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Abstract
Purpose: The aim of this study is to present strategies for 
optimization of lens power (IOLP) formula constants and to 
show options how to present the results adequately. Meth-
ods: A dataset of N = 1,601 preoperative biometric values, 
IOLP data and postoperative refraction data was split into a 
training set and a test set using a random sequence. Based 
on the training set, we calculated the formula constants for 
established lens calculation formulae with different meth-
ods. Based on the test set, we derived the formula prediction 
error (PE) as difference of the achieved refraction from the 
formula predicted refraction. Results: For formulae with 1 
constant, it is possible to back-calculate the individual con-
stant for each case using formula inversion. However, this is 
not possible for formulae with >1 constant. In these cases, 
more advanced concepts such as non-linear optimization 
strategies are necessary to derive the formula constants. 
During cross-validation, measures such as the mean abso-

lute or the root mean squared PE or the ratio of cases within 
mean absolute PE (MAE) limits could be used as quality mea-
sures. Conclusions: Different constant optimization con-
cepts yield different results. To test the performance of opti-
mized formula constants, a cross-validation strategy is man-
datory. We recommend performance curves, where the ratio 
of cases within absolute PE limits is plotted against the MAE.

© 2021 The Author(s).
Published by S. Karger AG, Basel

Background

In cataract surgery, most intraocular lens (IOL) power 
calculations worldwide are performed with theoretical-
optical formulae [1–3]. These formulae require biometric 
measurements of the patient eye before cataract surgery 
derived with a biometer. They also involve formula con-
stants, which adapt the general formula to the character-
istics of the specific IOL [4]. These characteristics include 
the optics and haptic design as well as the material prop-
erties. Depending on the philosophy of the IOL calcula-
tion formula, the constants in most of the classical formu-
lae directly interact with the effective lens position or the 
lens power (IOLP) [5].

This is an Open Access article licensed under the Creative Commons 
Attribution-NonCommercial-4.0 International License (CC BY-NC) 
(http://www.karger.com/Services/OpenAccessLicense), applicable to 
the online version of the article only. Usage and distribution for com-
mercial purposes requires written permission.
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When an IOL company launches a new type of IOL to 
the market, the formula constants provided to surgeons 
for IOLP calculation are mostly estimated from the re-
spective constants of similar lens types already on the 
market [4, 6], or they are derived in some pre-market 
studies based on a very limited number of cases. Once the 
lens has been on the market for a while, more clinical data 
are available including preoperative biometric data, the 
IOLP implanted, and the postoperative refractive out-
come in terms of subjective sphere and cylinder or spher-
ical equivalent. This allows the formula constants to be 
successively refined for better refractive outcomes in the 
future. This is a typical forward prediction process, where 
the data of previous cataract surgeries are used to predict 
the proper formula constant for cataract surgeries in the 
future.

However, there are no standards established in the lit-
erature specifying how to calculate formula constants for 
a specific dataset [4, 7, 8]. There is also no consensus on 
how many data points are required for reliable prediction 
of formula constants. There is also no standard for pre-
sentation of results, which would facilitate a comparison 
of different studies [9].

From the theory, it is clear that in all processes of for-
ward prediction the dataset used for calculation of the 
formula constant should not be used for validation or ver-
ification. This implies that the dataset should be split into 
2 non-overlapping sets: a training set, used for derivation 
of the formula constants, and a test or validation set used 
for verifying the performance of the formula constant in 
terms of a cross-validation. If validation is not performed 
on an independent dataset, there might be some overes-
timation of the performance of the formula constants [9]. 
There are several options for cross-validation: with only 
one dataset available, established techniques include 
“holdout,” “K fold cross-validation,” or “repeated ran-
dom subsampling.” In contrast to holdout, where the da-
taset is simply split into training and test sets using a bi-
nary random sequence, K fold cross-validation splits the 
data into K partitions and the formula constant is calcu-
lated based on K-1 partitions by excluding partition I 
from the calculation and then testing with the excluded 
partition I. This process is repeated until each partition 
has been excluded and used as the test partition once. 
With repeated random subsampling, a random partition 
is separated out before calculation of the formula con-
stant and this separated dataset then used for validation 
of the formula constant. However, this carries the risk 
that some data points may never be included in the train-
ing or validation data sets [10].

Furthermore, the number of data points required for 
formula constant optimization is unclear. In general, with 
increasing number, we expect a more reliable constant if 
the data pool is consistent, but the number depends also 
on the quality of the dataset and the composition of the 
study population [4].

Furthermore, there is no consensus or standard by 
which the target parameter should be optimized, or on 
the appropriate norm for optimization. In simple terms, 
we could back-calculate an appropriate individual for-
mula constant for each data point within a dataset, and 
from these individual results, we could consider, for ex-
ample, the mean or median value as an optimized con-
stant. However, taking the mean or median as the opti-
mized formula, constant does not guarantee that the 
mean or median of the refraction error is zeroed. On the 
other hand, we could solve the formula for the predicted 
refraction; calculate the deviation of the achieved refrac-
tion from the formula predicted refraction considered as 
“prediction error” (PE) and use non-linear optimization 
algorithms for minimizing, for example, the mean abso-
lute PE (MAE) or the mean root squared PE (RMSE). Dif-
ferent target parameters and optimization criteria yield 
different results for the optimized formula constant, and 
there is no consensus on which technique should be used 
[9].

There are even various options for presentation of the 
results, making direct comparisons difficult. In some 
studies, the mean and standard deviation of the PE are 
documented, whereas in other studies, we find results on 
the MAE or the MRSE. Again, in other studies, we find 
distribution measures of the individual formula constants 
such as mean, median, or standard error, or the authors 
document the performance curves for MAE or RMSE or 
the portion of eyes which are within limits of a quarter, a 
half, or 1 dioptre of PE.

The purpose of this study is to show, using a large da-
taset of a cataract population with preoperative biometric 
data, the IOLP of the implanted lens, and postoperative 
refraction data:
• How cross-validation works in a clinical setting, and 

how the results compare with training and validation 
both carried out on the entire dataset,

• What the differences are in optimizing for different 
target parameters or using different target criteria or 
norms,

• To explain the meaning of different representation 
formats for our results, and

• To make recommendations on which presentation 
format shows the results most appropriately.
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Methods

Measurement Data
In this retrospective study, we analysed a dataset with 1,601 

clinical measurements of a cataract population from Augencen-
trum Rosenheim, which was transferred to us. The anonymized 
data contained preoperative biometric data derived with the IOL-
Master 700 (Carl-Zeiss-Meditec, Jena, Germany) including axial 
length (AL), external phakic anterior chamber depth measured 
from the corneal front apex to the anterior apex of the crystalline 
lens (ACD), lens thickness, corneal front surface radius measured 
in the flat (R1), and in the steep meridian (R2). In all cases, a Sen-
sar 1 piece IOL (Johnson & Johnson, Brunswick, NJ, USA) was 
implanted. Beside refractive power of the implanted lens (IOLP), 
the postoperative refraction (sphere and cylinder) 6–8 weeks after 
cataract surgery was recorded. From the total of 1,601 measure-
ments, N = 1,452 complete measurements with a postoperative 
visual acuity of 0.6 or higher were used for formula constant opti-
mization. Eyes with missing data (mostly anterior chamber depth) 
were excluded. The spherical equivalent of postoperative refrac-
tion (SEQ) was calculated as sphere + ½·cylinder, and the mean 
corneal front surface radius was calculated as R = ½ (R1 + R2). The 
descriptive data on pre-cataract biometry, IOLP, and postopera-
tive refraction are summarized in Table 1.

Calculation Strategy
The anonymized Excel data (.xlsx-format) were imported into 

MATLAB (Matlab version 2019b, The Math Works, Natick, MA, 
USA) for further processing. For all eyes, an AL correction accord-
ing to the Cooke formula [11, 12] was performed. The individual 
formula constant was back-calculated for each case for the SRKT 
formula [13, 14], the Hoffer-Q formula [15, 16], the Holladay1 
formula [17], and the simplified Haigis with 1 formula constant a0 
and standard values for a1 = 0.4 and a2 = 0.1 [2, 4]. For the SRKT 
formula 2 different strategies were applied, one according to the 
concept described in the original paper [13, 14] (SRK2 style) and 
one with an inversion of the SRKT formula [4].

For all calculations, the deviation of the achieved postoperative 
SEQ from the formula predicted SEQ was quoted as the PE. AE in 

this context refers to the absolute value of PE and SE to the squared 
value of PE.

For testing the formula performance and cross-validation, the 
N = 1,452 data points were split randomly into a training set (70%, 
1,017 cases) and a test set (30%, 435 cases) [10]. For the training 
set, the mean and median A constant (Amean and Amedian for for-
mula inversion and A0mean and A0median for SRK2 style calculation) 
for the SRKT formula, the mean and median pACD constant 
(pACDmean and pACDmedian) for the Hoffer-Q formula, the mean 
and median SF constant (SFmean and SFmedian) for the Holladay1 
formula, and the mean and median a0 constant (a0mean and a0me-
dian) for the simplified Haigis formula were calculated.

In addition, a non-linear optimization algorithm (Levenberg-
Marquardt algorithm, [18, 19]) was implemented and applied to 
derive formula constants from the training set for the SRKT (AAE 
and ASE), the Hoffer-Q (pACDAE and pACDSE), the Holladay1 
(SFAE and SFSE), the simplified Haigis (a0AE and a0SE), and the Hai-
gis formula with 3 formula constants (a0/a1/a2AE and a0/a1/a2SE) 
to minimize the MAE and the RMSE. For the formulae with 1 con-
stant, the median constants (Amedian, pACDmedian, SFmedian, and 
a0median) were used for initialization for the optimization process, 
and for the Haigis formula, with 3 constants a0/a1/a2 = a0medi-
an/0.4/0.1 were used for initialization. As parameters for the Lev-
enberg-Marquardt algorithm, we used a maximum of 100 itera-
tions, with a damping of 1e−2. As the exit criterion from the opti-
mization loop, we used a tolerance for step sizes of 1e−14 
(optimization ends when last step is <1e−14), and a function toler-
ance of 1e−16 (optimization ends if AE or SE improvement is 
<1e−16).

In the next step, we calculated the MAE, the median absolute 
error and the RMSE (RMSE = square-root of SE) for each lens cal-
culation formula and each optimized constant using the test data-
set. Then for all formulae, we derived the portion of cases with AE 
≤0.25 dpt, AE ≤0.5 dpt, AE ≤1.0 dpt, and AE ≤2.0 dpt.

In a final step, we calculated the MAE based on the training set 
(used to optimize the constants) to evaluate the robustness of the 
optimized constants to variation of the formula constant. For the 
formulae with 1 constant (SRKT, Hoffer-Q, Holladay1, simplified 
Haigis), the formula constant optimized for the lowest RMSE of 

Table 1. Descriptive statistics of the entire dataset with mean, SD, median, minimum and maximum, 5, and 95% 
quantiles (90% confidence intervals)

N = 1,452 AL in mm ACD in mm LT in mm R1 in mm R2 in mm IOLP in D SEQ in D

Mean 23.497 3.099 4.608 7.741 7.594 21.519 −0.509
SD 1.082 0.389 0.422 0.271 0.271 2.849 0.859
Median 23.419 3.101 4.606 7.723 7.588 21.5 −0.375
Minimum 20.635 2.000 3.345 6.907 6.434 8.0 −4.0
Maximum 29.041 4.354 5.794 8.771 8.581 30.0 2.0
Quantile 5% 22.016 2.461 3.912 7.236 7.175 16.5 −2.5
Quantile 95% 25.529 3.753 5.311 8.212 8.056 26.0 0.5

AL refers to the axial length, ACD to the phakic anterior chamber depth measured from the corneal front apex 
to the front apex of the crystalline lens, LT to the central thickness of the crystalline lens, R1 and R2 to the corneal 
front surface radius in the flat and steep meridian, IOLP to the refractive power of the implanted lens, and SE to the 
spherical equivalent of postoperative refraction. IOLP, lens power; AL, axial length; LT, lens thickness; SD, standard 
deviation.
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refraction was varied by ±1 in steps of 0.01 and the portion of cas-
es with AE ≤0.25 dpt, AE ≤0.5 dpt, and AE ≤1.0 dpt (in the training 
set) was recorded. For the Haigis formula with 3 constants (a0/a1/
a2), we varied a0 by ±1, a1 by ±0.2, and a2 by ±0.1 each in 100 equi-
distant steps starting from a0/a1/a2RMSE and calculated for each 
constant triplet the MAE to test the robustness of the constant 
triplet to variations in a0, in a1, and in a2.

Results

The formula constants derived from the training set 
for all formulae under test are summarized in Table 2. For 
formulae with 1 formula constant (SRKT, Hoffer-Q, Hol-
laday1, simplified Haigis with optimized a0), the mean 
and median of the individual formula constant are listed. 
For the SRKT formula, we have also provided the mean 
and median of the individual formula constant calculated 
according to the concept proposed in the original paper 
(SRK2 style, A0mean and A0median, Lit…). In addition, for 
all formulae, we have listed the respective formula con-
stants calculated from a non-linear optimization process 
in terms of minimizing the mean absolute and the root 
mean squared refraction error.

The distribution of the PE for all formulae with con-
stant optimization for RMSE is displayed in Figure 1. Op-
timization was performed on the training set (N = 1,017), 
and cross-validation was done on the test set (N = 435). 

The respective formula constants listed in Table 2. Figure 
1a refers to the SRKT formula (ARMSE), Figure 1b to the 
Hoffer-Q formula (pACDRMSE), Figure 1c to the Holla-
day1 formula (SFRMSE), Figure 1d to the simplified Haigis 
formula with customized a0 and preset values for a1 = 0.4 
and a2 = 0.1 (a0RMSE), and Figure 1e to the Haigis formu-
la with constant triplet (a0/a1/a2RMSE).

The distributions of the absolute PE AE for all different 
constant optimization strategies and each formula are 
shown in Figure 2. Again, optimization was performed on 
the training set, and cross-validation was done on the test 
set. The respective formula constants listed in Table  2. 
Figure 2a refer to the AE of the SRKT formula (A0mean, 
A0median, Amean, Amedian, AMAE, and ARMSE), Figure 2b to 
the Hoffer-Q formula (pACDmean, pACDmedian, pACD-
MAE, and pACDRMSE), Figure 2c to the Holladay1 formu-
la (SFmean, SFmedian, SFMAE, and SFRMSE), Figure 2d to the 
simplified Haigis formula with customized a0 and preset 
values for a1 = 0.4 and a2 = 0.1 (a0mean, a0median, a0MAE, 
and a0RMSE), and Figure 2e to the Haigis formula with 
constant triplet (a0/a1/a2MAE and a0/a1/a2RMSE).

The robustness of formula constants is shown in Fig-
ure 3, in terms of the ratio of cases within PE limits 
(Fig. 3a–d) or MAE (Fig. 3e). For the formulae with one 
constant, this constant was varied in limits of ±1 (Fig. 3a: 
SRKT formula; Fig. 3b: Hoffer-Q formula; Fig. 3c: Hol-
laday1 formula; and Fig.  3d: simplified Haigis formula 

Table 2. Optimized constants for the SRKT, Hoffer-Q, Holladay1, simplified Haigis formula with optimized a0, and Haigis formula with 3 
optimized constants (a0/a1/a2) based on the training set

N = 1,017 training data SRKT formula Hoffer-Q formula Holladay formula Haigis formula a0 
constant

Haigis a0/a1/a2

Mean of individual constant Amean = 118.981
A0mean = 119.307

pACDmean = 5.636 SFmean = 1.833 a0mean = 1.468

Median of individual constant Amedian = 118.993
A0median = 119.322

pACDmedian = 5.611 SFmedian = 1.820 a0median = 1.454

Optimized for MAE AMAE = 119.016 pACDMAE = 5.596 SFMAE = 1.819 a0MAE = 1.450 1.720/0.495/0.076
Optimized for RMSE ARMSE = 119.01 pACDRMSE = 5.606 SFRMSE = 1.824 a0RMSE = 1.446 1.565/0.443/0.089

For the formulae with 1 constant, the optimized constant was derived from the mean and the median of the individually back-calculated 
constant. The individual constants for the SRKT formula were back-calculated using formula inversion (Amean and Amedian) and using the 
SRK2 style strategy (A0mean and A0median). For all formulae, the optimized constant was also derived using a non-linear optimization process 
for lowest MAE and RMSE. MAE, mean absolute error; RMSE, root mean squared error.

Fig. 1. PE as the deviation of achieved spherical equivalent – for-
mula predicted refraction. Formula constants have been optimized 
on the training set (N = 1,017) and are cross-validated on the test 
set (N = 435). In this example, PE is shown for a formula constant 
optimization for minimizing the RMSE. Refers to the SRKT (a), to 

the Hoffer-Q (b), to the Holladay1 (c), to the simplified Haigis with 
optimized a0 and preset values for a1 = 0.4 and a2 = 0.1 (d), and to 
the Haigis formula with triplet constant (a0/a1/a2) optimization 
(e). PE, prediction error.
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with optimized a0 and a1 = 0.4 and a1 = 0.1). For the Hai-
gis formula with 3 formula constants (a0/a1/a2), a0 was 
varied in limits of ±1, a1 in limits of ±0.2, and a2 in limits 
of ±0.1 from the constant triplet optimized for RMSE 
(Fig. 3e). MAE data coded in colour are clipped to ≤2.0 
dpt for display. All constant triplets (a0/a1/a2) located on 
the blue hyperplane yield good results in terms of a low 
MAE.

In Figure 4, the ratio of cases within limits of absolute 
PE AE ≤0.25 dpt, ≤0.5 dpt, and ≤1.0 dpt is displayed. For-
mula constants were optimized on the training set (N = 
1,017) for minimum RMSE and cross-validated on the 
test set (N = 435).

A comparison of all formulae under test is shown in 
Figure 5. The formula performance in terms of the abso-
lute PE MAE is displayed for the SRKT, the Hoffer-Q, the 
Holladay1, the simplified Haigis with optimized a0 and 
standard values for a1 = 0.4 and a2 = 0.1, and for the Hai-
gis formula with constant triplet optimization a0/a1/a2. 
Optimization for minimum RMSE was performed on the 
training set and cross-validated on the test set.

Discussion

In the last 20 years, patient expectations for an excel-
lent visual performance after cataract surgery have in-
creased greatly, as cataract surgery becomes more and 
more standardized and complications very rare. Howev-
er, there is still controversial discussion over which for-
mula should be used for the general cases [1–3] or special 
situations such as long or short eyes or uncommon ante-
rior segment geometries [7, 20, 21]. General rules for se-
lecting the “best formula” are difficult to define. There are 
currently many different competing calculation concepts 
and most of the formula authors are self-opinionated that 
their own philosophy of calculating the power of an IOL 
implant outperforms other concepts.

The key to success in formula-based IOLP calculation 
is the use of appropriate formula constants [2, 7, 22–25]. 
These constants adapt a generic formula, which is a more 
general formulation of a mathematical concept, to a spe-
cific IOL type, special surgery conditions, patient’s eth-

nicities, or measurement equipment. The formula con-
stants provided by the manufacturer can be used as a 
good estimate or starting point for further optimization. 
From the basic idea, a constant optimization can be per-
formed post hoc if results of a sufficient number of rep-
resentative clinical data with a lens type have already been 
collected [24]. The result of the optimization process is 
then applied to subsequent cataract procedures in terms 
of a forward prediction.

Such a constant optimization process requires all bio-
metric data which feed into the formula for IOLP calcula-
tion. In addition to the biometric data, the power of the 
lens and the postoperative refraction in terms of sphere 
and cylinder or spherical equivalent are required. For for-
mulae with one constant, there is a straightforward op-
tion for calculating the formula constant. The formula 
can be re-organized and solved for the constant, and for 
each clinical case, we could back-calculate which formula 
constant is required for the biometric data together with 
the power of the implanted lens to yield the refraction ac-
tually achieved after cataract surgery. For each clinical 
case, we obtain an individual constant, and the mean or 
median of all individual constants could be quoted as an 
optimized constant for a large dataset. However, this 
strategy does not optimize the dataset for the refractive 
outcome, but rather for any of the measures in the distri-
bution function of the individual constants.

For formulae with >1 constant, this simple concept of 
back-calculating the individual constant for each clinical 
case fails. For example, for the Haigis formula with 3 con-
stants, the effective lens position d can be back-calculated, 
and in most constant optimization strategies, a multivar-
iate linear regression is used to calculate the constant trip-
let a0/a1/a2 as intercept (a0) and 2 weighting factors (a1 
and a2) from the linear regression (d = a0 + a1·ACD + 
a2·AL) [7, 9, 24]. Most of the modern IOLP calculation 
formulae are not published, but the classical formulae 
such as SRKT, Hoffer-Q, Holladay1, or Haigis formula 
were published >20 years ago. Only one of these formulae 
(SRKT) gives some hint in the original paper as to how 
the lens constant should be optimized, which was consid-
ered in this paper as “SRK2 style” optimization (and the 
optimized constants A0mean and A0median) in addition to 

Fig. 2. Performance of formula outcome in terms of MAE. For-
mula constants have been optimized on the training set (N = 1,017) 
and cross-validated on the test set (N = 435). Refers to the AE of 
the SRKT formula (A0mean, A0median, Amean, Amedian, AMAE, and 
ARMSE) (a), to the Hoffer-Q formula (pACDmean, pACDmedian, 
pACDMAE, and pACDRMSE) (b), to the Holladay1 formula (SFmean, 

SFmedian, SFMAE, and SFRMSE) (c), to the simplified Haigis formula 
with customized a0 and preset values for a1 = 0.4 and a2 = 0.1 
(a0mean, a0median, a0MAE, and a0RMSE) (d), and to the Haigis formu-
la with constant triplet (a0/a1/a2MAE and a0/a1/a2RMSE) (e). PE, 
prediction error; RMSE, root mean squared error.
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the classical formula inversion (optimized constants Ame-

an and Amedian). There are no general rules for formula 
constant optimization. With steadily increasing comput-
ing capacity and speed, we are no longer bound to straight-
forward calculation concepts with direct back-calculation 
of the formula constant. Instead, non-linear optimization 
algorithms have been developed with a very high perfor-
mance which could optimize any target parameter with 
any optimization criterion. This means, that instead of 
extracting any measure from the distribution of all indi-
vidual constants, we could, for example, optimize for the 
mean, the mean absolute, the median, or the RMSE in 
terms of deviation of the achieved refraction after cataract 
surgery from the formula predicted refraction. In other 
words, we replace any measure from the statistical distri-
bution of individual constants by a measure which has 
high relevance for the patient and her/his refractive out-
come. In the present paper, we have implemented the 
Levenberg-Marquardt algorithm [18, 19] as a non-linear 

gradient descent method to search for an optimized con-
stant which yields the lowest mean absolute or RMSE in 
addition to the straightforward calculation of the con-
stants using formula inversion.

In reality, in most of the datasets, the difference be-
tween all the optimization strategies is expected to be low. 
We found only slight differences between the constants 
derived with formula inversion and the constants based 
on non-linear optimizations. However, in the case of da-
tasets with outliers or skewed distributions of parameters 
instead of a “clean” dataset where data are acquired under 
strict study conditions (as was the case here with our data 
set), the difference between both strategies might be high-
er.

In most of the papers concerning formula constant op-
timization, the dataset is not split into training and test or 
validation data [4, 7, 9, 23, 24]. That means that the data-
set is first used to derive the optimized formula constants, 
and later, the same dataset is used to test for the perfor-
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Fig. 3. Robustness of formula constants in terms of ratio of cases 
within PE limits (a–d) or MAE (e). Formula constants have been 
optimized on the training set (N = 1,017) and evaluated on the 
training set (N = 1,017). For the formulae with one constant, this 
constant was varied in limits of ±1 (SRKT formula, a; Hoffer-Q 
formula, b; Holladay1 formula, c; simplified Haigis formula with 
optimized a0 and a1 = 0.4 and a1 = 0.1, d). For the Haigis formula 

with 3 formula constants (a0/a1/a2) variation of a0 was in limits of 
±1, variation of a1 in limits of ±0.2, and variation in a2 in limits of 
±0.1 from the constant triplet optimized for RMSE (e). Colour-
coded MAE data were clipped to ≤2.0 dpt for display. All constant 
triplets (a0/a1/a2) located on the blue hyperplane yield good re-
sults in terms of a low MAE. PE, prediction error; RMSE, root 
mean squared error.

Fig. 4. Ratio of cases within limits of absolute PE AE ≤0.25 dpt, 
≤0.5 dpt, and ≤1.0 dpt. Formula constants were optimized on the 
training set (N = 1,017) for minimum RMSE and cross-validated 
on the test set (N = 435). PE, prediction error; RMSE, root mean 
squared error.

Fig. 5. Comparison of the performance of all formulae under test 
in terms of MAE. Formula constants were optimized on the train-
ing set (N = 1,017) for minimum RMSE and cross-validated on the 
test set (N = 435). PE, prediction error; MAE, mean absolute pre-
diction error; RMSE, root mean squared error.



Langenbucher/Szentmáry/Cayless/Müller/
Eppig/Schröder/Fabian

Ophthalmic Res 2021;64:1055–10671064
DOI: 10.1159/000514916

mance of the formula with the optimized constants. From 
all concepts in artificial intelligence or machine learning, 
we know that a strict separation of the dataset into train-
ing and test set is mandatory in terms of a cross-validation 
[10]. The entire dataset is split into training data for con-
stant optimization and test set for validation. In this pa-
per, we used a randomly selected 70% subset of our large 
dataset for training and the remaining 30% for validation. 
Only when testing the robustness of our constants [25] 
were the training data also used for testing the perfor-
mance for variation of the constant; this was done to en-
sure that the robustness graphs have a direct clinical im-
pact.

In this paper, we have attempted to describe different 
concepts of constant optimization based on a large study 

population of cataract patients treated with 1 intraocular 
lens type. All the data were collected at 1 clinical centre, 
and the clinical settings appear very homogeneous for 
this dataset as shown in Table 1. In Table 2, we have listed 
all optimized constants derived with different optimiza-
tion strategies. For all formulae with 1 formula constant 
(SRKT, Hoffer-Q, Holladay1, and simplified Haigis for-
mula), we back-calculated the individual constant by for-
mula inversion and considered the mean and median val-
ue as the optimized constant. In addition, for the SRKT 
formula, we implemented the optimization strategy pro-
vided in the original paper of Sanders, Retzlaff, and Kraff 
[13, 14]. For all formulae, we used a non-linear optimiza-
tion method to derive the formula constants yielding the 
lowest MAE or the lowest root mean squared PE for the 

Table 3. Mean absolute, median absolute, and root mean squared refraction error of the test set for the different 
types of optimizations and the different formulae

N = 435 test data Mean absolute 
refraction error MAE in 
dpt

Median absolute 
refraction error MEDAE in 
dpt

Root mean squared 
refraction error RMSE in 
dpt

SRKT formula
Amean 0.391 0.322 0.517
Amedian 0.390 0.314 0.516
A0mean 0.428 0.339 0.567
A0median 0.433 0.341 0.572
AMAE 0.388 0.312 0.515
ARMSE 0.388 0.313 0.515

Hoffer-Q formula
pACDmean 0.417 0.335 0.548
pACDmedian 0.416 0.326 0.547
pACDMAE 0.417 0.326 0.546
pACDRMSE 0.416 0.326 0.546

Holladay1 formula
SFmean 0.390 0.300 0.528
SFmedian 0.390 0.297 0.528
SFMAE 0.390 0.299 0.528
SFRMSE 0.390 0.299 0.528

Simplified Haigis formula with a0
a0mean 0.369 0.283 0.492
a0median 0.368 0.282 0.491
a0MAE 0.368 0.283 0.491
a0RMSE 0.368 0.282 0.491

Haigis formula with a0/a1/a2
a0/a1/a2MAE 0.366 0.288 0.488
a0/a1/a2RMSE 0.366 0.297 0.495

()mean and ()median refer to the mean and median of the individual back-calculated constant, and ()MAE and ()RMSE 
to the formula constant optimization for mean absolute and root mean squared refraction error. For the SRKT 
formula, there are 2 types of back-calculation for the individual formula constant: direct formula inversion (Amean 
and Amedian) and the SRK2 like style (A0mean and A0median). RMSE, root mean squared error; MEDAE, median absolute 
error.
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training set [18, 19]. Both non-linear optimization meth-
ods are more related to the needs of the surgeon and the 
patients, as they both intend to result in a refraction that 
is closest to the formula predicted refraction. As expected, 
the differences between the different optimization strate-
gies in our homogeneous dataset are generally low, and 
only the results of the SRK2 style constants A0mean and 
A0median differ significantly from the respective results of 
the formula inversion Amean and Amedian or the results of 
the non-linear optimization AMAE and ARMSE.

The results for the PE using the constants optimized 
for the lowest RMSE are shown in the histograms of Fig-
ure 1 for all formulae. The mean and median of the PE are 
not necessarily zero as we did not optimize for a mean PE, 
but for the mean absolute or root mean squared PE. In the 
graphs, we have included the best-fit normal distribution 
and the mean absolute and RMSE. The respective values 
for the MAE, the median absolute error, together with the 
RMSE for all optimization strategies for all formulae are 
listed in Table  3. The MAE ranged between 0.366 and 
0.433 dpt, the median absolute PE between 0.288 and 
0.341 dpt, and the RMSE between 0.488 and 0.572 dpt.

To our knowledge, the robustness to variation of for-
mula constants has not been investigated so far. For this 
analysis, we used the training set (previously used for 
constant optimization) and varied the constants starting 
from the optimized constant in terms of a minimum 
RMSE. The respective graphs for the formulae using 1 
constant are shown in Figure 3a–d. The 3 curves refer to 
the ratio of cases within absolute PE limits of AE ≤0.25, 
≤0.5, and ≤1.0 dpt. The vertical lines indicate the various 
optimized constants. From the graphs, we see that the 
tolerance in the SRKT A constant is larger than the Hof-
fer-Q pACD, the Holladay1 SF, or the a0 of the simplified 
Haigis formula. This means that a certain inaccuracy of 
the formula constant affects the formula performance 
less in the SRKT formula than in other formulae. The vi-
sualization for the Haigis formula with 3 constants a0/a1/
a2 is more complex, as the entire constant triplet affects 
the performance of the formula. What we see from Fig-
ure 3e is that there is a hyperplane in the plot where we 
obtain a low MAE (hyperplane in blue), and to both sides 
of the hyperplane, the performance is somehow degrad-
ed. That means that there is no unique solution for the 
constant triplet: all constant triplets located on the blue 
hyperplane yield acceptable results for the MAE, even if 
the a0 values and the a1 values or the a2 values differ sig-
nificantly.

In most papers dealing with lens calculation formulae 
or constant optimization, the main outcome is the ratio 

of cases within limits of the absolute PE AE [25]. Typical 
limits are ≤0.25, ≤0.5, or ≤1.0 dpt as shown for the cross-
validated data in Figure 4. However, with these data, we 
interpret only a small selection of the information from 
the performance curves displayed in Figure 2a–e for all 
formulae and optimization strategies, or for the overview 
with a comparison of formulae with constants optimized 
for the RMSE. Such performance plots are much more 
meaningful and provide the ratio of cases within any lim-
it of AE. The closer the curve is to 1 the better the perfor-
mance. The interpretation of such performance curves is 
similar to a receiver operating characteristic curve. For 
example, with our results shown in Figure 5, the Haigis 
formula with an optimized constant triplet a0/a1/a2 per-
forms better than the Hoffer-Q formula in our test set in 
terms of absolute PE AE. We are nevertheless aware that 
the differences between formula performances in the 
present study are small.

Splitting the dataset into training and test sets, which 
is necessary for an unbiased evaluation of the formula 
constants in terms of cross-validation, involves some 
risks: first, we have to decide which portion of the data-
set should be used for constant optimization. Typical val-
ues are 70% for training and 30% for validation. In small-
er datasets, we have to ensure that the number of data 
points used for constant optimization is sufficient to 
yield reliable constants, especially with formulae with >1 
constant where the requirements on the number of data 
points are much higher than formulae with 1 constant. 
Further, data splitting is always performed with a ran-
dom sequence, and depending on the selection of the 
training and test sets the results of cross-validation could 
somehow diverge. This means that repeating the entire 
formula constant optimization process and cross-valida-
tion using another random sequence for data splitting 
could produce different results. In a large dataset as in 
our study, the differences in the cross-validated data are 
not expected to depend too much on the random se-
quence for data splitting, but in smaller datasets, this 
could be a problem. However, data splitting and cross-
validation exactly reflect the situation in clinical life, 
where we optimize constants on an existing dataset and 
use the constant for predicting the IOLP in a new cataract 
case. For our dataset, we tested the performance of for-
mula constants optimized in the training set for RMSE if 
applied on the test set, the training set, and the entire da-
taset. The performance in terms of ratio of cases within 
AE limits of ≤0.25, ≤0.5, and ≤1.0 dpt is listed in Table 4. 
What we see is that in most cases the optimized constants 
perform better in terms of a higher ratio of cases within 
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limits on the training set compared to the test set. This 
result seems obvious. The higher the coherence between 
the training and test set the closer the results for the train-
ing and test set. From a mathematical standpoint, the 
more individual a IOLP calculation scheme is in terms of 
degrees of freedom, the better the formula would be ex-
pected to reproduce the training set with the optimized 
constants. However, cross-validation with a mutually ex-
clusive test set might lead to an overfitting with the con-
sequence that the performance might be degraded sig-
nificantly. As we deal with a large dataset in this study 
and with formulae with 1 or 3 constants, the effect of 
overfitting is low.

In conclusion, this study shows that:
1. For IOL calculation formulae which are disclosed and 

public domain, there are different strategies of formu-
la constant optimizations. For formulae with 1 con-
stant, we could back-calculate an individual formula 
constant for each case and derive the optimized con-
stant from the mean or median of the individual con-
stants. For formulae with >1 constant, the constant op-
timization is more difficult as we cannot back-calcu-
late the appropriate constant for each case.

2. In addition to classical constant optimization strate-
gies, we could always implement a non-linear optimi-
zation strategy, where any target parameter is opti-
mized for any target criterion. An optimization for the 
minimal PE seems to be closest to the needs of the sur-
geon and patients as the predictability of the refractive 
outcome is the most important quality criterion in 
modern cataract surgery. Typical target criteria in 
most cases are the minimization of the RMSE or the 
MAE.

3. Evaluating the results of formula constant optimiza-
tion always requires cross-validation. For such a cross-
validation, the dataset has to be split into a training set 
used for calculating the constants, and a test set used 
for validation of the constants. Without cross-valida-
tion, in most cases, the performance of the constants 
would be overestimated.

4. There are different options for presenting the results 
of formula constant optimization. We feel that perfor-
mance curves which show the ratio of cases within lim-
its of the absolute PE are the most appropriate tools 
and yield more information than the MAE or the ratio 
of cases within selected absolute PE limits.

Table 4. Ratio of cases within absolute PE AE limits of ≤0.25 dpt, ≤0.5 dpt, and ≤1.0 dpt for the test set, the training 
set, and the entire dataset

Ratio of cases within AE limits in % AE ≤0.25 dpt AE ≤0.5 dpt AE ≤1.0 dpt

SRKT formula
Test set, N = 435 40.69 69.89 95.40
Training set, N = 1,017 41.69 71.49 95.28
All, N = 1,452 41.39 71.01 95.32

Hoffer-Q formula
Test set, N = 435 40.00 68.97 93.33
Training set, N = 1,017 39.43 69.42 95.97
All, N = 1,452 39.60 69.28 95.18

Holladay1 formula
Test set, N = 435 42.75 71.49 93.33
Training set, N = 1,017 43.26 70.70 96.56
All, N = 1,452 43.11 70.94 95.59

Simplified Haigis formula with a0
Test set, N = 435 44.14 71.26 95.86
Training set, N = 1,017 44.84 74.83 96.85
All, N = 1,452 44.63 73.76 96.56

Haigis formula with a0/a1/a2
Test set, N = 435 44.14 72.87 96.32
Training set, N = 1,017 45.03 74.53 96.76
All, N = 1,452 44.63 73.76 96.56

Constants were optimized for minimum RMSE on the training set (N = 435). In most cases, the formula 
performance tested on the training set outperforms the respective performance on the test set. PE, prediction error; 
RMSE, root mean squared error.
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