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 In this paper, we explored how information on the cost of misprediction can 

be used to train supervised learners for multi-target prediction (MTP). In 

particular, our work uses depression, anxiety and stress severity level 

prediction as the case study. MTP describes proposals which results require 

the concurrent prediction of multiple targets. There is an increasing number of 

practical applications that involve MTP. They include global weather 

forecasting, social network users’ interaction and the thriving of different 

species in a single habitat. Recent work in MTP suggests the utilization of 

“side information” to improve prediction performance. Side information has 

been used in other areas, such as recommender systems, information retrieval 

and computer vision. Existing side information includes matrices, rules, 

feature representations, etc. In this work, we review very recent work on MTP 

with side information and propose the use of knowledge on the cost of 

incorrect prediction as side information. We apply this notion in predicting 

depression, anxiety and stress of 270,322 anonymous respondents to the 

DASS-21 psychometric scale in Malaysia. Predicting depression, anxiety and 

stress based on the DASS-21 fit an MTP problem. Often, a patient experiences 

anxiety as well as depression at the same time. This is not unusual since it has 

been discovered that both tend to co-exist at different degrees depending on a 

patient’s experience. By using existing machine learning algorithms to predict 

the severity levels of each category (i.e., depression, anxiety and stress), the 

result shows improved precision with the use of cost matrix as side information 

in MTP. 
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1. INTRODUCTION 

In traditional prediction, only a single target is used, typically known as single-target prediction (STP). 

This target can be classified into one of two class labels (binary) or multiple labels (multi-label). Usually, for 

textual targets classification methods are employed, while for numeric target regression methods are used. The 

resulting value of a target directly depends on the combination of multiple independent variables that an 

instance has. The nature of STP can be seen as straightforward and simple. As an example, classifying a patient 

to either be depressed or otherwise. Conversely, in multi-target prediction (MTP), there is over one target that 

needs to be predicted at once [1]. Each target can be of differing types (e.g., binary, ordinal, nominal) and can 
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each either be binary or multi-label [1]. To understand how MTP differs from STP is by extending from the 

STP example. Here, the aim would be to predict a patient to be jointly experiencing depression and anxiety at 

differing levels of severity. One scenario is a patient may have mild depression yet extremely severe anxiety. 

Another scenario is a patient may suffer from depression, but not anxiety. Nevertheless, both the former and 

latter scenarios require a prediction to be conducted concurrently to determine the level of severity or the 

absence of it for both targets. Waegeman et al. [1] characterize the basic structure of MTP as been built upon 

instances X and targets T. A dataset for MTP used for training a model would have an additional component 

besides X and T to carry the notion of their associations in the form of a set of scores (Y) since X is described 

by a set of independent variables and T is the set of dependent variables. MTP aims to predict Y for every 

instance-target (X, T) pair. Y can be of nominal, ordinal or real values. Therefore, for every n number of 

instances and m number of targets, the size of Y would be the matrix of n × m. 

An increasing realisation of MTP’s usage in a wide range of domains is shifting MTP to be at the 

centre stage for current prediction tasks [2]. As interactions between entities in the real world become 

increasingly complex, prediction tasks must be adept to handle such complexity without compromising 

performance. Recent applications of MTP published include prediction of protein functions in bioinformatics 

[3], prediction of arch dam deformation in mathematical modelling [4], prediction of soil properties in 

agriculture [5], prediction of cognitive decline in Alzheimer patients [6] prediction of wheat flour quality 

parameters [7], prediction of identifying learning styles [8], prediction of drug toxicity [9], prediction of 

cervical cancer [10] and prediction of wine category [11]. These studies discovered that using MTP instead of 

STP improves performance. Furthermore, MTP reduces overfitting [2]. 

Under the MTP umbrella, there are a myriad of methods fitting the characteristics of MTP but has 

long been identified with specific names [1]. They include multivariate regression, multi-label classification, 

multi-task learning, zero-shot learning and matrix completion. While many existing MTP works use machine 

learning algorithms designed for STP, this boundary is being pushed with the proposal of new variants of 

algorithms designed specifically for MTP. They include [2][12-19]. In general, these algorithms were designed 

to take into account all input features related to all the given targets. 

A wide range of MTP techniques has been proposed during the past 10 years. At present, two 

taxonomies have been built [13]. The first is defined as problem transformation and algorithm adaptation. 

According to [13], problem transformation turns a multi-target problem into several individual target problems. 

It has been reported that this approach requires more resources to singly solve each problem and then combine 

them. On the other hand, algorithm adaptation is deemed more effective in performance as the algorithm is 

adapted to predict all targets together [14]. With this approach, it has the flexibility to accommodate side 

information [14]. A more recent taxonomy, which replaced the previous one, classifies MTP as falling into one 

of these categories: local models and global models [13]. However, the definition and scope remain the same 

[13]. 

This study started with a systematic review of the literature. Progress in MTP shows multiple 

adoptions of side information/knowledge to improve the resulting performance. A variety of side information 

has since been proposed in different domains and is described in the next subsection. 

 

1.1. Review of State-of-the-art Side Information 

The performance of a prediction is of considerable importance. In MTP, it is more complex than STP 

as all targets must be predicted simultaneously. Nevertheless, the existence of additional information, as 

described in Waegeman et al. [1] namely side information, can assist in improving MTP’s performance. The 

existence and form of side information depend entirely on the domain problem. In other words, side information 

may naturally not exist in a domain and if it does exist may take various forms. Side information has been used 

in many areas: recommender systems [22-23], information retrieval [22-23], computer vision [16] and text 

summarization [17], to name a few. The common general idea motivating its use is the enhancement that it can 

bring. There could never be too much side information as potentially many more are yet to be discovered in a 

variety of domains, each of which provides some unique salient information. To conduct this review, we 

adopted the Systematic Mapping Study (SMS) approach [18]. The primary steps in SMS are defining research 

questions, searching, screening found papers, keywording from abstracts and extracting and mapping of data. 

In this study, we have combined the last two steps as both steps are tightly interlinked, iterating back and forth 

between each other. 

 

 

Step 1: Defining of research questions 

In this step, we aim to understand the trends of recent works in MTP’s side information with relation 

to the form that it takes, the prediction models that it is devised for and the type of strategy that it is used in. 
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From this review, researchers and practitioners can gain insights as to the future direction of side information 

in MTP. To relay our aim, we constructed the following research questions.  

RQ1: What are the most recent forms of side information in MTP? 

RQ2: What prediction model the side information was devised for? 

RQ3: What MTP strategy that the side information was used in? 

RQ4: What metrics were used to evaluate the MTP proposals? 

 

Step 2: Conducting a search 

In this study, academic publications were collected from different online databases via Google 

Scholar. Google Scholar's results typically include nearly all online databases i.e. IEEE Xplore, ACM Digital 

Library and Elsevier ScienceDirect, thus acting as a one-stop-centre. We used the term “multi-target 

prediction” without adding the terms “side information” or “side knowledge” since their use returned very few 

results. This could be because both terms were popularised in the field of MTP by Waegeman et al. only in 

2019 and have thus not yet gained widespread adoption. Our search involves publications as early as 2020 until 

the point of writing in 2021. The justification is to provide interested researchers with a quick understanding 

of where the focus in very recent work lies.  

 

Step 3: Screening found papers 

From the 76 results listed in Google Scholar, we examined each paper’s title, abstract, keywords, 

introduction and conclusion to determine their eligibility. Typically, examination of the introduction and 

conclusion is performed in step 4: Keywording from Abstracts; however, we began this process early to make 

the subsequent steps easier. Additionally, we devised two exclusion criteria (E) and one inclusion criteria (I): 

E1: Duplicates. 

E2: Publications that do not clearly use side information. 

I1: Papers that use the terms multi-target, multi-variate regression, multi-task learning, zero-shot learning or 

matrix completion.  

 

Steps 4 & 5: Keywording from abstracts & Extracting and mapping of data  

We listed the relevant publications in Table 1. From these publications, we formed unique 

classification schemes to serve each research question. To this end, data is extracted from the publications and 

mapped into these schemes. The list of publishers indicates the application of MTP are in various domains 

(chemistry, medical, bioinformatics, biology, healthcare), not centred solely on computing. This is in alignment 

with earlier reports on the increasing realisation of MTP’s application in multiple domains. It is noteworthy 

that our list of publications excludes works on MTP that are without the utilisation of side information. 

 

Table 1. List of relevant publications 
Publications Year  Publishers 

Breskvar and Džeroski [19] 2021 IEEE Access 

Chen et al. [4] 2021 Applied Mathematical Modelling 
Santana et al. [5] 2021 Chemometrics and Intelligent Laboratory Systems 

Mastelini et al. [2] 2020 Applied Soft Computing 

Pliakos and Vens [20] 2020 BMC Bioinformatics 
Wu and Lian [21] 2020 Proceedings of the International Joint Conference on Neural Networks 

Adıyeke and Baydoğan [13] 2020 Pattern Recognition 

Bessadok et al. [22] 2020 Lecture Notes in Computer Science 
Liu et al. [23] 2020 IEEE Access 

Mignone et al. [24] 2020 Nature Scientific Reports 

Liu et al. [25] 2020 Machine Learning for Pharma and Healthcare Applications 

 

 

RQ1: What are the latest forms of side information in MTP? 

 The significance of this research question is to learn what forms that side information takes in cutting-

edge works. Our study (refer to Table 2) discovered that the majority of recent side information takes the form 

of matrices to represent the dependencies between targets. Vectors are found next, followed by sequences and 

rules. A matrix is an intuitive artefact to represent side information as it can capture the value of target pairs 

within its intersections. The number of dimensions is unlimited thus can easily represent an unlimited number 

of target pairs. Each matrix typically carries one interdependency information. Cases with more than one 

interdependency relationship between targets do require more than one matrix. Vectors and sequences are 

simply subsets of matrices, hence can also support interdependency information well. While these are strictly 

structured artefacts, decision trees were devised to handle interdependency information with less structure. 

Rules are obtained from decision trees in light of targets as the final nodes. Interdependency information is 

domain-specific. Some are a direct representation of principles, methodologies and structures found in the 



                ISSN: 2089-3272 

IJEEI, Vol. 9, No. 4, December 2021:  929 – 942 

932 

domain, e.g. drug-target interactions, while others are more implicitly inferred e.g. learning models aimed to 

predict specific targets. 

 

Table 2. Forms of side information 
Publications Forms 

Adıyeke and Baydoğan [13] A sequence of selected good quality targets. 

Bessadok et al. [22] Matrix of similarity between targets. 

Breskvar and Džeroski [19] Weighted rules generated from an ensemble of decision trees containing target 
attributes. 

Chen et al. [4] Matrix of highly correlated subsets of targets. 

Liu et al. [23] Vector containing the interdependencies information of targets. 
Liu et al. [25] Matrix of similarity between targets. 

Mastelini et al. [2] Matrix of highly influential targets. 

Mignone et al. [24] Pair of vectors representing the confidence on the existence of interaction between 
targets. 

Pliakos and Vens [20] Matrix of interactions between targets. 

Santana et al. [5] Matrix of prediction base learner models for each target attribute. 

Wu and Lian [21] Matrix of strongly correlated targets. 

 

 

RQ2: What prediction model the side information was devised for? 

 The choice of prediction models is substantially influenced by the trade-off between interpretability 

and accuracy. A highly interpretable model can provide the reasoning behind the prediction decision which a 

highly accurate model may not. Interpretable models give important insights into data and model behaviours 

and may persuade end-users to use certain models [26]. For users in marketing, medical analysis and science 

the understanding of data is more important than just predictive accuracy [26]. Being able to explain the reasons 

behind a decision and validate it is essential in these domains. Our study showed that regressors and clustering 

decision trees are popular in the latest proposals, with few utilising kNN, neural net and pure clustering. Among 

the most understandable models are decision trees and decision rules [27]. Neural nets, on the other hand, are 

widely perceived as black-box models due to their complexity, leaving data scientists little room to explain the 

resulting prediction [27]. The demanding nature of kNN on resources may have pushed it to the bottom of the 

selection list. 

 

Table 3. Prediction models 
Publications Prediction models 

Adıyeke and Baydoğan [13] Decision tree 

Bessadok et al. [22] Clustering 

Breskvar and Džeroski [19] Clustering decision tree 
Chen et al. [4] Regressors 

Liu et al. [23] Neural net 

Liu et al. [25] kNN 
Mastelini et al. [2] Regressors 

Mignone et al. [24] Clustering decision trees 

Pliakos and Vens [20] Bi-clustering decision trees 
Santana et al. [5] Regressors 

Wu and Lian [21] Regressors 

 

 

RQ3: Which MTP strategy that the side information was used in? 

Three frequent strategies were found in this study: ensemble, stacking and chaining. Not all 

publications fall solely in one of these; some are a hybrid of two or more. In general, an ensemble strategy 

consists of multiple weak prediction models that, when combined, are expected to produce improved 

performance. Ensembles are known to reduce prediction variance and are resistant to outliers and noisy data 

[28]. The high execution time of ensembles, on the other hand, is its disadvantage. When using an ensemble, 

the final performance is usually the average prediction of each run model. In contrast, stacking strategy 

leverages varying strong predictive models [28]. Models can be regressors, decision trees and even ensembles. 

The stacking process involves a minimum of two stages of prediction where the prediction from the earlier 

stage will be used in the later stage to produce better prediction [29]. Stacking also suffers from high execution 

time as ensembles. A chaining strategy, in general, is where prediction models are tied together to form a chain 

with the addition that the prediction of an earlier model becomes a supplementary feature to the successive 

models in the chain [30]. Another form of chaining involves not only a chain of models but also a chain of 

target variables [14]. Chaining too can be lengthy to complete. 
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Table 4. Strategy used 
Publications Strategies 

Adıyeke and Baydoğan [13] Ensemble 

Bessadok et al. [22] Stacking 
Breskvar and Džeroski [19] Ensemble 

Chen et al. [4] Stacking 

Liu et al. [23] Stacking 
Liu et al. [25] Ensemble 

Mastelini et al. [2] Stacking 

Mignone et al. [24] Single run 
Pliakos and Vens [20] Ensemble 

Santana et al. [5] Stacking 

Wu and Lian [21] Chaining 

 

 

RQ4: What metrics were used to evaluate the MTP proposals? 

In Table 5, we list the metrics used by each proposal to evaluate the performance of their strategy. We 

discovered that many of the proposals employ metrics based on the rate of error. The most used are Mean 

Absolute Error and Root Mean Squared Error or variants of these measures. Under-the-curve metrics could 

also be found used by binary-based proposals. Other forms of performance measurements include coefficients, 

centrality metrics, speed of runs and accuracy. 

 
Table 5. Evaluation metrics 

Publications Metrics 

Adıyeke and Baydoğan [13] Relative Root Mean Squared Error. 
 

Bessadok et al. [22] Pearson Correlation Coefficient. 

Mean Absolute Error.  
Betweenness Centrality. 

Closeness Centrality. 

Eigenvector Centrality. 
 

Breskvar and Džeroski [19] Average Relative Root Mean Squared Error. 

 

Chen et al. [4] Average Coefficient of Determination. 

Average Root Mean Squared Error. 

Average Relative Root Mean Squared Error. 
 

Liu et al. [23] Root Mean Squared Error. 

Mean Absolute Error. 
 

Liu et al. [25] Area Under the Precision-Recall curve. 

 
Mastelini et al. [2] Relative Root Mean Squared Error. 

Average Relative Root Mean Squared Error. 

Relative Performance. 
Runtime. 

 

Mignone et al. [24] Recall@k. 
Area Under the Recall@k curve. 

Area Under the ROC curve. 

Area Under the Precision-Recall curve. 

 

Pliakos and Vens [20] Area Under the ROC curve. 

Area Under the Precision-Recall curve. 
 

Santana et al. [5] Root Mean Squared Error. 

Relative Performance per Target. 
Average Relative Root Mean Squared Error. 

Ratio of Performance to Deviation. 

 
Wu and Lian [21] Root Mean Squared Logarithmic Error. 

Accuracy Rate. 

Root Mean Squared Error. 
Mean Absolute Error. 
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1.2.  Depression, Anxiety and Stress (DAS) 

Depression, anxiety and stress (DAS) are types of mental illnesses that disable their sufferers in many 

aspects of life. From having explosive social interactions to performing bodily harm, DAS typically goes 

unnoticed until it is too late. Typically, clinicians use psychometric scales to determine the severity of a 

patient’s DAS before face-to-face diagnosis similar to ultrasounds done to assist nephrologists. There are a 

number of psychometric scales dealing with DAS besides DASS-21. They include Hamilton Rating Scale for 

Depression (HAMD) [31], Montgomery–Åsberg Depression Rating Scale (MADRS) [32], Hospital Anxiety 

and Depression Scale (HADS) [33], Edinburgh Postnatal Depression Scale (EPDS) [34] and Geriatric 

Depression Scale (GDS) [35]. Each of these scales measures depression for a specific group of people. We 

chose DASS-21 as it is a self-reporting psychometric scale designed to measure together with the severity 

levels of depression, anxiety as well as stress in sufferers. This makes DASS-21 suitable to tap into the mental 

well-being of the masses since the condition of depression, anxiety and stress are typically interrelated and 

does not occur in silos. Also, due to the structured nature of DASS-21, conducting them online does not 

compromise its results. Online here refers to an electronic survey although an earlier study has shown that 

patients also profess their condition through another online media, that is social media [36]. With the online 

DASS-21 survey, individuals are to recollect their psychological conditions over a previous week and answer 

21 questions regarding it. Scoring will then be calculated to reflect the present mental wellness of the 

individual. DASS-21 has five levels of severity: Extremely Severe, Severe, Moderate, Mild and Normal. Based 

on our co-author, Prof. Ramli Musa, psychiatric help is necessary for individuals experiencing Extremely 

Severe and Severe levels. 

The ability to assess DAS based on its severity has long been underscored by the National Institute 

for Health and Clinical Excellence (NICE) [37] since 2004 for both primary and secondary care [38]. At that 

time, three severity levels were proposed (mild, moderate and severe) to reflect the escalating symptom count 

[38]. Now, additions to the levels could be found in the effort to better describe the condition of DAS. The 

premise is the measurement of severity is the key driver in the determination of suitable psychiatric 

interventions [37]. Different severity requires different interventions. Without knowing the extent of the 

severity, psychiatrists are in the dark to work out a wellness plan for patients. Hence, validated assessment 

tools are imperative and several has been endorsed. They include Patient Health Questionnaire (PHQ-9) [39], 

Hospital Anxiety and Depression Scale (HADS) and the second edition of the Beck Depression Inventory 

(BDI-II) [40]. While DASS-21 was not tested in the said validation, however, our comparative study [41] 

conducted against HADS to examine their concurrent validity showed that DASS-21 not only equally perform 

well, but excel in the measurement of stress in patients due to the absence of this specific component in HADS. 

Therefore, DASS-21 is a good tool for assessing severity. 

Interest in predicting severity in mental illness can also be seen to escalate as of late with the Covid-

19 pandemic sweeping across the globe, triggering multiple crises e.g. financial and psychological. The 

prospect of being able to anticipate a patient’s condition and accordingly deal with it is greatly useful. Now, 

severity prediction of mental illness has become a repeated component in the eRisk CLEF Workshop [49-50]. 

The CLEF Initiative (Conference and Labs of the Evaluation Forum) is held annually by a self-organised body 

seeking to encourage efforts on multilingual and multimodal information in the form of innovation, research 

and development since 2010. In recent 2019, CLEF has begun introducing eRisk, an effort to perform early 

detection of depression in online posts, specifically Reddit. This shows that DAS is not a trivial condition, thus 

must be carefully addressed. 

 

1.3. Our Contributions 

  We made the following contributions: 

1. Introduce a cost matrix as side information for MTP relaying target adjacency knowledge that is 

validated by a domain expert. 

2. Conducted an empirical study on the prediction performance when this cost matrix is used to 

understand its potential in improving performance. 

This paper is structured as follows. In Section 2 we discuss the research method. Our results are 

described in Section 3. We conclude in the final section. 

 
 

2. RESEARCH METHOD 

In this section, we describe our novel dataset, our proposed side information, our justification of using 

precision as the measurement of performance and finally, how the empirical study was conducted. 
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2.1. Proprietary Dataset 

We received 270,322 responses from people located in Malaysia and from ethnicities commonly 

residing in Malaysia i.e., Malay, Chinese and Indian with only a fraction of the respondents falling under the 

Others category. Demographic information was recorded while respondents’ identities remain anonymous. 

Both English and Malay language versions of the DASS-21 were publicly accessible on our website . The 

website may be recognized by respondents through informal means such as word of mouths, social media and 

blogs. Respondents were not invited to partake in the survey but instead were random people who seeks an 

understanding of their condition, thus willingly taking the DASS-21 survey. Complete anonymity was given 

to all respondents where no information of name or email address were collected. The attributes collected are 

marital status, gender, age, race, education level and occupation. A severity score is calculated from the 21 

questions asked in DASS (Malay and English versions). The Malay version is known as MDASS-21. 

Respondents will immediately receive their severity scoring upon completion. Table 6 presents the size and 

details of the dataset and Figure 1 visualizes the details. To predict severity, we used the assigned severity 

levels as the labels. The dataset is imbalanced, predominated by Extremely Severe and Moderate data points. 

859 data were found to be unfit due to missing values of gender and race, hence, have been removed. None of 

the responses was Normal across all depression, anxiety and stress classes. The dataset was automatically 

annotated with the severity levels from the DASS-21 survey. Careful inspection found the absence of negative 

class as every severity level, inclusive of Normal, are interesting classes. This is justified by the same 

importance of predicting the Normal severity level to other levels. 

 

Table 6. Dataset 
Normal 23,139 

Mild 35,522 

Moderate 74,087 

Severe 45,588 

Extremely Severe 91,127 

Dirty 859 

Total 270,322 

 

 

 
Figure 1. Distribution of dataset 

 

 
 

2.2. Adjacency Side Information 

The side information that we study in this paper is of targets that are highly correlated and there exists 

an internal structure of adjacency that could be implemented on the targets to improve performance. Adjacency 

reflects the “alikeness” of a particular target outcome to another target outcome. The element of alikeness can 

be fed into the base models to enhance performance. In the case of predicting depression, anxiety and stress, 

the levels of severity can be found at differing degrees of extremely severe, severe, moderately severe, mildly 

severe and normal. The alikeness of a moderately severe condition is closer to severe and mildly severe than 

normal and extremely severe. Alikeness here refers to the faded line between the adjacent levels in describing 

a sufferer’s degree of severity. To that end, we apply a matrix to represent the adjacency information (Table 

7). A value of 0.0 denotes the same severity level, and as two severity levels get further apart, a higher value 

is assigned. A value of 4.0 represents the greatest degree of unalikeness. 
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Table 7. Adjacency matrix 
 Normal Mild Moderate Severe Extremely 

Severe 

Normal 0.0 1.0 2.0 3.0 4.0 

Mild 1.0 0.0 1.0 2.0 3.0 

Moderate 2.0 1.0 0.0 1.0 2.0 
Severe 3.0 2.0 1.0 0.0 1.0 

Extremely Severe 4.0 3.0 2.0 1.0 0.0 

 

For the information to be observed by the base learners, we take the approach of implementing a 

penalization system, the cost matrix. The cost matrix has been used in cost-sensitive learning to assist in making 

optimal decisions [12]. Using cost to represent severity is not a new idea – other existing representations include 

money and waste of time [12]. Our approach to applying adjacency information to the cost matrix is supported 

by the premise that different levels of severity will require different treatments. An extremely severe case that 

warrants psychiatric help, if mispredicted to be the complete opposite i.e. normal, can result in being 

overlooked and thus may result in tragedy, such as loss of life or extreme bodily harm, since it will go untreated. 

Such devastating outcome also applies to normal cases which, if mispredicted, can eventually turn into 

depression, anxiety or stress due to false belief. This misprediction is reflected in the cost matrix, with 4.0 

being the highest cost. In contrast, a low cost of 1.0 is given to adjacent severity levels for example moderate-

mild and moderate-severe. This represents the lesser negative implication that can occur due to incorrect 

prediction, considering that there is a thin line to discriminate between adjacent levels of severity. As two levels 

become further apart, the higher the cost of incorrect prediction becomes to indicate the rising criticality of a 

misprediction. This is shown in Table 8 where mild-severe misprediction score is 2.0 and mild-extremely 

severe’s score is 3.0. 

Table 8. Cost matrix 
 Actual 

Normal 

Actual 

Mild 

Actual 

Moderate 

Actual 

Severe 

Actual 

Extremely 

Severe 

Predicted Normal 0.0 1.0 2.0 3.0 4.0 

Predicted Mild 1.0 0.0 1.0 2.0 3.0 

Predicted Moderate 2.0 1.0 0.0 1.0 2.0 
Predicted Severe 3.0 2.0 1.0 0.0 1.0 

Predicted Extremely Severe 4.0 3.0 2.0 1.0 0.0 

 

We thus define a cost-sensitive multi-target prediction that incorporates the adjacency information. 

Definition (Cost-sensitive multi-target prediction): A cost-sensitive MTP is characterised with a 

given set of instances {x1,…, xn} and a set of targets {t1,…, tn} to be predicted based on a score sensitive to cost 

values in a matrix C(p, a) where p is the prediction class and a is the actual class. A correct prediction is when 

p = a yielding a cost of 0, whereas an incorrect prediction is when p ≠ a and producing a value v > 0. Therefore, 

a cost-sensitive multi-target prediction can be defined as a triplet of an instance, a target and a cost-sensitive 

prediction score. 

M(x) = (xn, tn, C(p, a)) 

Figure 2 illustrates our proposed method. The labelled dataset underwent preprocessing and 

afterwards cross-validation (10 folds). During each fold, training, testing and evaluation processes were 

conducted to produce a precision score. Training of a machine learning algorithm was done guided by our cost 

matrix. 

 

 
Figure 2. Cost-sensitive MTP 
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2.3. Multi-Target Prediction Strategy 

Based on the review of the latest literature on MTP strategies in Section 1.1, stacking was the most 

used, therefore, it was selected for this study. Stacking falls under the multiple algorithms group of prediction 

strategies together with ensemble and chaining (Figure 3). Generally, they produce better performance than a 

classical single algorithm strategy by leveraging on the power of many. Stacking’s advantage is in the use of 

strong learners to produce a prediction that will be used by another strong learner for improved performance. 

Ensemble and chaining, on the other hand, are devised to utilize on the unique traits of weak learners. In this 

strategy, our labelled dataset was divided into two sets: training and testing. The training set was used with a 

group of base learners to produce a model that was then applied to the testing set to produce a base prediction. 

Stacking was performed by inputting the resulting base prediction into a stacking learner. The prediction 

generated from this process was the final classification result. Refer to Figure 4 for the stacking algorithm. 

 

 
Figure 3. Prediction strategies 

 

 
Algorithm Stacking 

Input   T: A labelled dataset 

            B: A set of base learners 

            S: A stacking learner 

Output   P: Performance 

Begin 

    Divide T into X and Y sets 

    Model = Train(B, X) 

    BPrediction = Test(B, Y, Model) 

    SPrediction = Train(BPrediction, S) 

End 

Figure 4. General stacking algorithm 

 

2.4.  Evaluation Metrics 

Metrics used to evaluate the performance of the adjacency information were averaged accuracy (AA), 

mean recall (MR), mean precision (MP) and averaged root mean squared error (ARMSE). The multi-label and 

multi-class nature of the dataset necessitates the use of averaging to conclude a single final value of evaluation. 

Here, no weights were employed to calculate MR and MP since our aim was to study the effects of the proposed 

adjacency information injected during the training of the models. Therefore, any penalization was learned in 

the model induction process. A tradeoff between metrics is inevitable, thus, in this study MP and MR takes 

precedence over AA. MP answers the question of “What is the averaged proportion of positive identifications 

was correct?” while MR sets to know “What proportion of actual positives was identified correctly?” – 

underlining critical aspects of training a model to incline towards correctly predicting positive classes more 

than negative classes. This is well suited to our proprietary dataset as well as other datasets inherent with the 

same characteristics. On the other hand, AA sought to answer “What is the averaged proportion of correct 

predictions (positive and negative classes) over the entire dataset?”. Hence, a higher MP and MR is more 

preferred in this particular case than AA. ARMSE indicates the percentage of error that the algorithms 

produced, hence, preferably as low as possible. 
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2.5. Empirical Study 

Our empirical study aims to learn if our adjacency information can contribute to the improvement of 

performance when applied to existing machine learning algorithms. This study should lead us to future works 

on suggesting more use of the adjacency information, other improved forms of the adjacency information and 

strategies specialized to the adjacency information. We conducted three empirical studies. The algorithms used 

were decision tree (DT), Naïve Bayes (NB), generalized linear (GL) and deep learning (DL). During testing, 

10 folds cross-validation were used for each algorithm, yielding an averaged performance value. The choice 

of the number of folds was based on common practice. The cost matrix is constructed based on the cost 

information displayed in Table 8. 

 

Experiment 1: Adjacency vs. None (Figure 5) 

The aim is to know the hidden potential of the adjacency information in improving performance when 

employed to existing algorithms. This would also determine its direct use with these algorithms, or if a specially 

constructed algorithm is necessary. No baseline algorithm was chosen as the focus is on discovering which 

algorithm responds most positively and be used as the stacking model in Experiment 2. To this end, the 

precision generated with and without the adjacency information is compared. 

 

Result: None of the algorithms achieved the 50% mark on AA, WMP and WMR. Expectedly, the performance 

when no adjacency information is used will be higher for AA and WMR since no penalizations were conducted 

when mispredictions occur. Nevertheless, DL, GL and NB increased in WMP when adjacency information is 

used but this is not true for DT. WMP provides the average of correct predictions of positive classes. This is 

very relevant to this study as the dataset consists more of this class and the focus is to correctly predict it. The 

result shows DT is not suitable for this type of side information, recording the lowest WMP (9.79). NB yield 

the highest value (30.07) for WMP, hence, is the most suitable when working with adjacency information. This 

is followed by GL (28.45) and DL (27.08). With none reaching 50% of performance, this shows a gap exists 

to be filled. ARMSE for NB, GL and DL do not differ considerably with or without adjacency information 

employed, but is highest for DT, supporting its unsuitability for adjacency information. Due to space 

limitations, this paper only displays selected confusion matrices as presented in Table 9 till 12. 

 

Table 9. Confusion matrix for NB without adjacency information 
 

 Actual  

  Extremely 

Severe 
Severe Normal Moderate Mild Precision 

Prediction 

Extremely 

Severe 
48097 19263 21674 29622 9069 37.66% 

Severe 31 19 41 37 9 13.87% 

Normal 23373 18957 45662 32276 17011 33.26% 

Moderate 11934 11437 21655 20459 16418 24.98% 

Mild 4871 3181 4841 7026 10285 34.05% 

 
Recall 54.47% 0.04% 48.64% 22.88% 19.48%  

 

Table 10. Confusion matrix for DT without adjacency information 
  Actual  

  Extremely 

Severe 
Severe Normal Moderate Mild Precision 

Prediction 

Extremely 

Severe 
23681 14922 4766 11342 9620 36.81% 

Severe 2650 5006 3244 2486 1610 33.38% 

Normal 988 1452 1611 1523 836 25.13% 

Moderate 10797 14167 16128 24297 10394 32.06% 

Mild 36 32 22 36 32 20.25% 

 
Recall 62.07% 14.07% 6.25% 61.23% 0.14%  
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Table 11. Confusion matrix for NB with adjacency information 
  Actual  

  Extremely 

Severe 
Severe Normal Moderate Mild Precision 

Prediction 

Extremely 

Severe 
9486 3683 3991 6407 6544 31.50% 

Severe 35302 17408 25300 26939 10061 15.14% 

Normal 1686 2897 10433 4101 1563 50.45% 

Moderate 39847 27524 50204 49111 33499 24.53% 

Mild 1985 1345 3945 2862 1125 9.99% 

 Recall 10.74% 32.93% 11.11% 54.92% 2.13%  

 
 

Table 12. Confusion matrix for DT with adjacency information 
  Actual  

  Extremely 

Severe 
Severe Normal Moderate Mild Precision 

Prediction 

Extremely 

Severe 
11 34 11 6 6 16.18% 

Severe 27002 19005 6229 16538 11648 23.63% 

Normal 10808 16387 19123 21662 10452 24.38% 

Moderate 0 0 0 0 0 0.00% 

Mild 331 153 408 1478 386 14.01% 

 Recall 0.03% 53.42% 74.20% 0.00% 1.72%  

 

 
Figure 5. Adjacency vs. None 

 

Experiment 2: Stacking vs. No stacking (Figure 6) 

The aim is to understand the adjacency information’s applicability to both predictive strategies in 

producing a good performance. The outcome can help researchers to decide on the more suitable strategy when 

dealing with the proposed adjacency information. Here, stacking was used to represent the multiple algorithms 

strategy. From Experiment 1, NB was selected as the stacking learner while GL and DL as base learners; DT 

is excluded due to its unsatisfying performance. On this account, each performance metric of individual 

learners is contrasted against stacking them together. 

 

Result: The stacking approach churned the highest ACC, WMR and WMP results. Besides, it resulted in low 

ARMSE. Overall, stacking performed better than the learners running individually on all fronts. This indicates 

using a stacking design of the strongest learner as the stacking learner and lesser strong learners as base 

learners, simultaneously removing unsatisfying learners helps to improve performance. Devising a different 

stacking design may extend performance, hence, an open research opportunity. Also, we hypothesize tweaking 

the penalization system can further enhance performance. Penalization system differs from domain to domain. 

In this study, the penalization system relies on the distance between classes to train the underlying algorithms 

and is quite strict. Relaxing this or focusing on a different aspect of penalization besides distance may boost 

performance. 
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Figure 6. Stacking vs. No Stacking 

 

Experiment 3: Heterogeneous vs. Homogeneous models (Figure 7) 

The aim is to ascertain if the adjacency information will respond positively to stacking with either 

homogeneous or heterogeneous models. A homogeneous model consists of a single algorithm run in multiple 

instances whereas a heterogeneous model has numerous algorithms jointly stacked. We used the stacking 

design proposed in Experiment 2 to test for a heterogeneous model. NB, being the best algorithm, was chosen 

for the homogeneous model. We also tested the performance of these two models when adjacency information 

is present. 

 

Result: Heterogeneous model obtained better results than the homogeneous model with or without adjacency 

information, except for AA where the heterogeneous model achieved 26.14 and the homogeneous model 

superseded at 26.68. In this predominantly positive class dataset, leveraging on the strength of many has 

resulted in more mispredictions during converging. Nevertheless, NB is known to score well in accuracy. Thus, 

the homogeneous model does not inherit the weaknesses of the other algorithms. Predominantly, all ARMSE 

values produced are closely similar, indicating the comparable ability of both models. Reducing ARMSE is a 

possible research focus. 

 

3. CONCLUSION 

In conclusion, improving performance in multi-target prediction using adjacency information is 

promising. Predicting DAS’ severity level is a domain that could benefit from this notion. In this work, we 

have studied side information for MTP in the form of a cost matrix that penalizes incorrect prediction of 

severity levels regarding DAS based on expert knowledge. We have also collected a proprietary labelled dataset 

of severity levels on depression, anxiety and stress based on DASS-21 from 270,322 respondents in Malaysia. 

Additionally, we have defined a cost-sensitive multi-target prediction method and finally, we have conducted 

an empirical study on the prediction performance when adjacency information in the form of cost matrix is 

used. We discovered that the adjacency information can be used with existing machine learning algorithms and 

a study to further improve the performance is necessary. The best performing algorithm to be used with this 

adjacency information is NB and the worst is DT. Also, a stacking strategy of heterogeneous algorithms can 

obtain better performance compared to individual algorithms when it was designed to comprise of different 

types of strong learners and exclude unsatisfying learners. The area of side information in MTP is bound to 

grow further with more new applications and uses are found. 

 

 
Figure 7. Heterogeneous vs. Homogeneous models 
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