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In this note, we revisit the innovative transform approach introduced by Cai et al. [Cai, N., Song, Y., Kou, S.,

2015. A general framework for pricing Asian options under Markov processes] for accurately approximating

the probability distribution of a weighted stochastic sum or time integral under general one-dimensional

Markov processes. Since then, Song et al. [Song, Y., Cai, N., Kou, S., 2018. Computable error bounds of

Laplace inversion for pricing Asian options] and Cui et al. [Cui, Z., Lee, C., Liu, Y., 2018. Single-transform

formulas for pricing Asian options in a general approximation framework under Markov processes] have

achieved an efficient reduction of the original double to a single transform approach. We move one step

further by approaching the problem from a new angle and, by dealing with the main obstacle relating to the

differentiation of the exponential of a matrix, we bypass the transform inversion. We highlight the benefit

from the new result by means of some numerical examples.

Key words : Stochastic sum; probability distribution; matrix exponential and column vector differentiation;

Pearson curve fit; pricing

1. Introduction

Continuous-time Markov chain (CTMC) approximations have gained popularity in the recent years

in operations research, finance and medicine due to their ability to deliver efficient and accurate

solutions to various problems. In finance, there has been a great research interest in applications

to derivatives pricing, including, for example, Cai et al. (2015), Cui et al. (2018), Cui et al. (2017)

and Kirkby et al. (2017). Most lately, Cui et al. (2021) proposed a novel Monte Carlo simulation

method for stochastic differential equation systems based on CTMC with applications to stochastic

local volatility models and queue processes. Pointing up the importance of regime-switching models
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in areas such as healthcare and financial engineering, Cai et al. (2020) also proposed an extended

CTMC approximation to general regime-switching Markov models and presented relevant uses.

In this paper, we focus the spotlight on a key matrix function that appears in several CTMC

applications, that is, a matrix exponential, which emerges, for example, in distributions of first

passage times, running extrema and stochastic time integrals, in bond prices and generally option

price formulations as well as their sensitivities (see Cai et al. 2020 and Ding et al. 2021). Here,

we give prominence to a practically useful quantity that features in various applications, that of a

stochastic time integral. Discrete or continuous additive functionals appear in numerous research

problems in finance (net present value modelling, e.g., see Creemers 2018; average-based derivatives,

e.g., see Fusai and Kyriakou 2016, Gambaro et al. 2020; stochastic volatility modelling, e.g., Cui

et al. 2021, Kyriakou et al. 2021), insurance (Brignone et al. 2021), technology (see Nadarajah

2008), biomedical engineering (Baumann et al. 2019), and others. These problems become intricate

in the lack of knowledge of the distribution of the sum.

Cai et al. (2015) pioneered a method for obtaining the unknown probability distribution of

the stochastic sum (discrete and continuous) in general one-dimensional Markov models via an

approximating CTMC based on the technique in Mijatović and Pistorius (2013). (This was extended

later to general regime-switching Markov models in Cai et al. 2020.). As part of their application,

they focused on the prices of Asian options which they recovered by numerical inversion of the

double Laplace transform related to the constructed CTMC with respect to the strike price and

the maturity (or number of monitoring dates in the case of discrete averaging). Based on the same

principles, Cui et al. (2018) simplified to a single Laplace transform with respect to the strike, with

consequent significant complexity and computational cost reductions. Song et al. (2018) derived

computable bounds for the error in the Laplace transform inversion guaranteeing its accuracy.

In doing this, they also obtained the closed-form single Laplace transforms which were derived

independently by Cui et al. (2018).

In this paper, we revisit the underlying bedrock of the aforementioned contributions, that is, the

Laplace transform of the random sum given by a column vector derived from a matrix exponential

of the form eA(θ)x, where A(θ) is an affine matrix-valued function in θ and x is a column vector.

Our method requires access to the integer moments of the sum, hence requires differentiation of the

exponential map; this is a notoriously difficult mathematical problem that has preoccupied many

researchers. For example, in their early contribution, Tsai and Chan (2003) derived, under the

assumption of a matrix with distinct eigenvalues, a closed-form solution for the first order parameter

differentiation of the matrix exponential in terms of minors, polynomials, the exponential of the

matrix and a matrix inversion. Although an algebraically manageable solution, it is undeniably

complicated and particularly challenging, especially when considering adapting to matrices with
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repeated eigenvalues and computation of higher order derivatives. Separate contributions by Cai

and Yang (2018, 2021) focused on techniques for the derivative of a column vector aiming to

obtain several useful deterministic expressions related to the first passage time of reflected jump

diffusion processes as elegant matrix functions. In this paper, we approach the problem differently

showing that the exact derivatives of the matrix exponential satisfy a system of ordinary differential

equations and derive closed-form solutions for exponential diagonalizable matrices. We also suggest,

first, a possible extension beyond the diagonalizable case and, second, we propose an efficient

technique for the direct differentiation of the column vector eA(θ)x, reducing the computational

cost of differentiating the full exponential matrix. Although we focus on the exponential of an

affine matrix function, our method is easily adaptable to any general matrix via a straightforward

modification of the parent recurrence relation (see later Proposition 3) of our approach. This

way we are able to generalize to solving various problems that involve derivatives of a matrix

exponential, such as the statistical inference of continuous-time auto-regressive moving average

(CARMA) models (see Tsai and Chan 2003 and references therein), or the log-likelihood function

maximization using a quasi-Newton method in a panel data analysis under the CTMC assumption

(see Kalbfleisch and Lawless 1985).

In this paper, we concentrate on curve-fitting algorithms in moment-determinate problems based

on moments that we derive using our technique; having at hand high order integer moments removes

the major block to our application enabling us to obtain a bona fide moment-based distribution

approximation based on a Pearson curve fit. Again, several possible applications may originate

from this. For example, Cui et al. (2021) describe the CTMC construction for the diffusion limits of

a M/M/s or a GI/M/s queue. This paves the way for obtaining the required higher order moments

via our proposed technique for uses such as in the estimation and prediction of tail behaviour (e.g.,

see Choudhury and Lucantoni 1996, Abate et al. 1995). The problem of bounding tail probabilities

under moment constraints is still of interest today and considered in several recent works, such as

Chen et al. (2021) and Tian et al. (2017), following early contributions by Bertsimas and Popescu

(2005), given the first three moments, and the fourth-moment approach of He et al. (2010). In

addition, moment problems in finance are studied in Bertsimas and Sethuraman (2000) (see also

Bertsimas and Popescu 2002 and Lo 1987), such as the formulation of optimal bounds on the price

of an option given distributional moment information. Besides, being able to derive the moments

of occupation times or Parisian stopping times can lead via curve-fitting to further uses in pricing

step or Parisian options (see Yang et al. 2021, Zhang and Li 2021); also a distribution-fitting

procedure based on moments of integral functionals of variance processes obtained from the Laplace

transforms of the corresponding integrated CTMC processes (see Cui et al. 2021) can be used to

facilitate the simulation of various volatility models via inverse transform sampling.



Das et al.: Matrix Exponential Differentiation and Weighted Sum Distributions
4

The remainder of this paper is organized as follows. In Section 2, we describe the model frame-

work. Section 3 is devoted to our theoretical results. Section 4 presents our application, compu-

tational complexity analysis, error analysis and numerical examples for different models which

illustrate the speed and accuracy of our approach. Section 5 concludes the paper. Several proofs

and algorithms are deferred to the e-companion.

2. The Model

Let (Ω,F ,P) be a probability space satisfying the usual conditions and supporting the process

S := {St}t≥0. Consider the sums Ac(t) :=
∫ t

0
Sw dw and Ad(m) :=

∑m

i=0Sti where the latter is based

on m+ 1 future recordings of S at the equidistant times t0 = 0, t1 = ∆, . . . , tm =m∆.

As in Cai et al. (2015) and Cui et al. (2018), S is represented by a non-negative CTMC process

with finite state space X := {x1, x2, . . . , xp} which is constructed via the technique in Mijatović

and Pistorius (2013); we define as D a p× p diagonal matrix whose entries are the elements of

X . In addition, let P (t) and G be, respectively, the p× p transition probability matrix and p× p
transition rate matrix of S. Then, it is known from the aforementioned contributions that, for any

complex number θ with positive real part,

EP
[
e−θAd(m)

]
= Ed(m,θ)1, where Ed(m,θ) :=

(
e−θDP (∆)

)m
e−θD, (1)

EP
[
e−θAc(t)

]
= Ec(t, θ)1, where Ec(t, θ):=e

(G−θD)t, (2)

and 1 is the p×1 column vector with all the entries equal to 1. The readers can refer to the original

paper of Cai et al. (2015) for the details of the construction and evaluation of (1) and (2).

2.1. Pearson Curve Fit

Our ultimate goal in this paper is to construct the unknown probability distribution of Ad and Ac

using an efficient distribution fit.

The Pearson system is a family of solutions g(z) to the differential equation

1

g(z)

dg(z)

dz
=− β0 + z

β1 +β2z+β3z2

whereby well-defined density functions can be derived with general form

g (x) = C
(
β1 +β2x+β3x

2
)− 1

2β3 exp


(β2− 2β0β3) arctan

(
β2+2β3x√
4β1β3−β22

)
β3

√
4β1β3−β2

2

 ,

where C is the normalizing constant and {β0, β1, β2, β3} the parameters that control the shape of

the distribution. These are estimated in the distribution fitting using the first four finite integer

moments µn :=EP [An· (·)], n= 1,2,3,4, and are given by

β0 = β2 :=

√
αγ (ε+ 3)

10ε− 12γ− 18
, β1 :=

(4ε− 3γ)α

10ε− 12γ− 18
, β3 :=

2ε− 3γ− 6

10ε− 12γ− 18
,
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where

α := µ2−µ2
1, γ :=

(µ3− 3µ1µ2 + 2µ3
1)

2

(µ2−µ2
1)

3 , ε :=
µ4− 4µ1µ3 + 6µ2

1µ2− 3µ4
1

(µ2−µ2
1)

2

are, respectively, the variance, squared skewness and kurtosis of the Pearson random variable. The

required moments follow from the next proposition.

Proposition 1. The n-th raw moment of the random variable Ad(m) and Ac(t) given S0 = xi ∈

X follows, respectively, from (−1)n dn

dθn

{
(epi )

∗
Ed(m,θ)1

} ∣∣
θ=0

and (−1)n dn

dθn

{
(epi )

∗
Ec(m,θ)1

} ∣∣
θ=0

,

where Ed(m,θ) and Ec(t, θ) are as in (1)–(2), epi is, for any positive integer p, the p× 1 column

vector with the i-th entry only non-zero and equal to 1, and ∗ denotes the transpose operation.

Proof. It is obvious from (1) that EP
[
e−θAd(m)

∣∣S0 = xi
]

= (epi )
∗
Ed(m,θ)1. Thus, the n-th raw

moment is given by (−1)n dn

dθn

{
(epi )

∗
Ed(m,θ)1

} ∣∣
θ=0

. The same argument holds for Ac(t). �

Given knowledge of the first four moments, we can construct a density function g that is con-

sistent with these and can be used to evaluate quantities of interest, as shown, for example, later

in Section 4. Our preference towards the system of Pearson curves is driven by the simplicity,

fast family selection and parameter estimation, ability to adapt to varying levels of skewness and

kurtosis, and accuracy based on a first four-moment fit. Its accuracy has been verified in researches

such as Solomon and Stephens (1978) and, more recently, Kyriakou et al. (2021). We have consid-

ered and applied alternatives to the Pearson system, such as a Gram–Charlier or a Cornish–Fisher

series expansion or Johnson systems, but have excluded them because of encountered cases of

non-convergence with increasing number of moments, or a non-guaranteed well-defined density,

or because they have just been slower. Pearson is highly performant as we demonstrate in our

numerical application in Section 4.

The following sections are devoted to the derivation of closed-form expressions for the derivatives

of Ed(m,θ), Ec(t, θ) and Ec(t, θ)1.

3. Derivatives of Matrix Exponential

Throughout the paper, Mp(C) will denote the space of all p× p matrices over the complex field C.

3.1. The Discrete Case

Let Ed(m,θ) be given by (1) and E
(n)
d (m,θ) the n-th derivative of Ed(m,θ) with respect to θ

for any non-negative integer n; in addition, E
(0)
d (m,θ)≡Ed(m,θ). We start by establishing a key

differential-difference relation in the following proposition.

Proposition 2. For any two non-negative integers m,n, we have that

E
(n)
d (m+ 1, θ) =

n∑
k=0

(
n
k

)
(−1)n−kDn−ke−θDP (∆)E

(k)
d (m,θ),
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where E
(n)
d (0, θ) = (−1)nDne−θD and

(
n
k

)
denotes the binomial coefficient.

Proof. See e-companion section EC.1. �

3.2. The Continuous Case

In what follows, we are interested in studying the computation of the higher order derivatives of the

exponential map Ec(t, θ) = et(G−θD) with respect to θ, where G and D are elements on Mp(C), and

t≥ 0. In the next proposition, we establish an important recurrence relation between the (n+1)-th

and n-th order derivatives of Ec(t, θ). We use E(0)
c (t, θ) to mean Ec(t, θ).

Proposition 3. For any non-negative integer n and any real t≥ 0,

E(n+1)
c (t, θ) =−(n+ 1)

t∫
0

Ec(t−u, θ)DE(n)
c (u, θ)du.

Proof. See e-companion section EC.1. �

The closed-form expressions of the derivatives of the exponential maps are presented in the next

two sections. First, we study the case of the set of diagonalizable matrices; we then extend to

the more general class of matrices. Finally, we provide the exact expression for the derivative of a

column vector derived from a matrix exponential map.

3.2.1. Diagonalizable Matrices. We present first a closed-form formula for calculating a

higher order derivative of the exponential of a diagonalizable matrix with distinct eigenvalues. Let

D be the set of all diagonalizable p× p matrices with distinct eigenvalues.

Assuming d1, . . . , dp are distinct complex numbers, we define a p× p matrix Γ with the (i, j)-th

element given by

Γij(t, θ) :=Ldie
tdj , for any i, j ∈ {1, . . . , p}, (3)

where, for i= 1, . . . , p, the linear operator {Ldi} is defined as

Ldif(t) =

∫ t

0

e(t−u)dif(u)du,

for all integrable functions f on [0,∞). Before proceeding further, we establish some auxiliary

results related to important properties of the operator Ldi , when acting on some integrable func-

tions, that are required for the upcoming results of this paper. With slight extension of our notation,

we use, for any integer n≥ 0, Γ(t, θ;n) to denote a multidimensional matrix of dimension p× · · ·× p︸ ︷︷ ︸
n+2

and, for i1, . . . , in, j, k ∈ {1, . . . , p}, the (i1, i2, . . . , in, k, j)-th element satisfies the recurrence relation

Γi1,i2,...inkj (t, θ;n) :=Ldi1Γi2,...inkj (t, θ;n− 1), n≥ 1, (4)

where Γ(t, θ; 0)≡ Γ(t, θ). The exact expression for Γ(t, θ;n) is given in the following proposition.
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Proposition 4. Let {d1, . . . , dp} be the set of distinct complex numbers. For any integer n≥ 0, let

Γ(t, θ;n) be as in (4). Then,

1. for i, j = 1,2, . . . , p, we have that

Γij(t, θ; 0) =

{
e
tdj−etdi
dj−di

, if i 6= j

tetdi , if i= j
(5)

2. for i1, . . . , in, j, k ∈ {1, . . . , p} and n> 1, we have that

Γi1...inkj (t, θ;n) =



Γ
i1...in−1
inj

(t,θ;n−1)−Γ
i1...in−1
ink

(t,θ;n−1)

dj−dk
, if k 6= j

Γ
i1...in−1
jj (t,θ;n−1)−Γ

i1...in−1
inj

(t,θ;n−1)

dj−din
, if in 6= k= j

...
Γ
j...j
jj (t,θ;n−1)−Γ

i1...j
i1j

(t,θ;n−1)

dj−di1
, if i1 6= i2 = · · ·= in = k= j

t
n+1

Γj...jjj (t, θ;n− 1), if i1 = i2 = · · ·= in = k= j

.

Proof. See e-companion section EC.1. �

The closed-form expression for the derivatives of Ec(t, θ) ∈ D is presented in the following the-

orem. It is worth noting that our result for the first order derivative is equivalent to that of

Kalbfleisch and Lawless (1985). For convenience, we present the algorithm which computes the

exact formulae for the first four derivatives in the e-companion section EC.2.

Theorem 1. Let {d1, . . . , dp} be the set of eigenvalues of a matrix (G− θD) ∈ D for θ ∈ C. Fur-

thermore, assume that Q(θ) and M(θ) are such that G− θD=Q(θ)M(θ)Q−1(θ), where M(θ) is a

diagonal matrix with Mii(θ) = di for any i ∈ {1, . . . , p}. Let Γ(t, θ; ·) be as in Proposition 4. Then,

for n≥ 1 and any i, j ∈ {1, . . . , p}, the n-th order derivative can be expressed in the form

E(n)
c (t, θ) = (−1)nn!Q(θ)Γ̃(n)(t, θ)Q−1(θ),

where

Γ̃
(n)
ij (t, θ) :=


∑

i1,...,in−1

Γ
ii1...in−2
in−1j

(t, θ;n− 1)Lii1(θ) · · ·Lin−1j(θ), for n≥ 2

Γij(t, θ; 0)Lij(θ), for n= 1

and L(θ) = [Lij(θ)]p×p :=Q−1(θ)DQ(θ).

Proof. We prove the result by induction. To compute the first order derivative of Ec(t, θ), we

apply Proposition 3:

E(1)
c (t, θ) =−

t∫
0

e(t−u)(G−θD)Deu(G−θD) du.
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Using the decomposition G− θD=Q(θ)M(θ)Q−1(θ), the above equation can be rewritten as

E(1)
c (t, θ) = −

t∫
0

Q(θ)e(t−u)M(θ)Q−1(θ)DQ(θ)euM(θ) duQ−1(θ)

= −Q(θ)

t∫
0

e(t−u)M(θ)L(θ)euM(θ) duQ−1(θ).

It is obvious that, for any i, j = 1,2, . . . , p, the (i, j)-th element of
t∫

0

e(t−u)M(θ)L(θ)euM(θ) du is

given by
t∫

0

e(t−u)Mii(θ)Lij(θ)e
uMjj(θ) du, i.e., Ldi (Lij(θ)e

tdj ). Again, since Lij(θ) is constant in t,

Ldi (Lij(θ)e
tdj ) =Lij(θ)Ldietdj =Lij(θ)Γij(t, θ; 0) = Γ̃

(1)
ij (t, θ). Thus, we prove our claim for n= 1.

Now suppose that for n= l the statement is true, i.e.,

E(l)
c (t, θ) = (−1)ll!Q(θ)Γ̃(l)(t, θ)Q−1(θ)

with

Γ̃
(l)
ij (t, θ) =

∑
i1,...,il−1

Γ
ii1...il−2
il−1j

(t, θ; l− 1)Lii1 · · ·Lil−1j.

Again from Proposition 3, we get that

E(l+1)
c (t, θ) =−(l+ 1)Q(θ)

t∫
0

e(t−u)M(θ)Q−1(θ)D
(

(−1)ll!Q(θ)Γ̃(l)(u, θ)Q−1(θ)
)
du

= (−1)l+1(l+ 1)!Q(θ)

t∫
0

e(t−u)M(θ)L(θ)Γ̃(l)(u, θ)duQ−1(θ).

Similarly to the case n= 1, the (i, j)-th element of the matrix
t∫

0

e(t−u)M(θ)L(θ)Γ̃(l)(u, θ)du can be

obtained from the expression Ldi [L(θ)Γ̃(l)(t, θ)]ij; using Proposition 4, we get that

Ldi

(∑
k

Lik(θ)Γ̃
(l)
kj (t, θ)

)
=Ldi

∑
k

Lik(θ)
∑

i1,...,il−1

Γ
ki1···il−2
il−1j

(t, θ; l− 1)Lki1(θ) · · ·Lil−1j(θ)


=

∑
k,i1,...,il−1

Γ
iki1···il−2
il−1j

(t, θ; l)Lik(θ)Lki1(θ) · · ·Lil−1j(θ) = Γ̃
(l+1)
ij (t, θ),

hence the result is proved. �

The closed-form derivatives of exponential diagonalizable matrices with repeated eigenvalues

follow from a straightforward modification of Proposition 4 and re-establishment of Theorem 1

accordingly.
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3.2.2. Beyond Diagonalizable Matrices. We present next an approach to finding the

closed-form representation for the non-diagonalizable class of matrices; a further rigorous analysis

is currently in progress.

It is well-known that, for any matrix A ∈Mp(C) of the form G− θD, we can find a diagonal-

izable matrix Aε ∈ D such that ‖A − Aε‖F < ε, for any ε > 0, where ‖ · ‖F denotes the matrix

Frobenius-norm or simply F -norm. (For more details, see Horn and Johnson 2012, Theorem 2.4.7.1.)

Therefore, we conjecture that

lim
ε→0

dn

dθn
etAε(θ) =

dn

dθn
etA(θ) in F -norm,

where, as ε→ 0, Aε(θ)→A(θ) in F -norm. This idea is illustrated in the following simple example

by computing the first order derivative.

Example 1. Consider G =

(
0 1
0 0

)
and D = I2. Let A(θ) = G − θD. Then, eA(θ) =

(
e−θ e−θ

0 e−θ

)
.

Therefore, the first order derivative of eA(θ) with respect to θ is

(
−e−θ −e−θ

0 −e−θ
)

. As A(θ) is not diag-

onalizable, we consider the perturbed matrix Aε(θ) =

(
−θ+ ε 1

0 −θ

)
. Hence, Aε(θ) is diagonalizable

with

Aε(θ) =Q(θ)M(θ)Q−1(θ),

where

M(θ) =

(
−θ 0
0 −θ+ ε

)
, Q(θ) =

(
− 1
ε

1
1 0

)
, Q−1(θ) =

(
0 1
1 1
ε

)
.

Now, we apply Theorem 1 to find the first order derivative of eAε(θ). Also, from the first part

of Proposition 4, the matrix Γ is given by

(
e−θ e−θ+ε−e−θ

ε
e−θ+ε−e−θ

ε
e−θ+ε

)
and L = Q−1(θ)DQ(θ) = I2.

Therefore, the first order derivative of eAε(θ) is given by

−Q[ΓijLij]2×2Q
−1 =

(
−e−θ+ε − e−θ+ε−e−θ

ε

0 −e−θ

)
,

and, as ε→ 0, we get the result.

In many applications it is required to compute the derivatives of a column vector of the form

et(G−θD)x, where (G− θD) ∈Mp(C) and x is a column vector that does not depend on θ, rather

than the derivatives of the full exponential matrix. In the next section, we establish the combined

representation of the first n derivatives of this column vector.
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3.2.3. Derivatives of a Column Vector of the Form Ec(t, θ)x. We start by introducing

some notation.

Definition 1. 1. Let Bq be a q × q matrix whose (i, j)-th element is given by [Bq]ij := iδi+1
j ,

where δij =

{
1 if i= j

0 otherwise
for i, j = 1, . . . , q.

2. Cx
p,q denotes a p× q matrix whose only first column is non-zero and is given by x.

Consider Ec(t, θ) = et(G−θD) for (G− θD)∈Mp(C) and t≥ 0. For any non-negative integer n, we

define the p× (n+ 1) matrix

E (0,...,n)
c (t, θ) :=

[
Ec(t, θ)x,

d

dθ
{Ec(m,θ)x} , . . . ,

dn

dθn
{Ec(m,θ)x}

]
, (6)

i.e., the j-th column of the matrix E (0,...,n)
c (t, θ) is dj

dθj
{Ec(m,θ)x} for any j = 1, . . . , n + 1. We

show in the following lemma that E (0,...,n)
c (t, θ) satisfies a matrix differential equation. The proof is

sketched in the e-companion.

Lemma 1. For any non-negative integer n, let E (0,...,n)
c (t, θ) be as in (6). Then, we have that

d

dt
E (0,...,n)
c (t, θ) = (G− θD)E (0,...,n)

c (t, θ)−DE (0,...,n)
c (t, θ)Bn+1

with E (0,...,n)
c (0, θ) =Cx

p,(n+1),
(7)

where Bn+1 and Cx
p,(n+1) follow Definition 1 with dimensions (n+ 1)× (n+ 1) and p× (n+ 1),

respectively.

Proof. See e-companion section EC.1. �

Before solving the matrix ordinary differential equation (7), we recall some definitions and prop-

erties of the Kronecker product and the vectorization operation. (For more details, refer to Magnus

and Neudecker 2019, Chapter 2.) Let X and Y be m× n and p× q matrices, respectively. Then,

the Kronecker product of X and Y is given by the mp× nq matrix X ⊗ Y := (xijY )i=1,...,m
j=1,...,n

; the

vectorization of X is the mn× 1 column vector vec(X) = (x∗1, x
∗
2, . . . , x

∗
n)
∗
, where x1, x2, . . . , xn are

the column vectors of X. Finally, for an additional matrix Z, we have that

vec(XY Z) = (Z∗⊗X)vec(Y ). (8)

Theorem 2. The solution (in terms of vectorization) to the matrix differential equation (7) is

given by

vec(E (0,...,n)
c (t, θ)) = exp

[
t
(
In+1⊗ (G− θD)− (B∗n+1⊗D)

)]
·
(
en+1

1 ⊗x
)
, (9)

where Bn+1 is given in the first part of Definition 1 and en+1
1 in Proposition 1.

Proof. From property (8), the matrix differential equation (7) can be rewritten as

d

dt
vec(E (0,...,n)

c (t, θ)) =
(
In+1⊗ (G− θD)−B∗n+1⊗D

)
vec(E (0,...,n)

c (t, θ)), (10)

with the initial condition vec(E (0,...,n)
c (0, θ)) = en+1

1 ⊗x. The proof is completed by solving (10). �
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4. Application

As explained in Section 2.1, we are interested in building the density function of the random sum

based on its moments, which we compute using the theory developed in the previous sections and

which in its implementation is much simpler than it may look. We can evaluate any moments,

however we focus on the first four as required for the Pearson curve fit.

4.1. The Discrete Sum

We define the p× 5 matrix E (0,...,4)
d (m,θ) =

[
E

(0)
d (m,θ)1, . . . ,E

(4)
d (m,θ)1

]
. Then, from Proposition

2, we get that

E (0,...,4)
d (m+ 1, θ) = e−θD

4∑
k=0

(−1)k

k!
DkP (∆)E (0,...,4)

d (m,θ)Bk
5 , (11)

with E (0,...,4)
d (0, θ) = e−θD

4∑
k=0

(−1)k

k!
DkC1

p,5B
k
5 for B5 and C1

p,5 as in Definition 1.

4.2. The Time Integral

If (G− θD) ∈D, we can derive the required moments from Theorem 1. If, instead, (G− θD) /∈D,

we can use the limit of small perturbation as explained in Section 3.2.2. Nevertheless, alternatively

to both, the first four derivatives of the vector Ec(t, θ)1 with respect to θ, for any matrix G− θD,

can be obtained from Theorem 2.

4.3. Computational Complexity

This section presents the time complexity of evaluating up to the fourth order derivative of Ed(m,θ),

Ed(m,θ)1 (discrete case) and Ec(t, θ), Ec(t, θ)1 (continuous case) at θ= 0, of interest to us, using

our method. We provide the algorithms for computing Ec(t, θ) and Ec(t, θ)1 in the e-companion

section EC.2, whereas we discuss a time-efficient computational approach to Ed(m,θ)1 in this

section.

The time complexity of the derivatives in the discrete cases is described in items a)–b), whereas

the details of the continuous cases are given in items c)–d):

a) The differentiation of Ed(m,θ) requires evaluation of the formula presented in Proposition 2

involving matrix multiplications of the order p× p, whose worst-case complexity is well known to

be O(p3).

b) In computing the combined derivatives of Ed(m,θ)1 using formula (11), we have consid-

ered both the suggestion of backward multiplication in (Cui et al. 2018, Remark 2) and forward

multiplication. First, note that, for any k = 0, . . . ,4, e−θDDk is diagonal and the operation L :=

e−θDDkP (∆) costs O(kp). Also, the multiplication M := E (0,...,4)
d (m,θ)Bk

5 costs O(52kp) as B5 is a

5×5 square matrix. Again, as M is a p×5 matrix, the multiplication LM costs O(5p2). Therefore,

the total cost of evaluating
4∑
k=0

((−1)k/k!)e−θDDkP (∆)E (0,...,4)
d (m,θ)Bk

5 is O(p2).
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c) The most expensive part of the computation of the derivatives of Ec (t, θ) up to the fourth

order using Theorem 1 is the construction of a p × p × p × p × p matrix, that is, Γ(t, θ; 3) of

Proposition 4, whose worst-case complexity is O(p5) (see Algorithm EC.2.1 in the e-companion

section EC.2).

d) The combined derivative of the column vector of the form Ec(t, θ)1 requires evaluation of the

exponential of a 5p× 5p matrix (see expression 9), which we implement using the @expm function

in Matlab. We have from Moler and Van Loan (2003) that the worst-case complexity of computing

a matrix exponential is O(p3), which holds also in our case of Theorem 2 (see Algorithm EC.2.2 in

the e-companion section EC.2). For a faster multiplication of a matrix exponential and a column

vector, it is possible to use the @expokit function (see Sidje 1998 for more details).

In summary, the direct evaluation of the derivatives of Ed(m,θ)1 reduces the computational

cost by O(p) compared to the derivatives of Ed(m,θ). Similarly, O(p2) cost reduction results from

computing the derivatives of Ec(t, θ)1 instead of Ec(t, θ). Matlab codes linked to these computations

are made available from https://github.com/milan30/DME.

4.4. Illustrative Examples

We consider the expected values

Cc(t, k;S0) :=EP

[(∫ t

0

Sw dw− k
)+
∣∣∣∣∣S0

]
and Cd(m,k;S0) :=EP

( m∑
i=0

Sti − k

)+
∣∣∣∣∣∣S0

 , (12)

where y+ := max(y,0), k is a non-negative constant and S represents some asset price process

such that EP (St|S0) = S0e
(r−λ)t with r denoting the risk-free interest rate and λ the dividend rate.

For strike price K and maturity time T , the quantities (e−rT/T )Cc(T,TK;S0) and (e−rT/(m+

1))Cd(m, (m+ 1)K;S0) correspond to the prices at time 0 of Asian call options with, respectively,

continuous monitoring of the underlying asset price S; discrete monitoring at the equidistant times

t0 = 0, t1, . . . , tm =m∆ = T .

4.4.1. Error Analysis. Before moving to the computation of (12), we brief on the error

associated with this. The expected values in (12) are given, by virtue of straightforward equivalence

result, by

%S0− k+

∫ µ1+k

0

(µ1 + k− z)f(z)dz = %S0− k+

∫ µ1+k

0

F (z)dz, (13)

where µ1 = EP

[∫ t
0
Swdw

]
in the continuous case or EP [

∑m

i=0Sti ] in the discrete case, F and f

denote, respectively, the true distribution and density functions, % ≡ (e(r−λ)t − 1)/(r − λ) in the

continuous case and % ≡ (1 − e(r−λ)(m+1)∆)/(1 − e(r−λ)∆) in the discrete case. The first type of

error is incurred by approximating the true distribution by the moment-based Pearson curve fit
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with associated distribution and density functions G and g, respectively. Based on a result due to

(Akhiezer 1965, Corollary 2.5.4), which is revisited by (Lindsay and Basak 2000, Theorems 1, 2),

we get that∣∣∣∣∫ µ1+k

0

[F (z)−G(z)]dz

∣∣∣∣≤ ∫ µ1+k

0

|F (z)−G(z)|dz ≤
∫ µ1+k

0

$ñ (z)dz =: ê1 (k;µ1, . . . , µ2ñ) ,

where $ñ (z) :=
{
P ′ñ (z)W−1

ñ Pñ (z)
}−1

, Pñ (z) := (1, z, z2, . . . , zñ)
′
and Wñ := ‖µi+j‖ñi,j=0

is a Hankel

symmetric matrix defined by the first 2ñ moments. $ñ (z) goes to 0 at the rate z−2ñ as z→∞

giving relatively sharp tail information and guaranteeing accuracy. For example, for ñ= 1,

ê1 (k;µ1, µ2) =
√
µ2 arctan

µ1 + k
√
µ2

,

but ê1 can be computed easily and accurately numerically for any ñ. An improvement to this bound

is due to Khamis (1954) who introduces a constant non-negative multiplier that is smaller than

the unity and is given by 1 + min{l.u.bc≤z≤d(−f (z)/g (z)), l.u.bc≤z≤d(−g (z)/f (z))} if it exists.

For more on the proximity of distributions with shared moments as well as the estimation of their

closeness in different moment-based metrics, interested readers may refer to Kyriakou et al. (2021).

The second source of error is due to the numerical evaluation of the integral in (13) based on the

approximating distribution function G. For this, we use adaptive quadrature (e.g., see Shampine

et al. 1997, Chapter 5; Shampine 2008) where the interval [0, µ1 +k] is partitioned into subintervals

0 =: η1 <ϑ1 = η2 <ϑ2 = η3 < · · ·<ϑN := µ1 +k on which the basic quadrature rule R is sufficiently

accurate. This yields ∫ µ1+k

0

G(z)dz =
N∑
j=1

∫ ϑj

ηj

G(z)dz =
N∑
j=1

Rj + ê2.

The error ê2 is estimated by comparing it to a more accurate result. To this end, an additional rule

R̄ is introduced which is believed to be more accurate. In particular, R is given by the three-point

Gaussian quadrature formula and R̄ by the seven-point Kronrod formula, for which we have

ê2 :=
N∑
j=1

[
R̄j −Rj + 7.14× 10−17 (ϑj − ηj)13

G(12)(ξj)
]

for some ξj ∈ (ηj, ϑj), where G(n) denotes the n-th derivative of G and R̄j−Rj is an error estimate

of Rj. If the current approximation is not sufficiently accurate, subintervals, ranked by largest

error, are further refined for improvement until the intended error tolerance is satisfied.

Finally, approximating the targeted Markov model with a CTMC induces also some error. How-

ever, this is common to both Cai et al. (2015) and Cui et al. (2018) and decreases with increasing

number of states for the approximating CTMC; readers may refer to (Cai et al. 2015, Section 6.2)

for illustrations of this.
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4.4.2. Numerical Results. In Tables 1–2, we present a battery of numerical results corre-

sponding to Asian option prices for varying strikes, monitoring frequencies and underlying model

assumptions, including the Cox–Ingersoll–Ross (CIR) and constant elasticity of variance (CEV)

diffusions, the double-exponential jump diffusion (DEJD), the Merton jump diffusion (MJD), the

Carr–Geman–Madan–Yor (CGMY) and the variance gamma (VG) model. We also consider various

parameter values and benchmarks as in Cai et al. (2015) and Cui et al. (2018), more details of

which can be found in the tables. For a fair comparison, we use the same equipment as Cui et al.

(2018) for the execution of the numerical experiments, that is, Matlab on a machine with an Intel

Core 2 i7 CPU @ 2GHz and 8GB of RAM.

Comparisons with the benchmarks and the earlier methods of Cai et al. (2015) and Cui et al.

(2018) divulge the superiority of our moment-based approximation. In almost all cases under con-

sideration, we achieve smaller (absolute) error than both the other techniques, or on a few occasions

nearby errors, implying generally larger total error involved in the Laplace transform inversion than

the error from our moment-based approximation. This is also confirmed by inspection of the Q-Q

plots in Figure 1 comparing, for different kinds of driving dynamics, the simulated true distribution

of the arithmetic average and the corresponding Pearson distribution approximation. It is obvious

that the points in the Q-Q plots follow very closely the line y = x with minor departures in the

tails (subject to simulation error). Also, two-sample Kolmogorov–Smirnov tests lead to acceptance

of the null hypothesis that the two samples come from the same distribution with p-values above

10%. In addition, bypassing the transform inversion using our method depletes the CPU time as

shown in Figure 2 on log-scale. Reducing double to single transform inversion reduces the time it

takes to compute this. Our approach results in further reduction at an increasing rate with the

averaging frequency that goes above a factor of 4. This translates to CPU time of one to two

hundredths of a second for m= 250 and m=∞, while warranting almost higher precision which

suffices for practical purposes. This is particularly welcome news for highly intensive problems

involving integrated stochastic processes (case m=∞) as highlighted in our concluding remarks.

5. Conclusions

In this article, we have derived closed-form expressions for the derivatives of matrix exponentials

for diagonalizable matrices. We have also discussed extensions to non-diagonalizable matrices and

derivatives of vectors.

In our application, we have focused on the typical example of Asian option evaluation. Nev-

ertheless, our method offers an attractive speed–accuracy package that is transferable to other

applications of interest in financial engineering and beyond, as discussed in the introduction. We

quickly recall a typical case that arises in simulation problems, that of the simulation of integrated
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K Benchmark Moment-based Cai et al. Cui et al. K Benchmark Moment-based Cai et al. Cui et al.
approximation approximation

CIR Lognormal (CEV β = 0)
0.9 0.21575 -9.2E-05 -2.3E-04 1.7E-04 2 0.05599 -1.8E-04

0.95 0.18958 -5.7E-05 -2.1E-04 1.8E-04 2 0.21839 -9.7E-05
1 0.16580 -2.6E-05 -1.8E-04 2.0E-04 2 0.19317 4.9E-04

1.05 0.14433 4.3E-06 -1.5E-04 2.4E-04 2 0.24642 4.3E-04
1.1 0.12506 4.0E-05 -1.0E-04 2.8E-04 2 0.30622 3.2E-04

CEV (β = 0.25) DEJD (σ= 0.1)
80 21.59408 1.3E-02 1.7E-02 1.7E-02 90 13.55964 -8.1E-04 4.5E-03 4.3E-03
90 13.15109 -2.1E-06 8.2E-03 8.1E-03 95 9.41962 -5.5E-03 9.7E-03 5.1E-03

100 6.83859 -1.1E-03 -7.3E-03 -7.1E-03 100 5.91537 7.8E-04 -1.7E-03 2.4E-03
110 3.07333 6.1E-04 -1.2E-02 -1.2E-02 105 3.35071 2.9E-03 -2.4E-03 7.2E-04
120 1.23175 -3.9E-04 -4.1E-03 -4.1E-03 110 1.74896 1.6E-04 5.3E-03 4.7E-04

CEV (β =−0.25) DEJD (σ= 0.3)
80 21.66618 1.1E-02 1.5E-02 1.5E-02 90 15.33688 -2.5E-03 -1.4E-03 -1.1E-03
90 13.26741 -1.3E-03 4.1E-03 4.0E-03 95 12.10723 -6.0E-03 -3.1E-03 -2.8E-03

100 6.85150 -7.5E-04 -1.2E-02 -1.2E-02 100 9.35336 -8.3E-03 -4.5E-03 -4.2E-03
110 2.93166 1.3E-03 -1.1E-02 -1.1E-02 105 7.08059 -8.9E-03 -5.4E-03 -5.1E-03
120 1.04453 2.6E-03 -2.4E-04 -3.3E-04 110 5.26109 -7.8E-03 -5.5E-03 -5.2E-03

CEV (β =−0.5) DEJD (σ= 0.5)
80 21.71118 9.4E-03 1.3E-02 1.3E-02 90 18.46259 -8.5E-03 -9.7E-03 -1.1E-03
90 13.32850 4.9E-03 2.0E-03 1.9E-03 95 15.75006 -5.0E-03 -1.1E-02 -4.3E-03

100 6.85984 -4.2E-03 -1.6E-02 -1.6E-02 100 13.36027 -2.6E-03 -1.3E-02 -6.4E-03
110 2.86666 -1.3E-03 -1.4E-02 -1.4E-02 105 11.27716 -1.4E-03 -1.4E-02 -7.7E-03
120 0.95995 2.8E-03 8.9E-04 7.5E-04 110 9.47826 -1.3E-03 -1.4E-02 -8.2E-03

MJD CGMY
90 12.74587 7.6E-04 1.2E-03 1.1E-03 90 12.74788 -1.0E-04 -9.9E-04 -8.0E-05

100 5.05974 3.1E-04 -2.3E-03 1.2E-03 100 5.08865 -7.5E-03 -8.5E-03 -7.3E-03
110 1.08413 1.4E-03 8.2E-03 3.0E-03 110 1.05810 -4.8E-03 2.2E-03 -5.9E-04

VG VG
100 5.59320 3.2E-03 -6.3E-03 100 6.46870 1.2E-03 -1.4E-03
100 5.85850 3.1E-03 -5.2E-03 100 6.22890 5.4E-04 6.0E-04

Table 1 Pricing continuous Asian options in the CIR, CEV, lognormal, DEJD, MJD, CGMY and VG models

via the CTMC approximation based on finite state space with number of states p = 50 (as in Cai et al. 2015 and

Cui et al. 2018) using our moment-based method and the methods from the aforementioned papers. K denotes the

strike price. “Error” columns report the differences of the indicated method with respect to the benchmark. CIR

parameters: (Cai et al. 2015, Table 3); benchmark: Fusai et al. (2008). CEV parameters: (Cai et al. 2015, Table 4);

benchmark: Cai et al. (2014). Lognormal parameters: (Fusai and Kyriakou 2016, Table 10); benchmark: Cai and

Kou (2012). DEJD parameters: (Cai et al. 2015, Table 5); benchmark: Cai and Kou (2012). MJD parameters: (Cai

et al. 2015, Table 6); benchmark: Monte Carlo (MC) price estimates. VG parameters: (Cai et al. 2015, Tables 7–8);

benchmark: MC price estimates. CGMY parameters: (Cai et al. 2015, Table 9); benchmark: MC price estimates. All

MC estimates are based on 106 simulation trials and 104 time steps and are from Cai et al. (2015) with standard

errors reported there.

functionals of stochastic volatility (see Cui et al. 2021 for generalized SABR and stochastic local

volatility models), which can be slow especially when generating entire asset price trajectories and

where the bias from their approximation, that is hard to quantify in practice, would be desired to

be safely assumed negligible. We are currently exploring further speed-up and precision enhance-
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K Benchmark Moment-based Cai et al. Cui et al. K Benchmark Moment-based Cai et al. Cui et al.
approximation approximation

CIR (m= 12) CIR (m= 25)
0.9 0.21279 -9.0E-05 -2.2E-04 2.1E-04 0.9 0.21428 -8.9E-05 -2.2E-04 2.1E-04

0.95 0.18659 -5.4E-05 -2.1E-04 1.5E-04 0.95 0.18810 -6.1E-05 -2.1E-04 1.3E-04
1 0.16282 -1.5E-05 -1.8E-04 1.5E-04 1 0.16432 -2.3E-05 -1.8E-04 1.3E-04

1.05 0.14140 2.4E-05 -1.4E-04 1.8E-04 1.05 0.14287 1.4E-05 -1.4E-04 1.6E-04
1.1 0.12223 5.5E-05 -1.0E-04 2.2E-04 1.1 0.12365 4.6E-05 -1.0E-04 2.0E-04

CIR (m= 50) CIR (m= 100)
0.9 0.21501 -9.7E-05 -9.5E-04 2.0E-04 0.9 0.21538 -9.8E-05 -2.3E-04 2.0E-04

0.95 0.18883 -6.1E-05 -2.1E-04 1.3E-04 0.95 0.18920 -5.7E-05 -2.1E-04 1.3E-04
1 0.16505 -2.7E-05 -1.8E-04 1.2E-04 1 0.16542 -2.5E-05 -1.8E-04 1.2E-04

1.05 0.14359 6.5E-06 -1.5E-04 1.5E-04 1.05 0.14395 1.2E-05 -1.4E-04 1.5E-04
1.1 0.12434 4.5E-05 -1.0E-04 1.9E-04 1.1 0.12470 3.9E-05 -1.0E-04 1.9E-04

CIR (m= 250) CEV (β = 0.25,m= 250)
0.9 0.21560 -9.3E-05 -2.3E-04 2.1E-04 80 21.60167 4.7E-03 8.1E-03 8.1E-03

0.95 0.18943 -6.0E-05 -2.1E-04 1.3E-04 90 13.15550 -8.6E-04 -2.0E-05 1.0E-05
1 0.16565 -2.8E-05 -1.8E-04 1.3E-04 100 6.84034 -4.4E-03 -1.4E-02 -1.4E-02

1.05 0.14418 4.6E-06 -1.5E-04 1.4E-04 110 3.07180 -2.3E-03 -1.5E-02 -1.5E-02
1.1 0.12492 3.5E-05 -1.1E-04 1.8E-04 120 1.22841 2.2E-03 -3.4E-03 -3.4E-03

CEV (β =−0.25,m= 250) CEV (β =−0.5,m= 250)
80 21.67122 5.0E-03 8.6E-03 8.6E-03 80 21.71428 4.9E-03 8.1E-03 8.1E-03
90 13.26903 1.3E-03 -1.4E-03 -1.4E-03 90 13.32877 6.1E-04 -2.0E-03 -2.0E-03

100 6.84853 -3.0E-03 -1.4E-02 -1.4E-02 100 6.85365 -3.2E-03 -1.5E-02 -1.5E-02
110 2.92962 -1.2E-03 -1.4E-02 -1.4E-02 110 2.86119 -4.6E-04 -1.3E-02 -1.3E-02
120 1.04072 3.7E-03 8.0E-04 8.2E-04 120 0.95542 4.7E-03 2.6E-03 2.6E-03

VG VG
12 5.51930 -1.9E-03 -1.3E-02 50 6.45410 -9.7E-04 -1.1E-02
12 5.77730 2.4E-03 -8.1E-03 50 6.21460 -3.0E-03 -1.3E-02
12 6.38730 2.2E-03 -7.1E-03 250 5.59750 -5.2E-03 -1.6E-02
12 6.15910 -8.4E-03 -1.9E-02 250 5.86060 -3.2E-03 -1.4E-02
50 5.57400 -5.2E-03 -1.6E-02 250 6.47520 -4.7E-03 -1.4E-02
50 5.84550 -3.2E-03 -1.4E-02 250 6.22460 3.6E-03 -6.9E-03

Table 2 Pricing discrete Asian options in the CIR, CEV and VG models via the CTMC approximation based on

finite state space with number of states p = 50 (as in Cai et al. 2015 and Cui et al. 2018) using our moment-based

method and the methods from the aforementioned papers. K denotes the strike price and m the number of

monitoring dates. “Error” columns report the differences of the indicated method with respect to the benchmark.

CIR parameters: (Cai et al. 2015, Table 3); benchmark: Fusai et al. (2008). CEV parameters: (Cai et al. 2015, Table

4); benchmark: Cai et al. (2014). VG parameters: (Cai et al. 2015, Tables 7–8); benchmark: MC price estimates. All

MC estimates are based on 106 simulation trials and are from Cai et al. (2015) with standard errors reported there.

ments when computing the derivatives of the exponential of matrices of large dimension, which are

particularly relevant in such problems.
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Proofs and Algorithms

EC.1. Proofs of Auxiliary Results

Proof of Proposition 2. Note that for any complex number θ, Ed(0, θ) = e−θD. Thus, we prove

our claim E
(n)
d (0, θ) = (−1)nDne−θD for any non-negative integer n. It is easy to see that, for

m= 0,1,2, . . .,

Ed(m+ 1, θ) = e−θDP (∆)Ed(m,θ); (EC.1)

this proves the result for n = 0. Then, using the general Leibniz rule on the recurrence relation

(EC.1), we get our result. �

Proof of Proposition 3. We have that Ec(t, θ) satisfies the ordinary differential equation

∂

∂t
Ec(t, θ) = (G− θD)Ec(t, θ). (EC.2)

We also see that Ec(t, θ) is infinitely differentiable with respect to θ. Therefore, differentiating

(EC.2) with respect to θ yields

∂2

∂t∂θ
Ec(t, θ) =−DEc(t, θ) + (G− θD)

∂

∂θ
Ec(t, θ), (EC.3)

where we have used the fact that ∂
∂θ

(G− θD) =−D. Note that equation (EC.3) can be rewritten

as
∂

∂t
E(1)
c (t, θ) =−DEc(t, θ) + (G− θD)E(1)

c (t, θ).

Therefore, for n = 0,1,2, . . . , it follows trivially that the (n+ 1)-th order derivative satisfies the

recurrence equation

∂

∂t
E(n+1)
c (t, θ) =−(n+ 1)DE(n)

c (t, θ) + (G− θD)E(n+1)
c (t, θ). (EC.4)

It is also easy to see that, for any θ ∈C and non-negative integer n,

Ec(0, θ) = Ip, E(n+1)
c (0, θ) = 0p,p, (EC.5)

where 0p,p denotes the p× p zero matrix and Ip the p× p identity matrix in Mp(C). Using the

initial condition (EC.5), it follows that the solution to (EC.4) has integral representation

E(n+1)
c (t, θ) =−(n+ 1)

t∫
0

Ec(t−u, θ)DE(n)
c (u, θ)du,

which completes the proof. �

Proof of Proposition 4. 1. This holds trivially by definition.
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2. We only prove for n= 1 as the rest of the result can be shown based on similar arguments.

Let i, j, k ∈ {1, . . . , p}. In view of (5), we consider the following cases. First, let j 6= k. Then, from

the first part of the proposition,

Γikj(t, θ; 1) =LdiΓkj(t, θ) =Ldi

(
etdj − etdk
dj − dk

)
.

By linearity of Ldi and from (3), we get that

Γikj(t, θ; 1) =
Ldiedjt−Ldiedkt

dj − dk
=

Γij(t, θ)−Γik(t, θ)

dj − dk
.

Second, consider the case i 6= j = k. Integration by parts yields

Γijj(t, θ; 1) =LdiΓjj(t, θ) =

∫ t

0

e(t−u)diueudjdu=
tedjt

dj − di
− 1

dj − di
Ldie

djt =
Γjj(t, θ)

dj − di
− Γij(t, θ)

dj − di
.

Finally, for i= j = k, we have that

Γiii(t, θ; 1) =LdiΓii(t, θ) =

∫ t

0

e(t−u)diueudidu=
t2

2
etdi .

�

Proof of Lemma 1. Upon post-multiplication of x to the differential equation (EC.2) and the

equations (EC.4)–(EC.5), we deduce that

∂

∂t
{Ec(t, θ)x}= (G− θD){Ec(t, θ)x},

∂

∂t

(
dn+1

dθn+1
{Ec(t, θ)x}

)
=−(n+ 1)D

dn

dθn
{Ec(t, θ)x}+ (G− θD)

dn+1

dθn+1
{Ec(t, θ)x} ,

(EC.6)

with the condition

Ec(0, θ)x= x, E(n+1)
c (0, θ)x= 0p,1. (EC.7)

Rearrangement of (EC.6)–(EC.7) in the matrix form (6) gives the result. �

EC.2. Algorithms

EC.2.1. Algorithm: Computation of derivatives of matrix exponential with respect to parameter

(Theorem 1)

Input: Matrices G,D and complex number θ with G− θD containing distinct eigenvalues

Output: First four derivatives E(1)
c ,E(2)

c ,E(3)
c ,E(4)

c of eG−θD with respect to θ

1. Diagonalize G− θD: G− θD=Q(θ)M(θ)Q−1(θ)

2. Let {d1, . . . , dp} be the eigenvalues of G− θD

3. L←Q−1DQ

4. Initialize Γ0← p× p zero matrix, and Γ̃(1)← p× p zero matrix
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5. for i, j = 1,2, . . . , p

6. if i 6= j, Γ0(i, j)← e
tdj−etdi
dj−di

7. else Γ0(i, j)← tetdi

8. for i, j = 1,2, . . . , p

9. Γ̃0(i, j)← Γ0(i, j)L(i, j)

10. E(1)
c ←−QΓ̃(1)Q−1 // first order derivative

11. Initialize Γ1← p× p× p zero matrix, and Γ̃(2)← p× p zero matrix

12. for i, j, k= 1,2, . . . , p

13. if k 6= j, Γ1(i, j, k)← Γ0(i,j)−Γ0(i,k)

dj−dk

14. else if i 6= k= j, Γ1(i, k, j)← Γ0(j,j)−Γ0(i,j)

dj−di

15. else Γ1(i, k, j)← t
2
Γ0(j, j)

16. for i, j = 1,2, . . . , p

17. Γ̃(2)(i, j)←
∑
k

Γ1(i, j, k)L(i, k)L(k, j)

18. E(2)
c ← 2QΓ̃(2)Q−1 // second order derivative

19. Initialize Γ2← p× p× p× p zero matrix, and Γ̃(3)← p× p zero matrix

20. for i, j, k, l= 1,2, . . . , p

21. if k 6= j, Γ2(i, l, k, j)← Γ1(i,l,j)−Γ1(i,l,k)

dj−dk

22. else if l 6= k= j, Γ2(i, l, k, j)← Γ1(i,j,j)−Γ1(i,l,j)

dj−dl

23. else if i 6= l= k= j, Γ2(i, l, k, j)← Γ1(j,j,j)−Γ1(i,i,j)

dj−di

24. else Γ2(i, l, k, j)← t
3
Γ1(j, j, j)

25. for i, j = 1,2, . . . , p

26. Γ̃(3)(i, j)←
∑
l,k

Γ2(i, l, k, j)L(i, l)L(l, k)L(k, j)

27. E(3)
c ←−6QΓ̃(3)Q−1 // third order derivative

28. Initialize Γ3← p× p× p× p× p zero matrix, and Γ̃(4)← p× p zero matrix

29. for i, j, k, l,m= 1,2, . . . , p

30. if k 6= j, Γ3(i, l,m,k, j)← Γ2(i,l,m,j)−Γ2(i,l,m,k)

dj−dk

31. else if m 6= k= j, Γ3(i, l,m,k, j)← Γ2(i,l,j,j)−Γ2(i,l,m,j)

dj−dm

32. else if l 6=m= k= j, Γ3(i, l,m,k, j)← Γ2(i,l,j,j)−Γ2(i,l,l,j)

dj−dl

33. else if i 6= l=m= k= j, Γ3(i, l,m,k, j)← Γ2(i,j,j,j)−Γ2(i,j,i,j)

dj−di

34. else Γ3(i, l,m,k, j)← t
4
Γ2(j, j, j, j)

35. for i, j = 1,2, . . . , p

36. Γ̃(4)(i, j)←
∑
l,k,m

Γ3(i, l,m,k, j)L(i, l)L(l,m)L(m,k)L(k, j)

37. E(4)
c ← 24QΓ̃(4)Q−1 // fourth order derivative
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EC.2.2. Algorithm: Computation of derivatives of matrix exponential times a vector with respect

to parameter (Theorem 2)

Input: Matrices G,D and complex number θ

Output: First four derivatives E (1)
c ,E (2)

c ,E (3)
c ,E (4)

c of et(G−θD)1 with respect to θ

1. Initialize B5← 5×5 zero matrix, e1← (1,0,0,0,0)∗, I5← 5×5 identity matrix, 1← column

vector of ones of size p

2. for i, j = 1,2, . . . ,5

3. if j = i+ 1, B5(i, j)← i

4. Υ← I5⊗ (G− θD) // ⊗ denotes Kronecker product

5. Θ←B∗5 ⊗D

6. ζ← e1⊗1

7. E (0,...,5)
c ← eΥ−Θζ

8. E (1)
c ← E (0,...,5)

c (p + 1, . . . ,2p), E (2)
c ← E (0,...,5)

c (2p + 1, . . . ,3p), E (3)
c ← E (0,...,5)

c (3p +

1, . . . ,4p), E (4)
c ←E (0,...,5)

c (4p+ 1, . . . ,5p)


