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Abstract 

Previous studies demonstrated safety, immunogenicity and efficacy of DNA/modified 

vaccinia virus Ankara (MVA) prime/boost vaccines expressing tryparedoxin 

peroxidase (TRYP) and Leishmania homologue of the mammalian receptor for 

activated C kinase (LACK) against Leishmania major challenge in mice, which was 

consistent with results from TRYP protein/adjuvant combinations in non-human 

primates. This study aimed to conduct safety and immunogenicity trials of these 

DNA/MVA vaccines in dogs, the natural reservoir host of Leishmania infantum, 

followed-up for 4 months post vaccination. 

In a cohort of 22 uninfected outbred dogs, blinded randomised administration of 

1000µg (high dose) or 100µg(low dose) DNA prime (day 0) and 1x108 pfu MVA 

boost (day 28) was shown to be safe and showed no clinical side effects. High dose 

DNA/MVA vaccinated TRYP dogs produced statistically higher mean levels of the 

type-1 pro-inflammatory cytokine IFN-γ than controls in whole blood assays (WBA) 

stimulated with the recombinant vaccine antigen TRYP, up to the final sampling at 

day 126, and in the absence of challenge with Leishmania. TRYP vaccinated dogs 

also demonstrated significantly higher TRYP-specific total IgG and IgG2 subtype 

titres than in controls, and positive in vivo intradermal reactions at day 156 in the 

absence of natural infection, observed in 6/8 TRYP vaccinated dogs. No significant 

increases in IFN-γ in LACK-stimulated WBA, or in LACK-specific IgG levels, were 

detected in LACK vaccinated dogs compared to controls, and only 2/9 LACK 

vaccinated dogs demonstrated DTH responses at day 156. In all groups, IgG1 subclass 

responses and antigen-specific stimulation of IL-10 were similar to controls 

demonstrating an absence of Th2/Treg response, as expected in the absence of in vivo 

restimulation or natural/experimental challenge with Leishmania.   



These collective results indicate significant antigen-specific type-1 responses and in 

vivo memory phase cellular immune responses, consistent with superior potential for 

protective vaccine immunogenicity of DNA/MVA TRYP over LACK. 

 

Key words: Leishmania infantum, Tryparedoxin peroxidase, prime/boost DNA/MVA 

vaccination  

Running head: Safety / immunogenicity of DNA/MVA TRYP in dogs 

 

1. Introduction 

Zoonotic visceral leishmaniasis (ZVL) caused by the sandfly-borne 

intracellular protozoan parasite Leishmania infantum (=L. chagasi)[1] is endemic in 

the Mediterranean basin, South America and parts of Asia, and is recognised as a re-

emerging disease by the World Health Organization. Development of a vaccine for 

ZVL in the reservoir host, the domestic dog, has been identified as a research priority 

by WHO/TDR[2], and mathematical models have highlighted canine vaccination as 

potentially the most practical and effective means of disease control in humans[3, 4].  

The only commercially available Leishmania vaccine (Leishmune®) is based on a 

purified parasite preparation, and is only licensed for use in dogs in Brazil[5]. 

Although trials in naturally exposed Brazilian dogs showed 80% vaccine efficacy[6], 

transient adjuvant-related side effects such as anorexia and local pain/swelling[7] may 

reduce uptake and compliance among vets and dog owners. Development of 

additional novel vaccine candidates is advisable, since the next generation 

vaccines/vaccine antigens should always be waiting in the wings, and we should 

continue to improve on methods of delivery that will safely elicit lasting 

immunological memory. Experimental DNA vaccines are the subject of increasing 

 3



numbers of  human and veterinary clinical trials, since they elicit the T-cell memory 

required for long term protection[8], are extremely safe, easy to standardize, and are 

highly stable for storage and distribution purposes in tropical environments where 

cold chain may be unavailable[9].  

Analysis of expressed sequence tags from cDNA libraries of Leishmania 

major[10] led to the discovery and functional characterisation[11] of tryparedoxin 

peroxidase (TRYP, also known as thiol specific antioxidant or TSA[12] ), which plays 

a role in protection of the parasite from oxidative damage.  TRYP is tandemly 

repeated and highly conserved across Leishmania spp. (91% amino acid identity with 

L. infantum), highly represented in cDNAs libraries from promastigotes[10], and highly 

expressed at mRNA level in promastigotes and amastigotes[13].  DNA alone or 

DNA/modified Vaccinia virus Ankara (MVA) prime/boost vaccine delivery 

highlighted TRYP as a highly effective inducer of protective immunity against 

virulent challenge with Leishmania major in susceptible BALB/c mice as shown by 

reduction in footpad lesion size following injection of promastigotes at 16 weeks post 

vaccination[14]. These findings are consistent with studies using TRYP 

protein/adjuvant combinations in mice and non-human primates[15]. DNA/ 

recombinant Vaccinia virus heterologous prime/boost vaccine protocols are now 

known to be superior to homologous challenge with DNA, since they stimulate more 

robust and longer lived synergistic cellular immune responses[16]. In mice it has been 

demonstrated that although both DNA/DNA and prime/boost DNA/MVA vaccines 

expressing TRYP protected against L. major challenge in the effector phase (2 weeks 

post boost), the protection induced by prime/boost TRYP delivery was superior in the 

memory phase (16 weeks post boost)[17], possibly due to stimulation of CD8+ T-cells 

which are now recognised as an important element in maintenance of vaccine induced 
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memory[18]. Importantly, TRYP was shown to be far superior as a protective vaccine 

to the previously described Leishmania homolog of the receptor for activated C kinase 

(LACK)[19], the functional correlate for this being higher IL-10 from regulatory T 

cells elicited by LACK and a higher IFN-γ:IL-10 ratio associated with TRYP 

(indicative of a type-1 pro-inflammatory response driven by IFN-γ secreting Th1-type 

CD4+ cells) compared to LACK vaccination[14]. To date, no research has been 

published describing the immunological responses of dogs to DNA/MVA TRYP as a 

potential vaccine against ZVL. 

 In dogs, previous research has shown that a prime/boost vaccine employing 

the replication competent Western Reserve strain vaccinia virus expressing LACK 

was safe and immunogenic, and induced 60% protective immunity against 

experimental i/v challenge infection with L. infantum at 2 weeks post boost[20]. 

However, superior protection against infection, and higher T-cell proliferative 

responses were induced by a prime/boost vaccine which expressed LACK using the 

MVA strain[21], in line with previous murine research which showed that highly 

attenuated vaccinia virus strains such as MVA are associated with superior vaccine 

immunogenicity[22]. Research into prime/boost MVA canine vaccines is of particular 

importance due to safety concerns regarding unattenuated vaccinia strains such as 

Western reserve. MVA is also the current vaccinia virus strain of choice for human 

clinical investigations, having been used in over 120,000 human patients without 

documented adverse side effects, even in immunocompromised humans[23, 24]. The 

DNA/MVA approach is currently being applied to development of prime/boost 

vaccines for humans, against HIV[25], malaria[26], tuberculosis[27] and tumours[28]. 

Following the previous successful safety, immunogenicity and efficacy studies of the 

prime/boost DNA/MVA TRYP vaccine against L. major in mice[14, 17], this study 
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aimed to demonstrate safety and immunogenicity of DNA/MVA TRYP and LACK in 

a cohort of 22 uninfected, unexposed outbred dogs followed-up for 4 months. 

 

2. Materials and methods 

2.1 Study population and experimental set-up 

A cohort of 22 young (median age 18 months, range 4-24 months) uninfected 

outbred dogs from a ZVL endemic area (Crete, Greece) were enrolled for vaccination 

with DNA/MVA TRYP, LACK or control, and followed-up for 4 months post 

prime/boost vaccination between June and November 2007. Dogs were recruited with 

informed consent from owners in villages of the Heraklion prefecture within 15km 

radius of the city of Heraklion, on the criteria of being negative to all diagnostic tests: 

(1) Indirect immunofluorescent antibody test (IFAT)[29], (2) Crude Leishmania 

parasite antigen (CLA) ELISA[30], and (3) PCR of buffy coat to detect DNA 

expressing the internal transcribed spacer 1 region of the ribosomal RNA gene (ITS-1 

rRNA) of Leishmania spp[31]. The sample comprised 59% mixed breeds, the 

remainder including local breeds (Cretan / Hellenic hounds) (n=4), Belgian Shepherd 

(n=2) and pit bull terrier (n=1), at a male : female ratio of 1.2:1. 

Dogs were housed in pairs, or individually (adjacent and within sight of each other), 

in kennels located at the University Hospital of Crete, Heraklion, which were 

modified for the purpose to conform with EC regulatory standards and UK Home 

Office Code of Practice for housing of laboratory dogs[32]. Prior to commencement of 

trials, all dogs received routine vaccination for distemper, canine parvovirus, canine 

adenovirus and leptospirosis (Hexadog, Merial), in addition to oral antihelminthic 

treatment with praziquantel/ fenbendazole (Caniquantel Plus, New Vet AE). To rule 

out exposure to Leishmania wild type during the transmission season (May – October), 
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dogs were fitted with deltamethrin-impregnated collars (Scalibor, Intervet) and 

checked daily for collar loss, or treated instead with fortnightly doses of topical 10% 

imidacloprid / 50% permethrin solution (Advantix, Bayer AG). Kennels were 

monitored continuously for sandfly activity by routine light trapping and sticky 

traps[33]. No sandflies were detected at the kennels during the trial. After completion 

of trials, all dogs were returned to their owners. 

2.2 Vaccine administration 

Dogs were randomized to receive intramuscular injections, from blinded operators, in 

the craniolateral aspect of the right quadriceps femoris, with DNA TRYP or LACK 

(100µg; n=4, or 1000µg; n=5), or control plasmid DNA (1000µg; n=4) on day 0, 

followed 28 days later by 108 pfu MVA TRYP or LACK vaccine (or empty MVA 

vehicle as control). This prime/boost regime is similar to that employed in previous 

canine studies[20, 21], in which administration of plasmid DNA (100µg) and 

recombinant Vaccinia virus (107 – 108 pfu) were carried out 14 days apart. Safety and 

immunogenicity were measured as described below. 

2.3 Safety 

Dogs were kept under veterinary surveillance post “prime” and “boost” to 

detect the occurrence of potential adverse reactions. Safety was assessed by daily 

clinical examinations for 4 days post-vaccination (as detailed in European Medicines 

Agency (EMeA) requirements[34]), with defined clinical end-points (local pain on 

palpation; inflammation; ulceration; alopecia; apathy; fever; diarrhoea; anorexia). 

Body weight was recorded weekly. Pre- and post-vaccine haematological and 

biochemical parameters were measured by collection of blood samples at 2 days 

before and 2 days after each vaccination. Blood was collected by jugular or cephalic 

venepuncture in 2ml EDTA anticoagulated and plain serum gel tubes. Samples were 
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sent by same day courier at +4oC to a commercial laboratory (Microanalysi, Athens), 

and processed for routine biochemical tests (urea, creatinine, aspartate 

aminotransferase (AST), alanine aminotransferase (ALT), creatine phosphokinase 

(CPK) and total bilirubin) using a standard Aeroset dry chemistry analyzer (Abbott-

Toshiba, USA) and red/white blood cell counts using a PCE-210 automatic blood cell 

counter (Erma Inc., Japan). 

2.4 Immunogenicity 

2.4.1 Cytokine assays 

Immunogenicity was assessed by measurement of cytokine levels (IFN-γ, TNF-α, and 

IL-10) expressed by antigen stimulated lymphocytes in whole blood assays (WBA)[35], 

measured pre-vaccination (day 0) and on days 26, 42, 70, 98 and 126 following first 

vaccination. Blood collected at time points detailed above by jugular or cephalic 

venepuncture in heparin anticoagulant was diluted 1:10 in RPMI supplemented with 

100IU/ml penicillin, 100μg/ml streptomycin and 2mM L-glutamine, and incubated in 

96 well flat bottom plastic culture plates. Triplicate wells (200μl per well) were 

incubated for each antigen or mitogen (TRYP, LACK, CLA and Concanavalin A: 

10μg / ml), including negative control (unstimulated) wells, for a period of 5 days at 

37°C in 5% CO2 in air. Supernatants from each of the three replicate wells were 

pooled and stored at -80oC until required. Measurement of cytokines expressed in 

culture supernatants was carried out by quantitative ELISA using commercially 

available reagents. Duoset kits (R&D systems, UK) were used to detect IFN-γ and 

TNF-α, while matched pair monoclonal capture / polyclonal detection antibodies were 

employed for IL-10 measurement, using the supplied recombinant protein standards, 

according to the manufacturer’s recommendations. Background levels in unstimulated 

control wells were deducted from antigen-stimulated values to quantify antigen-
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specific cytokine production (with negative values recorded as zero). The mean values 

for background levels of IFN-γ, TNF-α and IL-10 were 65pg/ml (range 0-313), 

47pg/ml (range 0-527), and 162pg/ml (range 0-982). TRYP and LACK antigens were 

not available to measure pre-vaccination (day 0) cytokine levels, therefore cytokine 

measurements for these antigens commenced from day 26 onwards. 

2.4.2 ELISA 

Serological responses to vaccination (total specific IgG, IgG1 and IgG2 subtypes) 

were measured by anti-TRYP and anti-LACK ELISA in all dogs at all 6 follow-up 

time points (day 0-126). 96-well polystyrene microtitre plates (Maxisorp, Nunc A/S, 

Roskilde) were coated overnight at 4oC with 50µl 0.05 M carbonate / bicarbonate 

coating buffer, pH 9.6 (Sigma-Aldrich, U.K.) containing 0.5µg TRYP or 0.25µg 

LACK (prepared as described below) per well. Wells were washed 3 times with PBS / 

0.05% Tween 20 (repeated between each step detailed below). Blocking was 

performed with 2% dried milk powder in carbonate / bicarbonate buffer for 2 hours at 

37oC, and 50µl of the appropriate dilution of dog serum in PBS / 0.05% Tween20 / 

2% dried milk powder was added to each well. All samples were run in duplicate. For 

detection of total IgG, 50ul of anti-dog IgG conjugated to horseradish peroxidase 

(HRP) (Sigma-Aldrich) was used at 1:1000 dilution for 1 hour incubation at 37oC, 

while for antibody subtyping, goat anti-IgG1-HRP conjugate at 1:500 dilution, or 

sheep anti-IgG2-HRP conjugate at 1:10,000 dilution (Bethyl Laboratories, 

Montgomery, Tx) were added. 100µl substrate solution (Tetramethylbenzidine (TMB); 

Sigma-Aldrich, UK) was then added, the reaction was stopped after 20 minutes 

incubation at room temperature using 50µl 0.5 M H2SO4, and the optical density of 

reaction product was read using an automated ELISA plate reader (Multiskan EX, 

Thermo Fisher, UK) set at 450nm. Positive and negative controls were included on 
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each plate. The sample-to-positive ratio (s/p)[36] for each sample was calculated as the 

mean raw absorbance at 450nm of duplicate test samples relative to a highly positive 

reference positive sample (from a parasitologically confirmed polysymptomatic 

Brazilian dog[30] ) which was included on every ELISA plate. For subtyping 

experiments, to measure antigen-specific antibody titre in arbitrary units, titration 

curves were plotted for each serum sample using doubling dilutions from 1:100 to 

1:3200 (IgG1) or alternate doubling dilutions from 1:200 to 1:204,800 (IgG2). The 

cut-off point was calculated as the mean s/p ratio of all dogs at time 0 (pre-

vaccination). Using maximum likelihood, a straight line was fitted to the linear 

portion of the s/p ratio titration curve, and the reciprocal of the dilution rate at the 

point of intersection with the cut-off value was calculated as an estimate of antibody 

titre. 

2.4.3 Intradermal tests 

Cellular immune responses in vivo were measured at day 156 by intradermal skin 

testing[37] using 0.1µg TRYP and LACK recombinant antigen (prepared as described 

below) in 0.1ml sterile pyrogen-free PBS (or 0.1ml PBS alone, as a control) injected 

intradermally at the right inner thigh, a distance of 5cm apart. The size of the 

indurated area was measured at 72h after injection. Two measurements were taken at 

90 degrees to each other using vernier calipers, and the mean of the two numbers was 

recorded. A positive reaction was considered as >5mm. 

2.5 DNA and MVA vaccine preparation 

Production of the DNA and MVA vaccines were carried out following GLP 

guidelines at the Cambridge Institute for Medical Research (DNA) and the Centro de 

Biología Molecular Severo Ochoa (MVA), respectively, as described in previous 

research[14]. Briefly, plasmid DNA was purified under sterile conditions using 
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EndoFree Plasmid Giga kits (Qiagen) with pyrogen-free materials, and the final 

product resuspended in pyrogen-free PBS. Recombinant MVA expressing TRYP and 

LACK were originally prepared as described[14] . Purified stocks of recombinant 

MVA grown in RK13 cells under sterile conditions were prepared as described[38] by 

ultracentrifugation through a sucrose cushion, resuspended in 10 mM Tris-HCl (pH 9), 

stored at -80°C until required, and diluted in pyrogen-free PBS for final inoculation.  

Expression of protein from recombinant MVA-infected culture lysate was checked by 

Western blotting using sera from DNA-vaccinated mice, demonstrating the expected 

protein bands at 22 kDa for TRYP and 18kDa for LACK.   

2.6 TRYP, LACK and CLA antigen preparation 

Recombinant proteins used for in vitro immunology assays, and to test intradermal 

reactivity in vivo, were prepared by Novexin Ltd (Babraham, UK) under GLP using 

constructs originally prepared by the Cambridge lab[14] by cloning TRYP or LACK 

into the expression vector pET-15b (Novagen) and transformation into Escherichia 

coli BL21 (DE3) host cells. Recombinant protein was purified by affinity column 

chromatography using 1ml HisTrap FF columns (GE Healthcare). Immobilised target 

proteins were washed with buffer containing NV polymer to dissociate and remove 

endotoxin contamination before being eluted with 10 mM Tris-HCl (pH 8.5), 0.5 M 

NaCl and 250 mM imidazole, and desalted into low-LPS PBS using PD10 desalting 

columns (GE Healthcare). Proteins were diluted in pyrogen-free PBS for intradermal 

inoculation into dogs. Crude freeze-thawed Leishmania infantum CLA was prepared 

from stationary phase promastigotes as described previously[14]. 

2.7 Statistical analysis 

Comparison of mean cytokine levels in quantitative ELISAs, and antibody titres in 

IgG subtyping experiments, was performed using non-parametric Wilcoxon rank sum 
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tests. Differences between vaccine group biochemical and haematological parameters 

were tested for using one-way ANOVA, with Scheffe multiple comparison tests 

where appropriate. Statistical significance was set at P<0.05. All analyses were 

carried out in STATA v9. 

2.8 Ethics 

Trials were undertaken to confirm safety in the target population of genetically 

diverse outbred dogs following EMeA scientific guidelines for veterinary medicinal 

products[34, 39], EEC directive 86/609/EEC[40] and with approval from local 

government. Dogs were cared for by fully trained animal house staff under veterinary 

supervision. Kennels were approved by Hellenic Government Veterinary Officers 

(Document ref: 4381) and compliance with relevant legal requirements under Greek 

laws (160/1991) relating to animal welfare certified by the Hellenic Republic Ministry 

of Rural Development & Food: General Veterinary Authority K.A.F.E. Department 

‘A’ (Document ref: 319083). Written informed consent was gained from dog owners 

prior to commencement of all trials. Animals remained the legal property of owners, 

and were returned after completion of the study. In the absence of a Cretan ethical 

committee for animal procedures, protocols conformed to the spirit of UK Home 

Office requirements for United Kingdom research establishments, and with ethical 

approval from the University of Warwick Biological Ethics Committee. Institutional 

approval for the use and modification of kennels for the vaccine trials was granted by 

the University of Crete Scientific Board (Document ref: 4/31-1-2007).  
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3. Results 

3.1 Safety 

3.1.1 Clinical examination  

Examination post-vaccination detected no adverse clinical side effects except 

transient pain on palpation of the injection site in one low dose LACK dog on the 

morning following second vaccination. No swelling, alopecia or systemic signs were 

recorded in any animal. Mean body weights of all vaccine groups increased slowly 

throughout the trial (Figure 1), partly due to growth of young dogs in each group. 

One female animal in the TRYP low dose group was vaccinated in the early stages of 

gestation, before the pregnancy was apparent on clinical examination. Subsequently to 

discovery of the pregnancy, this bitch was monitored closely throughout an 

uneventful gestation, and delivered normal puppies. Data from this animal were 

excluded from all subsequent analyses. 

3.1.2 Clinical biochemistry and haematology  

Between group comparison of blood biochemical (AST, ALT, creatinine, urea, total 

bilirubin and CPK) and haematological parameters (total red blood cell count) pre- 

and post-prime and boost vaccinations showed no statistically significant differences 

between TRYP, LACK and control groups (ANOVA; P≥0.11). Comparison between 

group mean white blood cell counts at time 0 (before 1st vaccine) approached 

significant difference (ANOVA; P=0.053), however no statistically significant 

differences between individual vaccine groups were identified using the Scheffe 

multiple comparison test, and no subsequent post-vaccine between-group differences 

were found (P≥ 0.20). 
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3.2 Immunogenicity 

3.2.1 IFN-γ cytokine response 

Mean IFN-γ levels in response to WBA stimulation with TRYP antigen in TRYP high 

dose vaccinated dogs (1000µg DNA) were significantly higher than controls at all 

time points from day 42 onwards. In the TRYP low dose (100µg DNA) group, after 

removal of an outlier IFN-γ value of 3576 pg/ml at day 126, vaccinated dogs showed 

higher mean IFN-γ levels than controls at day 42 only (Figure 2). LACK-specific 

IFN-γ responses in both high and low dose LACK vaccine groups were not 

significantly different from controls at any time point. We did not detect any 

significant difference in TRYP-specific IFN-γ levels between high and low dose 

TRYP groups at any time point (P≥0.27; Wilcoxon rank sum test). Similarly, no 

significant difference was detected between high and low dose LACK dogs’ mean 

IFN-γ levels, in LACK-stimulated WBA (P≥0.45; Wilcoxon rank sum test). The 

combined results of high and low dose groups (Figure 3) showed that, overall, mean 

IFN-γ levels in response to TRYP WBA were significantly higher in TRYP 

vaccinated dogs than in controls at 3/4 time points post vaccination (P<0.05: 

Wilcoxon rank sum test), whereas no significant difference was seen between LACK 

vaccinated dogs and controls in LACK WBA. 

Mean IFN-γ responses to CLA antigen in all vaccine groups were consistently low 

(≤120pg/ml) or below background (data not shown), showing no significant 

association with vaccine group. 

3.2.2 IL-10 cytokine response 

No significant differences were observed between high and low dose TRYP (P≥0.10) 

or LACK (P≥0.09) vaccine group IL-10 responses, therefore results from the two 

dose rates were combined for further analysis. Mean IL-10 levels in vaccinated dogs 
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were not significantly different from controls, showing no obvious change over time 

apart from a transient increase in mean IL-10 levels at Day 70 in both TRYP and 

LACK vaccinated dogs (not significantly different from controls: P≥0.12; Wilcoxon 

rank sum test), in response to both TRYP (Figure 4) and LACK antigens (similar 

results, data not shown).  Mean IL-10 responses to CLA antigen were consistently 

low (≤62pg/ml) or below background (data not shown), showing no significant 

association with vaccine group. 

3.2.3 TNF -α cytokine response  

None of the vaccinated groups showed significant differences in mean TNF-α level 

compared with controls at any time point (data not shown). 

3.2.4 Intradermal tests 

A positive skin test response to TRYP antigen (>5mm) was observed in 4/5 TRYP 

high dose dogs and 2/3 TRYP low dose dogs at day 156. The TRYP low dose dog 

with a negative skin test result corresponded to an animal which had consistently low 

IFN-γ cytokine assay responses to TRYP, whereas the skin test negative animal in the 

high dose TRYP group paradoxically showed high IFN-γ responses to TRYP 

throughout the trial. In LACK vaccinated dogs, there was a positive skin test response 

to LACK antigen in 2/5 high dose dogs and 0/4 LACK low dose dogs. 

3.2.5 ELISA IgG1 / IgG2 subtyping 

High TRYP-specific total IgG s/p ratios were seen in dogs post TRYP vaccination, 

however LACK-specific total IgG in LACK vaccinated dogs remained at baseline 

levels. Measurement of TRYP-specific IgG1 and IgG2 subtypes demonstrated 

significantly higher levels of IgG2 in both high and low dose TRYP dogs compared to 

controls at all time points post vaccination (P<0.05; Wilcoxon rank sum test). No 

difference in IgG2 levels was detected between high and low dose TRYP dogs, 
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therefore data were combined (Figure 5). Data from LACK vaccinated dogs are not 

shown due to absence of specific antibody response in these dogs. IgG1 levels in  

TRYP vaccinated dogs were uniformly low, and not significantly different from 

controls at any time point (Figure 5) . 

4. Discussion 

This study shows that uninfected, unexposed outbred endemic dogs vaccinated with 

DNA/MVA TRYP prime/boost vaccine produced higher antigen-specific levels of the 

signature type-1 cytokine IFN-γ in whole blood cytokine stimulation assays than 

placebo vaccinated dogs. LACK vaccinated dogs showed a similar trend that was not 

statistically significant. A majority of TRYP and a minority of LACK vaccinated dogs 

exhibited in vivo delayed-type hypersensitivity responses to intradermal inoculation 

with the appropriate recombinant vaccine antigen at day 156, indicative of antigen-

specific cellular memory recall responses. The elevated antigen-specific IFN-γ level 

in TRYP vaccinated dogs compares with the reported high levels of IFN-γ associated 

with protection in murine models against L. major [14, 17] and L. donovani infection[41-

43], and in dogs against L. infantum infection and disease[44-46], and is thus indicative 

of vaccine-induced protective type-1 immunity and memory phase response.  

TRYP vaccinated dogs were also characterized by an IgG2 subclass dominated 

response, whereas IgG1 subclass levels remained low and were not significantly 

different to control dogs at any time point. In our hands, despite previous evidence of 

seroconversion to LACK antigen after DNA/MVA LACK prime/boost vaccination in 

murine trials[14], LACK-specific IgG did not increase measurably from baseline levels. 

Taking IgG2/IgG1 ratio as a proxy measure of Th1/Th2 polarization of the immune 

response following previous research[44, 46-48], these results are further evidence of a 
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type-1 dominated response in the TRYP vaccine group, despite some controversy 

over the association between canine IgG subclass ratio and protective cellular immune 

response [49], different to the clear patterns observed in mice[14, 17]. The absence of 

significant IgG1 (Th2) responses in the currently described vaccinated dogs was as 

expected due to the absence of challenge infection or restimulation with Leishmania 

antigens, in contrast with previous canine trials of DNA/rVV prime/boost vaccines in 

which humoral responses were measured post-experimental challenge[20, 21]. For the 

same reason, we detected no antigen-specific increases in IL-10 levels in either 

vaccine or control groups, making analysis of IFN-γ:IL-10 ratios uninformative until 

natural challenge experiments are conducted. In murine models vaccinated with the 

same TRYP vaccine, a high ratio of pre-challenge IFN-γ:IL-10 in draining lymph 

node cells after in vivo crude parasite antigen restimulation was a clear indicator of 

vaccine success, whereas a low ratio (due to elevated IL-10 levels) predicted 

failure[14]. In dogs, the existence of the Th1/Th2/Treg paradigm in relation to L. 

infantum infection as observed for L. major in mice[50-52] is not completely resolved 

(as reviewed[53]), and there are conflicting results regarding the role of IL-10, with 

some studies demonstrating IL-10 elevation in symptomatic naturally or 

experimentally infected dogs[46, 54], whereas other work failed to show any association 

between IL-10 and clinical disease[55-57].  

We did not detect specific cytokine responses to CLA in the present study, however 

this does not preclude vaccine efficacy, as indicated elsewhere, for example in mice, 

where protection afforded by sterol 24-c-methyltransferase vaccine against L. 

infantum correlated with high levels of antigen-specific IFN-γ, but by comparison 

only very low levels IFN-γ were induced by CLA[58]. Moreover, a canine trial of 

HASPB1/H1 vaccine, in which lymphoproliferative responses to CLA were absent 
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post-vaccination, subsequently demonstrated partial protection against high dose 

experimental challenge with L. infantum [59]. 

In conclusion we have shown that vaccination of the important reservoir host of ZVL, 

the domestic dog, with prime/boost DNA/MVA TRYP vaccine is free from adverse 

side effects and shows appropriate immunogenicity consistent with protective efficacy. 

The combination of in vitro and in vivo test results clearly demonstrates that DNA/ 

MVA TRYP vaccine induces a type-1 dominated pro-inflammatory cellular immune 

response which is necessary for protection against Leishmania challenge, and that 

immune memory persists for at least four months post-vaccination in the absence of 

restimulation or infection. Field trials are now required to test DNA/MVA TRYP 

vaccine efficacy for prevention of ZVL infection and disease in naturally exposed 

dogs in Leishmania endemic areas. 
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Figure 1. Mean body weight (kg) of vaccine and control dog groups from time of 1st 

vaccination. 

 

Figure 2. Mean IFN-γ (95% C.I.) in individual vaccine groups in TRYP WBA.  

IFN-γ levels were measured in whole blood cytokine stimulation assays using TRYP 

antigen, at the indicated time points after 1st vaccination on Day 0 with TRYP or 

LACK (low or high dose) DNA vaccine, or control placebo DNA. 2nd vaccination 

with  MVA TRYP, MVA LACK or placebo (as appropriate) was carried out on Day 

28. For each time point, the x-axis has been stretched to allow clear visualization of 

error bars.  

 

* denotes a significant difference between vaccine group and control (Wilcoxon rank 

sum test; P<0.05). One outlier point in TRYP low dose vaccine group at day 126 

removed (IFN-γ=3576pg/ml); upper confidence limits are truncated at 1000pg/ml on 

the vertical scale, for clarity. 

 

Figure 3. Mean IFN-γ (95% C.I.) in combined high and low dose vaccine groups in 

TRYP and LACK WBA. 

IFN-γ levels were measured in whole blood cytokine stimulation assays using TRYP 

and LACK antigen, at the indicated time points after 1st vaccination. Results from 

TRYP and  LACK low and high dose vaccine groups are amalgamated. Filled points 

on the graph with solid error bars represent IFN-γ response to TRYP antigen 

stimulation in WBA, open points with dotted error bars show IFN-γ response to 

LACK stimulation. 

* denotes a significant difference between vaccine group and control (Wilcoxon rank 

sum test; P<0.05).  
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Figure 4. Mean IL-10 (95% C.I.) in TRYP WBA. 

IL-10 levels were measured in whole blood cytokine stimulation assays with TRYP 

antigen, at the indicated time points after 1st vaccination. Results from TRYP and  

LACK low and high dose vaccine groups are amalgamated.  

 

 

Figure 5. Mean TRYP-specific IgG1 and IgG2 antibody subtype titres (95% C.I.) by 

vaccine group. 

TRYP-specific IgG responses were measured at the indicated time points by ELISA 

using HRP conjugated antisera to detect IgG1 and IgG2 subtypes. Dogs were 

vaccinated with DNA TRYP or control placebo at Day 0. MVA TRYP or placebo was 

administered at Day 28. 

N.B. * denotes a significant difference between mean IgG levels in vaccinated and 

control dogs (Wilcoxon rank sum test: P<0.05).  
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