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HaptiTemp: A Next-Generation Thermosensitive
GelSight-like Visuotactile Sensor
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Abstract— This study describes the creation of a new type of com-
pact skin-like silicone-based thermosensitive visuotactile sensor
based on GelSight technology. The easy integration of this novel
sensor into a complex visuotactile system capable of very rapid
detection of temperature change (30°C/s) is unique in providing a
system that parallels the withdrawal reflex of the human autonomic
system to extreme heat. To the best of authors’ awareness, this is
the first time a sensor that can trigger a sensory impulse like a
withdrawal reflex of humans in robotic community. To attain this,
we used thermochromic pigments color blue, orange, and black
with a threshold of 31°C, 43°C, and 50°C, respectively on the gel
material. Each pigment has the property of becoming translucent
when its temperature threshold is reached, making it possible to stack thermochromic pigments of different colors
and thresholds. The pigments were air-brushed on a low-cost commercially available transparent silicone sponge. We
used MobileNetV2 and transfer learning to simulate tactile preprocessing in order to recognize five different objects. The
new thermosensitive visuotactile sensor helped to achieve 97.3% tactile image classification accuracy of five different
objects. Our novel thermosensitive visuotactile sensor could be of benefit in material texture analysis, telerobotics, space
exploration, and medical applications.

Index Terms— thermochromic pigment, visuotactile, thermosensitive

I. INTRODUCTION

ALTHOUGH psychologists often state that vision is the
main way humans obtain information from the environ-

ment [1], when visual perception is impaired, haptic perception
is the natural recourse [2]. Even if vision is not impaired,
the sense of touch often works in conjunction with visual
perception. In this paper, this combination of vision and touch
is termed visuotactile. Research into visuotactile perception
dates back to the 18th century [3] and is increasingly becoming
a multidisciplinary field of study not only by philosophers
and psychologists but also by engineers, technologists, and
roboticists in the fields of haptics, tactile robotics, machine
vision, and artificial intelligence [4]–[7].

A visuotactile sensor is similar to a flexible mirror that con-
verts physical contact or pressure distribution on the reflective
layer into a tactile image that can be seen or captured by a
camera [7]. Tactile images produced by a visuotactile sensor
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can be analyzed in real-time to study tactile forces such as
slip, shear, and torque and can also be recorded and stored
for further processing and analysis. These tactile images can
be used for many purposes such as metrology, 3D image
reconstruction, and object recognition or classification. The
earliest known visuotactile sensor was not used for the hand
but for the foot. It is known as the pedobarograph developed by
Chodera et al. in the 1950s to 1970s [8]–[10]. Pedobarograph
uses elastic foil on top of a transparent plate with a camera on
the other side on which a human can stand or walk. The plate
is illuminated on its side, and the light is diffused by Total
Internal Reflection (TIR). Foot pressure distribution as the
foot presses the elastic foil creating different light intensities
reflected through the plate can be recorded for posture and
gait analysis [10], [11].

The first miniature pedobarograph-like visuotactile sensor
fitted on a robotic arm was reported during the 1960s at
the MIT lab [12]. Two prototypes were developed. The first
one is by Kappl in 1963 that used a polyurethane rubber
as photoelastic material for a pattern generator similar to
a polariscope. Moreover, in 1966, Strickler and Sheridan
introduced a visuotactile sensor with a flexible mirror that
produced high contrast optical stress patterns and was used
for a remote manipulator.

During the 1980s, high-resolution visuotactile sensors were
developed. Schneiter and Sheridan from MIT [13] demon-
strated in 1984 an optical touch sensor that has a flexible
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Fig. 1. Activation of thermosensitive GelSight-like sensor with UV
markers and thermochromic reflective layer for mechanical response:
(a) UV LEDs off, (b) UV LEDs on, (c) flow vector arrows showing shear
force [46], and (d) flow vector arrows showing torque or twisting force
[46].

material with reflective coating and uses optical fiber tech-
nology. This optical touch sensor has 2100 sensitive points
per square inch resolution. On the other hand, Tanie et
al. from Japan in 1984 developed a small-high resolution
pedobarograph-like tactile sensor using pressure-optical con-
version technique, and has a 32 x 16 phototransistor array
[14]. Tanie et al. improved their design using Charged Coupled
Device (CCD) camera and can be used to capture the precise
profile of 3D objects [15]. In 1988, Begej developed another
CCD camera-based visuotactile sensor that focused not only
on planar but also on finger-shaped visuotactile sensors for
robots [16]. Begej’s sensors operate on TIR to produce a gray-
scale image of the contacted object.

Tanie et al. developed three versions of finger-shaped vi-
suotactile sensors during the 1990s. Different hemispherical
shapes with diameters of 54 mm [17], 32 mm [18], and 20 mm
[19] were developed. Moreover, during the mid-1990s, Ohka
et al. developed 3-axis visuotactile sensors that use different
kinds of feeler arrays to detect 3-axis force components [20],
[21]. In 2008, A biologically inspired visuotactile sensor,
known as TACTIP [22], with artificial papillae similar to
column feelers was developed in Bristol Lab, UK.

Instead of using feelers, the use of markers was introduced
in the visuotactile sensors at the start of the 21st century. A
human-fingertip-like sensor with deformable membrane and
skin markers was introduced in Harvard Robotics Lab in
2000 [23]. A year later, Tachi Lab in Japan introduced a
visuotactile sensor, known as the GelForce, that can measure
3D vector distribution. GelForce has a transparent elastic body
with two layers of bead marker matrices (red and blue layers)
and a camera at the bottom. The applied force is calculated
based on the movements of the markers captured by the
camera [24]. A finger-shaped GelForce with a thermosensitive
layer was reported in 2011 [25], [26]. In 2019, Sferenzza
et al. developed a visuotactile sensor with fluorescent green
spherical markers randomly embedded in the flexible material

Fig. 2. Different silicone shape configurations.

to analyze tactile forces inferred from the movement of the
markers [27]. Moreover, Lin and Wiertlewski introduced in
2019 a visuotactile sensor with embedded semitransparent
two-color dye markers instead of beads inside the flexible
material to analyze tactile forces from gel deformation when
contacted by an object [28].

A visuotactile sensor that fuses vision and tactile sensing
to a high degree of inter-modal fusion was developed by
Johnson and Adelson in 2009, known as the GelSight sensor.
It is a high-resolution miniature pedobarograph-like sensor
capable of capturing microscopic surface geometry as small
as 2 microns with sensitivity and resolution exceeding that
of the human fingertips [29]. The GelSight sensor is an ideal
visuotactile sensor because of its high spatial resolution in
vision [30] and high sensitivity in tactile [31]. This visuotactile
sensor has proven its worth in a wide range of applications
from haptics, robotics, and computer vision. A comprehensive
literature review on visuotactile sensors with emphasis on
GelSight sensor is reported in [7].

The original GelSight sensor of 2009 was introduced as a
“retrographic sensor” [29] – a flexible material with a sensitive
reflective coating on top of a transparent plate on which a
tactile image of the contacted object can be seen at the back of
the supporting plate. This retrographic sensor with controlled
lighting and camera was used to get high-resolution 3D image
reconstruction for metrology and microgeometry analysis. It
was Jia et al. who introduced the name “GelSight sensor” [32]
to the whole visuotactile sensor setup presented by Johnson
and Adelson in 2009.

Fig. 3. Capturing visuotactile information.
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Fig. 4. The thermosensitive visuotactile sensor structure is similar to
GelSight sensor structure but has a flexible material with thermosensi-
tive reflective coating and uses a machine vision camera for on-board
tactile image classification and analysis.

Though the first application of the GelSight sensor is in
metrology, especially in the 3D image reconstruction, the
inventors reported that it could be used as a skin model, and
a tactile sensor for robotics. In 2014, Li et al. first used the
GelSight sensor as a tactile sensor of a robotic hand to localize
and manipulate small parts [33]. GelSight sensor applications
can be categorized into three major groups: 1) tactile 3D
image reconstruction for metrology, 2) tactile/haptic sensing,
and 3) tactile image recognition or classification. The majority
of reported GelSight sensor applications are in the field of
tactile sensing in robotics, and tactile image recognition or
classification [7]. This study will only focus on our GelSight-
like visuotactile sensor for tactile sensing and tactile image
recognition applications.

Current GelSight sensors are created in the lab and can be
divided into two categories: with and without permanent grid
dots or markers [34]. Permanent markers in the form of dots or
triangles on the reflective coating of the GelSight sensor were
introduced by Yuan in 2014 [35]. The motion of markers as the
gel deforms when contacted by an object can be tracked using
an optical flow algorithm or flow vector arrows to deduced
normal force, shear force, and slip [35], [36]. GelSight sensor
used in the measurement of microgeometry [30], surface
texture [29], lump detection [32], and tactile mapping and
localization [37] do not have grid dots or permanent markers
while GelSight sensor with permanent markers was utilized in
the measurement of shear and slip [30], [36], [38]–[41].

In most recent GelSight related work [36], [42]–[44], with
markers could become an obstruct in the image recogni-
tion/classification. The permanent markers in the reflective
coating of the GelSight sensor could be treated as noise in 2D
image processing that might conceal some important image

Fig. 5. Thermosensitive visuotactile sensor using OpenMV Cam H7
plus with WiFi module: (a) front view and (b) bottom view.

features that are helpful for object recognition [7]. Permanent
markers might negatively affect some important 2D image
features, especially if these markers are more significant than
the image features [36]. This issue might be observed in the
images presented in [42]–[44] where the GelSight sensor with
permanent markers was used in textile characterization and
classification. Moreover, if the application is in metrology, the
capability of the GelSight sensor to measure contact surfaces
heightmap is affected by the density of permanent markers
[40]. To address the issue with permanent markers, we can
use UltraViolet (UV) markers. In our previous studies [34],
[45], we demonstrated that UV markers could be incorporated
into the gel, as shown in Fig. 1. By using UV LEDs, we
can make the UV markers visible. Without UV light, the UV
markers are invisible and the retrographic image from the
GelSight-like sensor can be used in image recognition and
classification as shown in Fig. 1(a). When the UV LEDs are
on, the UV markers become visible as shown in Fig. 1(b), and
we can visualize slip or shear, and torsion using an optical
flow algorithm and vector arrows to track these markers as
shown in Fig. 1(c) and Fig. 1(d). The use of switchable UV
markers mitigates the negative effects of permanent markers
that may hide some important image features that might be
helpful for object classification through image processing,
especially if these markers are bigger than the image features.
Our switchable UV markers helped us to create a unified
visuotactile sensor that can be used to study tactile forces
from mechanical deformation of the gel, and tactile image
recognition/classification using one elastomeric slab [34].

Moreover, the curing time in creating a clear silicone
gel can be long in laboratory conditions. Therefore, in our
previous studies [34], [45], [46], we managed to come up
with some alternatives for the above drawbacks. We reported
how to create a low-cost Gelsight sensor using a commercially
available cosmetic sponges, as shown in Fig. 2, that come in
different shapes and sizes. We can cut the silicone sponge to
any size we need using a sharp blade or scalpel. Long hours
of curing time of about six or seven hours [35], the need for
vacuum pump for degassing [35], [47]–[49] to remove bubbles
within a gel, and the complex process related to making clear
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Fig. 6. Thermochromic materials. (a)i. Inactive SFXC thermochromic liquid crystal thermocolor sheet [53], (a)ii. Sprayable SFXC liquid crystal
ink [54], (b) inactive color-changing thermochromic pigment trial pack [55], (c) a black thermochromic pigment, (d) three different thermochromic
pigments from HALI CHEMICAL CO.,LTD. [56], (e) SFXC thermochromic liquid crystal thermocolor sheet [53], (f) thermochromic pigments in Fig.
6(b) with 27°C threshold were activated, (g) the human body temperature which is above 31°C activates the thermosensitive pigment making it
white to semi-transparent. The rest of the color changes can be found in a test video here [57], and (h) The actual thermosensitive visuotactile
sensor subjected to different temperature gradients using a metal ruler heated at one end.

elastomer slab can be skipped using commercial off-the-shelf
(COTS) clear silicone cosmetic sponge with Shore A values
of 2.5 and 7 as reported in [45]. The 8 mm thickness of COTS
clear silicone we used in this study might be considered thicker
than the generally 1 mm to 2 mm used in current GelSight
sensor structures [35] but might have a good advantage in
sensing normal force because it has more room for downward
pressure. The COTS elastomer we used is thinner compared to
the original GelSight’s elastomer presented in this video [50].

The tactile or haptic sensing capability of the GelSight
sensor can be further improved to make it a stand-alone fully
Haptic Primary Color visuotactile sensor; this is illustrated
with a block diagram shown in Fig. 3 and the schematic
diagram of our prototype as shown in Fig. 4 that shows
thermochromic material to measure temperature, UV markers
for mechanical deformation (force) tracking, and elastic gel
or elastomer to measure vibration. Our actual prototype is
shown in Fig. 5. Tachi et al. theorized that haptics, like
light, can be reduced to three components and named them
as Haptic Primary Colors (HPC) known as force, vibration,
and temperature corresponding to tactile and thermal sensation
receptors [51]. GelSight sensor has been used in metrology,
object or texture recognition or classification, and tactile forces
analyses [6], [7], [29], [44]. It has been reported that aside
from force, GelSight sensor can sense vibration such as human
pulse [50]. We demonstrated a pilot study of a compact and
unified visuotactile sensor made from a commercially avail-
able cosmetic sponge with UV markers and thermochromic
pigments on the reflective layer to sense force, vibration, and
temperature [46]. In this, the mechanical deformation of the
gel can be tracked using UV markers and an optical flow
algorithm to sense tactile forces. Using this system, we could
measure the frequency using a blob detection algorithm and

count the number of blobs produced by a contacted object per
unit time. Moreover, we demonstrated that we could easily
sense temperature using the hue value by using different colors
and layers of thermochromic pigments with varying thresholds
of temperature on the reflective coating.

This thermosensitive visuotactile sensor is the first mono-
lithic elastomer temperature sensor and can be used to infer
tactile forces based on the mechanical deformation of the gel.
Moreover, none of the visuotactile sensors have a different
thermosensitive reflective coating to study rapid temperature
change (30°C/s), which can mimic the rapid temperature
changes equivalent to the withdrawal reflex of humans. Using
an embedded OpenMV Cam H7 Plus [52] camera allowed
us to easily implement sophisticated machine vision that far
exceeds the capabilities of conventional passive camera-based
systems.

In this paper, we propose three novel improvements to the
current GelSight sensor as follows:

1) thermosensitive reflective coating for temperature sensing
using different layers of thermochromic pigments with dif-
ferent colors and temperature thresholds;

Unlike the thermosensitive liquid sheet that is not elastic
used in finger-shaped GelForce [25], [26], we used different
layers of thermochromic pigments with different colors and
thresholds painted as the reflective coating of elastic clear
silicone to make a low-cost GelSight-like sensor with tem-
perature sensing capability. The use of pigment makes the
whole reflective layer thermosensitive and compliant as the
gel deforms as shown in Fig. 1.

2) Recognize tactile images using machine vision by
OpenMV Cam H7 Plus camera; and

Current GelSight sensors use an ordinary passive camera
such as a webcam and raspberry pi camera. All the image
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processing with or without the help of artificial intelligence
was done using a desktop or laptop computer. Thus, we present
a more compact and unified stand-alone solution in this study
using OpenMV Cam H7 Plus camera for on-board tactile
image recognition. The OpenMV Cam H7 Plus is a small,
low-power microcontroller board that allows you to implement
applications using machine vision in the real world easily. It
can be programmed in high-level Python instead of C/C++,
making it easier to deal with the complex outputs of machine
vision algorithms and work with high-level data structures.
This camera allows us to take pictures and video on external
events or execute machine vision algorithms to figure out
how to control its Input/Output (I/O) pins. This camera has a
built-in STM32H743II ARM Cortex M7 processor capable of
Edge Impulse integration for easy training of TensorFlow Lite
Models. TensorFlow Lite allows us to do image classification
and segmentation models on board the OpenMV Cam. With
TensorFlow Lite support, we can easily classify complex
regions of interest in view and control I/O pins [52].

3) wireless connectivity.
We also incorporated a WiFi module for wireless connec-

tivity, making it untethered and portable. The actual cube
prototype used in this study with a side length of 4 cm as
shown in Fig. 5.

This paper is structured as follows: design considerations
are discussed in section II, evaluation of results in section III,
followed by conclusion and recommendation in section IV.

II. DESIGN CONSIDERATIONS

The visuotactile sensor we developed is based on GelSight
sensor technology that has four essential components as de-
fined by Jia et al. [32]: 1) clear elastomer with a reflective coat-
ing on one side, 2) transparent plate support for the elastomer,
3) controlled and uniform lighting usually from Light Emitting
Diodes (LED), and 4) camera to capture the retrographic
image [29], [30]. Instead of using ordinary pigments, such as
bronze flake or aluminum flake pigment for the semi-specular
coating, and fine aluminum powder for the matte coating as
discussed in [36], we introduced thermochromic pigments to
make the reflective coating capable of sensing temperature.
Moreover, instead of using an ordinary camera or webcam,
we used machine vision OpenMV Cam H7 Plus camera for
tactile image recognition within the sensor module. Details
on these novel improvements in the reflective coating and the
use of machine vision camera are discussed in the following
sections. The schematic of our thermosensitive visuotactile
sensor structure is shown in Fig. 4.

A. Elastomer slab with a thermosensitive reflective
coating and UV marking

In our previous studies [34], [45], as well as in the pre-
vious section of this paper, we discussed the advantages of
using a commercially available cosmetic sponge. We also
demonstrated the use of switchable UV markers that can be
turned on or off using UV LEDs. However, our previous
studies have been limited to study object recognition and
tactile forces visualization using flow vector arrows. In this

study, for the first time in a visuotactile sensor like GelSight
sensor is introduced with thermosensitive reflective coating
using thermochromic pigments that change colors when a
certain temperature threshold is reached.

There are different types of thermochromic materials, as
shown in Fig. 6. Materials in the top row are inactive state
of (a) thermochromic liquid crystal, (b) color-to-color ther-
mochromic pigments, (c) color-to-translucent thermochromic
pigment, and (d) multiple color-to-translucent thermochromic
pigments with different temperature thresholds as shown in
Fig. 6(a), Fig. 6(b), Fig. 6(c), and Fig. 6(d), respectively.
The bottom row of Fig. 6 are the activated state of ther-
mochromic liquid crystal sheet, color-to-color thermochromic
pigments, color-to-translucent thermochromic pigment, and
multiple color-to-translucent thermochromic pigments with
different temperature thresholds as shown in Fig. 6(e), Fig.
6(f), Fig. 6(g), and Fig. 6(h) respectively. Thermochromic
materials can be in the form of thermochromic liquid crystals
sheet [53] or sprayable ink [54], as shown in Fig. 6(a)i.
and Fig. 6(a)ii. respectively. Thermosensitive liquid crystal
sheets were used by finger-shaped GelForce [25], [26]. Ther-
mochromic liquid crystals are thermosensitive materials that
are water-based solutions and cannot be dissolved in solvents
[54]. Therefore, we used thermochromic pigments because
they can be dissolved in silicone solvent, making it possible
to spray on the clear silicone gel material using an airbrush.
There are two types of commercially available thermochromic
pigments. The first type changes from one color to another
color [55] as shown in Fig. 6(b) with an activated state as
shown in Fig. 6(f). The orange leaf color of Fig. 6(b)i. will
turn into a lemon haze color when activated, as shown in Fig.
6(f)i. The grass green color of Fig. 6(b)ii. will turn into a
neon yellow color when activated, as shown in Fig. 6(f)ii.
The purple haze color of Fig. 6(b)iii. will turn into a neon
magenta color when activated as shown in Fig. 6(f)iii. The
second type of thermochromic pigment changes from its base
color to translucent or semi-transparent when it reaches the
thermal threshold, as shown in Fig. 6(c) and its activated
state as shown in Fig. 6(g). Binary temperature sensing of
either hot or cold can be demonstrated using a single layer
of thermochromic pigment. In this example, a black pigment
with a 31°C temperature threshold turns white to translucent
whenever the sensor is in contact with the human body.

Fig. 7. LED lighting for the sensor used 1.8mm ultra-bright white and
UV LEDs arranged alternately: (a) white LEDs are on illuminating a cube
box configuration with a side length of 4 cm, (b) white LEDs are on
in a circular configuration, (c) 1.8 mm UV LED’s are on illuminating a
rectangular box, and (d) UV Markings on the reflective coating become
visible in the presence of UV light.
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Because of the translucent property of the second type of
thermochromic pigments when its the temperature threshold
is reached, different pigment layers of different colors with
increasing thermal thresholds can be put on top of the other
to sense different temperature ranges as shown in Fig. 6(d)
and Fig. 6(h) respectively.

In this study, we used three different thermochromic pig-
ments bought from HALI CHEMICAL CO.,LTD. [56]. We
created a sensor with three different layers of thermochromic
pigments with different thresholds, as shown in Fig. 6(d). We
used blue color with a temperature threshold of 31°C closest
to the clear silicone slab, then an orange pigment with a tem-
perature threshold of 43°C on top of blue pigment, followed
by a black pigment with a 50°C temperature threshold. Each
thermochromic pigment becomes semi-transparent whenever
its temperature threshold is reached, making it possible to
make a gradient change in color. When the threshold of
blue pigment is reached, it becomes transparent to show the
color of orange on top of it. The same is the case when the
temperature exceeds the threshold of orange that it becomes
black. The layering order of increasing temperature threshold
from the clear gel is very important to sense a wide range
of temperatures. When our sensor with different layers of
thermochromic pigments was placed on top of a metal ruler
that was heated at one end, the sensor shows different colors,
as shown in Fig. 6(h), showing a gradient temperature of the
metal ruler. Please note: this is just a visual representation of
temperature sensitive colors. This feature has been carried out
to design our cover temperature sensitive visuotactile sensor.
The automation is presented with characteristic curves to
demonstrate temperature gradient in section III. The rest of
the color changes can be found in a test video here [57].

B. Lighting

Physical contact to image conversion is an important aspect
of the visuotactile sensor. There is a need for controlled and
uniform lighting to capture tactile or texture image on the
flexible material through the deformation of the reflective
coating when contacted by an object. Typical structures and
features in tactile image sensors employing a camera with
discussions about the conversion method from physical contact
to light signal have been discussed in [58].

In this study, we used 2 mm clear acrylic plates as our
waveguides to produce lighting similar to the structure of
fingertip GelSight presented in [33]. A cubic structure used in
this study is shown in Fig. 7a. Moreover, round and rectangular
configurations that were made to accommodate other silicone
shapes and sizes without cutting the gel are shown in Fig.
7(b) and Fig. 7(c), respectively. We mounted alternating 1.8
mm white and UV LEDs in all the structures. White LEDs are
on in Fig. 7a and b, while UV LEDs are on, as shown in Fig.
7c. Invisible UV markings on the reflective coating become
visible in the presence of UV light, as shown in Fig. 7d.

White LEDs and UV LEDs can be switched on or off
manually using a simple switch or electronically using a
microcontroller. When our prototype is mounted on a robotic
arm or mounted remotely, the switching of white or UV LED’s

can be done electronically. The OpenMV Cam H7 Plus camera
that we used in this study has a built-in image processor and
General-Purpose Input/Output (GPIO) pins that can be used
for LED control.

Since this study focuses on haptic sensing and tactile
image classification, we have not used multicolor LEDs like
the original GelSight sensor for differentiated illumination in
getting the heightmap for 3D image reconstruction. In the near
future, we will explore the possibility of getting the heightmap
of a tactile image using one color lighting because according to
Yuan [35], there are two ways to get differentiated illumination
direction using a static camera: 1) switching different LEDs
positioned at different locations and take separate pictures of
the same scene, and 2) using multicolor LEDs simultaneously
and take a single picture; the reflection of different color LEDs
can be known by taking different channels of the color image.

C. Machine Vision Camera
We define passive camera as a device that captures photos

or videos without any image processing within the sensor
module. Webcam and raspberry pi camera are passive cameras.
Prototypes from previous studies used Logitech C310 and
C270 webcams, while the Gel-Slim [39] configuration used
raspberry pi camera.

In contrast with a passive camera, a machine vision camera
has a built-in GPIO pins and embedded image processor
with machine vision library that can do image processing
and image classification within the camera module without
the need of external computer. We can make a stand-alone
GelSight-like sensor capable of tactile forces analysis and
tactile image classification by replacing the webcam with a
machine vision camera. There are so many machine vision
camera modules available in the market, such as Sipeed MAix
Go [59], M5StickV [60], Kittenbot Koi AI [61], Jevois [62],
Huskylens [63], Google AIY vision kit [64], OpenCV AI
Kit (OAK) [65], and OpenMV Cam H7 Plus [52]. We have
chosen to use the OpenMV Cam H7 Plus, as shown in Fig.
5a, because of its small size and has WiFi module that can
be easily attached to it as shown in Fig. 5b. To the best of
our knowledge, this is the first GelSight-like sensor that uses a
machine vision camera. The OpenMV Cam H7 Plus lens focus
can be adjusted manually by rotating the lens cover. Unlike
in the previous GelSight sensor prototypes, our visuotactile
sensor, as shown in Fig. 5, has a detachable supporting plate
for the silicone material so that the machine vision camera
can be exposed. Therefore, the camera itself can be used for
usual applications in image capture, image feature analysis,
and pattern recognition when the visuotactile sensor gel is
detached. This modular feature of our visuotactile sensor adds
to the novelty and flexibility in our use of a machine vision
camera.

D. Software
The OpenMV integrated development environment (IDE)

that uses MicroPython programming language is the premier
IDE for use with OpenMV Cam. It features a powerful
text editor, debug terminal, and frame buffer viewer with a
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Fig. 8. Temperature sweep test results. (a) Less than 31°C pigment threshold is dark blue. (b) The blue pigment becomes transparent to show
the orange pigment on top of it. (c) When 43°C threshold of the orange pigment is reached, it becomes transparent to show the black pigment on
top of it. (d) When the topmost pigment that has the highest threshold of 50°C is activated, it starts to become transparent. (e) When The TEG
temperature is way beyond the highest pigment threshold of 50°C, the reflective coating of our sensor becomes transparent enough to show the
markings on TEG. The rest of the color changes can be found in a test video here [57]

Fig. 9. L,A,B mode values and thermistor reading in the temperature
sweep with 23 seconds elapse time covering all the pigment thresholds.

histogram display, and built-in machine vision code examples
[66]. Using OpenMV IDE, we build a dataset and upload it to
Edge Impulse [67] in the cloud. We used transfer learning with
MobileNetV2 to generate a TensorFlow Lite Convolutional
Neural Network (CNN) that runs on board with the OpenMV
Cam H7 Plus camera. A step-by-step tutorial on how to do
image classification using OpenMV IDE and Edge Impulse
can be found in these links: [68] and [69].

III. EVALUATION OF RESULTS

Without the silicone material, the machine vision camera
can be used for the usual applications of capturing images.
By combining the flexible material with reflective coating
with a machine vision camera, the setup becomes a compact
and unified visuotactile sensor that can be used for tactile

Fig. 10. HaptiTemp vs thermistor response. LAB mode values vs
thermistor reading during the 6.5 seconds temperature sweep test. TEG
supply is 3.6V DC supply.

forces analysis and image classification. We improved the
reflective coating that we introduced in our previous studies
[34], [45] by adding thermosensitive reflective layers on top of
the switchable UV markers. Activated UV markers are shown
in Fig. 7(d).

A. Temperature Sensing

We evaluated our sensor using TEG TES1-03102 15 mm
x 15 mm Peltier Thermo Electric Generator (TEG). We per-
formed a temperature sweep test and sensor response time
test. Details on these two tests are discussed in the following
sections.
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Fig. 11. Response time. (a) The cold plate of TEG shows a dark blue color when pressed to the sensor indicating below the 31°C threshold of the
blue thermochromic pigment. (b) When the TEG was flipped pressing the hot-side to the sensor, the reflective layer changes to semi-transparent
indicating that the 50°C pigment threshold has been exceeded. The part name of the TEG can be seen when all the temperature thresholds have
been reached as shown in Fig. 11(b). The response graph of cold-to-hot is shown in Fig. 11(c). Moreover, hot to cold response time pictures can
be seen from Fig. 11(d) and Fig. 11(e) respectively and hot-to-cold data were plotted as shown Fig. 11(f). The ticks ms is the machine time in
milliseconds showing the elapsed time between two events. The rest of the color changes can be found in a test video here [57].

1) Temperature sweep

We used a 2.4V DC power supply using two rechargeable
dry cells to heat the TEG slowly. Using two identical TEGs,
one has a thermistor and the other connected to our sensor, we
recorded the temperature reading and the LAB mode values,
respectively, as the TEGs temperature rises. The temperature
sweep time took 23 s from 23°C to greater than 55°C.

The temperature test results captured by our sensor are
shown in Fig. 8. As the temperature increases, the color of
the reflective coating changes. The rest of the color changes
can be found in a test video here [57]. The camera captures
the color change in the reflective coating and with the use
of image processing, we can infer the temperature of the
contacted object. The colors of an image can be analyzed
using different color spaces such as Red-Green-Blue (RGB),
Hue-Saturation-Value (HSV), and Lightness*a*b* (LAB). The
finger-shaped GelForce that can sense temperature [25], [26]
and the thermosensitive visuotactile sensor in our previous
study [46] used the HSV color space and OpenCV library
that has a builtin function that can easily access the HSV
values of a given Region-Of-Interest (ROI). In this study, the
machine vision camera we used processes image data in LAB
color space instead of HSV. The ‘L’ is the lightness value
ranging from 0 (black) to 100 (white), ‘A’ is the green-red
axis ranging from -128 to +128, and ‘B’ is the blue-yellow
axis ranging from -128 to +128 [70], [71]. The lightness value
in the LAB color space is the amount of white or black within
a given hue. We defined an ROI demarcated by a white line
as shown in Fig. 8 and Fig. 11 and recorded the L, A, and B

mode values or the dominant color values in the LAB color
space within the ROI. The ROI area can be changed and move
across the frame to select the part of the tactile image where
the temperature is to be measured. In this study, we fixed
the position of the ROI in the middle of the frame. Knowing
the temperature threshold of thermochromic pigments, we can
estimate the temperature of the object or on which temperature
range it belongs as it touches our sensor. We recorded the L, A,
B mode values and superimposed the thermistor temperature
reading as shown in Fig. 9. It was reported in [26] that in order
for them to cover 15–45°C, the researchers have to use several
thermosensitive paints that have different temperature ranges
but their prototype has thermal measurement results range of
32°C-35°C only, similar to [25]. Whereas our sensor range
goes from 31°C-50°C.

Our sensor’s response graph, as shown in Fig. 9, presents
the temperature, and ‘L’ or the lightness value in the LAB
color space has direct proportionality with temperature change,
which can be used to estimate the temperature of the object
touching our sensor within the temperature range of 31°C-
50°C where ‘L’ has a linear relationship with temperature and
also corresponds to the minimum and maximum temperature
thresholds of the thermosensitive pigments of our sensor. Our
sensor has a wider temperature measurement range of 31°C
- 50°C as compared to the 32°C - 35°C range of finger-
shaped GelForce [25], [26]. Instead of relating temperature
as a function of hue like in our previous pilot study [46],
and finger-shaped GelForce, we relate our sensor’s temper-
ature measurement to the lightness value (‘L’) captured by
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Fig. 12. Classification results using the OpenMV Cam H7 Plus camera: a) blank result when there is no object touching the senor, b) hex end of a
precision screwdriver, c) back of UK one-pound coin, and the letters X, O, I letters from a cookie stamp are shown in d), e), and f) respectively. The
prediction results are shown below of each tactile image.

Fig. 13. Confusion Matrix and On Device Performance produced by
Edge Impulse.

our machine vision camera, as shown in Fig. 9. Thus, we
write the temperature measurement equation of our sensor as
temperature (T) as a function of lightness (L), as shown in Eq.
(1).

T = f(L) (1)

2) Response time
By supplying a 3.6V DC supply to the TEG, it heats up

faster compared to a 2.4V DC supply covering the same span
of L mode values in just 6.5 s instead of 23 s as shown in
Fig. 10. The thermistor has a slower response compared to
our sensor. The epoxy encapsulated NTC thermistor, similar
to what we used in the testing, has a response time of
19.54 s for temperature change 25°C to 41°C based on this
report [72]. We quantified the response time of our sensor by
flipping the TEG’s hot and cold plates and recording the time
on which our sensor’s reflective layer changes from blue to
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Fig. 14. Combined temperature sensing and image recognition test. Temperature reading and image recognition result is shown simultaneously.
(a) Blank or no object is pressed on the sensor, (b) a cold end of a hex screwdriver, (c) a hot end of hex screwdriver heated using TEG, (d) a cold UK
one-pound coin that has less than 31°C is pressed to the sensor, (e) the coin is heated using TEG and the coin temperature is within 31°C-43°C,
(f) coin temperature is within 43°C-50°C, and (g) coin temperature is greater than 50°C.

transparent. The “ticks ms” in Fig. 11 is the machine time in
milliseconds showing the elapsed time between two events.
We were able to measure a response time of 643 ms for cold-
to-hot and hot-to-cold. The rapid temperature response of our
visuotactile sensor is comparable to the less than one second
time withdrawal reflex response of the human autonomic
system to extreme heat [73]. Our sensor might give robots
the ability to react as humans and create thermosensitive soft
robots in the near future. The response time results of our
sensor are shown in Fig. 11. The response time test covers the
minimum thermochromic pigment threshold of 31°C until the
highest thermochromic pigment threshold of 50°C. The dark
blue color in the ROI, as shown in Fig. 11(a) and Fig. 11(e),
indicates that the blue thermochromic pigment is not activated,
and the temperature of TEG is less than the 31°C temperature
threshold of the blue thermochromic pigment. Moreover, Fig.
11(b) and Fig. 11(d) show that the thermochromic pigment
with a 50°C threshold has been activated making the reflective
layer of our sensor translucent. The rest of the color changes
can be found in a test video here [57].

3) Calibration
Based on the graph shown in Fig. 9, the ‘L’ is directly

proportional to the temperature reading of the thermistor. By
knowing the thermochromic pigment temperature thresholds,
we subtracted offset values to make the ‘L’ linearity graph
coincides with the thermistor response graph. The “geltemp”
reading in Fig. 8 is the corrected ‘L’ value of our sensor
corresponding to the thermistor reading. Maximum geltemp
deviation relative to the thermistor reading within 31°C-50°C
range is 3.75°C near the 31°C pigment threshold.

Knowing that the temperature and lightness value has a
linear relationship within the temperature range of 31°C-50°C,
we can write the calibration equation as

T = mL± C (2)

where (T) is temperature, (m) is the slope, (L) is the lightness
value, and (C) is the offset value.

B. Image Recognition

Using Edge Impulse and by following the video tutorial
given in [69], we were able to collect different tactile images
for our dataset, how to apply transfer learning to train a neural
network, and deploy the system to our OpenMV Cam H7
Plus camera. We used MobileNetV2 0.35 that uses around
296.8K RAM and 575.2K ROM with default settings and
optimizations. This model works best with a 96x96 input size
and supports both RGB and grayscale images. We used 20
training cycles during the transfer learning, 10 neurons in the
final layer. After transfer learning, we deployed the model to
our machine vision camera. According to [69], 30 images are
sufficient, yet we collected 40 image samples from each of
the five different objects: UK one-pound coin, hex end of a
precision screwdriver, and I, O, and X letters from a cookie
stamp. We also collected 40 images of the blank screen when
there is no object being touched by the sensor. We captured
a total of 240 images and uploaded them to Edge Impulse
cloud, which automatically divided them into 182 training
samples and 58 testing samples. The results of our tactile
image classification done using our machine vision camera
are shown in Fig. 12. The prediction results are on the top of
each tactile image.

After we processed all our data, we trained the neural net-
work using transfer learning. We used MobileNetV2 available
in Edge Impulse and achieved 97.3% accuracy during testing.
There was an error in classifying a ‘hex’ as an ‘o’. The
confusion matrix is shown in Fig. 13. Besides the confusion
matrix is the on-device performance measured on the OpenMV
Cam H7 Plus camera. The Edge Impulse makes a complete
package of the trained model ready to be deployed on a
machine vision camera.
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C. Combined Image Recognition and Temperature Test
Image recognition and temperature test can be done sepa-

rately as discussed in sections III.A. and III.B. but can also
be done simultaneously. We developed a unified application
that combined the algorithms for image recognition and tem-
perature sensing giving image classification and temperature
measurement results simultaneously in one image frame when
the sensor is contacted by an object. In the combined test,
we recorded the gel temperature when no object was pressed
to our sensor. The image recognition algorithm displays a
‘Blank’ result together with the gel temperature in the display
image frame, as shown in Fig. 14a. We pressed the cold
end of a hex screwdriver and the cold UK one-pound coin
to our sensor and recorded the results. We then heated the
end of a hex screwdriver, and UK one-pound coin using the
TEG, and pressed each one to the sensor. We did a cold and
hot test for the end of the hex screwdriver and a gradient
temperature test for the coin covering all the thresholds of
layered thermochromic pigments. The combined temperature
and image recognition test results are shown in Fig. 14.

D. WiFi Connection
Using the OpenMV WiFi module [74], the OpenMV

Cam H7 Plus camera can communicate wirelessly. It uses
ATWINC1500 network controller. Images in grayscale as
shown in Fig. 15(a) and RGB, as shown in Fig. 15(b), can be
transmitted via WiFi. There are two modes of operations: 1)
station mode, which is the default mode wherein the module
connects to an access point as a client, and b) the Access
Point (AP) mode wherein the module acts as a hotspot and can
accept connection from a client. The available WiFi hotspots
during the station mode scanning test of our machine vision
camera are shown in Fig. 15(c), and the IP address and the
OPENMV AP AP mode connection properties are shown in
Fig. 15(d). A video tutorial on how to configure as an access
point can be found in [75].

IV. CONCLUSION AND RECOMMENDATION

In this study, we presented a compact, GelSight-like sensor
with temperature sensing capability by using thermochromic
pigments in the reflective layer. Three layers of thermochromic
pigments with different colors and thresholds were painted on
one side of a clear low-cost, commercially available cosmetic
silicone sponge to make the reflective layer thermosensitive.
An OpenMV Cam H7 plus camera was used to record the
LAB mode values, and classify or recognize different tactile
images. Our test results show that the ‘L’ mode value in the
LAB color space recorded by our machine vision camera
shows a linear relationship with temperature. Moreover, we
were able to measure a response time of 643 ms for the cold-
to-hot and hot-to-cold response that covers 31°C to 50°C.
Moreover, our novel visuotactile sensor is capable of detecting
a rapid temperature changes (30°C/s). This feature could be
useful for soft robots to act equivalent to humans’ withdrawal
reflex in touching hot surfaces in search and rescue, industrial
applications, and space explorations. Furthermore, this next
generation thermosensitive visuotactile sensor would be useful

Fig. 15. Station mode, and AP mode WiFi connections. Images in
grayscale as shown in Fig. 15(a) and RGB as shown in Fig. 15(b) can be
transmitted via WiFi. The available WiFi during station mode scanning
test are shown in Fig. 15(c), and the IP address and the OPENMV AP
connection properties are shown in Fig. 15(d).

in future research on 3D image reconstruction in perception
not only haptic-based primary colors (force, vibration, and
temperature). Using the OpenMV Cam H7 plus machine vision
camera, a trained MobileNetV2 model using Edge Impulse
was deployed to it. A high success rate of 97.3% classification
accuracy on five different objects using their tactile images
was achieved in spite of a small dataset. This study demon-
strated that the current GelSight sensor technology could be
improved by providing temperature sensing capability using
thermochromic pigments on the reflective coating, onboard
tactile image classification, and wireless connectivity using a
OpenMV Cam H7 camera all in one sensor module.
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