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Abstract The proportion of N from crop residues entering the light fraction organic 8 

matter (LFOM) pool was investigated in soils with contrasting soil organic matter and 9 

microbial characteristics arising from different management histories. A laboratory 10 

experiment was conducted in which 15N-labelled sugarbeet, Brussels sprout or 11 

ryegrass shoots, which possessed a range of C/N contents, and hence different 12 

biochemical qualities, were incorporated into a sandy-loam soil collected from within 13 

a field (FC), or from the field margin (FM). Amounts of C and N incorporated into 14 

LFOM were determined after 112 d. The FC and FM soils had organic C contents of 15 

0.9 and 2.5 % respectively. Addition of crop residues increased total LFOM N content 16 

and reduced its C/N in FC soil, but had no effect on total LFOM N or its C/N in FM 17 

soil. Ryegrass incorporation into FC was the only treatment in which there was a net 18 

increase in LFOM C. Isotopic analysis indicated that more crop residue derived N 19 

became incorporated into the LFOM N pool in FM relative to FC soil, with % crop 20 

residue N incorporated ranging from 25.9 to 35.3 % in FC, and between 38.9 and 68.5 21 

in FM. Incorporation of crop residues had a positive priming effect on pre-existing 22 

LFOM N in FM but not FC soil. We conclude that the characteristics of plant 23 
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 3

material, together with differences in soil organic matter and microbiology resulting 1 

from contrasting management, determined the amount of crop residue C and N 2 

incorporated into both HFOM and LFOM. 3 

 4 

Keywords: soil organic matter; Light fraction organic matter; crop residue quality; 5 

decomposition; priming 6 

 7 

Introduction 8 

Understanding the factors controlling the interplay between mineralisation and 9 

stabilisation of soil organic matter (SOM) is a prerequisite for managing both nutrient 10 

dynamics and C sequestration, and thereby optimising the ecosystem service provided 11 

by a given soil (Janzen 2006). SOM is a heterogeneous substrate comprising materials 12 

with a range of origins and characteristics, and SOM pools have been separated and 13 

characterised using both physical and chemical methods (von Lutzow et al. 2006). 14 

Physical fractionation of SOM attempts to separate SOM according to the degree to 15 

which it is protected against microbial degradation, and pools are quantified by 16 

determining the organic material protected through chemical interactions, association 17 

with clay and silt particles, physically protected within aggregates, or that remaining 18 

unprotected (Six et al. 2002).   19 

One of the key pools defined within physical fractionation schemes is light fraction 20 

organic matter (LFOM). The LFOM pool largely represents partially degraded plant 21 

materials together with microbial tissues and products which are not associated with 22 

mineral soil particles (Six et al. 2002). LFOM represents an unprotected pool of SOM 23 

and is readily degradable relative to protected pools. It is therefore considered to be 24 
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 4

one of the most labile pools of SOM. As a result, the size of the LFOM pool responds 1 

much more quickly to agricultural management than the total SOM pool, and LFOM 2 

is considered to represent an early indicator to determine long term impacts of 3 

management on soil quality and C sequestration (Janzen et al. 1992; Bending et al. 4 

2004; Leifeld and Kogel-Knaber 2005). Soil C, N and P mineralisation have all been 5 

correlated with LFOM, confirming that it represents an active pool of SOM with 6 

importance to plant nutrient supply (Hassink 1995; Sierra 1996; O’Hara et al. 2006). 7 

Much is known about the influence of soil, environmental and management variables 8 

on the dynamics of LFOM, with the size of the LFOM pool influenced by crop 9 

rotation (Bending et al. 2000, 2004; Marriott and Wander 2006), N fertilisation (Malhi 10 

et al. 2003), and tillage (Beare et al. 1994). However, mechanisms controlling the 11 

formation and turnover of LFOM are poorly understood. The biochemical quality of 12 

inputs clearly has a role in directing amounts of C and N incorporated into LFOM. 13 

Bending et al. (1998) indicated that net amounts of crop residue C and N incorporated 14 

into the LFOM pool depended on crop residue quality, with N content and cellulose in 15 

particular being important predictors of the amount of C and N immobilised. 16 

However, the amount of LFOM can vary widely in different soil types (Hassink 17 

1995), and the role of specific major soil factors such as texture, clay and existing 18 

SOM content in controlling retention of crop residue inputs as LFOM remains to be 19 

determined.  20 

In the current study we used paired soils with identical mineralogical 21 

composition but differing organic matter contents to investigate how soil and crop 22 

residue characteristics affect amounts of crop residue C and N stabilised into LFOM. 23 

 24 
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 5

Methods 1 

Soil 2 

Soil was collected from 2 sites with identical mineralogical composition, but different 3 

amounts of organic matter, from Bradley’s field at Warwick HRI, Wellesbourne, 4 

Warwickshire, UK. The soil is an undifferentiated sandy-loam of the Wick series with 5 

74 % sand and 14 % clay (Whitfield 1974). The first site (FM) was located in the field 6 

margin near to a hawthorn (Crataegus monogyna Jacq.) hedge. The second site (FC) 7 

was located within the farmed part of the field, approximately 8 m from the FM site 8 

(Bending et al. 2002). The field had been ploughed following a crop of winter wheat. 9 

At both sites, soil was collected from 0-30 cm depth. Surface litter was removed from 10 

the FM site prior to sampling.  11 

Soil from both sites was sieved (<3 mm), air dried overnight, and stored at 4oC 12 

for 4 weeks. Total organic C and N were determined using an automated C/N analyser 13 

(CB-2000, Leco Corporation, Michigan, USA). The FC and FM soils were shown to 14 

possess, respectively, organic C contents of 0.86 and 2.5 %, organic N contents of 15 

0.08 and 0.21 %, and pH values of 5.3 and 5.4. While respiration in the soils prior to 16 

the start of the experiment was equivalent, microbial biomass-N was 3.2 and 38.3 μg 17 

g-1 dw soil in FC and FM respectively (Bending et al. 2002). Prior to use, the soils 18 

were moistened to a water holding capacity of 60 %, and incubated at 15oC for 7 days. 19 

 20 

Plant materials 21 

Sugarbeet (Beta vulgaris L.), Brussels sprout (Brassica oleracea L. var gemmifera) 22 

and rye grass (Lolium perenne L.) were grown in sand culture under controlled 23 

environment glasshouse conditions (16 h day length, maximum day temperature 25oC, 24 
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 6

minimum night temperature 15oC), and fed weekly with Hewitt’s solution (Hewitt and 1 

Smith 1975), in which the N source was 10 at % 15N-labelled 15NH4
15NO3. After 8 2 

weeks growth, mature leaves were removed, and the lamina and petiole cut into 3 

approximately 1 cm square pieces, and was incorporated into soil fresh without 4 

drying. The biochemical quality of oven dried plant materials was determined by 5 

sequential fractionation, to give soluble carbohydrate, phenolic, cellulose, and lignin 6 

contents (Rahn et al. 1999). Total C and N were determined by C/N auto-analysis.  7 

 8 

Incubation study 9 

Five g fresh weight (fw) of plant material was mixed into 100 g fw soil, and poured 10 

into polystyrene containers. The ryegrass, sugarbeet, and Brussels sprout leaves had 11 

moisture contents of 77.5, 86.1 and 80.4 % respectively. The additions provided 12 

carbon inputs of 5.2, 3.2 and 4.6 mg C g-1 dw soil for the ryegrass, sugarbeet and 13 

Brussesl sprout respectively (Table 1). The base of the pot was tapped firmly to allow 14 

the contents to settle, providing a water filled pore space of approximately 22 %. 15 

Control treatments containing unamended soil were also included. Five replicates of 16 

each treatment were set up for each harvest. Containers were incubated using a 17 

randomised block design in the dark at 15oC, inside 15 L plastic tubs through which 18 

moist air was continuously circulated to maintain an aerobic atmosphere (Bending and 19 

Turner 1999).  20 

 21 

Analysis of soil C and N pools 22 

After 28, 56 and 112 days, pots were destructively harvested and the soil mineral-N 23 

pools determined as described in Bending et al. (1998). Soil mineral-N was extracted 24 
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 7

in 0.5 M K2SO4, and NH4
+-N and NO3

--N quantified using an EnviroFlow 5012 flow 1 

injection system (Tecator AB, Sweden).  2 

After 112 days, light fraction organic matter (LFOM) was extracted from 30 g 3 

fw soil (equivalent to 26 g dw soil) using a 1.75 g cm-3 solution of NaI, and was washed 4 

in 0.1 M CaCl2 and distilled H2O (Strickland and Sollins 1987). After drying in an 5 

80oC oven, sub-samples of the plant materials and the LFOM were weighed before 6 

being milled to a fine powder (<500 µm). Approximately 5 mg samples were analysed 7 

for total C and N content at the Scottish Crops Research Institute (SCRI), Dundee, 8 

UK using a Roboprep automatic C/N analyser (Europa Scientific, Crewe, UK). 9 

The 15N atom % content of the plant materials, 0.5 M K2SO4 extracts and 10 

LFOM were determined at SCRI-Dundee, using a Micromass 622 mass spectrometer 11 

(VG Isogas, Northwich, Cheshire, UK). The N in each pool that was derived from the 12 

plant inputs, and the % crop residue-N recovered in each pool, were calculated 13 

according to Ehaliotis et al. (1998). 14 

 15 

 Statistical analysis 16 

The data was not normally distributed, and was subject to log transformation prior to 17 

statistical analysis. The statistical significance of differences in the effect of crop 18 

residue and soil type on net N mineralization, the amount of LFOM C and N between 19 

treatments and the proportion of crop residue N incorporated into LFOM were 20 

determined by Analysis of Variance. All statistical analysis was conducted using 21 

GenStat (7th edition, VSN International Ltd.) software.  22 

 23 

Results 24 
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 8

Composition of crop residue materials 1 

There was variation between the crop residue types with respect to most quality 2 

attributes (Table 1). Ryegrass had a low C/N (15), and was rich in cellulose. Brussels 3 

sprout shoot had a high C/N (28) and a large soluble carbohydrate content. Sugarbeet 4 

had an intermediate C/N (20) and comparable cellulose and soluble carbohydrate 5 

contents to Brussels sprout and ryegrass respectively. All three crop residues types 6 

had over 9 % 15N atom content.  7 

 8 

Mineralisation of N 9 

Most net mineralisation of N from ryegrass and sugarbeet occurred within the first 28 10 

d following incorporation (Fig 1 a, b). For Brussels sprout there was little net 11 

mineralisation of N within the first 28 d, with most net mineralisation occurring 12 

between 56 and 112 d in FC soil, but between 28 and 56 d in FM soil. Nitrogen 13 

mineralisation was significantly affected (P<0.001) by the type of crop residue 14 

incorporated and soil type, and there were significant interactions between all of the 15 

variables, including crop residue type and soil, and soil and harvest time (P<0.001).  16 

 17 

Light fraction organic matter 18 

Light Fraction Organic Matter N and C in unamended FM soil were 14.1 and 5.8 19 

times higher respectively than in FC soil, with LFOM C/N ratios of 38.9 and 14.6 in 20 

FC and FM soils respectively (Table 2). Light Fraction Organic Matter C and N 21 

content, and C/N were significantly (P<0.01) affected by both crop residue and soil. 22 

In the case of N and C/N there were significant interactions between crop residue and 23 

soil.  24 
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In FC soil, incorporation of crop residues significantly (P<0.05) increased net 1 

amounts of LFOM N, with increases in the ryegrass treatment twice that in the 2 

Brussels sprout and sugarbeet treatments. Incorporation of ryegrass, but not the other 3 

materials, increased LFOM C content. Differences in the net enrichment of LFOM C 4 

and N resulted in a significant decrease in the LFOM C/N of all treatments. In the FM 5 

soil, crop residue incorporation had no effect on net amounts of LFOM C or N, or 6 

C/N. 7 

Results of 15N analysis showed that both the amount and the % crop residue N 8 

incorporated into LFOM were significantly affected (P<0.001) by crop residue and 9 

soil type (Table 3). A significantly larger (P<0.001) proportion of crop residue-N was 10 

incorporated into the LFOM N pool in FM soil relative to FC soil, with amounts of 11 

crop residue derived N in the LFOM pool ranging between 25.9 to 35.3 % and 38.9 12 

and 68.5 % in FC and FM soils respectively. In FM soil, significantly more (P<0.05) 13 

ryegrass N was incorporated into LFOM relative to N from sugarbeet and Brussels 14 

sprout, but this represented a lower proportion of the crop residue-N added. In FC 15 

soil, the amount of 15N derived from crop residues (Table 3) very closely matched the 16 

increase in total LFOM N (Table 2) resulting from crop residue incorporation, 17 

accounting for between 92.4 and 96.6 % of the increase in total LFOM N.  18 

Analysis of 15N enrichment allowed us to determine how much of the LFOM 19 

N present in the soil prior to crop residue incorporation remained as LFOM after 112 20 

days. Crop residue type had no significant effect on the % of this original LFOM N 21 

which remained at the end of the incubation period. However, significantly less of the 22 

original LFOM N remained in FM relative to FC soil (P<0.05). The greatest loss of 23 

original LFOM N was seen in the sugarbeet treatment, in which only 65.8 % of the 24 

original LFOM N remained in the FM soil. 25 
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 1 

Incorporation of crop-residue N into soluble and heavy fraction organic matter 2 

pools 3 

N in the soluble pool represents both mineral N and dissolved organic N. Both 4 

crop residue type and soil affected the proportion of crop residue N contained in the 5 

soluble pool after 112 days (Table 4). Significantly (P<0.001) less crop residue N 6 

from ryegrass was incorporated into the soluble N pool than was the case for 7 

sugarbeet and Brussels sprout leaves. Significantly less crop residue N became 8 

incorporated into soluble N in FM relative to FC soil (P<0.001). 9 

Since N losses via denitrification are known to be minimal following 10 

incorporation of green manures in the soil type and experimental conditions used 11 

(Rahn et al., 2003), incorporation of N into heavy fraction organic matter (HFOM) 12 

was determined by calculating the N remaining once amounts incorporated into the 13 

LFOM and the soluble N pools had been summed. It was found that significantly 14 

(P<0.001) more crop residue N was incorporated into HFOM in FC relative to FM 15 

soil. Crop residue type also affected amounts of N incorporated into HFOM. Amounts 16 

of sugarbeet and Brussels sprout leaf N incorporated into HFOM were similar, at 15.6 17 

and 17.9 %  and 1.5 and 2.5 % in FC and FM soil respectively. However, much larger 18 

amounts of N from ryegrass became incorporated into HFOM, representing 30.8 and 19 

38.1 % of the crop residue N incorporated in the FM and FC soils respectively.  20 

 21 

Discussion 22 

Light Fraction Organic Matter represents partially degraded, unprotected plant 23 

materials and microbial tissues and products (Golchin et al. 1994; Marriott and 24 
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Wander 2006), and quantification of the amount of crop residue C and N which was 1 

incorporated into HFOM provides information on the extent to which the added 2 

materials had been mineralised or converted to other more recalcitrant SOM pools. 3 

Furthermore, changes in the amounts of C and N in pre-existing LFOM provides 4 

information on the susceptibility of LFOM to microbial activity resulting from 5 

decomposition of the plant materials, and hence its lability.  6 

The FM and FC soils showed qualitative and quantitative differences in  7 

organic matter, reflecting contrasting mechanisms of incorporation of organic material 8 

into soil. In the case of FC soil, fresh litter is introduced by tillage, while in FM soil, 9 

litter is incorporated into soil through mixing of partially degraded litter.  Our data 10 

shows that the characteristics of plant material incorporated into soil, together with 11 

differences in soil organic matter and microbiology resulting from differences in 12 

management, determined the amount of crop residue C and N remaining as LFOM 13 

following the end of net mineralisation of N from the crop residues. Although greater 14 

amounts of crop residue N became incorporated into LFOM in the FM soil, there were 15 

net increases to LFOM N only in the low SOM FC soil. In the case of sugarbeet and 16 

Brussels sprout there was only net enrichment in LFOM N in FC soil, while for 17 

ryegrass, both C and N were increased.  Furthermore, both crop residue type and soil 18 

influenced amounts of N entering the HFOM pool, which is has greater physical 19 

protection than LFOM, and is considered more stable (Six et al., 200) 20 

Differences between crop residues in the relative amount of C and N 21 

immobilised into the LFOM and HFOM pools may relate to differences in the 22 

biochemical quality of the materials incorporated. Bending et al. (1998) showed that 23 

cellulose content was a good predictor for net increases in LFOM C and N content 24 

following decomposition of a range of crop residue materials in soil. In the current 25 
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study, the cellulose content of ryegrass was over a third higher than sugarbeet and 1 

Brussels sprout, and ryegrass was associated with greater immobilization of both crop 2 

residue C and N into LFOM, and N into HFOM, than the other materials.  3 

The amount of LFOM in the unamended FC soil was extremely low and had a 4 

high C/N relative to FM soil. Isotopic analysis showed that the net increase in LFOM 5 

N in FC soil following crop residue decomposition matched the amount of crop 6 

residue N incorporated into LFOM. However, in the FM soil, more N derived from 7 

the crop residues was incorporated into LFOM relative to FC soil, but there was no 8 

net increase in N content, suggesting that N present in pre-existing LFOM was 9 

replaced by N from the crop residues. This indicates that turnover of LFOM N in FC 10 

soil was not affected by the increased microbial activity resulting from decomposition 11 

of the added crop residues, but that the reverse was true in FM soil. This suggests that 12 

LFOM N in FM soil, but not FC soil, had labile components in which turnover of N 13 

was ‘primed’ during decomposition of the added plant materials. The high C/N of 14 

LFOM in FM soil could have reduced N availability and limited the possibility of 15 

priming effects. 16 

Light Fraction Organic Matter represents a heterogenous pool and the flotation 17 

method used to extract LFOM extracts materials with a range of origins and 18 

recalcitrance, including residual plant debris, living and senescent microbial and 19 

faunal tissues, and charcoal (Marriott and Wander 2006). Clearly the relative 20 

proportion of reactive and non-reactive components varied in the LFOM of FC and 21 

FM soils. This conclusion is also supported by the LFOM C/N, which was higher in 22 

FC (38.9) relative to FM soil (14.6). Differences in the characteristics of LFOM in the 23 

soils will reflect contrasting plant inputs from which LFOM is derived, and the 24 
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impacts of cultivation and management techniques on turnover of LFOM in the 1 

cropped soil.  2 

Priming effects, in which incorporation of a substrate to soil changes the 3 

mineralisation rate of native SOM, have been the subject of much debate in the 4 

literature (Kuzyakov et al. 2000), and can reflect ‘real’ priming in which actual 5 

mineralisation rates are altered positively or negatively, or ‘apparent’ priming in 6 

which exchange of labelled mineral-N with unlabelled soil pools causes the apparent 7 

priming. In this case apparent priming would involve exchange of labelled mineral-N 8 

derived from the crop residues with unlabelled N in the LFOM, as the result of 9 

microbial growth and turnover. It is not clear whether the priming effect observed in 10 

the current experiment reflects real priming or apparent priming caused by pool 11 

substitution. Whichever the mechanism, the presence of a priming effect in the FM 12 

but not FC soil indicates differences in the biological activity of LFOM in each soil.  13 

Differences in the fate of crop residue N and C in the two soils could be due to a 14 

variety of factors. For example, SOM has strong effects on soil structure and 15 

aggregate stability, which may directly influence soil texture and porosity with 16 

implications for the survival and longevity of bacterial and fungal biomass, including 17 

its protection against predators (Six et al., 2006). Furthermore SOM content may 18 

directly affect microbial community structure (Bending et al. 2002), including fungal 19 

to bacterial ratio, which increases with SOM content (Frey et al. 1999). Differences in 20 

the structure of microbial communities degrading incorporated materials could affect 21 

the characteristics of the microbial metabolites and tissues produced following 22 

growth, and therefore the nature of organic materials stabilised as SOM. For example, 23 

fungal tissues are generally considered to produce chitin rich biomass with higher C/N 24 
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than bacteria, which could result in increased recalcitrance and slower breakdown 1 

than bacterial biomass (Guggenberger et al. 1999; Six et al. 2006).  2 

We conclude that the characteristics of plant material incorporated into soil, together 3 

with differences in soil organic matter and microbiology resulting from differences in 4 

management, can have a major influence on the amount of crop residue C and N 5 

incorporated into LFOM and HFOM. 6 

 7 
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Table 1 Characteristics of crop residue materials and amounts of C and N added to soil 

 
Crop residue C/N % N % Cellulose % Lignin % Soluble 

carbohydrate 

 

At % 15N 
abundance 

Amount of C 
applied to soil 

(mg g-1 dw soil) 

Amount of N 
applied to soil 

(mg g-1 dw soil) 

Ryegrass 15 3 22 3 17 9.8 5.2 0.34 

Sugarbeet 20 2.3 12 3 19 9.1 3.2 0.16 

Brussels sprout 28 1.7 14 4 26 9.4 4.6 0.16 
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Table 2 Light fraction organic matter C and N after 112 days 

FC, soil from the tilled centre of the field; FM, soil from the untilled field margin 

Figures in brackets represent log transformed data to which Least Significant Difference (LSD) for soil and crop residue type relates 

Treatment Total-N 
(μg g-1 dw soil) 

Total-C 
(μg g-1 dw soil) 

C/N 

 FC FM FC FM FC FM 

Sugarbeet  94.4 

(4.53) 

439.0 

(6.07) 

1535.0 

(7.32) 

5973.2 

(8.68) 

16.3 

(2.79) 

13.6 

(2.61) 

Brussels sprout 80.1 

(4.37) 

449.6 

(6.08) 

1366.6 

(7.20) 

6102.9 

(8.69) 

17.0 

(2.83) 

13.6 

(2.61) 

Ryegrass  128.1 

(4.84) 

578.2 

(6.34) 

2998.9 

(7.99) 

8904.6 

(9.08) 

23.4 

(3.15) 

15.6 

(2.74) 

Unamended 34.0 

(3.42) 

482.0 

(6.12) 

1214.3 

(7.05) 

7069.0 

(8.81) 

38.9 

(3.63) 

14.6 

(2.69) 

LSD (P<0.05) 0.37 0.34 0.14 

Significance of main treatment effects 

Main effects and interaction Significance  

 C N C/N 

Crop residue *** *** *** 

Soil *** *** *** 

Crop residue x soil NS *** *** 
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Table 3 Fate of crop residue-N in the Light Fraction Organic Matter (LFOM) pools  

FC, soil from the tilled centre of the field; FM, soil from the untilled field margin 

Figures in brackets represent log transformed data to which Least Significant Difference (LSD) for soil and crop residue type relates 

Treatment N from crop residue 
(μg g-1 dw soil) 

% crop residue-N in 
LFOM 

 

% original LFOM N 
remaining 

 FC FM FC FM FC FM 

Sugarbeet  62.5 

(4.10) 

121.7 

(4.77) 

35.3 

(3.53) 

68.5 

(4.20) 

93.7 

(4.53) 

65.8 

(4.18) 

Brussels sprout 48.7 

(3.86) 

92.6 

(4.52) 

28.2 

(3.32) 

53.5 

(3.97) 

92.4 

(4.50) 

74.1 

(4.27) 

Ryegrass  101.8 

(4.61) 

153.4 

(5.03) 

25.9 

(3.24) 

38.9 

(3.66) 

77.3 

(4.30) 

88.1 

(4.44) 

LSD (P<0.05) 0.31 0.31 0.35 
Significance of main treatment effects 

Main effects and interaction Significance 

 N from crop 
residue 

% crop residue-N in 
LFOM 

% original  LFOM N 
remaining 

Crop residue *** *** NS 

Soil *** *** * 

Interaction NS NS NS 
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Table 4 Incorporation of of crop residue-N into the soluble and Heavy Fraction Organic  Matter (HFOM) pools  

FC, soil from the tilled centre of the field; FM, soil from the untilled field margin 

Figures in brackets represent log transformed data to which Least Significant Difference (LSD) for soil and crop residue type relates 

Treatment % crop residue in soluble 
pool 

 

% crop residue N in 
HFOM 

 
 FC FM FC FM 

Sugarbeet  49.1 

(3.89) 

46.5 

(3.83) 

15.6 

(2.09) 

1.5 

(1.26) 

Brussels sprout 53.9 

(3.98) 

47.3 

(3.85) 

17.9 

(2.81) 

2.5 

(1.41) 

Ryegrass  35.9 

(3.58) 

30.2 

(3.41) 

38.1 

(3.63) 

30.8 

(3.41) 

LSD (P<0.05) 0.10 0.31 
Significance of main treatment effects 

Main effects and interaction 

 % crop residue 
in soluble pool 

 

% crop residue N in 
HFOM 

 

Crop residue *** *** 

Soil *** *** 

Interaction NS NS 
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Figure legends 

 

Fig 1 Mineralisation of N following incorporation of crop residues 

(●, Sugarbeet; ▼, Brussels sprout; ■, Ryegrass; ♦, unamended) 

Bars represent +/- standard error of the mean 

a) Mineral-N pool in FC soil 

b) Mineral-N pool in FM soil 
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