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In a cerebral hypometabolic state, cortical neurons exhibit slow synchronous oscillatory

activity with sparse firing. How such a synchronization spatially organizes as the cerebral

metabolic rate decreases have not been systemically investigated. We developed a

network model of leaky integrate-and-fire neurons with an additional dependency on

ATP dynamics. Neurons were scattered in a 2D space, and their population activity

patterns at varying ATP levels were simulated. The model predicted a decrease in firing

activity as the ATP production rate was lowered. Under hypometabolic conditions, an

oscillatory firing pattern, that is, an ON-OFF cycle arose through a failure of sustainable

firing due to reduced excitatory positive feedback and rebound firing after the slow

recovery of ATP concentration. The firing rate oscillation of distant neurons developed

at first asynchronously that changed into burst suppression and global synchronization

as ATP production further decreased. These changes resembled the experimental data

obtained from anesthetized rats, as an example of a metabolically suppressed brain.

Together, this study substantiates a novel biophysical mechanism of neuronal network

synchronization under limited energy supply conditions.

Keywords: neuronal network, computational model, brain metabolism, synchronization, anesthesia

INTRODUCTION

Neuronal activity in the brain is tightly coupled to the level of cerebral energy metabolism. An
increased brain metabolic rate leads to a rise in spiking activity (Smith et al., 2002; Mäkiranta
et al., 2005). When energy metabolism is diminished, the spontaneous spiking activity in the
cortex and several subcortical areas, such as the thalamus and striatum, slows down, exhibiting
rhythmic bursts. In electroencephalogram (EEG) recordings, firing bursts are reflected in the
appearance of slow (0.1–1Hz) oscillation or, inmore deeply suppressed states, by burst suppression,
a phenomenon of transient electrocortical activity alternating with electrical silence. These
phenomena are commonly observed in general anesthesia, comas, and hypothermia (Brown et al.,
2010; Westover et al., 2015), all of which are associated with reduced brain metabolism.

Several prior studies have attempted to computationally model the effect of varying cerebral
energymetabolism on neuronal dynamics consistent with experimental observations. Cunningham
et al. replicated experimental findings by an excitatory neuronal network with ATP-gated potassium
channels to show the emergence of a slow oscillation pattern when the ATP production rate was
downregulated (Cunningham et al., 2006). Likewise, burst suppressionwas effectivelymodeled with
an interaction between neuronal dynamics and brain metabolism (Ching et al., 2012).
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The degree of synchronization of the firing of neurons is
an important determinant of information processing in the
neuronal network (Plankar et al., 2013). Synchrony may indicate
the functional communication of neurons, but it may also mean
diminished coding diversity. How the firing synchrony among
proximal neurons vs. distant neurons is affected under varying
metabolic rates has not been determined. Although both slow
oscillation and burst suppression arguably arise from the locally
synchronous activity of a neuronal ensemble, these states can also
be either globally synchronized or desynchronized. For example,
slow oscillations under propofol anesthesia are known to be
locally synchronized and globally desynchronized (Lewis et al.,
2012; Flores et al., 2017).

Computational modeling of neuronal network dynamics can
help answer these questions. In order to examine the effect of the
brain metabolic rate on spatial synchronization, we developed
a novel neuronal network model that incorporated a varying
rate of ATP production. This model allowed us to examine the
effect of cerebral hypometabolism on the synchronization pattern
of neuronal firing at various spatial scales and helped in the
discovery of the potential mechanisms of the dynamic transition
among different firing states. As we show here, lowering the
ATP production rate in the model leads to a reduced firing rate
and increased spike synchronization that develops first locally
and with a greater reduction of ATP production, also globally.
The results reproduce experimentally observed changes in the
neuronal network activity, including spatial synchrony and a
spike rate of population activity, as observed under anesthesia.

MATERIALS AND METHODS

Model
Leaky Integrate-and-Fire Neuron With ATP Dynamics
The ATP-gated potassium channel has been suggested as a
key component in networks of Hodgkin–Huxley-type neurons
that exhibit metabolism-dependent slow oscillation and burst
suppression (Cunningham et al., 2006; Ching et al., 2012). To
efficiently simulate metabolic-dependent slow activity in a large
network, we constructed a simplified neuronal model by adding
an ATP-dependent current term that behaves like the ATP-
gated potassium channel in leaky integrate-and-fire neurons. The
membrane voltage-current equation is

ci
dvi

dt
= Iapp,i + Ileak,i + IATP,i +

∑

j

CijIsyn,j→i,

Iapp,i = N
(

Iapp0, σ
2
I

)

,

Ileak,i = −vi/τleak,

where Iapp is an externally driven Gaussian noise current with a
mean Iapp0 = 0.03 and SD σI = 0.006, Ileak is leakage current
with a time constant τleak = 38.75ms (Lansky et al., 2006), IATP is
the ATP-dependent current term, Isyn is the synaptic current, and
Cij is a constant of synaptic strength from the jth neuron to the
ith neuron. v is defined to range from 0 (reset) to 1 (threshold),
and the capacitance ci is defined as 1.

The incoming synaptic current Isyn induces a positive
perturbation on the membrane voltage v and is defined by the
following equation:

Isyn,j→i (t) =
∑

spike

(

t − tspike,j
)

λ
e−

t−tspike,j
λ .

The functional form of the postsynaptic current follows t
λ
e−t/λ,

where the decay time constant of excitatory postsynaptic
potential (EPSP) is λ= 2ms. For example, if the synaptic strength
for a linked synapse is Cij = 1, the cumulated effect of CijIsyn,j→i

on vi from a single spike is 2.
The dynamical equations for IATP are

IATP,i = −α
vi

[ATP]i /[ATP]max
,

d [ATP]i
dt

=
[ATP]max − [ATP]i

τATP
− εδ

(

t − tfire,i
)

,

where α is the conductance of the ATP-gated potassium channel,
ε is the ATP consumption per each spike, and τATP is the
time constant for ATP production from mitochondrial energy
production. The parameter values for α = 0.002, ε = 0.005,
and [ATP]max = 1.

Mean-Field Feedback Model
Wefirst analyze themean-field feedbackmodel of a single neuron
to identify the most common dynamical patterns that can emerge
from the neuron model we use. That is, we examined the single
neuron dynamics that eliminate the effect of a network structure.
In the voltage-current equation, the term corresponding to the
synaptic input from the network is simplified in the mean-field
feedback model. The membrane voltage-current equation was
computed by the following equations.

c
dv

dt
= Iapp + Ileak + IATP + CfeedbackiFRMF (t) ,

iFRMF (t) =





∫ t

t−L
w0(t

′
− t + L)

∑

spike

δ(t′ − tspike)dt
′





/

[∫ L

0
w0(t

′′)dt′′
]

.

In the mean-field feedback model, Cij, which corresponds to
the synaptic strength of the neural network, is replaced by a
constant Cfeedback = 0.4, consistent with the network model;
Isyn is replaced by the own firing rate iFRMF (instantaneous
firing rate of the mean-field feedback model) of the neuron. This
feedback firing rate is calculated with a Hann window (w0) of
200-ms length (L) at every time step. In addition, we excluded the
deviation of Iapp here to eliminate possible stochastic variability.

Network Architectures
We constructed a 2D network of 5,000 leaky integrate-and-fire
neurons (Figure 1). The neurons are randomly scattered on a
2D rectangular area (5 × 20mm) and make contacts to nearby
neurons with a probability that depends on the spatial distance
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FIGURE 1 | Model schematic and spike patterns. (A) Schematic

representation of the neuron network model. Red triangles represent excitatory

neurons, and outer red circles (dotted line) around neuron 2 represent the

interaction range of neuron 2, which is characterized by the SD (σ=250 µm) of

the Gaussian probability distribution. (B) Connectivity matrix (Cij; 5×103 by

5×103) of the schematic. The synaptic connection is made from j to i, where i

is row number and j is column number. (C) Location-dependent spike patterns

of the model. Red lines represent single neuron spikes, and blue lines show

the corresponding ATP level of the same neuron. The small box represents the

20 × 5mm rectangular area with three selected neurons according to their

locations. The two uppermost neurons are selected from nearby locations

and, therefore, show similar spike patterns.

between two neurons. The probability distribution follows a
Gaussian distribution, which is centered at the origin and has
an SD of σ = 250 µm (Compte et al., 2003), and the resulting
node degree is 10 ± 2.85 (SD). Cij is normalized so that the
sum of the incoming synaptic strength could have an equal value
of 0.4 for each neuron (i.e.,

∑

j Cij = 0.4). A rectangular
arrangement, instead of a square one, is used to efficiently
simulate the correlations among distant neurons.

Simulated LFP
We computed the simulation of local field potential (sLFP) in
order to characterize the collective behavior of the system and
compare it to the experimental data. The sLFP is calculated
by summing up the excitatory postsynaptic currents (EPSC)
weighted by a shape function f (l),

sLFP = −
∑

EPSC × f (l).

Here, f (l) is a weighting function that only depends on the
distance (l) between the measuring point and a neuron, which
represents a single neuron contribution to LFP. A detailed study
has been conducted on the form of the shape function (Lindén
et al., 2011), where we use the following distance dependency;
f
(

l
)

is flat when l < 100 µm and follows l−2 scaling when
l > 100 µm. We added a negative sign so that the sLFP has a
large negative value when the firing rate is high, as observed in a
typical LFP.

Numerical Method
The numerical simulation was performed in MATLAB with a
0.5ms time step using a second-order Runge–Kutta method. The
simulations were run for a time period of 120 s, and the data for
the first 20 s were removed from the analysis to avoid undesired
transient effects.

Anesthesia Experiment
Experimental Procedures
The study was approved by the Institutional Animal Care andUse
Committee in accordance with the Guide for the Care and Use
of Laboratory Animals of the Governing Board of the National
Research Council (National Academy Press, Washington, DC,
2011). The experimental data used in this study were previously
analyzed and published in a different context (Lee et al., 2020,
2021). A multi-electrode array consisting of 64-contact silicon
probes (shank length 2mm, width 28–60µm, probe thickness
15µm, shank spacing 200µm, row separation 100µm, contact
size 413 µm2; custom design 8 × 8_edge_2mm 100_200_413;
Neuronexus Technologies, Ann Arbor, MI, United States) was
chronically implanted in the primary visual cortex of each animal
(eight adult male Long-Evans rats). The tips of the probes were
placed 1.6mm below the pial surface. For the recording of an
electromyogram, a pair of insulated wires (Plastics One, Inc.,
Roanoke, VA, United States) exposed at their tip was placed
bilaterally into the nuchal muscles.

The volatile anesthetic desflurane was administrated at
stepwise decreasing concentrations at 6, 4, 2, and experiments
commenced 1 to 8 days after surgery. A 15-min equilibrium
period was allowed to stabilize the anesthetic concentration
between consecutive conditions. With each anesthetic
concentration, neuronal activity was recorded first during a
spontaneous activity for 20min followed by a period with visual
stimulation (light flashes delivered to the retina by transcranial
illumination). The data obtained using visual stimulation were
not used in this study. In one experiment that was performed at
the beginning of the study, only 40min of spontaneous activity
was recorded (10min per anesthetic concentration).

Our previous study with the same data discovered that, during
desflurane anesthesia, most frequently at a 6% concentration,
spontaneous spike activity was occasionally desynchronous
while showing a low firing rate (Lee et al., 2020). This
unexpected, paradoxical desynchronized brain state has not been
reported before and contends with the generally presumed dose-
dependent effect of anesthesia. Because this study is related to
the typical signatures of anesthesia (slow oscillation and burst
suppression), we excluded the desynchronization periods from
the analysis. On average, 0.3, 10.3, 6.5, and 40% of the data were
classified as a paradoxical desynchronized state in 0, 2, 4, and 6%
desflurane, respectively.

Preprocessing
Extracellular potentials were recorded at a 30 kHz sampling
rate (SmartBox; Neuronexus Technologies, Ann Arbor, MI,
United States). For spike detection, the signals were median-
referenced and high-pass filtered (300Hz). Signals with an
absolute value >10 SD were considered movement-related
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artifacts and automatically excluded from the analysis. The data
were also visually inspected, and noticeable noise episodes were
manually excluded. One experiment was excluded from the
analysis because of severe noise contamination (thus, n = 7). A
template-based spike sorting method, Spiking Circus (Yger et al.,
2018), was used to identify single unit activity (SUA). Per animal,
36± 14 (mean± SD) single units were obtained.

ON and OFF State Detection
In both the model and the experiment, neural firing often shows
a transition between periods of sustained firing (ON period) and
quiescence (OFF period). A visual inspection of the 2D network
model suggested a strong association between the OFF period
duration and the firing rate peak of an ensuing ON period.
To identify the ON and OFF periods in anesthesia experiment
data, a discrete-time hidden semi-Markov probabilistic model
was used to infer the two states, the ON and OFF periods
(Chen et al., 2009). A population spiking activity was detected
by the summation of the spike activity of all recorded neurons
and considered as a single stochastic point process. The rate of
the point process was determined by the firing history of the
population spiking activity and the discrete hidden state. The

expectation maximization algorithm was used to estimate the
parameters from the statistical model (Chen et al., 2009). The
parameters for the model were chosen following a previous study
(Jercog et al., 2017), namely, bin size: 10ms, number of history
bins: 2, history dependence weight: 0.01, transition matrix =

pOFF→ON = pON→OFF = 0.1, pOFF→OFF = pON→ON = 0.9, rate
during ON periods: 3, and rate difference during OFF and ON
periods: −2. The algorithm gave the ON and OFF periods with
a 10ms time resolution. The algorithm was applied to data at a
6% desflurane concentration, during which slow oscillation and
burst suppression patterns were pronounced.

In the 2D network model, the firing patterns during ON-
OFF transitions are regular and similar across different cycles,
and, thus, the periods are classified by simply applying a 1-Hz
threshold to the averaged iFR (instantaneous firing rate) time
series (50ms rectangular window). Applying the same method
as in the experimental data showed qualitatively similar results.

Statistical Analysis
All the statistical analyses were conducted using a StatsModels
library (www.statsmodels.org) in Python 3.8. For firing

FIGURE 2 | State transitions of the single neuron mean-field feedback model. (A) The instantaneous firing rate of the mean-field feedback model (iFRMF) was

calculated from a 200-ms Hann moving window. The red line notes the time periods on panel (C,D). (B) Phase plane representation for the averaged intracellular ATP

concentration (ATP) and instantaneous firing rate. Blue arrows represent the numerically calculated vector field. The blue area shows a range where a spike cannot be

generated, and 1,000 time points are randomly sampled from 40,000 time points during a 20 s (C) v-time course in the red line notes in panel (A). (D) The amplitude

of the sum of positive and negative currents in the red line notes in panel (A).
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rate, synchronization, and the correlation between the OFF
duration and the iFR peak of the following ON duration,
the differences between different desflurane concentrations
(anesthesia experiment) for different τATP values were examined.
We used a linear mixed model with a restricted maximum
likelihood estimation. For experimental data, the desflurane
concentrations (categorical independent variable) were used as
a fixed effect, and the random effect included seven animals.
For the simulation data, the different ATP production rates
(categorical independent variable) were used as a fixed effect, and
the random effect included 10 different simulations. A P-value of
<0.05 was considered a significant difference.

RESULTS

State Transition in the Mean-Field Model
We first analyzed the dynamics of a single neuron mean-field
feedback model with varying ATP production time constants,
τATP. The synaptic input for a single neuron is modulated
proportionally to the own temporal firing rate of the neuron,
which is updated in real-time with a 200-ms moving window.

Depending on the value of τATP, we could observe two
distinct dynamical patterns. When the production rate of ATP
rate was sufficiently high (τATP = 4 s, Figure 2), the firing rate
was high and almost constant (40.82 ± 0.02Hz). When τATP

FIGURE 3 | Dynamic firing patterns in the 2D network model. (A) The instantaneous firing rate (iFR) of 5,000 neurons. iFR is calculated with 50ms rectangular moving

windows. The order of neurons is determined by the y-axis locations of each neuron. (B) Snapshots of iFR in the 5 × 20-mm rectangular 2D space. The snapshots are

obtained at five time points for each τATP value. Each bin in the snapshot corresponds to a 500 × 500µm square. The color represents iFR with the same color scale

in panel (A). (C) Phase diagrams for averaged [ATP] and iFR. [ATP] and iFR are averaged over 5,000 neurons with a 50-ms moving window. The colored trajectories

represent the 5-s time windows in panel (A). (D) Distance-dependent correlation of the iFR (50-ms window) of neurons. The Pearson correlation coefficients are

averaged on the pairs with similar distances (200-µm bins). (E) The simulation of local field potential (sLFP) is calculated at the center of the 2D rectangular plane.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 October 2021 | Volume 15 | Article 738362

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Joo et al. Neural Synchrony in Hypometabolic Condition

was increased (τATP = 6.7 s, Figure 2), the firing rate decreased
with slower v growth, and the fixed point moved to a lower
firing rate (25.64 ± 0.04Hz). However, there were no qualitative
changes in v and [ATP] dynamics. As τATP was increased further
(τATP = 6.8 s, Figure 2), the IATP term became more negative
so that the fixed point lost its stability. That is, the positive
currents (Iapp,Isyn terms) can be smaller than the negative ones
(IATP,Ileak terms), which leads to a failure to produce a spike
(τATP = 6.8 s, Figure 2D). Once a spike was not emitted, the
positive feedback cycle (i.e., a past spike causes a future spike)
was disrupted, and then an OFF period began.

The region satisfying this condition can be obtained
analytically by substituting CfeedbackIsyn to Cfeedback (= 0.4) ×

single spike response (= 2)× iFRMF in current balance equations.
At v = 1, where a spike occurs, the equation is represented as
follows:

0.03−
1

38.75
− 0.002×

1

[ATP]
+ 0.4× 2× iFRMF < 0.

When the system reaches this area, it fails to create a spike and
converges quickly to an iFR = 0 line. During an OFF period,
[ATP] recovers until a spike can be generated even with Isyn
= 0; then, once the spike starts, the neuron bursts explosively
because of the accumulated [ATP]. In this way, the pattern of
spikes acquires alternating ON on and OFF phases, which is
qualitatively similar to the slow oscillation and burst suppression
under limited energy supply conditions. In summary, reduced
neuronal excitation due to limited energy supply disrupts the
positive feedback loop of spike activity, resulting in a failure of
sustainable firing and a qualitative change in firing dynamics.

2D Network Model Exhibits Fragmented
Slow Oscillation
We simulated the dynamics of a neuronal network consisting
of 5,000 excitatory neurons arranged in a 2D space with
varying τATP. We observed characteristic dynamical patterns
that corresponded to the two distinct patterns of the mean-
field feedback model: a persistently high firing rate (τATP =4 s,

Figure 3) and an ON-OFF cycle (τATP = 10 s, Figure 3). In
the constantly firing state, the neurons fired with near-zero
correlations over all distances (τATP = 4 s, Figure 3). For the ON-
OFF cycle, a high correlation (>0.8) was maintained at a 10mm
distance, and all the neurons made burst together or stayed quiet
together (τATP = 10 s, Figure 3).

Interestingly, our 2Dmodel showed a novel dynamical pattern
at an intermediate level of τATP. When ATP was lowered, the
firing rate decreased, and the effect of excitatory feedback that
comes from nearby excitatory neurons became dependent on
spike timing. The firing rate started to fluctuate over time
in the form of slow oscillation, as a consequence of the
interaction between the network effect and the metabolism effect
(Cunningham et al., 2006). In this state, neuron firing alternated
between active and inactive periods, showing continuous waves
with spatial fragmentation (τATP =5 s, Figure 3). That is, the
spikes showed a high correlation at short range (<1mm), and
they decayed drastically as the distance increased (τATP = 5 s,
Figure 3D). This spatially fragmented slow oscillation (FSO)
formed small cycles on a phase plane defined with averaged
[ATP] and iFR (τATP = 5 s, Figure 3C), and the size of the
cycle grew as τATP increased (τATP = 6 s, Figure 3C). The
distance-dependent correlation (Figure 3D) and slow oscillation
amplitude of the sLFP (Figure 3E) also showed a gradual increase
as a function of τATP.

With further decreases in the production rate ATP, the FSO
cycle became larger in amplitude, and globally synchronous
silences and bursts began to appear for the first time (τATP =

8 s Figure 3). A clear ON-OFF cycle pattern was triggered when
the enlarged FSO cycle occasionally fell into global silence
(iFR = 0 line, Figure 3C). As the system fell into a global
silence, the neuronal network hardly got sufficient input to
initiate firing, and the silence (OFF period) lasted for more
than a second (τATP = 8 s, Figure 3). This was consistent with
the prediction of the mean-field model (Figure 2). During the
OFF period, intracellular ATP was accumulated (black arrow,
τATP = 8 s, Figure 3C), which, in turn, enabled the neuronal
network to initiate a series of firings with fewer triggering

FIGURE 4 | Distance-dependent correlations under different network rewiring probabilities (β). The distance-dependent correlations of the instantaneous firing rate

(50ms window) with different τATP and β. The simulation was conducted 10 times in total, and the colored lines show the averaged results.
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FIGURE 5 | Suppressed spike activity and enhanced synchronization in the anesthesia experiment and the 2D network model. The upper panels (A–C) describe

experimental data from different anesthetic concentrations, and the lower panels (D–F) describe model data from four selected parameters (τATP = 5, 7, 9, and 10 s).

(A,D) Raster plot (black dots) under different depths of anesthesia (A) and under increasing values of τATP (D). Note the increased bursting as anesthesia deepens and

τATP increases. The firing rate decreases (B,E) and (C,F) correlation increases monotonically.

inputs. If sufficient input occurred because of probabilistic
input currents, excitatory feedback induced a burst with an
explosive consumption of the accumulated ATP from all neurons
in the space. At the end of the burst, the trajectory in the
phase plane was attracted by an FSO cycle or made a large
turn and went back into the global silence again. In this way,
the two cycles, the FSO cycle, and the ON-OFF cycle co-
existed at the same τATP in an alternating manner. AtτATP =

10 s, the FSO cycle finally disappeared, and only the ON-OFF
cycle remained.

The Effect of Network Randomization on
the Formation of FSO
Fragmented slow oscillation was not observed in the mean-
field feedback model, but it occurred in the 2D network model
with locally connected neurons. However, neural networks in the
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brain also have long-range connections in addition to themassive
number of local connections, thereby displaying small-world
topology, which will inevitably affect spatial synchronization.
To examine if FSO appears in the presence of long-range
connectivity, we re-ran the simulation on partially randomized
networks after rewiring a certain portion (β) of connections
(graph links).

Fragmented slow oscillation is characterized by a high
correlation at close distances that rapidly diminishes at further
distances. As expected from the previous section, FSO was seen
in various ranges of τATP with β = 0. That is, the synchronization
decayed as a function of distance. On the other hand, with β =

0.04, there was a jump from asynchrony to global synchrony.
A decaying pattern was barely shown. This finding suggests
that a small amount of random wiring (∼4%) facilitates an
abrupt transition from continuous to global synchrony as τATP
increases. Nevertheless, the sharp decaying correlations, that is,
the evidence of FSO, were still observed in a range of τATP under
small network randomization (β = 0.02, Figure 4).

Network Model With ATP Dynamics
Predicts Firing Properties in Anesthesia
Anesthesia is known to reduce ATP production and energy
metabolism. We examined if model predictions with different
values of τATP were in agreement with the firing properties of
cortical neurons under graded levels of anesthesia. As expected,
the firing pattern of neurons changed in a similar way to that
obtained from the 2D network model, that is, from high firing
to sparse firing (Figures 5B,E) and from continuous firing to
oscillation (Figures 5A,D). A statistically significant difference
was found between 0% vs. all the other concentrations (p= 0.002,
p < 0.001, and p < 0.001 for 0 vs. 2, 0 vs. 4, and 0 vs. 6%
desflurane, respectively) and τATP = 5 s vs. all the other τATP
values (p < 0.001 for all three comparisons). Simultaneously,
the amplitude of LFPs increased, and the frequency slowed
down. A pattern of burst suppression appeared in deep
anesthesia (Figures 5A,D). Global synchronization, estimated by
the averaged pair-wise correlation of spike trains of all recorded
neurons, increased both in the anesthesia experiment and in
the 2D network model (Figures 5C,F). A statistically significant
difference was observed between 0 vs. 4–6% concentrations (p
= 0.156, p = 0.003, and p < 0.001 for 0 vs. 2, 0 vs. 4, and 0 vs.
6% desflurane, respectively) and τATP = 5 s vs. all the other τATP
values (p < 0.001 for all three comparisons).

As explained in the previous section, when τATP is large, a
longer duration of the off period potentiates ATP accumulation,
which, in turn, elicits a larger burst of neuron firings in a short
period of time (i.e., a large firing rate peak in the ON period).
This suggests that there should be a positive correlation between
the duration of the OFF period and the peak firing rate of the
subsequent ON period. The correlation between the duration of
the OFF period and the ensuing iFR peak showed a substantially
high value both in the model (r = 0.808 ± 0.053) and empirical
data (r = 0.456 ± 0.12) (Figure 6). On the other hand, the
iFR peak of the ON period and the duration of the ensuing
OFF period were essentially uncorrelated (r = 0.269 ± 0.189

in the model, r = 0.107 ± 0.108 in the empirical data). The
correlation between the OFF duration and the ensuing iFR peak
was significantly larger than the correlation between the iFR
peak of the ON period and the ensuing OFF duration (t-test,
experiment: p= 0.001; model: p < 0.001).

DISCUSSION

The goal of this study was to apply a neuronal network model to
analyze the effect of reduced cerebral energy metabolism on the
spike synchronization of neurons across a 2D space. We found
that, when the production rate of ATP was sufficiently high,
the neurons showed a fast and continuous firing pattern. When
the energy metabolism was moderately reduced, neighboring
neurons started to fire synchronously, reorganizing the firing
pattern into FSO. When the ATP production rate was further
decreased, neurons across the network eventually morphed into
globally synchronous burst firing. The state transitions could
then be explained by the failure of sustainable firing and the
rebound firing after synchronized silence. These results were
consistent with experimental data, which showed a low firing rate
and increased synchronization under general anesthesia.

Metabolic rate has a crucial effect on the neuronal dynamics
of the brain. The brain consumes most of its energy to support
neuronal activities, such as synaptic transmission, the pumping
of ions to maintain resting potential, and generating action
potentials (Harris et al., 2012). Accordingly, the firing rate
of neurons is highly correlated with the concurrent cerebral
metabolic rate (Smith et al., 2002; Mäkiranta et al., 2005). The
degree of neuronal spike activity can be regulated by the ATP-
gated potassium channel that directly affects membrane potential
as a function of intracellular ATP concentration (Yamada and
Inagaki, 2002; Huang et al., 2007; Sun and Feng, 2013). The
ATP-gated potassium channel has been included in neuronal
models designed to explain the mechanisms of slow oscillation
(Cunningham et al., 2006) and burst suppression (Ching et al.,
2012) as a function of metabolic state.

In this study, we implemented amuchmore simplified neuron
model, the leaky integrate-and-fire neuron but with the similar
ATP dynamics as in other studies (Cunningham et al., 2006;
Ching et al., 2012); this allowed us to simulate a relatively large
number of neurons distributed in the 2D space. Thus, the effect of
hypometabolism on spatial synchrony was examined. Our model
study showed that a decrease in ATP production rate can enhance
synchronization in the neuronal network, which starts with local
weak synchronization, that is the FSO, that gradually evolves into
strong global synchronization. Adding long-range connections to
the network accelerated long-range distant synchronization. The
higher the rewiring probability (β), the number of long-range
links increased, and the number of short-range links decreased.
This indicates that a neuron received more uncorrelated input
from long-range links and that the excitatory feedback of the
local network was reduced. Therefore, it would be difficult for the
network to form local oscillations and the range of τATP, where
FSO appears was reduced.
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FIGURE 6 | Correlation between peak firing rate and the adjacent OFF duration. (A,C) An example time course of the firing rate of population activity in the experiment

(A; desflurane concentration: 6%) and the model (B; τATP = 7 s). The black arrow marks an OFF duration (pre), and the blue arrow marks an on firing rate peak (post).

(B,D) Correlation between OFF duration and ON firing rate peak. “OFF pre vs. ON post” indicates a correlation between the duration of the OFF period and the firing

rate peak of the following ON period; “ON pre vs. OFF post” indicates a correlation between the firing rate peak of the ON period and the duration of the following OFF

period. The former case showed a higher correlation.

In addition, the mean-field feedback model, with which the
structure of the network was approximated, showed an abrupt
transition without an FSO-like pattern. The results suggest that
the presence of local excitatory feedback, generated by nearby
excitatory neurons in the neuronal network, plays a key role
in the formation of FSO. Therefore, the change in the spatial
synchronization of slowly oscillating neuronal dynamics under
hypometabolic conditions can be a phased transition rather than
an abrupt one due to the local network effect.

Slow oscillation (0.1–1Hz) in the brain is characterized by
rhythmic up and down phases and is dominantly observed in
sleep and anesthesia (Steriade et al., 1993; Chauvette et al.,
2011). The slow oscillation has been considered as a mostly
cortical phenomenon as shown by its survival after thalamic
lesions (Steriade et al., 1993) and many experiments that have
demonstrated slow oscillations in cortical slices in vitro (Neske,
2016). Also, studies with amodel of the cortical network (Compte
et al., 2003; Cunningham et al., 2006) support the idea that
the origin of the slow oscillation is the cortex. Consistent with
previous findings, our model was able to predict the presence of
slow oscillation in the absence of a subcortical modulation.

In our simulation with the mean-field model, the firing
frequency of the neuron did not simply reduce as a function
of τATP. It showed a qualitative dynamic change such that
continuous firing changed to an oscillating firing pattern.
The mean-field model explains that the transition is possible
through the interaction between the positive feedback from
the local excitatory network and the slow modulation by ATP
consumption and production. That is, reduced positive feedback
causes the failure of sustainable firing; during the silence period,
ATP concentration slowly recovers, which, in turn, enables the
emission of spikes again. This mechanism in itself is similar to the
mechanism of the occurrence of oscillation by negative feedback,
as in many studies, since a mechanism for spike frequency
adaptation is suggested (Partridge and Stevens, 1976).

Burst suppression is characterized by alternating burst and
suppression periods and is a prevalent phenomenon of deep
anesthesia, hypoxic-ischemic comas, and hypothermia (Ching
et al., 2012). Although many studies have been conducted to
explain the characteristics of burst suppression (Swank and
Watson, 1949; Steriade et al., 1994; Vijn and Sneyd, 1998; Ching
et al., 2012; Lewis et al., 2013), the biophysical mechanism of the
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emergence of burst suppression remains unclear. In our model,
the ON-OFF cycle, which corresponds to burst suppression,
can emerge from diminished excitatory feedback because of
the occurrence of a long-lasting silence. Based on our model
predictions, we suggest that the growth of a slow oscillation
cycle under weakened ATP production conditions enables an
intermittent transition to burst suppression by increasing the
possibility of a long-lasting silence. In addition, we can make
a prediction for the intermediate state between slow oscillation
and burst suppression. Sporadic large fluctuations, which reflect
the intermittent occurrence of cycles (τATP = 8 s, Figure 4),
may be observed before burst suppression with increasing
probability as the energy metabolism dwindles. The model
predicted a strong association between the OFF duration and
the iFR peak of the following on period; this was confirmed by
experimental observation.

In this model, we assumed that cerebral hypometabolism
affects neuronal activity, but in reality, they are linked in a closed
loop. If neuronal activity is silenced directly, a commensurate
decrease in cerebral metabolism follows. For example, anesthetics
influence cerebral neuronal activity directly, through receptor-
mediated and biophysical mechanisms (Hemmings et al., 2019),
in addition to limiting intracellular high-energy phosphates
because of the suppression of mitochondrial respiration. Studies
in which positron emission tomography was performed revealed
that whole brain metabolism is substantially diminished during
the administration of propofol, sevoflurane, isoflurane, and
halothane (Alkire et al., 1995, 1997, 1999; Kaisti et al., 2002). The
metabolic suppression is correlated with simultaneous changes
in quantitative EEG descriptors (Bispectral Index, total power,
relative beta power, etc.) (Alkire, 1998). A causal link between
metabolic and electrophysiological activities could be the
abolished ATP production with anesthetics. Several commonly
used anesthetics directly influence mitochondrial enzymes and
metabolic pathways, reducing the production of ATP (La
Monaca and Fodale, 2012). Abolished mitochondrial membrane
potential under isoflurane, pentobarbital, or 1-phenoxy-2-
propanol anesthesia can also inhibit mitochondrial ATP synthesis
(Kishikawa et al., 2018). In line with these studies, our present
model study shows that the ATP production rate could be a
key regulator of the state transitions between continuous wake-
like firing, globally asynchronous slow oscillation, and burst
suppression. Thus, our findings, together with the above-cited
studies, suggest that the suppression of neuronal activities due to
diminished metabolism may be a principal mechanism for state
transitions in general anesthesia.

We observed different degrees of spatial synchronization of
slow activities in our model. Burst suppression has been known
to be a predominantly synchronous phenomenon (Clark and
Rosner, 1973; Lewis et al., 2013). On the other hand, recent
experimental studies suggested that anesthetic-induced slow
oscillations are asynchronous across the cortex (Lewis et al., 2012;
Flores et al., 2017). In our model, spike bursts corresponding
to slow oscillations and burst suppression exhibit qualitatively
different synchronization patterns. Simulated slow oscillations
appear globally desynchronized and form continuous waves
with local up and down states. On the other hand, during

burst suppression, the long-lasting silence acts as a bottleneck
and, thereby, temporally aligns the rebound firing of neurons,
enabling global synchronization. In this way, the suppression of
spike activity caused by diminished ATP production can lead
to enhanced synchronization without any modification of the
physical connectivity between neurons.

LIMITATIONS

First, the firing rate in our model network was uniformly
distributed across neurons, distinct from many experimental
studies, in which firing rate distribution follows a log-normal
distribution (Buzsáki andMizuseki, 2014). The uniformity in our
model originated from the homogeneous degree distribution of
the lattice-like model network. In this sense, our model might
represent only a small portion of neurons with many and strong
synaptic connections. However, because the synchronization of
a highly inhomogeneous neuronal network is dominated by a
small subset of high-degree nodes (Grinstein and Linsker, 2005),
the overall dynamics would not be dramatically changed by
additional neurons with less and weak synaptic connections were
taken into account in the model system.

In addition, the leaky integrate-and-fire model, an extremely
simplified neuron model, has limitations to the full reflection
of the on-linear interaction of the actual neuron network.
Consequently, we could not explain some spike characteristics,
such as the inter-spike interval distribution. We used only one
type of pyramidal neuron in our model, but there are numerous
important factors in the real brain that we did not consider in
this study. In particular, inhibitory neurons are known to play
many important roles in synchronization (White et al., 1998;
Steyn-Ross et al., 2013). A modeling study about the propagation
of slow oscillatory spike bursts on a cortical network suggested
that the speed of wave propagation is dramatically increased
with the blockage of inhibition (Compte et al., 2003). Deep
anesthesia accompanied by burst suppression is characterized
by paradoxical hyperexcitability to sensory stimuli (Hartikainen
et al., 1995; Detsch et al., 2002; Hudetz et al., 2007), presumably
due to diminished inhibition (Kroeger and Amzica, 2007;
Ferron et al., 2009). Based on these studies, it appears that
the presence of local inhibitory neurons would not refute our
results under general anesthesia. The structure of the connection
is also greatly simplified using only some statistical values,
which may result in different dynamics when the specific non-
random connection structure is considered. Therefore, more
sophisticated models will be required in the future to better
reproduce the experimental results.

We did not reproduce the alpha and beta oscillations, which
are associated with sedative and paradoxical excitation states
under anesthesia (Brown et al., 2010; Purdon et al., 2015). The
alpha and beta oscillations were previously reproduced with a
thalamocortical circuit and synaptic modification mechanisms
(e.g., gamma aminobutyric acid, GABA, agonist effect) (Ching
et al., 2010; Hindriks and van Putten, 2012, 2013; Ching and
Brown, 2014). Importantly, neural activity in this frequency
range depends on the type of anesthetic; e.g., propofol and

Frontiers in Computational Neuroscience | www.frontiersin.org 10 October 2021 | Volume 15 | Article 738362

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Joo et al. Neural Synchrony in Hypometabolic Condition

dexmedetomidine show different EEG patterns in the alpha-beta
range but show a similar increase in the delta band (Purdon
et al., 2015). Thus, neural activities in the alpha-beta frequency
range may be related to specific agents and dose-dependent
mechanisms and may not be explained solely by the suppression
of metabolism.

CONCLUSIONS

Our neuronal network model predicts that a decrease in cerebral
ATP production leads to a monotonically decreasing firing rate
with a transition from constant firing to locally synchronized
firing followed by globally synchronized on-off alternate firing,
consistent with experimental results. The model provides a
framework for the further investigation of the biophysical
mechanisms of the metabolism-dependent state transitions of
neuronal networks.
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