Halo stained with JF635 HaloTag ligand (bottom row). The scale bars 

correspond to 5 µm.  

C)   Illustration of the heat-shock protocol. Young adult worms were heat-shocked for 1 

hour at 35°C, and fluorescence was followed in the large intestinal cells. DPY-27::GFP 

subnuclear localization is apparent after 8 hours of recovery. Representative example 

images are shown for each time-point with the nuclear area marked using a white dotted 

line. The scale bars correspond to 5 µm. 

D)   DPY-27::GFP interaction with condensin DC subunits was validated by co-

immunoprecipitation with MIX-1 and DPY-26. Young adult worms were used for IP 

either 2 or 8 hours after heat shock at 35°C for 1 hour and analyzed by western blotting 

using an anti-DPY-27 antibody. The intensity of the GFP tagged DPY-27 and 

endogenous protein bands in the DPY-27 IP lane indicates the relative abundance of each 

protein. The intensity of the GFP tagged DPY-27 and the endogenous protein bands in 

the other lanes indicates the relative interaction of endogenous and DPY-27::GFP with 

IPed subunit.  

E)    FRAP sequence for intestine nuclei of adult C. elegans worms expressing either 

DPY-27::GFP, NLS::GFP, or H2B::GFP. The first column of images depicts the first 

image of the pre bleach series (a total of 20 images). The second column shows the first 

image after the single point bleach with the bleached area indicated by the small dotted 

circle. The two following columns depict two time points after the bleach point, t100 (21 

seconds) and t320 (70 seconds). The scale bars correspond to 5 µm.  

F)   Mean FRAP recovery curves from wild-type DPY-27::GFP, H2B::GFP, and 

NLS::GFP expressing worms. Error bars denote the standard error of the mean (s.e.m.). 

Number of bleached single intestine nuclei (from at least 3 biological replicates) for each 

experiment is n = 81 for DPY-27::GFP, n = 48 for NLS::GFP and n= 61 for H2B::GFP. 
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G)   Mobile fractions for the different GFP tagged proteins or free GFP. The mobile 

fraction is the lowest for H2B::GFP and the highest for NLS::GFP. The mobile fraction 

for DPY-27::GFP is ~28%. P values are from an independent two-sample t-test. 

H)   FRAP half-time recovery values for the bleach curves of Fig. 1F. The half-time 

recovery for NLS::GFP shows a shorter diffusion time than DPY-27::GFP. H2B::GFP is 

not shown due to the very low recovery of the fluorescence signal during the 

experimental time frame.  
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Fig. 2)  The effect of a conserved SMC ATPase mutation on DPY-27 binding, function, protein 

stability, and complex formation. 

A)   Heat shock inducible GFP tagged DPY-27(EQ). The DNA sequence coding for the 

conserved Walker B motif and the E to Q mutation are shown below. 

B)   Localization of the wild-type and EQ ATPase mutant DPY-27::GFP proteins in 

intestine cells. Adults were heat-shocked at 35°C for 1 hour and recovered for either 3 or 

8 hours. Unlike DPY-27::GFP, ATPase EQ mutant did not show subnuclear localization. 

The scale bar corresponds to 5 µm. 
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C)   ChIP-seq analysis of wild-type and ATPase mutant DPY-27(EQ)::GFP using an anti-

GFP antibody in embryos. ChIP against DPY-26 was used as a positive control in the 

same extracts. Unlike the wild-type protein, ATPase mutant failed to bind the X, and both 

did not localize to the autosomes; a representative region from chromosome III is shown 

on the right panel. 

D)   Mean FRAP recovery curves from DPY-27::GFP, DPY-27(EQ)::GFP and DPY-

27::GFP upon SDC-2 RNAi. FRAP was performed ~8 hr after the heat shock. Error bars 

denote s.e.m. Number of bleached single intestine nuclei (from at least 3 biological 

replicates) for each experiment is n = 81 for DPY-27::GFP, n= 37 for DPY-27(EQ)::GFP 

and n= 32 for DPY-27::GFP sdc-2 RNAi. The small images depict example pictures of 

intestine nuclei used for FRAP analysis. Unlike DPY-27::GFP, ATPase EQ mutant did 

not show subnuclear localization, similar to when condensin DC recruiter SDC-2 was 

knocked down. Scale bars correspond to 5 µm. 

E) Co-immunoprecipitation analysis of condensin DC subunits. Protein extracts were 

prepared from larvae that were heat-shocked for 1 hour at 35°C and recovered at 20°C for 

2  or 8 hours. Immunoprecipitation of condensin DC subunits DPY-27, DPY-26, and 

MIX-1 was performed, and immunoprecipitated DPY-27::GFP and endogenous protein 

were analyzed by blotting with an anti-DPY-27 antibody. The intensity of the DPY-

27::GFP and endogenous protein bands in the DPY-27 IP lane indicates the relative 

abundance of each protein. The intensity of DPY-27::GFP and endogenous protein bands 

in other lanes indicates their relative interaction with each subunit.  
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Fig. 3) Condensin DC may interact with histone tails, but set-4, sir-2.1, and catalytic activity of dpy-

21 do not regulate condensin DC binding as measured by ChIP-seq. 

A)  Enzymes that regulate H4K20 methylation and H4K16 acetylation. In 

hermaphrodites, H4K20me1 is increased, and H4K16ac is reduced on the dosage 

compensated X chromosomes compared to autosomes. Dpy-21 null is (e418) allele with a 

premature stop codon that eliminates the protein (Yonker and Meyer, 2003), Dpy-
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21(JmjC) is the (y607) allele, a point mutation that nearly abolishes H4K20me2 

demethylase activity without eliminating the protein itself (Brejc et al., 2017). Set-4 null 

is (n4600), a knockout allele that eliminates H4K20me2/3 (Delaney et al., 2017). Sir-2.1 

null is (ok434), a knockout allele that increases H4K16ac (Wells et al., 2012). 

B)   Cartoon depicting possible interaction of HEAT repeat-containing domain of DPY-

28 (homologous to human hCAPD-2) with histone tail modifications. 

 C)   Three HEAT repeats annotated by pfam are shown as tick marks. The amino acids 

351-661 were purified and used in peptide binding. 

D)   In solution peptide binding assay was performed using GST-tagged DPY-28 HEAT 

domain and biotinylated histone N-terminal tail peptides with indicated modifications. 

The recombinant protein was incubated with peptides bound to magnetic streptavidin 

beads, and bound fractions were analyzed using western blot. The streptavidin signal 

below indicates the amount of peptide in each fraction.  

E)   UCSC genome browser shot of a representative region showing similar DPY-27 

ChIP-seq patterns in sir-2.1. Data from wild-type N2, dpy-21 null, set-4 null are from 

(Kramer et al., 2015) and are plotted for comparison. 

F)   Genome browser view of DPY-27 ChIP-seq enrichment across the fusion site on the 

autosomal region of the X;V chromosome in X;V wild-type, dpy-21(JmjC) and set-4 null 

backgrounds. 

G)   A moving average of the DPY-27 ChIP enrichment score is plotted with a window 

size of 200 kb and step size of 20 kb in X;V fusion strains with wild-type, dpy-21(JmjC), 

and set-4 null backgrounds. DPY-27 ChIP-seq data was normalized to reduce variability 

between replicates by z score standardization ChIP/Input ratios to the background from 

autosomes I-IV followed by equalization of total ChIP-seq signal to 1 in X:V. 
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Fig. 4)  DPY-21 null but not catalytic mutant reduces the proportion of mobile condensin DC.  

A)   Mean FRAP recovery curves of DPY-27::GFP in either wild-type (green) or 

different mutant conditions. Error bars denote s.e.m.. Number of bleached single intestine 

nuclei (from at least 3 biological replicates) for each experiment is n = 81 for wild-type, n 

= 72 for dpy-21 (e428), n = 102 for dpy-21 (y607), set-1 RNAi n = 28, set-4 (n4600) n = 

45, sir-2.1 (ok434) n= 41. Corresponding images of intestine nuclei for each mutant 

condition are depicted under each FRAP curve. Scale bar = 5 µm.  

B)   Mobile fractions calculated from individual replicate FRAP recovery curves in panel 

A. P values are from an independent two-sample t-test. The number of used images of 

nuclei is noted under each boxplot.  

C)   Analysis of endogenous DPY-27::Halo fluorescent intensity on the X chromosome 

in wild-type and dpy-21 null worms. The HaloTag signal of DPY-27 was segmented in 

3D and quantified in adult intestine cells in two biological replicates (Fig. S4C). The left 

panel depicts two example nuclei (marked with a dotted line). Scale bar corresponds to 5 

µm. For the wild-type worms, 27 images were analyzed, for the dpy-21(e428) mutant 
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images of 35 nuclei were analyzed. The right panel shows the binned mean pixel 

fluorescence intensity for the two conditions in a smoothed density plot. The distributions 

of pixel intensities are significantly different in the two conditions according to a Mann-

Whitney U test with a p-value of 1.46 *10
-114
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Fig. 5) Hi-C analysis of 3D DNA contacts in dpy-21 JmjC (y607) and dpy-21 null mutant embryos. 

A)   Hi-C heatmap and insulation scores of chromosome-X showing wild-type, the dpy-

21 JmjC, and the dpy-21 null mutant. The 17 strong rex sites are annotated in (Albritton 

et al., 2017), 8 of which were annotated as DCC-dependent boundary rex sites (red) in 

(Anderson et al., 2019). The insulation scores and their subtractions for three possible 

pairwise comparisons are shown below: dpy-21 JmjC minus wild-type (top), dpy-21 null 

minus wild-type (middle), and dpy-21 null minus dpy-21 JmjC (bottom). 

B) Pile-up analysis showing the average Hi-C map and the insulation scores +/- 500-kb 

surrounding the annotated 17 strong rex sites. 

C)   Distance decay curve showing the relationship between 5-kb binned genomic 

separation, s, and average contact probability, P(s) computed per chromosome. 

D)   X-enriched chromosomal contacts are visualized by an X-A normalized distance 

decay curve. For every genomic separation s, the unity normalized contact probability of 

X-chromosome, P(s,chrX), is divided by that of autosomes, P(s,chrA).  

E)   Meta-’dot’ plot showing the average strength of interactions between pairs of rex 

sites on a distance-normalized matrix. For 17 strong rex sites, a total of 33 rex-rex pairs 

located within 3 Mb of each other were used. 
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Fig. 6) Summary of results and DPY-21 function in condensin DC-mediated X chromosome 

repression. 

In a wild-type hermaphrodite cell, condensin DC binds dynamically and specifically to the X 

chromosomes. This binding is disrupted by a knockdown of its recruiter SDC-2 or a single amino 

acid mutation in the ATPase domain of DPY-27. Condensin DC may interact with histone tails 

through HEAT-repeats within DPY-28. H4K20me2 demethylase, DPY-21 has a dual function in 

X chromosome repression. The catalytic activity reduces H4K20me2/3 and increases H4K20me1 

on the X. This leads to reduced H4K16ac and contributes to repression. The non-catalytic 

activity of DPY-21 increases the mobility of condensin DC molecules, which is important for 

transcription repression. In the dpy-21 null condition, both catalytic and non-catalytic activities 

are eliminated, resulting in stronger X chromosome derepression.  
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Fig. S1. A) Validation of separable GFP and JF635-Halo signal. Fluorescent images of intestine 

nuclei after feeding JF635-Halo ligand in homozygous worms expressing heat-shock inducible 

DPY-27::GFP (upper row) or endogenously Halo-tagged DPY-27 (lower row). Both worm lines 

were stained with JF635-Halo ligand and heat-shocked. White dotted lines mark nuclei.

B) Protein extracts prepared from heat-shocked (HS) and non-heat-shocked (NHS) young adults

carrying the hsp::dpy-27::gfp transgene were used for western blot. Incubation with DPY-27

antibody shows specific DPY-27::GFP expression upon heat shock.

C) Validation of DPY-27::GFP localization specifically to the X chromosomes by ChIP-seq.

DPY-27::GFP ChIP-seq analysis replicates using an anti-GFP antibody in embryos. DPY-26

ChIP-seq was used as a positive control in the same extracts.

D) X-localization of DPY-27::GFP in embryos is indicated by subnuclear puncta that appears later

in embryogenesis when condensin DC localizes specifically to the X chromosomes.

H2B::mCherry and DPY-27::GFP signal 6 hours after a heat shock in early (before X localization

and late embryos (after DC localization to the X).

E) Heat shock expression of DPY-27::GFP was variable in embryos. Two examples are shown

where immunoprecipitation of DPY-27 showed different proportions of GFP tagged DPY-27 (top

band) compared to endogenous (bottom band). Protein extracts were prepared from embryos

isolated from gravid adults that were heat-shocked for 30 min at 35°C and recovered at room

temperature for 2 hours.

J. Cell Sci.: doi:10.1242/jcs.258818: Supplementary information
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Fig. S2. A) ChIP-seq data from replicates corresponding to Figure 2C. Replicates for the 

wild-type DPY-27::GFP ChIP-seq data can be found in Figure S1C.

B) FRAP analysis of mobile fractions (left panel) and T-half recovery time (right panel)

corresponding to Figure 2D. P values are from an independent two-sample t-test.

C) Log2 fold changes in mRNA-seq between heat-shocked strains and non-heat-shocked

wild-type embryos, collected after 30 min heat shock at 35°C followed by 2-hour recovery.

Additionally, mRNA-seq log2 fold changes of non-heat-shocked dpy-21 (e428) from (Kramer et

al., 2015). P values are from a Wilcoxon–Mann–Whitney test.

D) Example images of heat-shock expression of wild-type DPY-27::GFP and the ATPase mutant

DPY-27(EQ)::GFP after 3 and 8 hours of recovery that were quantified in Supplemental Figure

2E. Images are normalized to the same gray values, and the scale bar corresponds to 5 µm.

E) Quantification of the GFP signal’s pixel intensities in the nuclei after 3 and 8 hours of recovery

from heat shock. The intensities were recorded from at least three biological replicates in adult

intestine cells. For wild-type, DPY-27::GFP 21 images were used for the 3-hour intensity curve

and 26 for the 8 hours recovery time point. For the intensity curves of DPY-27(EQ)::GFP, 44

images were used for the short time point and 36 images for the long recovery time point. Dotted

lines indicate the median value for each distribution.

F) Co-immunoprecipitation analysis of condensin DC subunits in embryos. Protein extracts were

prepared from embryos that were heat-shocked for 1 hour at 35°C and recovered at room

temperature for 2 hours. Immunoprecipitated (IP) DPY-27::GFP and endogenous protein were

analyzed by blotting with an anti-DPY-27 antibody. The intensity of the DPY-27::GFP and

endogenous protein bands indicate their abundance in each immunoprecipitation.

J. Cell Sci.: doi:10.1242/jcs.258818: Supplementary information
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compared in different mutants using log2 expression ratios compared to wild-type. Significant X

chromosome upregulation was tested by a Wilcoxon–Mann–Whitney test. Median values of each

group of genes are shown below each boxplot.

B) Dumpiness phenotype analysis of wild-type and different mutant worms. The length divided

by the width of young adult worms was calculated as a proxy for their dumpiness level from two

biological replicates. The following number of worms were used for each condition: wild-type: n=

102; dpy-21(e428): n= 24; dpy-21(y607): n= 67; set-4 (n4600): n= 69; sir-2.1(ok434): n= 51. P

values are from an independent two-sample t-test.

C) Elutions of GST-DPY-28 HEAT repeat domain recombinant protein, predicted to be ~60 kDa.

Fractions 4-6 were pooled for peptide binding assay.

D) Sequences and modifications of the N-terminal histone peptides analyzed.

E) UCSC genome browser shot of a representative region showing similar DPY-27 ChIP-seq

patterns in sir-2.1 replicates.

F) UCSC genome browser shot of replicates corresponding to Figure 3F. Genome browser view

of DPY-27 ChIP-seq enrichment on the X chromosomal region of the X;V chromosome in X;V

wild-type, dpy-21(JmjC) and set-4 null backgrounds.

Fig. S3. A) mRNA-seq analysis comparing published dpy-21 (e428) from (Kramer et al., 2015),

dpy-21(JmjC) data from (Brejc et al., 2017), and new data in sir-2.1 null mutant in embryos 

(left) and larvae (right). The level of X chromosome derepression compared to autosomes was
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Fig. S4. A) T-half recovery time calculated from individual replicate FRAP recovery curves 

in Figure 4A.The T-half value for dpy-21 (e428) is not included in the plot due to the very low 

recovery during the experimental time frame.

B) Mean FRAP recovery curves for background DPY-27::GFP in wild-type and dpy-21 (e428)

mutant worms. FRAPs were performed 8 hours after a 1-hour heat shock at 35°C. Unlike Figure

4A, the bleach point was not placed outside the X chromosomal area.  Error bars for the bleach

curves denote s.e.m. Number of bleached single intestine nuclei (from 2 biological replicates) for

each experiment is n = 28 for wild-type and  n = 18 for dpy-21 (e428). The middle panel depicts

the mobile fractions for the background recovery. The right panel depicts the T-half recovery

times for the background recovery. P values are from an independent two-sample t-test.

C) Analysis of the fluorescence intensity of endogenously tagged DPY-27::Halo, for wild-type

and dpy-21 (e428) worms corresponding to Figure 4C. The top row shows the analysis pipeline

for the 3D segmentation of the HaloTag-JF549 signal. Z-stacks of intestine nuclei were imaged

and segmented in 3D using ilastik (Berg et al., 2019). The resulting mask was used to segment the

fluorescent signal in 3D, and from max projections, binned intensities were obtained. The middle

row depicts example images of 3D segmented and max projected nuclei of the wild-type and

mutant worms. The scale bar corresponds to 5 µm, and all images are calibrated to the same gray

values. The bottom row shows the distribution of binned pixel intensities for wild-type and dpy-21

(e428) mutant worms from Figure 4C as two separate plots and with additional histograms

underlying the density plot visualization from Figure 4C.
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Fig. S5. A) The same plot as Figure 5A for chromosome I.

B) Distance decay curve showing the relationship between 5- kb binned genomic separation, s,

and average contact probability, P(s) for two biological replicates for each condition.

C) The same plot as Figure 5D for each replicate.

D) Hi-C reads were used to check for the validity of the strains. The reads were mapped to the

ce10 genome. IGV snapshot of mapped reads sorted by mapping quality. Going top to bottom, the

three samples correspond to the following genotypes: N2, dpy-21 JmjC, and dpy-21 null.

E) Meta-’dot’ plot of individual biological replicates in wild-type, dpy-21 JmjC (y607) and dpy-21 null

mutant embryos from this study. Meta-’dot’ plot showing the average strength of interactions

between pairs of rex sites on a distance-normalized matrix. For 17 strong rex sites, a total of 33

rex-rex pairs located within 3 Mb of each other were used.
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Fig. S6. Hi-C analysis of individual biological replicates in wild-type, dpy-21 JmjC (y607), and dpy-21 null 

mutant embryos from this study and re-analysis of wild-type and dpy-21 JmjC (y607) from published data 

(Brejc et al., 2017).

A) Hi-C heatmap of chromosome-X showing wild-type, the dpy-21 JmjC, and the dpy-21 null

mutant from this study (left) and from the Brejc et al., 2017 study (right).

B) Pile-up analysis showing the average Hi-C map and the insulation scores +/- 500-kb

surrounding the annotated 17 strong rex sites using data from this study (top row) and from the

Brejc et al., 2017 study (bottom row).

C) Distance decay curve showing the relationship between 5-kb binned genomic separation, s,

and average contact probability, P(s) computed per chromosome using data from this study (top

row) and from the Brejc et al., 2017 study (bottom row).

D) X-enriched chromosomal contacts are visualized by an X/A normalized distance decay curve.

For every genomic separation s, the unity normalized contact probability of X-chromosome,

P(s,chrX), is divided by that of autosomes, P(s,chrA) from this study (left) and from the Brejc et

al., 2017 study (right).

E) Meta-’dot’ plot of individual biological replicates in wild-type and dpy-21 JmjC (y607) re-analysis of

from published data (Brejc et al., 2017). Meta-’dot’ plot showing the average strength of interactions

between pairs of rex sites on a distance-normalized matrix. For 17 strong rex sites, a total of 33

rex-rex pairs located within 3 Mb of each other were used.
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Table S1. List of the C. elegans strains used in this study

strain
name

strain genotype RRID of strain short description

N2 wild type RRID:WB_STRAIN:N2 wild type laboratory strain

CB428 dpy-21(e428) V RRID:WB_STRAIN:CB428 dpy-21 null

YPT47 X;V RRID:WB_STRAIN:YPT47 X;V fusion in wild type
background

MT14911 set-4 (n4600) II RRID:WB_STRAIN:MT14911 set-4 null

ERC47 ersSi12[hsp16-41::dpy-27::GFP::3xFlag,
unc-119(+)] II; unc-119(ed3) III

promoter_hsp::dpy-27::GFP in
mossci Chr II site

ERC55 ersSi21[hsp16-41::dpy-27[EQ-TR]::GFP::
3xFlag, unc-119(+)] II; unc-119(ed3) III

promoter_hsp::dpy-27 EQ TR
mutation::GFP in mossci Chr II
site

ERC57 set-4 (n4600) II; X;V (ypT47) X;V fusion in set-4 null
background

VC199 sir-2.1(ok434) IV RRID:WB_STRAIN:VC199 sir-2.1 null

ERC76 ers53[dpy-27::halo] III dpy-27::halo endogenous
location fully complementing
function with tag and 11 aa
deletion

ERC81 dpy-21(y607)V; X;V (ypT47) X;V fusion in dpy-21(JmjC)
background (as in Brejc et al.
2017, introduced into X;V
endogenously using
CRISPR/Cas9)

TY5686 dpy-21(y607) dpy-21(JmjC) catalytic mutant
(Brejc et al. 2017)

RW10993 unc-119(ed3) III; itIs37 IV; stIs10116;
wgIs94.

H2B-mCherry

strains derived for FRAP analysis by crossing
SPL7 RW10993 X ERC55

SPL8 RW10993 X ERC47

SPL13 SPL8 X TY5686 (dpy-21 y607 JmjC
(codon 1454 changed to GCT from GAT) )

SPL14 SPL8 X MT14911 (set-4 null)

SPL15 SPL8 X CB428 (dpy-21 null)

SPL16 SPL8 X VC199

SPL17 ERC47 X ERC76

SPL18 RW10993 X ERC76

SPL19 CB428 X ERC76
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Table S2. List of the primers used in this study

Target / purpose F
primer

R
primer

Forward
Sequence

Reverse Sequence Product
Size (bp)

amplify DPY-28 to be cloned
into pGEX5X-2

DPY 28
351F

DPY-28
660R

atgcGGATCCGAACG
AGCCGAAAAGCCA

atgcGAATTCTCAATC
GTCCATTTGGGTTA
G

hsp promoter amplification from
pCM1.57 with overlapping 15
bp to XhoI cut pCFJ151 for in
fusion cloning, reverse primer is

SE123R GCAGGAATTCCTCG
Actgcaggtcgactctaga

atatattacttcaatattttttctacc
ggtacc

~550 bp
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complementary to start of
DPY-37 3' UTR
dpy-27 3'UTR amplification
with overlap to pCJF151 on the
right side

SE124F SE124R attgaagtaatatattttaaac CACCGTACGTCTCG
Attaggaaattattttttgat

~400 bp

amplify DPY-27 on the left
overlapping with pCFJ151 with
hsp promoter

SE135F SE135R gtattggtaccggtagaaaaaat
ATGCAGCCGTTTAA
AAGACG

ATGTCTGCTTCTTCG
CACAC

~5.8 kb

amplify GFP3xflag on the left
overlapping with DPY-27 and on
the right with PCFJ151 dpy27 3'
UTR

SE136F SE136R CGAAGAAGCAGAC
ATATGAGTAAAGGA
GAAGAACTT

gtttaaaatatattacttcaatTC
ACTTGTCATCGTCAT
CC

~1 kb

DPY-27 clone sequencing
verification

SE127 gatgacgacaagggcagc

DPY-27 clone sequencing
verification

SE128 cgggcctgagatccacac

DPY-27 clone sequencing
verification

SE129 GCAAAGGATGAAG
TTCGG

DPY-27 clone sequencing
verification

SE130 TGAACTGAAAGAG
GCTGG

DPY-27 clone sequencing
verification

SE131 ATCACGCACTGGAA
GCTC



DPY-27 clone sequencing
verification

SE132 AATTGCAAACTTCA
ACGg

DPY-27 clone sequencing
verification

SE133 AAGATGTTGACAAG
TTCC

DPY-27 clone sequencing
verification

SE134 TCGAGGAGGAGATC
AAAC

Q5 mutagenesis of DPY-27
sequence for E-Q mutation

SE101F SE101R cAgATCGATGCGGC
ACTGGAC

ATCCATCACGTAGA
GGGGTG

crRNA from IDT to cut at 3' end
of dpy-27

LS37 ACACGGCGTTGAA
CGACAAT

amplify halo from pLS19 with
homology arms to tag DPY-27 C
terminus. 5' SP9 modified
primers

AM29F AM29R CATCTCCACCACCA
ATCGTCGTCCAACG
TCGCGTGCGAAGA
AGCAGACATgggggag
gaggatcgGAAATCGG
TACAGGCTTTCC

ttttcaaaatttagtttaaaatatatt
acttcaatTTATCCGGAG
ATCTCGAGGGTGG

primers to detect halo insertion
at 3' end of dpy-27

LS40F LS40R TGGACAGTACGTGA
TGCAAAG

CGATGAGCCAGTAA
GAAGACG

crRNA from IDT for JmjC
dpy-21 H1452A

BR16_sg
RNA

TTTCGACCTGAAAT
TTCACG

oligo repair template for JmjC
dpy-21 mutant

BR16_oli
go

TGGATCATCTTCAG
TTGATTCACGCACT
TGATCTGCGGCCGC
ATTTGTTCGATCCTG
CACAAAAATAGTTG
AAATTTGAGTTTTT
TGTAAATTTTAACA
GTTTTTCAATAGAA
AATTCGTATTCGTC
GTGAAATTTCAGGT
CGAAATGGGTTTTT
TTTCGAAAACATTT
GTGGTTGAAAAAGT
GGCTCAGTCGGTAA
GAT

Amplify region of dpy-21 JmjC
mutantion (product size 514bp.
Not1 digestion products: 216bp -
298bp)

BR17F BR17R AACTATTGACCACA
CCCGGG

GGCGGTTCGTAGAG
ATCCAT
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Table S3. List of the antibodies used in this study

Target Antibody Antibody
information

Antigen RRID of antibody Reference

DPY-27 JL00001 Rabbit polyclonal 1-409 aa Covance Research
Products Inc Cat#
JL00001_DPY27,
RRID:AB_2616039

Ercan et al 2007 Nature
Genetics

DPY-26 JL00003 Rabbit polyclonal 740-1262 aa Covance Research
Products

Ercan et al 2009 Current
Biology

MIX-1 JL00004 Rabbit polyclonal 837–1244 aa Covance Research
Products

Ercan et al 2009 Current
Biology

GFP ab290 Rabbit polyclonal Recombinant
full-length protein
corresponding to GFP.
Green fluorescent
protein (GFP) from
Aequorea victoria.

Abcam --
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Table S4. Information for RNA-seq data used in this study

RNA-seq data from this study
GEO
accession
number

Sequencing
ID

Description Strain Stage Mapped
reads

Technical
Reps

GSM5075626 SEA51 VC199_emb_rep1A VC199 mixed
embryos

13,342,597 SEA58 tech rep

GSM5075626 SEA58 VC199_emb_rep1B VC199 mixed
embryos

21,079,971 SEA51 tech rep

GSM5075627 SEA70 VC199_emb_rep2 VC199 mixed
embryos

23,574,464

GSM5075628 SEA77 VC199_emb_rep3 VC199 mixed
embryos

17,555,806

GSM5075629 SEA86 VC199_emb_rep4 VC199 mixed
embryos

20,187,638

GSM5075630 MK11 VC199_L2L3_Rep1A VC199 L2-L3 15,784,655 MK25 tech rep

GSM5075630 MK27 VC199_L2L3_Rep1B VC199 L2-L3 16,716,809 MK19 tech rep

GSM5075631 MK19 VC199_L2L3_Rep2 VC199 L2-L3 10,497,663

GSM5075632 MK46 VC199_L2L3_Rep3 VC199 L2-L3 21,498,117

GSM5075633 MK60 VC199_L2L3_Rep4 VC199 L2-L3 24,037,603

GSM5075634 SEA224 KB01_emb_RNA_rep1 KB01 mixed
embryos

8,220,567

GSM5075635 SEA225 KB01_emb_RNA_rep2 KB01 mixed
embryos

9,726,617

GSM5075636 LAS41 KB01_emb_RNA_rep3 KB01 mixed
embryos

24,873,910

GSM5075637 SEA221 MK14_emb_RNA_rep1 MK14 mixed
embryos

9,012,229

GSM5075638 SEA222 MK14_emb_RNA_rep2 MK14 mixed
embryos

10,363,195

GSM5075639 SEA223 MK14_emb_RNA_rep3 MK14 mixed
embryos

7,729,455

GSM5075640 LAS47 LS_ext534_emb_RNA_N2_ 
HS_rep1

N2, heat
shock

mixed
embryos

25,478,937

GSM5075641 LAS48 LS_ext536_emb_RNA_N2_ 
HS_rep2

N2, heat
shock

mixed
embryos

18,412,383

GSM5075642 LAS49 LS_ext549_emb_RNA_N2_ 
HS_rep3

N2, heat
shock

mixed
embryos

24,768,721
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Published RNA-seq data used in this study
GEO
accession
number

Strain Description Stage Reference

GSE67650 N2 N2 mixed
embryo

Kramer et al
PLoS Gen
2015

GSE67650 CB428 dpy-21 null mixed
embryo

Kramer et al
PLoS Gen
2015

GSE67650 N2 N2 L3 Kramer et al
PLoS Gen
2015

GSE67650 CB428 dpy-21 null L3 Kramer et al
PLoS Gen
2015

GSE84581 N2 N2 mixed
embryo

Brejc et al
Cell 2017

GSE84581 TY5686 dpy-21 (y607) mixed
embryo

Brejc et al
Cell 2017
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Table S5. Sanger sequencing results for ERC76

Sequencing results for ERC76, Halo CRISPR tagging dpy-27, revealed insertion of unknown
sequence (grey) before the tag sequence, which does not affect dpy-27 function

ATTGATCGAAGAAGCAACTCCATCTCCACCACCAATCCACTCCTCGTCGAAGGTCGAAATCGGTAC
AGGCTTTCCATTCGACCCCCATTATGTGGAGGTCCTCGGAGAGCGTATGCACTACGTCGACGTCGG
ACCACGTGACGGAACCCCAGTCCTCTTCCTCCACGGAAACCCAACCTCCTCCTACGTCTGGCGTA
ACATCATCCCACACGTCGCCCCAACCCACCGTTGCATCGCCCCAGACCTCATCGGAATGGGAAAGT
CCGACAAGCCAGACCTCGGATACTTCTTCGACGACCACGTCCGTTTCATGGACGCCTTCATCGAGG
CCCTCGGACTCGAGGAGGTCGTCCTCGTCATCCACGACTGGGGATCCGCCCTCGGATTCCACTGGG
CCAAGCGTAACCCAGAGCGTGTCAAGGTAAGTTTAAACATATATATACTAACTAACCCTGATTATTT
AAATTTTCAGGGAATCGCCTTCATGGAGTTCATCCGTCCAATCCCAACCTGGGACGAGTGGCCAGA
GTTCGCCCGTGAGACCTTCCAAGCCTTCCGTACCACCGACGTCGGACGTAAGCTCATCATCGACCA
AAACGTCTTCATCGAGGGAACCCTCCCAATGGGAGTCGTCCGTCCACTCACCGAGGTCGAGATGG
ACCACTACCGTGAGCCATTCCTCAACCCAGTCGACCGTGAGCCACTCTGGCGTTTCCCAAACGAG
CTCCCAATCGCCGGAGAGCCAGCCAACATCGTCGCCCTCGTCGAGGAGTACATGGACTGGCTCCA
CCAATCCCCAGTCCCAAAGCTCCTCTTCTGGGGAACCCCAGGAGTCCTCATCCCACCAGCCGAGG
CCGCCCGTCTCGCCAAGTCCCTCCCAAACTGCAAGGTAAGTTTAAACAGTTCGGTACTAACTAACC
ATACATATTTAAATTTTCAGGCCGTCGACATCGGACCAGGACTCAACCTCCTCCAAGAGGACAACC
CAGACCTCATCGGATCCGAGATCGCCCGTTGGCTCTCCACCCTCGAGATCTCCGGATAAattgaagtaata
tattttaaactaaattttgaaaaaaaaaagaaaactttgtgaaaaatccaaaaaatgagaccaactttcttt

dpy-27

insertion

halo

stop codon

Table S6. Sanger sequencing results for ERC81

Sequencing results showing CAC to GCC change to generate the X;V, dpy-21(JmjC y607)

NNNNNNNNNNNNNNNNNNNNTGGTAGANGACCATCTTACCGACTGAGCCACTTTTTCAACCACA
AATGTTTTCGAAAAAAAACCCATTTCGACCTGAAATTTCACGACGAATACGAATTTTCTATTGAAA
AACTGTTAAAATTTACAAAAAACTCAAATTTCAACTATTTTTGTGCAGGATCGAACAAATGCGGCC
GCAGATCAAGTGCGTGAATCAACTGAAGATGATCCAACAACAACAACAACAACTACAACGACTAC
AAGTTCTTCTTCTTCTTCTTCAAAATCGAAAAAATCGGCGAAATCCGATCCGACATTTGTTAAATCA
ACGGCTGCTGTGGGTGTCCTACAGGGTATCAGGAATCCTGATGCAAATGACGATGATGAATATTATG
AGGATGAACGAAAAGCTGTTAAAGAAGTTATTGTATTTGATGCACATGATTTGCATAAAGTTGCACA
TCATCTTGCAATGGATCTCNNNAAANCCGCCA

crRNA

disrupted PAM site

changed codon
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Table S7. Information for ChIP seq data used in this study

Table S8. Information for Hi-C data used in this study

Table S9. Readme for DEseq output

Gene annotations are from WS220 (UCSC genome version ce10).
Transcripts Per Kilobase Million (TPM) tab
TPM:

sample_sums<-apply(data.matrix(fpkm[,-c(1:2)]),2,sum)

tpm<-t(t(fpkm[,-c(1:2)])/sample_sums)*10^6
DEseqOutput Tabs
column name:
gene name of gene
wbid wormbase ID of the gene
baseMean average of normalized count values
log2FoldChange log2 fold change effect size estimate
lfcSE standard error estimate for the log2 fold change values
stat Wald statistic
pvalue Wald test p-value
padj Benjamini-Hochberg adjust p-value

Click here to download Table S7

Click here to download Table S8
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Table S10. TPM replicates

Table S11. DEseq Output VC199/N2 embryo

Table S12. DEseq Output VC199/N2 L3

Table S13. DEseq Output MK14/N2 embryo HS

Table S14. DEseq Output KB01/N2 embryo HS

Click here to download Table S10

Click here to download Table S11

Click here to download Table S12

Click here to download Table S13

Click here to download Table S14
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