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Abstract—Fast soil moisture content (SMC) mapping is neces-
sary to support water resource management and to understand
crops’ growth, quality and yield. Thereby, Earth Observation
(EO) plays a key role due to its ability of almost real-time
monitoring of large areas at a low cost. This study aimed to
explore the possibility of taking advantage of freely available
Sentinel-1 (S1) and Sentinel-2 (S2) EO data for the simultaneous
prediction of SMC with cycle-consistent adversarial network
(cycleGAN) for time-series gap filling. The proposed methodology,
first, learns latent low-dimensional representation of the satellite
images, then learns a simple machine learning model on top of
these representations. To evaluate the methodology, a series of
vineyards, located in South Australia’s Eden valley are chosen.
Specifically, we presented an efficient framework for extracting
latent features from S1 and S2 imagery. We showed how one
could use S1 to S2 feature translation based on Cycle-GAN
using S1&S2 time series when there are missing images acquired
over an area of interest. The resulting data in our study is
then used to fill gaps in time series data. We used the resulting
latent representations to predict SMC with various ML tools. In
the experiments, cycleGAN and the autoencoders were trained
with data randomly chosen around the site of interest, so we
could augment the existing dataset. The best performance was
demonstrated with random forest algorithm, whereas linear
regression model demonstrated significant overfitting. The exper-
iments demonstrate that the proposed methodology outperforms
the compared state-of-the-art methods if there are missing optical
and synthetic-aperture radar (SAR) images.

Index Terms—Agriculture, Sentinel-1, Sentinel-2, Generative
adversarial networks (GANs), unsupervised domain adaptation,
Soil Moisture, Machine Learning

I. INTRODUCTION

TODAY, more than ever, new technologies are released to
increase efficiency and productivity in agriculture due to

increasing food demands and decreasing freshwater sources.
One of the many industries embracing precision agriculture
solutions using big data analytics is the viticulture industry,
which is growing rapidly and steadily. For this branch of
horticulture, improving water efficiency is one of the most
profound problems. The recent studies on water efficiency
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in viticulture, then, seek cost-effective ways to monitor soil
moisture (SM) content. Specifically, during the last decades, a
lot of work has documented the potential of Earth Observation
(EO) data for soil moisture monitoring in agriculture due to
their potential to supply spatio-temporal information over large
areas and being complementary to in-situ data [1].

Soil moisture content (SMC) studies in agriculture using
EO data can roughly be categorised under two different
approaches. The first approach, dating back to the 1980’s
with Landsat, considers land surface temperature (LST)
mapping using thermal information, which is directly related
to local moisture variations [2]. Although many studies
have demonstrated the benefits of using LST in agriculture,
the temporal and spatial resolution of the EO satellite
data are too coarse for field scale studies, specifically for
horticulture. When it comes to the operational orchard
monitoring, the implementation of LST method created from
a thermal camera is limited to the air-borne and unmanned
aerial vehicle acquisitions [3], [4]. The second approach
takes into account spectral and backscattering changes in
visible/near-infrared and microwave domain, respectively, and
relates this information to water stress by data-driven and
physical models. While there are successful applications with
high-spatial satellite acquisitions, one of the main limitations
for their operational usage was their cost coupled with the
limited temporal resolution. In this context, ESA Copernicus
mission supplies free accessible radar Sentinel-1 (S1) and
optical Sentinel-2 (S2) images with approximately weekly
temporal resolution, with large amounts of data available for
regular monitoring [5], [6], [7], [8]. For SMC estimation on
field scale, C-band S1 data coupled with Landsat thermal data
was successfully utilised [9], [10] using data-diriven machine
learning (ML) techniques. Similarly, a neural network (NN)
inversion [11] and backscattering change analysis [12] were
implemented to estimate SMC by considering only S1 data.
Recently, [5] underlines that regression based approaches have
better accuracy for SMC estimation than those by the semi-
empirical SAR and optical models over farmlands. However,
none of the studies covered the direct measurement of SMC
on the orchard scale and more importantly they applied
the standard ML on the stacked images, thus, neglecting
the temporal dependencies of features extracted from EO data.

There are several overarching methodologies that would
recur when applying machine learning for agricultural tasks,
particularly the use of convolutional neural networks (CNN)
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Fig. 1. The proposed architecture relies on building a latent representation of each domain (S1 and S2) based on autoencoders and then predicting Soil
Moisture (through an additional prediction model) based on these representations. A cycleGAN is also trained to recover missing data from S1 to S2 and
vice-versa.

for image classification and the usage of normalized difference
vegetation index (NDVI) for vegetation health. For example,
[13] calculated NDVI and then predicted it into the future
using a Long-Short Term Memory (LSTM), performing per-
pixel predictions to help minimize the impact of droughts.
[14] used conditional Generative Adversarial Nets (GANs)
for modelling cloud reflectance fields using Conditional Gen-
erative Adversarial Networks. Clouds are one of the biggest
problems when it comes to doing analysis on remote sensing
data, often making entire data periods unusable. Methods of
classifying and removing clouds are still in the early stages,
but could revolutionize satellite imagery analysis. In this
work, authors used generative adversarial networks to generate
simulated clouds with good reflectance values which could be
used for future training data or other tasks. In [15], authors
used LSTM networks to predict soil moisture interpolations
into the future using EO data.

Across all the research domains, there is a big problem of
lack of data to train ML models, since training requires a
lot of sequential data [16], [17]. Such models have already
taken attention in EO community in classification and global
scale - low resolution - SMC data analysis [18], [19], [20],
[21]. Utilising S1 or S2 imagery alone is often not enough for
this purpose, therefore we aim to extract features from these
two sources to combine them in time series. We use GANs
to extract latent representation from both of these imagery
sources [22]. Once latent low-dimensional representation of
the satellite images is learned, missing optical features are re-
constructed by temporal and spatial dependencies. GANs and
autoencoders approaches are extensively applied for image to
image translation [23], [24], [25]. Recently, its great potential
in EO domain, specifically on data fusion between optical and
radar images, has also been shown [26], [27], [28]. We believe
that this approach can be applied also in biophysical parameter
estimation using EO data.

Following this line, the contributions of this work can be
formulated as following:

• we explore the potential of various ML architectures,
which consider to spatial and time dependencies among
the EO measurements, specifically S1/S2, to estimate
SMC;

• we explore the feasibility of using GANs for data aug-
mentation for training ML models;

• we propose an efficient framework for unsupervised deep
domain adaptation for S1 and S2 satellite imagery with
cycleGANs [29].

II. PROPOSED ARCHITECTURE FORMULATION &
OBJECTIVE

Variational autoencoders (VAEs) and GANs are effective
for image-to-image translation, where pairs of images are not
readily available [30]. This is true for the case where we
have pairs of images from S1 and S2, where the difference
between image acquisition can vary from a few hours up to
a few days. We employ this property of GANs to extract the
features, meaningful for prediction of SMC from both sources
of imagery.
Therefore, the main goal of this study is to investigate the
problem of predicting SMC based on the combination of
satellite images for S1 and S2. As illustrated in Figure 1,
since the amount of available in-situ measurements might be
considerably limited in practice, we propose to learn latent
(low-dimensional) representations based on autoencoders for
S1 and S2 images respectively. The autoencoders are specif-
ically learned through a reconstruction problem with `2-loss
for building such representations. These representations are
then concatenated and fed into a machine learning model for
predicting soil moisture. A technical difficulty arises then from
the fact that some SM measurements might have correspond-
ing images from either S1 or S2, and so we end up having
missing data. To leverage this technical issue, we make use of
the cycleGAN model to recover the missing data through an
unsupervised manner.

The cycleGAN method is an unsupervised deep learning
model which consists in learning two mappings F : X → Y
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Fig. 2. Architecture of cycleGAN.

and G : Y → X in order to translate images from a domain
X to a domain Y and vice-versa. Denoting by pX and pY the
probability distributions of the domains X and Y respectively,
the cycleGAN objective function [29] is given by:

L(F,G,DX , DY) = Lgan(F,DY) + Lgan(G,DX )+

λLcyc(F,G),
(1)

where Lgan(G,D) denotes the classical GAN [31] loss func-
tion involving a generator G and a discriminator D, whereas
Lcyc(F,G) stands for the cycle loss which is given by

Lcyc(F,G) = Ex∼X [‖G(F (x))− x‖1] +

Ey∼Y [‖F (G(y))− y‖1] ,
(2)

and λ is a hyper-parameter. Both the mappings F and G are
trained simultaneously adding a cycle consistency loss [32].

Figure 2 depicts the architecture of the cycleGAN model, an
`2 reconstruction loss is applied to the mappings GS2(GS1)
and GS1(GS2), while a discriminator for domain DS1 tries
to fit the images distribution. In the following sections, we
demonstrate the application of this method to translate satellite
images from S1 to S2 and vice versa.

III. STUDY AREA AND PROBLEM DEFINITION

A series of Sentinel-1/2 images were used from early 2017
to April 2020 to cover SM measurements for 200 acres
of vineyards located in the Upper Hunter Valley region in
Australia. Ground Range Detected (GRD) Sentinel-1 backscat-
tering data at HH and HV polarizations were collected during
both ascending and descending orbits. 10 m and 20 m spatial
resolution Sentinel-2 bands were downloaded in Level 2A,
which provides a shadow and cloud mask and top of canopy
reflectance. In addition to the backscattering and spectral
reflectance values, backscattering ratio and vegetation index,
namely Normalized Difference Vegetation Index (NDVI) were
formed. All these continuous different resolution variables

were resampled to 10 × 10 m resolution according to the
modelling process.

As in-situ input data, we use SM measurements installed
on 200 hectares of land. Input measurements are taken from
the embedded soil moisture sensors, each installed at 10
centimetres depth up until 120 cm depth, rainfall and tem-
perature data. Fig. 3 shows the in-situ SM measurements
acquired simultaneously (on the same day) with S1 (top) and
S2 (bottom). Despite high temporal resolution of S1 and S2,
it can be easily seen that it is difficult to have a combined
continuous time series of S1 and S2 data, which is essential
for agricultural studies due to their different sensitivities to
different crop’s biophysical properties [7], [11], [33].

IV. EXPERIMENTAL RESULTS

In order to estimate SMC over vineyards, the proposed ar-
chitecture is applied in three steps. Firstly, the training strategy
of cycleGAN for image translation is introduced for recov-
ering missing S1 or S2 images. Secondly, low-dimensional
representations of the data are extracted through pre-trained
autoencoders. With this low-dimensional representation data,
SMC estimation is finally performed using various prediction
models which are presented with their respective accuracy
assessments.

A. Image translation between Sentinel-1/2

This section presents some qualitative results when perform-
ing the cycleGAN model on Sentinel-1/2 data. For the cycle-
GAN training process, 5 × 1500 train images (corresponding
to each of the 5 used SM sensors locations) and 5× 450 test
images were used. The training is performed for 100 epochs
with a batch size 10 and learning rate of 0.0002. Figure 4
depicts the results for the translation from S1 to S2 and vice-
versa. We can see from Figure 4 that the model can extract
some marginal S2 features from the S1 counterpart. However,
when translating from S2 to S1, the performance of the model
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Fig. 3. Soil moisture sensor measurements acquired in five different sites corresponding to S1 and S2 from top to bottom respectively.
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Fig. 4. We have generated Sentinel-2 true colour images from Sentinel - 1 imagery and vice versa. The learned features were used for soil moisture content
prediction. (left) Translation from S1 to S2. (right) Translation from S2 to S1. For each pixel, we used the grey-scale value (CH1 on the images).

decreases (Figure 4). On the other hand, when we consider
NDVI components, the model seems to generalise well when
recovering S1 features as depicted in Figures 5 and 6. The
key role of feature-adapted solutions based on CNN is also
underlined in recent studies [33], [34], [35] when there is no
available (fully cloudy condition) training data at a certain
time for dynamic monitoring of agricultural fields.

B. Learning low-dimensional representations

For each domain (S1 and S2 data) we use autoencoders to
extract low-dimensional representations (of dimension 784).
We train the autoencoders using 7740 satellite images of size

100 × 100 pixels. Examples of the used images to train the
autoencoder for NDVI features are depicted in Figure 7.

Figure 8 shows reconstruction results of the autoencoder
on NDVI data. We can see that the model preserves informa-
tion about the original data while compressing it in a low
dimensional representation obtained by the encoder model
(of dimension 784). Figure 9 depicts the training and testing
loss of the autoencoder. For autoencoders, we used Adam
optimizer and the mean squared error (MSE) loss function.
During our experiments, we have tried cross-entropy loss,
however it did not add any improvement to the results. The
resulting training loss achieved was 0.00086614 and validation
loss 0.00093009 on 150 epochs of training.
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Fig. 5. (left) Translation from S1 (channel 1, VH) to NDVI images. (right) Translation from NDVI to S1 (channel 1, VH) images.
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Fig. 6. (left) Translation from S1 (channel 2, VV) to NDVI images. (right) Translation from NDVI to S1 (channel 2, VV) images.

It is worth noting that the dimensionality reduction can
be performed with well-known linear principal component
analysis (PCA) as well, however nonlinear autoencoders can
learn more powerful features for a given dimensionality. These
results demonstrate only marginally better performance of
autoencoders on image data [36]. However, in a different
scenario (by exploiting other features than S1 and S2 images),
the relationship between the raw features space and the latent

space could be highly non-linear in which using autoencoders
could be more beneficial. Our purpose is to propose a more
general framework which does not restrict to linear spaces,
therefore we use autoencoders for dimensionality reduction.

C. Soil Moisture Prediction
As a final step we compare the performance of a few

popular machine learning models on this task. We use simple
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Fig. 7. Example of NDVI images used to train the autoencoder model.

Fig. 8. Reconstruction of NDVI images with the autoencoder model.
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Fig. 9. Train and test loss of the auto-encoder on NDVI images.

linear regression, ridge regression, kernel ridge regression,
support vector regressor and random forests to predict soil
moisture from the time series that we have constructed with
the cycleGAN model. A summary of the comparison among
the regressors in SMC estimation (see Figure 3) is presented
in Figure 10 and quantified in Table I with the MSE. Fig-
ure 10 shows the predictions of these models on the train
and test data. The parameters of each regression method were
optimally selected based on the five-fold cross validation.

1) Neural Networks (NN): First, we use a neural network
model to predict the soil moisture on the test site. We use a
simple fully connected neural network (multi-layer perceptron,
MLP) with 5 layers (trained with Adam optimiser) to build
a model for soil moisture prediction. Figure 3 shows the
corresponding soil moisture measurements on the different
sensors of the site (5 in total). Using these data and the
corresponding satellite data we end up with a dataset of 578

training samples and 250 testing samples for a 30% test split.
Once the encoder model is trained, the images are transformed
to vectors of dimension 784 and the following model is used
to predict the SM measurements.

2) Linear Regression (Linear): As a baseline model, we
use a simple linear regression model. It is a linear model with
coefficients w = (w1, ..., wp) to minimise the residual sum of
squares between the observed targets in the dataset, and the
targets predicted by the linear approximation. We train all the
models on the same data.

3) Random Forest (RF): Additionally, we train a random
forest regression model. This model is a meta estimator that
fits a number of regression decision trees on various sub-
samples of the same dataset and uses averaging to improve
the predictive accuracy and control over-fitting.

4) SVM Regressor (SVR): Support vector machine (SVM)
regression is a non-parametric machine learning model, which
relies on kernel functions. SVR approach depends on some
subset of the training data, called the support vectors. Radial
basis kernel function was used for the SVR.

5) Ridge Regression and Kernel Ridge Regression: Finally,
we train ridge regression and kernel ridge regression models.
Ridge regression model differs from simple linear regression
by the addition of regularisation, given by the l2-norm. Kernels
are used to calculate the inner product of two vectors in a
feature space. We add kernels to ridge regression to add non-
linearity. This increases the accuracy of the model on our
dataset.

The RF model performs better than the other algorithms,
neural networks and kernel regression give slightly similar
results and then comes Ridge regression, whereas the linear
regression model demonstrated significant overfitting, while
the other methods do not perform well at all.

In order to justify the usage of such a complex architecture,
we have run a series of experiments with GANs and CNN,
avoiding dimensionality reduction. However, one of the main
drawbacks of CNNs is that they need a lot of data to perform
well enough. In this case, the resulting amount of images was
not enough to successfully train a CNN to predict SMC. To
overcome the issue of not having enough data, we proposed to
split the inference part into two different steps: dimensionality
reduction followed by ML classifiers, thereby offering the
possibility to work with a limited amount of data.

V. DISCUSSION ON GAN PERFORMANCE EVALUATION

Evaluating GANs is a challenging task and an active area of
research that’s seen a lot of progress in the last few years ([37],
[38], [39], [40], [41]). On one hand, it is similar to evaluating
other models by comparing its output against some metrics,
which are used across models. On the other hand, there is an
aspect that makes evaluating GANs challenging. In contrast
to other deep learning models, the loss of a model is not
descriptive of its performance. For example, in classifiers low
loss on a test set indicates superior performance, whereas a low
loss for the generator or discriminator suggests that learning
has stopped. Therefore, there should be metrics that evaluate
images on their quality. In GANs, to evaluate quality of the



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2021.3134127, IEEE
Transactions on Geoscience and Remote Sensing

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 7

TABLE I
PERFORMANCES OF THE DIFFERENT MODELS IN TERMS OF MSE.

Models NN Linear RF Ridge Kernel SVR
Train 1.66 · 10−4 2.75 · 10−10 7.31 · 10−4 1.32 · 10−3 1.64 · 10−3 3.92 · 10−3

Test 7.57 · 10−3 1.57 · 10−1 7.35 · 10−3 8.34 · 10−3 7.57 · 10−3 1.08 · 10−2
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Fig. 10. Predictions of the SM measurements on the train data (left) and test data (right).
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generated image, we need to access it across 2 dimensions:
fidelity (how realistic do generated images look) and diversity
(whether the generator is able to produce the diversity of
images that’s inherent in the training data set).

In generative modelling, we are given a dataset of samples
x drawn from some unknown probability distribution pr(x),
where r stands for ‘real’. We use the samples x to derive
the unknown real data distribution pr(x). A generative model
G encodes a distribution over new samples, pg(x), where g
stands for ‘generated’. The aim is that we find a generative
distribution such that pg(x) ≈ pr(x) according to some
metric.

The most popular metric, used so far in generative models,
is inception score ([38]. The Inception Score (IS) is a metric
for automatically evaluating the quality of image generative
models [37]. It uses Inception-V3 model[42]), pre-trained on
a large dataset of general-purpose images such as ImageNet
[43]. The IS calculates a statistic of the network’s outputs
when applied to generated images, in other words the pre-
trained Inception-V3 model is used to classify generated
images and the quality of images is assessed on the accuracy
of the predicted class. Formally, the IS can be written as
following:

IS(G) = exp(Ex∼pg
DKL(p(y|X) ‖ p(y))), (3)

where X ∼ pg indicates that x is an image sampled from pg ,
DKL(p ‖ q) is the KL-divergence between the distributions
p and q, p(y|X) is the conditional class distribution, p(y) =∫
X
p(y|X)pg(X) is the marginal class distribution [37]. IS

metric is widely applied in literature, however, it was recently
found that applying the Inception Score to generative models
trained on datasets other than ImageNet gives misleading
results. Barratt and Sharma [38] showed that the results of
IS performance even on a dataset, close to ImageNet, such as
CIFAR-10, can be not good since the classes in ImageNet and
CIFAR-10 do not line up identically. Therefore, this metric
cannot be, since satellite imagery classification is very far
from ImageNet in terms of both classes it is trained on and
band resolution of images (ImageNet has 3 bands (RGB),
whereas Sentinel imagery has 12). Even when we use only the
True color version of the Sentinel-2 imagery, the classification
for any possible class will be far away from ImageNet. The
only option to use this metric is to train Inception-V3 on
satellite imagery for some related classification task, but this
is not possible without a large dataset for satellite imagery
classification.

Another metric, used to evaluate GANs, was developed
recently, called Fréchet Inception Distance (FID) [39]. It was
proposed as an improvement over Inception Score. Similarly
to IS, FID uses the Inception-V3 network as part of its calcula-
tion. However, instead of using the classification labels of the
Inception-v3 network, it uses the output from a feature layer.
Research has shown that deep convolutional neural networks
trained on difficult tasks, like classifying many classes, build
increasingly sophisticated representations of features going
deeper into the network: the first few layers may learn to
detect different kinds of edges and curves, also colour and

texture, whereas the later layers respond to increasingly more
complex stimuli, including parts of objects that they were
trained to recognise. FID uses features from the Inception-
V3 model, extracted from the last pooling layer of this model
and represent the most high-level features of the model, which
it is able to recognise. These features are called embedding
in the case of FID. Using multivariate normal distribution,
FID compares the distribution between the real and generated
images and represents the results in terms of this distance (i.e.
the smaller is the resulting metric, the closer the generated
images are from the real ones). Formally, to calculate this
distance between two normal distributions with means and
standard deviations, we use the following equation [44]:

FID =‖ µX − µY ‖2 +

Tr(ΣX + ΣY − 2
√

ΣXΣY ),
(4)

where µX is the mean of the real embeddings, µY is the mean
of the generated embeddings, ΣX is the covariance matrix
of the real embeddings, and ΣY is the covariance matrix of
the generated embeddings. FID is currently the most widely
used GAN evaluation metric. However, similar to IS, it used
a pre-trained Inception-V3 model, which does not capture the
features important for satellite imagery.

A different type of metric, proposed recently, is HYPE
evaluation score [40]. HYPE displays a series of images one-
by-one to crowdsource evaluators on Amazon Mechanical
Turk (MTurk) [45], it asks the evaluators to assess whether
each image is real or fake. We cannot use this method, since
the person who evaluates the satellite images needs to have
special GIS training and using MTurk is infeasible in this case.

Finally, the precision and recall metrics for GANs can be
used for their evaluation. In [41], authors define the precision
and recall metrics as follows. If we denote the distribution of
real images with Pr and the distribution of generated images
with Pg , precision is the probability that a random image from
Pg falls within the support of Pr and recall is the probability
that a random image from Pr falls within the support of Pg .
In other words, precision is the ratio of the generated images
that look real to all of the generated images and recall is how
much overlap between the samples is divided by all of the real
samples. The estimates are obtained by calculating pairwise
Euclidean distances between all feature vectors in the set and,
for each feature vector, forming a hyper-sphere with radius
equal to the distance to its kth nearest neighbour. Together,
these hyper-spheres define a volume in the feature space that
serves as an estimate of the true manifold. To determine
whether a given sample is located within this volume, a binary
function is used. Precision is quantified by querying for each
generated image whether the image is within the estimated
manifold of real images. Symmetrically, recall is calculated
by querying for each real image whether the image is within
an estimated manifold of generated images. The feature vector
for a given image is computed by feeding it to a pre-trained
VGG-16 classifier [41], this method accessible for the reasons
described above. To perform similar classification, we needed
to train our own classifier. We used a classifier network that we
trained on the dataset, obtained in one of our previous studies.
The model was trained on a large dataset of 7000 vineyard
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Fig. 11. Pixel-wise histograms of ground truth images and generated images with the cycleGAN model: (left) comparison of a real Sentinel-1 (S1) image
with a generated one; (center) a real Sentinel-2 (S2) image with a generated one; (right) comparison of an NDVI image, calculated from a real Sentinel-2
image, with a generated NDVI image.

blocks in the Australian region. However, the results for this
analysis were significantly lower than the state of the art results
for GAN models, trained on large datasets. We believe that the
reason for such a performance is that the features that were
learned by our classifier (vineyard detection) differ from the
ones that are required for soil moisture estimation.

To summarise, the best way to estimate the performance
of the proposed GAN is to visually estimate the fidelity of
the image. Fig.4 - Fig.6 demonstrate reconstruction results
for S1 to S2 true-colour images, S1 channel 1 to NDVI and
S1 channel 2 to NDVI. To demonstrate the quality of the
network performance, we translated S1 images to S2 images
and indices and back. Left-most and right-most images show
real and reconstructed images, respectively. We can see that
the translation is not perfect, but it can reproduce essential
elements of the image. We do not use the right-most images
from Fig.4 - Fig.6 in our simulations, they are shown to
demonstrate the quality of the model.

We can analyse the differences between the images in a
quantitative manner only to some extent. Given the complexity
of converting images from S1 to S2, the cycleGAN model
does not allow to generate fully realistic images but tends to
approximate them given the input. As such, our model learns
more discriminative features for the missing image domain
compared to not considering such a domain. Figure11 shows
pixel-wise histograms of ground truth images and generated
images with the cycleGAN model. One can particularly notice
that the model performs better in approaching the density of S1
images compared to the other image domains. The difference
in time between image acquisition increases the discrepancies
between the original and the generated images.

VI. CONCLUSIONS

In this paper, cycleGAN methodology is proposed for
monitoring any biophysical parameters using S1 and S2 data.
In particular, the limitations and potentials of SMC estimation
using S1 and S2 data, for the first time, with the GAN-based
architecture is explored. To our knowledge, this is the first time
autoencoders and cycleGANs were used together to obtain
features from Sentinel-1 and Sentinel-2 imagery.

This research demonstrated the feasibility of the proposed
approach and allows us to fuse two different sources of infor-
mation for efficient prediction of soil moisture content. Being
one of the major horticulture crops consumed worldwide,
grapevine is chosen to assess SMC estimations in horticulture

from space. In-situ measurements conducted simultaneously
with satellite acquisitions provide a discussion on the fea-
sibility of Sentinel-1/-2 data to retrieve soil properties of
vineyard, specifically SMC. The results of the experiments
on the data set demonstrate that the proposed methodology is
effective in regression based biophysical parameter estimation
in agriculture studies, in which the possibility of having
simultaneous radar and optical image acquisitions is critical
due to their complementary information.

Although the proposed architecture (cycleGAN coupled
with autoconders) in this paper is promising for SMC estima-
tion in vineyards, the similar performance could be achieved
with simpler ML model for different crops with different
conditions (e.g., crop specific irrigation, planting patterns, the
presence of dense in-situ data and etc.). Furthermore, the
regression based biophysical parameter estimation using EO
data is widely accepted in plantation agriculture. However,
when it comes to orchard crops, the complex interaction
among microwave signal, canopy morphology and soil makes
the radar based studies more complicated on woody crops
compared to herbaceous crops.

This study may serve as the basis for future regression
based biophysical parameter estimation in agricultural studies
with increasingly large amounts of freely available remote
sensing data. Additionally, even though this paper examines
the application of cycleGANs to the field of agriculture,
significant contributions of this type of algorithms can be made
in any problem that require large amounts of satellite imagery.
Specifically, we envision applications of the proposed network
in climate change mitigation and adaptation.
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F. Morales, and E. Fereres, “Detecting water stress effects on fruit quality
in orchards with time-series PRI airborne imagery,” Remote Sensing of
Environment, vol. 114, no. 2, pp. 286 – 298, 2010.

[5] Y. Liu, J. Qian, and H. Yue, “Combined Sentinel-1A with Sentinel-
2A to Estimate Soil Moisture in Farmland,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp.
1292–1310, 2021.

[6] R. Nasirzadehdizaji, Z. Cakir, F. Balik Sanli, S. Abdikan, A. Pepe,
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