
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 12, No. 3, June 2022, pp. 2526~2538

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i3.pp2526-2538 2526

Journal homepage: http://ijece.iaescore.com

A deep locality-sensitive hashing approach for achieving

optimal image retrieval satisfaction

Hanen Karamti1, Hadil Shaiba1, Abeer M. Mahmoud2
1Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University,

Riyadh, Saudi Arabia
2Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt

Article Info ABSTRACT

Article history:

Received Feb 23, 2021

Revised Dec 27, 2021

Accepted Jan 10, 2022

 Efficient methods that enable high and rapid image retrieval are

continuously needed, especially with the large mass of images that are

generated from different sectors and domains like business, communication

media, and entertainment. Recently, deep neural networks are extensively

proved higher-performing models compared to other traditional models.

Besides, combining hashing methods with a deep learning architecture

improves the image retrieval time and accuracy. In this paper, we propose a

novel image retrieval method that employs locality-sensitive hashing with

convolutional neural networks (CNN) to extract different types of features

from different model layers. The aim of this hybrid framework is focusing

on both the high-level information that provides semantic content and the

low-level information that provides visual content of the images. Hash tables

are constructed from the extracted features and trained to achieve fast image

retrieval. To verify the effectiveness of the proposed framework, a variety of

experiments and computational performance analysis are carried out on the

CIFRA-10 and NUS-WIDE datasets. The experimental results show that the

proposed method surpasses most existing hash-based image retrieval

methods.

Keywords:

Convolutional neural network

Deep learning

Feature extraction

Image retrieval

Locality-sensitive hashing

This is an open access article under the CC BY-SA license.

Corresponding Author:

Hadil Shaiba

Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah bint

Abdulrahman University

P.O. Box 84428, Riyadh, 11671, Saudi Arabia

Email: HAShaiba@pnu.edu.sa

1. INTRODUCTION

For the last two decades, the continuous improvements in emerging technologies and the role

of artificial intelligence in many domains like education, Bioinformatics, medical-informatics, biomedicine,

and web crawling, caused an incredible increase in the amount of audio, images and videos. As a result of

this massive amount of data, researchers are faced with a new challenge of developing accurate methods with

greater efficiency and effectiveness in media indexing, retrieval, recognition, classification, as well as other

areas [1]–[3]. For instance, in the banking sectors’ domain; due to the outbreak of the novel virus named

COVID-19; an urgent need for applying artificial intelligence techniques towards mining customers’ data for

authentication and verification burdens arise. In addition, the demand for decision making on daily

transactions, bank customer services, front desk services and online banking, which involve a huge amount of

images, increase rapidly. Accordingly, these examples of frequently needed tasks in one domain (banking

sector) enrich the role of the intelligent information retrieval in general and image retrieval in focus. The

content-based image retrieval (CBIR) approach performs search in large image databases, where it maps the

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708

 A deep locality-sensitive hashing approach for achieving optimal image retrieval … (Hanen Karamti)

2527

content of a query image to a similar query image. To sum-up, such applications are significant in various

fields and specific tasks like facial recognition, visualization, authentication, and verification. [4], [5]. The

color, shape or texture of an image represents the term content in CBIR. Enormous efforts based on the visual

descriptors of an image were proposed in the literature to index and retrieve images. The main idea is to

extract features from images to measure their similarity by calculating the mean, standard deviation,

Euclidean distance [5] or other similarity measures. However, the retrieving process suffers from a key

problem, which is the poor understanding of the high-level content of images. This occurs when the images

retrieved do not meet the user’s expectations due to the extraction of low-level features used by most similarity

measures formula; this literately known as the semantic gap problem [6]. Recently, a recommended approach to

eliminate the semantic gap problem is to use efficient methods for feature extraction such as deep learning

techniques [7]–[9] that improve the retrieval performance by extracting the deep features of images.

In fact, many deep learning techniques were proposed, like convolutional neural networks

(CNNs) that were introduced in several models of image retrieval and have reported promising results:

serving as a generic descriptor in image retrieval [7], [9]–[11]. CNNs are used for deep feature extraction,

where a basic CNN network [12], or a fine-tuned CNN that employs principal component analysis (PCA)

whitening-based 3D model [13] is used for obtaining discriminative features. Many existing works such [8],

[12], use a network with several convolutional layers as descriptors followed by fully connected (FC) layers.

Although, CNNs are used to obtain the most important features from images; where these features usually

are considered high-level descriptors; holding their semantic information. However, they are missing their

finer-grain descriptors. In the other hand, the low-level features hold the spatial resolution of images, missing

their semantic details.

As an attempt to improve the performance of CBIR systems, a hashing-based [14] technique,

with either a traditional method or a deep learning architecture, was added to speed up the image retrieval

process and performance and to increase its accuracy. The high-dimensional feature vectors are transferred to

low-dimensional binary codes (hash codes), and the Hamming distance between hash codes is calculated to

indicate the relationship between images. Accordingly, the image with the shortest distance is returned. In the

literature, numerous hashing-based retrieval methods with various frameworks have been reported [14], [15].

However, there is a limitation in the reported retrieval systems such as ineffective feature extraction, weak

handling of complex queries, long execution time and low accuracy, which challenge researchers to compete

to propose enhanced models. One of the successful satisfied performance hashing algorithms is the local

sensitive hashing, due to recognition of any small change between images [1].

Accordingly, this paper proposes a new CBIR-based system that is motivated by the literate

reported efficiency of both CNN models and the locality-sensitive hashing (LSH) algorithm. Moreover, it

entails different support benefits of both techniques; we focus on extracting low-level and high-level features

from various network layers to overcome the drawbacks of using CNNs. Obviously, each layer concentrates

on certain type of valuable features. LSH sorts images according to their similarity, which means similar

images are clustered close to each other. The main contribution is to transfer learning from the pre-trained

model named VGG-16 in order to extract low-level and high-level features to create hash tables that are

trained. The results are then merged to improve the performance of the proposed system and reduce the

retrieval computational time. The remainder of this article is laid out as follows: section 2 is a review of the

literature on hashing algorithms in image retrieval. The section 3 explains the paper’s contribution as well as

the methodology. The acquired results are presented and discussed in section 4. Finally, section 5 brings the

paper to a conclusion.

2. RELATED WORK

Hashing [16], [17] is a widespread technique in image retrieval. It is based on the conversion of

high-dimensional feature vectors to low-dimensional hash codes (binary codes), which then uses the

Hamming distance [16] to measure the distance between the hash codes of images. Hashing methods for

CBIR were extensively studied in the literature [14], [15]; their deployment depends on the type of the used

architecture which can be a traditional (using local or global descriptors) or a deep learning architecture.

Traditional hashing-based methods use handcrafted features extracted by global or local descriptors.

Global features focus on color [18], texture or shape [19] to extract low-level features, whereas local

descriptors focus on a particular section of an image to present more details about its visual content to extract

high-level features. Histogram of color, edge histogram, color layout, Gabor filter and wavelets are examples

of popular global descriptors. Examples of local descriptors include speeded up robust features (SURF),

scale-invariant feature transform (SIFT) [20], points of interest (POI) detectors, Harris corner detectors,

Shi-Tomasi and features from accelerated segment test (FAST) [20].

Unsupervised, semi-supervised, and supervised learning are the three types of traditional hashing

algorithms. Several approaches, such as LSH [1], which randomly transfers data from high-dimensional

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 2526-2538

2528

feature space to low-dimensional space, are presented in the first type. Improvements to this method include

kernelized LSH [3] and locality-sensitive binary codes from shift-variant kernels (SKLSH) [2] that use a

kernel function that improves the structure of images while disregarding their semantics. We can also include

in this category the spectral hashing (SH) [8] which is a way of handling hash codes that utilizes various hash

functions to reduce correlations. In addition to the asymmetric cyclical hashing (ACH) [21] which handles

hash codes and reduces the storage cost.

In the semi-supervised hashing (SSH) category, several methods are proposed that not only utilize

images with a few labels, but also utilize images with a set of labels. These methods generate hash codes and

minimize the empirical errors between pairwise data in order to avoid over-fitting [22]. We can refer to the

bootstrap sequential projection learning (BSPLH) technique as an example of SSH methods [23]. Supervised

hashing is the third category and requires data to be labeled. Support vector machine (SVM), as an example,

is applied to generate hash codes [9] and kernel hashing (KH) [10] is applied to generate the similarity

between codes. To reduce between-data errors in the original and Hamming spaces, binary reconstructive

embedding (BRE) [11] is employed. Traditional hashing-based methods have achieved good retrieval

performance. However, this achievement is limited to the handcrafted features that fail to capture the

semantic information from images. Deep learning networks are used as visual descriptors to extract deep

features to overcome the semantic gap problem. Compared to handcrafted features, deep features are more

relevant and informative and have recently achieved a significant enhancement in retrieval performance.

Hashing methods are proposed in the literature to exploit the high performance of deep neural

networks. For example, Xia et al. [24] proposed a two-stage supervised hashing method for image retrieval.

First, they proposed a scalable coordinate descent method to divide the pairwise similarity matrix into a

product of two matrices and mapped each row to a hash code associated with a training image. Then, their

model learns a set of hash functions, using deep convolutional network. Kang et al. [25] introduced a

traditional supervised hashing-based model that directly learns the discrete hashing code from the semantic

information. First, they constructed several columns from the semantic similarity matrix and then built the

optimized hashing code. They proved in their paper that the supervised hashing recorded better accuracy than

the unsupervised hashing technique. Wu et al. [26] presented a semi-supervised hashing method with

regularized hashing and bootstrap sequential projection learning to reduce errors. The authors used a

nonlinear hashing to capture the relationship among data points and reduce the dimensionality, which

reduced the computational overhead. They proved the effectiveness of their experiments over six data sets.

The aforementioned techniques apply one type of feature extraction (mostly high-level features). To

create a more thorough description, multiple types of features should be extracted. Several approaches for

retrieving multi-level images are proposed. Zhao et al. [27] implemented a deep semantic ranking method for

learning hash functions that hold multi-level semantic similarity between multi-label images. In their model,

they mapped the deep convolutional neural network to hash functions then to hash codes. This result in a

ranking list guides the learning process. They used a surrogate loss function for optimization and proved their

superiority results. Lai et al. 2015 [28] designed a deep architecture for supervised hashing, and deep neural

networks. The authors presented their model in three phases. First, they built a sub-network with a stack of

CNNs for intermediate features. Second, they applied a divide-and-encode module to divide these features

into several hash branches. Finally, a triplet ranking loss was designed for optimization.

Lin et al. 2017 [29] presented a new discriminative deep hashing (DDH) network for image

retrieval. The authors unified the end-to-end, the divide-and-encode and the desired discrete code learning

modules. Then they benefited from the stack of CNN-pooling layers to obtain multi-scale features. Prior to

that, they merged the results of layers three and four. They finally optimized their results using a suitable loss

function. Ng et al. 2020 [30] introduced a new multi-level supervised hashing algorithm for image retrieval

systems that is integrated with the CNN deep framework. The authors instead of generating a

complementarity multi-level hash tables for feature extraction from different layers of the CNN deep

network; they constructed and trained these tables individually using different levels of features (semantic

and structural). They reported improved performance on three databases.

The main challenges while developing a CBIR-based system are reducing the semantic gap,

achieving higher accuracy, minimizing the computation complexity, and subsequently the time to train and

obtain results from testing as well as evaluating the proposed model. Accordingly, the proposed work in this

paper focuses on these challenges and was motivated by solving optimality issues of performance. The LSH

algorithm is embedded with aim of optimization the unsupervised learning efficiency of CNNs. First, seven

blocks of CNNs are used to extract low level and high level features corresponding to logical and global

contents. These separately extracted features space were flatten and converted to hash codes for simplicity,

reducing the search space burden and speed up of the retrieval task. Actually, the idea of hashing algorithm

proved efficiency long time ago in replacing difficulties in searching by data itself rather than assuming

codes for each data element and instead search such codes for reducing linear complexity. Local sensitive

Int J Elec & Comp Eng ISSN: 2088-8708

 A deep locality-sensitive hashing approach for achieving optimal image retrieval … (Hanen Karamti)

2529

hashing is used as it is a very sensitive to tiny difference in the input data; even a single bit will change the

hash value and this accordingly increases reliability.

Hamming distance were used as an efficient measure that accurately reflect images difference from

each other, where two images are identical or perceptually similar if the distance between both equal zero

otherwise both are different relative to the value obtained. Late fusion is used to merge such obtained hashed

features optimally with eliminating redundancy and reducing the state space. The same query image is tested

for various combinations of layers and transformations hashing. The proposed technique is invariant and

showed significant performance as depicted later in this paper. The main contribution of this study is

summarized in the following points:

- Achieving high performance in image retrieval with low execution time. We will show that our model is

capable of achieving high performance on different databases.

- Our proposed method achieves high performance by extracting low-level and high-level features. Further

improvement is achieved by using fusion on high-level features extracted from pre-trained models.

- Low execution time is achieved through the use of LSH method, which allows a fast retrieval of images

in a very large search space. With LSH, we were able to extract more features (low-level and high-level

features) in less time.

3. METHOD

The proposed method is presented in Figure 1 that displays all the steps from feature extraction to

calculating the similarity and displaying the results. The CNN builds the layers of the proposed network in

order to extract features from different prospective. We extract low-level and high-level features from images

to preserve their local and global properties. To do that, the CNN model is divided into L blocks, and the last

CNN-code is flattened to give a feature vector.

The low-level features are extracted from the first convolutional blocks, and the high-level features

are extracted from the last convolutional blocks. We denote the features extracted in the middle blocks by

medium-level features. Then, the LSH is applied on each features set to generate different hash codes. The

hashing representation is used in several works from the literature [14], [15] to fasten the image retrieval

process as each feature is recognized by a binary representation. Then the hamming distance metric is applied

to create the result list that contains the similarity score between the query and the images in the database.

This result list from measuring hamming distance is then sorted to reflect rank of the images where small

values are sorted on top of the list that intensively reflects the closer to the image query. Finally, the obtained

lists from each block are merged using the late fusion technique according to their rank to enhance the

retrieval performance.

Figure 1. The proposed model diagram

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 2526-2538

2530

3.1. CNN construction and feature extraction

The proposed model as shown in Figure 2, for the model architecture and Table 1 for CNN setting

parameters) is divided into L blocks, where each one contains a set of convolutional layers, and the two last

blocks represent the first and second fully connected layers, where each one contains 4096 units. The last

fully connected layer is reserved to classify the units into C classes. All the fully connected layers adopt the

rectified linear activation function (1).

Figure 2. The proposed CNN model

Table 1. VGG-16 pre-trained convolutional neural network architecture.
Layer Type Output Size Layer Type Output Size

Input image 224x224x3 Convolutional layer 28x28x512

Convolutional layer 224x224x64 Convolutional layer 28x28x512

Convolutional layer 224x224x64 Max pooling 14x14x512

Max pooling 112x112x64 Convolutional layer 14x14x512

Convolutional layer 112x112x128 Convolutional layer 14x14x512

Convolutional layer 112x112x128 Convolutional layer 14x14x512
Max pooling 56x56x128 Max pooling 7x7x512

Convolutional layer 56x56x256 Fully connected layer 1x1x4096

Convolutional layer 56x56x256 Fully connected layer 1x1x4096
Convolutional layer 56x56x256 Fully connected layer 1x1x1000

Max pooling layer 28x28x256 SoftMax layer 1x1x1000

Convolutional layer 28x28x512

f (x) = max(0, x) (1)

Let I be the set of N images of training from C classes, the proposed model extracts features selected

from various blocks and constructs a set of features. Assume a convolutional block produces A feature maps

as its output each with a height H and a width W. Thus, an image is represented as an H×W×A-dimensional

vector, allowing the model to contain a flatten layer to convert the data into a 1-dimensional feature map.

Algorithm 1 represents more details about the feature extraction process, where N and |L| represent

respectively the number of images and blocks and 𝑑𝑗 is the dimension of features for each block jL.

Algorithm 1: Pseudo-code for low-level and high-level feature extraction from VGG-16 CNN

Initialize: I: set of images, N: number of images, L: set of blocks, 𝑑𝑗: the feature
dimension

For each 𝑗{1,2,…,|L|} do

 For each 𝑖{1,2,…,N} do

 For each 𝑒{1,2,…,𝑑𝑗} do

 𝐹𝑗
𝑖,𝑒 < − Extract features from the convolutional block 𝑗 for image i

 End For

𝑀𝑗 < − 𝐹𝑗
𝑖//Construction of the feature matrix for each block

End For

 M< −𝑀𝑗
End For

Return M

Int J Elec & Comp Eng ISSN: 2088-8708

 A deep locality-sensitive hashing approach for achieving optimal image retrieval … (Hanen Karamti)

2531

Let M={𝑀1,𝑀2,…𝑀𝑗,…,𝑀𝐿}, the feature matrix, where each 𝑀𝑗 represents the set of features 𝐹𝑗
𝑖extracted for

each image 𝑖 in the block 𝑗, and d represents the number of features for each matrix feature 𝐹
𝑗

𝑖,𝑑𝑗
, where

jϵ[1,|L|] and iϵ[1, 𝑁].

𝑀𝑗 =

(

𝐹𝑗
1,1 … 𝐹

𝑗

1,𝑑𝑗

 𝐹𝑗
2,1 … 𝐹

𝑗

2,𝑑𝑗

. … .

𝐹𝑗
𝑁,1 … 𝐹

𝑗

𝑁,𝑑𝑗
)

 (2)

In our model, we have seven blocks; thus, the feature matrices M={𝑀1,𝑀2,…,𝑀7}, are referred to

set of {𝑀1,𝑀2,…,𝑀5 } represents the feature matrices extracted from the first to the fifth convolutional

blocks and 𝑀6and 𝑀7 represent the feature matrices obtained from the first and second fully-connected

layers. Features of each block serve as the input to an unsupervised LSH algorithm to train the corresponding

hash table, which encodes each feature matrix 𝑀𝑗 on k-binary code 𝑏𝑗, where k is the dimension of the binary

code, to build the Hamming space.

3.2. Locality sensitive hashing for retrieving similar images

Locality-sensitive hashing (LSH) idea is that instances that are similar and close to each other will

be located in the same bucket. LSH maps the points from a high-dimensional space into a low-dimensional

space, which in turn creates hash codes for each vector in the search space. For each block j, and each feature

matrix row, we apply the method LSH. The locality-sensitive function indicates that two images are close if

they have a high probability that indicates the similarity of their hash code, and they are distant if they have a

low probability. LSH family includes a set of hash functions H {h: S→U} (where U represents the universe

and S represents a set of elements from U) that is sensitive of type (r1, r2, p1, p2) with r1<r2 and p1>p2. If

we have the following priorities:

∀ 𝑝 ∈ 𝐵(𝑞, 𝑟1), 𝑡ℎ𝑒𝑛 𝑃𝑟ℎ∈𝐻[ℎ(𝑞) = ℎ(𝑝)] ≥ 𝑝1 (3)

∀ 𝑝 ∈ 𝐵(𝑞, 𝑟2), 𝑡ℎ𝑒𝑛 𝑃𝑟ℎ∈𝐻[ℎ(𝑞) = ℎ(𝑝)] ≥ 𝑝2 (4)

where, B(q, r) is the bucket of center q and radius r. Multiple hash tables hi are proposed according to L

hashing functions. So, all the points are stocked in L different hashing tables. The algorithm is parameterized

with k number of dimensions that are hashed. Each function ℎ𝑖 is defined by two vectors:

𝐷𝑖 =< 𝐷0
𝑖 , 𝐷1

𝑖 , … , 𝐷𝑘−1
𝑖 > (5)

𝑇𝑖 =< 𝑡0
𝑖 , 𝑡1

𝑖 , … , 𝑡𝑘−1
𝑖 > (6)

The values D i ϵ [0, zj − 1] are randomly chosen, where zj is the space dimension and the values of

T i ϵ[0, C]represent the thresholds where C is the largest coordinate of all the points. Each function ℎ𝑖 projects

p point from [0, 𝐶]𝑑,𝑧𝑗 in [0,2𝑘 − 1] in order that ℎ𝑖(𝑝) will be calculated as a linked list of k-bits

named 𝑏0
𝑖 , 𝑏2

𝑖 ,…𝑏𝑎
𝑖 , … 𝑏𝑘−1

𝑖 where 𝑏𝑎
𝑖 is defined by (7):

𝑏𝑎
𝑖 = {

0 𝑖𝑓 (𝑃𝐷𝑎𝑖 < 𝑡𝑎
𝑖)

1 𝑒𝑙𝑠𝑒
} (7)

We denote 𝑃𝐷𝑎𝑖 the coordinate of p by the dimension of 𝐷𝑎
𝑖 . The list k bits are the hash key in the 𝑖𝑡ℎ case in

the hashing table. To search for the nearest-neighbor points to a query q, we calculate its hash key for each

table. Then, we apply a linear search on the points of the corresponding cases. The parameters L and k allow

choosing between rapidity and precision. k can obtain a large value (e.g., k=32); thus, the hashing functions’

space can be very large and expensive in memory. In addition, to avoid the collision problem, we add a

second hashing function to project the result of function ℎ𝑖 in a small domain calculated on each list of k-bits.

Before its application, we reduce the number of k to W. To do so, we calculate the most distinctive W

dimensions, where W is less than the feature dimensioning (W˂𝑧𝑗). The vector of these W dimensions is used

to generate the hash keys of these points. The main idea is that two points that share the same distinctive

dimensions have a high probability of being close. Intuitively, a point is distinctive along one dimension if it

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 2526-2538

2532

is far from the mean value according to this dimension. Another idea is that the dimensions with high

variance are the most distinctive.

Let 𝑀𝑗
𝑖, the feature vector of image i that represents the row I in the matrix 𝑀𝑗 of block j be defined

by: 𝑀𝑗
𝑖={𝐹𝑗

𝑖,1, 𝐹𝑗
𝑖,1, … , 𝐹

𝑗

𝑖,𝑧𝑗
}, and β the function that measures the distinctiveness of the feature matrices by

(8):

𝛽(𝑥𝑎
𝑖) = |𝑥𝑎̅̅ ̅ − 𝑥𝑎

𝑖 |𝜎𝑎
𝛼 (8)

where, 𝑥𝑎̅̅ ̅ is the average value of features according to the dimension a, 𝜎𝑎 is the deviation and α=0.5

represents the weight of the deviation. For point 𝑥𝑖, we denote 𝐷(𝑥𝑖) =< 𝐷1(𝑥
𝑖), 𝐷2(𝑥

𝑖), … , 𝐷𝑧𝑗(𝒙
𝒊) > the

vector of dimensions (from 1 to 𝒛𝒋) sorted in descending order of distinctiveness:

𝛽 (𝑥
𝐷1(𝑥

𝑖)
𝑖) > 𝛽 (𝑥

𝐷2(𝑥
𝑖)

𝑖) > ⋯ > 𝛽 (𝑥
𝐷𝑧𝑗(𝑥

𝑖)
𝑖) (9)

Thus, 𝐷1(𝑥
𝑖) is the dimension along in, and the point 𝑥𝑖 is the most distinctive. 𝐷𝐷𝑧𝑗

(𝑥𝑖) is the

dimension that recognizes that the point is the least distinctive. The idea behind the proposed structure is that

if two points q and 𝑥𝑖are close, the W first values of their vectors D(q) and D(𝑥𝑖) will be identical (or almost

identical, e.g., order may vary). Therefore, the final hash table denoted by H contains W-dimensions where

each dimension is indexed by an integer between 1 to 𝑧𝑗. For a point 𝑥𝑖, the W first values of D(𝑥𝑖), sorted in

ascending order, form a vector are denoted by (10):

𝐷′(𝑥𝑖) =< 𝑎1, 𝑎2, … , 𝑎𝑊 > where 1 ≤ 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑊 ≤ 𝑧𝑗 (10)

so, the point 𝑥𝑖 is saved in the case 𝐻[𝑎1][𝑎2] … [𝑎𝑊]. In this level we apply the second hashing function h’

that projects the w-dimension interval of [0...c] and is defined as (11):

ℎ′ (𝐷′(𝑥𝑖)) = ((∑ 𝑟𝑖𝑎𝑖
𝑊
𝑖=1) 𝑚𝑜𝑑 𝑃)𝑚𝑜𝑑 𝑐 (11)

where, P is a prime number and 𝑟𝑖 are random integers. In fact, the hash table has only one dimension.

Therefore, the point 𝑥𝑖 is saved in a new hash table 𝐻′[ℎ′(𝐷𝑥𝑖)]. The objective of the use of h’ is to introduce

new collisions, have not taken place with table H. Algorithm 2 represents the proposed hashing methods.

Algorithm 2: Pseudo-code for the proposed LSH-for block j
Initialize: 𝑀𝑗:matrix of feature, N:training image, j block, 𝑧𝑗:block dimension, K:code,
length K

For each i{1,2,…,𝑧𝑗 } do

 For each 𝑎{1,2,…,N} do

 For each point𝑥𝑖=𝐹𝑗
𝑖,𝑎
do

 h(𝑥𝑖)←Compute hash code for 𝐹𝑗
𝑖,𝑎
//Compute Hash code of each point (𝑥𝑖)

 H(𝑥𝑖) ←h(𝑥𝑖)//the hash tables
W ←determinate the distinctive dimension
 Determinate (D’(𝑥𝑖))

 h’(D’(𝑥𝑖))←Compute hash code for D’(𝑥𝑖)/Compute Hash code of each dimension
D’(𝑥𝑖)

H’(𝐷’(𝑥𝑖)) ←h’ (D’(𝑥𝑖))
 End For

End For

End For

3.3. Retrieving similar images

In the retrieval phase, when a new query image q arrives, the hash code for q is computed. As a

result, the query will have a set of hash codes related to the CNN block’s hash functions. Once the hash codes

are generated, the similarity measure that is based on the Hamming distance is calculated between the query

hash code and every database’s image hash code found in their hash tables. Then, similar images are

retrieved and saved in a result list. This step is repeated for all blocks. Finally, the retrieved images are

combined using fusion by rank where images that are repeated the most are more likely to be selected and

images that are less repeated are less likely to be selected.

Int J Elec & Comp Eng ISSN: 2088-8708

 A deep locality-sensitive hashing approach for achieving optimal image retrieval … (Hanen Karamti)

2533

We employ late fusion as per rank to integrate the obtained results, which calculates the average

position of every image within the result list [31]. In our case, we have seven scored lists comprising k

related images for the query.

𝑅𝑎𝑛𝑘(𝑖𝑚𝑔) = (𝑊𝑒𝑖𝑔ℎ𝑡 ∗ 𝑛𝑏𝐵𝑙𝑜𝑐𝑘 − 𝑆𝑐𝑜𝑟𝑒(𝑖𝑚𝑔) +
𝑅𝑎𝑛𝑘𝐶(𝑖𝑚𝑔)

𝑆𝑐𝑜𝑟𝑒(𝑖𝑚𝑔)
) (12)

where, Weight is a weight defined by W=(2∗k)+1. k is the count of chosen closest neighbors. nbBlock is the

number of the convolutional block that is equal to seven. RankC(Img) is the integration of the image’s rank

Img. freq(Img) is the rate of image’s occurrence Img.

4. EXPERIMENTS AND RESULTS

4.1. Data collection

We ran numerous experiments on two datasets to evaluate the suggested technique named: National

University of Singapore-Web Image Dataset (NUS-WIDE) as shown in Figure 3(a) and Canadian Institute

for Advanced Research (CIFAR-10) as shown in Figure 3(b). We implemented the proposed method using

Keras and TensorFlow, and our workspace has the Intel Core i7 CPU and 32 GB memory. NUS-WIDE

dataset contains 269,648 images where each one is presented by a size of 64×64 grouped in 81 categories.

Each image is associated to one or more groups. Following some previous works [14], in this paper, we use

the 21 most categories, with approximately 5000 images in each category. Therefore, there are 157, 465

images in total. The input of the proposed model is the pixel-based images, and the input of the traditional

hashing methods is the GIST features with 512 dimensions. The GIST descriptor was initially proposed in

[32] and its idea is to create a local low-level representation without segmentation.

CIFAR-10 database is composed of 10 categories where each contains 60,000 (50,000 training and

10,000 testing) images with a single label. Each image is represented by a 32×32 color image. The input of

the proposed model is the raw pixel-based images, and for the traditional hashing methods, the inputs are

GIST features with 512 dimensions.

For evaluation, we used the mean average precision (MAP). For comparison, we compared the

proposed method with two sets of state-of-the-art works. The first set includes the following eight non-deep

hashing methods: iterative quantization (ITQ) [33], principal component analysis hashing (PCAH) [34],

locality sensitive hashing (LSH) [17], density sensitive hashing (DSH) [16], spherical hashing (SPH) [35],

spectral hashing (SH) [36], discrete graph hashing (AGH) [37], and sparse embedding and least variance

encoding (SELVE) [38]. The other set includes the following five deep-hashing methods: deep hashing (DH)

[39], Deepbit [40], unsupervised hashing with binary deep neural network (UH-BDNN) [41], semantic

structure-based unsupervised deep hashing (SSDH) [42], and stochastic generative hashing (SGH) [43]. All

these techniques are unsupervised image retrieval methods.

(a) (b)

Figure 3. Examples of (a) NUS-WIDE and (b) CIFAR-10 datasets

4.2. Results

To evaluate the performance of the proposed hashing method, we have adopted the evaluation of the

number of hash tables. Therefore, we implement our method using 1, 5, 10, 50,100,150, and 200 hash tables.

For each version, We used hash codes of 8, 16, 24, 32, and 64 bits. For the NUS-WIDE and CIFAR-10

datasets, we employed MAP@100 to assess our model's performance. We have included the query execution

time results alongside the MAP results. The MAP results are shown for NUS-WIDE dataset in Figure 4 and

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 2526-2538

2534

for CIFAR-10 dataset in Figure 5. The query execution time results are shown in Tables 2 and 3 for

NUS-WIDE and CIFAR-10 datasets respectively.

Figure 4. MAP of different versions of the proposed hashing method with different number of hash bits and

different number of hash tables on NUS-WIDE dataset

Figure 5. MAP of different versions of the proposed hashing method with different number of hash bits and

different number of hash tables on CIFAR-10 dataset

Table 2. Query time (milliseconds) result on NUS-WIDE dataset
Number of hash tables 8-bit 16-bit 24-bit 32-bit 64-bit

50 498.32 25.44 11.16 1 1.65
100 975.24 41.29 7.22 3.27 4.44

150 1424.11 50.28 14.13 7.21 10.24

200 1967.17 88.18 43.57 10.59 12

Table 3. Query time (milliseconds) result on CIFAR-10 dataset
Number of hash tables 8-bit 16-bit 24-bit 32-bit 64-bit

50 513.19 31.47 25.45 2.41 3.05

100 1065.23 55.23 12.22 6.27 8.13

150 1624.45 78.09 16.5 10.54 13.22
200 2134.33 100.01 61.11 12.59 14.14

The proposed method has provided better query time when it uses 64-bits compared to when it uses

12, 16, 24 and 32 bits. The query time varies with the increasing number of bits where we have gained about

10 times faster querying samples when the number of bits increases. This remark is applicable for both

datasets. Based on the MAP results, when applying the proposed hashing method to retrieve similar images,

we obtained better MAP scores where the number of bits is 16 and the number of hash tables is 150 for

0

20

40

60

80

1 5 1 0 5 0 1 0 0 1 5 0 2 0 0

M
A

P
@

1
0

0

NUMBER OF HASH TABLES

8-bit 16-bit 24-bit 32-bit 64-bit

0

10

20

30

40

50

1 5 1 0 5 0 1 0 0 1 5 0 2 0 0

M
A

P
@

1
0

0

NUMBER OF HASH TABLES

8-bit 16-bit 24-bit 32-bit 64-bit

Int J Elec & Comp Eng ISSN: 2088-8708

 A deep locality-sensitive hashing approach for achieving optimal image retrieval … (Hanen Karamti)

2535

NUS-WIDE (MAP=67%) and CIFAR-10 datasets (MAP=39%). The query time increased where the number

of bits increased, so we got better efficiency when the number of bits is equal to 32-bits. Indeed, the query

time, using 150 hash tables and 32-bits, is 7.21 and 10.54 for NUS-WIDE and CIFAR-10 respectively, and

by using 150 hash tables and 16-bits, the query time is 50.28 and 78.09 for NUS-WIDE and CIFAR-10

respectively. Comparing the 16-bit hash code with the 32-bit MAP results, we got 65% and 38% for

NUS-WIDE and CIFAR-10 respectively. Choosing the number of bits is challenging as we want to choose

the method that gives a better MAP result and enhance the query retrieval time. In our case, putting in mind

that our main objective is to retrieve similar images and given that the difference between different methods’

retrieval times is <50 ms, we decided to trade-off and use a 16-bit hash code.

We now compare the fusion of the features extracted from the seven convolutional blocks.

Tables 4 and 5 display the results obtained by each block using 150 hash tables from 8 to 64-bits using both

datasets. The integration of different types of features extracted from several levels of VGG16 delivers

superior results when compared to a single feature representation. Different systems from the literature [10],

[11] used only block seven or block six as a high-level feature to retrieve images as it represents the last layer

from the CNN prior to the classification layer. The first blocks (from block 1 to block 3) represent many

feature-maps and are considered as low-level features because they display more information about the color.

Block 4 and 5 are considered as a middle-level feature as they represent an intermediate level between two

levels of features. So, blocks 6 and 7 represent the MAP values of features extracted from the first and

second fully connected layers with different hash bits respectively. Similarly, blocks 1, 2, 3, 4 and 5 denote

the first, second, third, fourth, and fifth convolutional blocks respectively. In Tables 5 and 6, the MAP values

of using features from the corresponding block are displayed as a comparison, and the MAP of the proposed

method that is noted fusion in the tables represent the late fusion by rank between the result lists of each

block. The results show that the best performance is achieved by using fusion (the proposed method)

regardless of the number of bits used in both datasets.

Table 4. MAP of hashing with different number of hash bits and different convolutional blocks on NUS-

WIDE
Convolutional Block 8-bit 16-bit 24-bit 32-bit 64-bit

1 24% 53% 49% 45% 50%

2 33% 54% 47% 40% 32%

3 51% 57% 56% 58% 37%
4 53% 57% 55% 53% 39%

5 64% 65% 59% 54% 41%

6 59% 59% 61% 54% 46%
7 69% 61% 66% 55% 43%

Fusion 66% 67% 66% 65% 65%

Table 5. MAP of hashing with different number of hash bits and different convolutional blocks on

CIFAR-10
Convolutional Block 8-bit 16-bit 24-bit 32-bit 64-bit

1 13% 17% 10% 12% 14%

2 16% 12% 14% 15% 17%
3 21% 26% 29% 29% 31%

4 25% 21% 28% 27% 27%

5 23% 24% 28% 26% 24%

6 32% 38% 31% 31% 32%

7 31% 34% 37% 35% 31%

Fusion 38% 39% 38% 38% 38%

4.3. Comparison with state-of-the-art hashing methods

To reveal the efficiency of the proposed method, a comparison between several state-of-the-art

hashing methods is given in Tables 6 and 7 for NUS-WIDE, and CIFAR10 respectively, with numbers in the

hash code that range from 16 to 64 bits. When we compare the suggested hashing method to existing hashing

methods, we can find that in most scenarios, our method surpasses the others. This may be caused by the

quality of the extracted features. Our method surpasses the other deep hashing methods, see Tables 6 and 7.

When we compare traditional hashing methods to deep-hashing methods, we notice that deep-

hashing techniques outperform the first type of approaches in terms of MAP scores. That might be because

typical hashing approaches don't completely use the representation ability of deep networks and may achieve

unsatisfactory performance by over-fitting due to bad local minima. While, our deep hashing method

generates promising outcomes by utilizing local and global structures.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 2526-2538

2536

Table 6. MAP of hashing with different number of hash bits on NUS-WIDE
Methods 16-bit 32-bit 48-bit 64-bit Methods 16-bit 32-bit 48-bit 64-bit

ITQ [33] 0.51 0.51 0.51 0.52 SELVE [38] 0.46 0.46 0.44 0.43

PCAH [34] 0.41 0.39 0.38 0.37 DH [39] 0.56 0.52 0.51 0.45
LSH [17] 0.41 0.4 0.42 0.41 Deepbit [40] 0.4 0.4 0.43 0.46

DSH [16] 0.5 0.49 0.49 0.51 UH-BDNN [41] 0.47 0.47 0.47 0.48

SPH [35] 0.41 0.45 0.47 0.47 SSDH [42] 0.66 0.66 0.67 0.67
SF [36] 0.34 0.35 0.36 0.36 SGH [43] 0.49 0.49 0.48 0.48

AGH [37] 0.56 0.52 0.51 0.47 Our method 0.67 0.66 0.65 0.65

Table 7. MAP of hashing with different number of hash bits on CIFAR
Methods 16-bit 32-bit 48-bit 64-bit Methods 16-bit 32-bit 48-bit 64-bit

ITQ [33] 0.31 0.32 0.33 0.34 SELVE [38] 0.3 0.28 0.26 0.23

PCAH [34] 0.21 0.18 0.17 0.16 DH [39] 0.19 0.19 0.19 0.18

LSH [17] 0.17 0.21 0.21 0.24 Deepbit [40] 0.2 0.2 0.22 0.24
DSH [16] 0.24 0.26 0.28 0.29 UH-BDNN [41] 0.26 0.28 0.28 0.29

SPH [35] 0.2 0.26 0.28 0.29 SSDH [42] 0.24 0.25 0.25 0.25

SF [36] 0.18 0.18 0.17 0.16 SGH [43] 0.16 0.17 0.18 0.18
AGH [37] 0.3 0.26 0.25 0.23 Our method 0.39 0.38 0.38 0.38

5. CONCLUSION

This paper presented a new unsupervised deep hashing method for image retrieval based on the use

of LSH and the local and global features that are extracted from CNN architecture. Firstly, we calibrate our

network using the VGG16 model that is divided into seven convolutional blocks. Then, we extract the

features from each block where the first block corresponds to the low-level features and the two last blocks

correspond to the fully-connected layers. Secondly, we created the hash tables using the LSH method. The

hash tables are created for each point feature and for each distinctive dimension corresponding to this point.

Thirdly, when a query arrives, the similarity is calculated between the query hash tables and the images’ hash

tables using the hamming distance, where all the hash tables are a binary representation according to a 16-bit

hash code that speed up the retrieval process. All the previous steps are repeated for each convolutional block

to obtain a result list for m each block. Finally, we combined the obtained result lists using the late fusion

method which depends in its calculation on the rank and the score of each image result. The experimental

results were performed out on two benchmark datasets CIFAR-10 and NUS-WIDE. It demonstrated that the

proposed method surpasses other state-of-the-art hashing methods. Using 16 bits, the proposed method

achieves mean average precisions equal to 0.39 and 0.67 respectively on CIFAR-10 and NUS-WIDE. In

future work, we intend investigating a new supervised hashing method.

ACKNOWLEDGEMENTS

This research was funded by the Deanship of Scientific Research at Princess Nourah bint

Abdulrahman University through the Fast-track Research Funding Program.

REFERENCES
[1] J. Y.-H. Ng, F. Yang, and L. S. Davis, “Exploiting local features from deep networks for image retrieval,” in 2015 IEEE

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2015, pp. 53–61, doi:
10.1109/CVPRW.2015.7301272.

[2] D. Giveki, M. A. Soltanshahi, and G. A. Montazer, “A new image feature descriptor for content based image retrieval using scale

invariant feature transform and local derivative pattern,” Optik, vol. 131, pp. 242–254, Feb. 2017, doi:
10.1016/j.ijleo.2016.11.046.

[3] J.-M. Guo, H. Prasetyo, and J.-H. Chen, “Content-based image retrieval using error diffusion block truncation coding features,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 25, no. 3, pp. 466–481, Mar. 2015, doi:
10.1109/TCSVT.2014.2358011.

[4] J. Zhou, X. Liu, W. Liu, and J. Gan, “Image retrieval based on effective feature extraction and diffusion process,” Multimedia

Tools and Applications, vol. 78, no. 5, pp. 6163–6190, Mar. 2019, doi: 10.1007/s11042-018-6192-1.
[5] A. M. Mahmoud, H. Karamti, and M. Hadjouni, “A hybrid late fusion-genetic algorithm approach for enhancing CBIR

performance,” Multimedia Tools and Applications, vol. 79, no. 27–28, pp. 20281–20298, Jul. 2020, doi: 10.1007/s11042-020-

08825-6.
[6] Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma, “A survey of content-based image retrieval with high-level semantics,” Pattern

Recognition, vol. 40, no. 1, pp. 262–282, Jan. 2007, doi: 10.1016/j.patcog.2006.04.045.

[7] L. Deng, “A tutorial survey of architectures, algorithms, and applications for deep learning,” APSIPA Transactions on Signal and
Information Processing, vol. 3, Jan. 2014, doi: 10.1017/atsip.2013.9.

[8] A. Gordo, J. Almazán, J. Revaud, and D. Larlus, “Deep image retrieval: learning global representations for image search,” in

Computer Vision textendash ECCV 2016, Springer International Publishing, 2016, pp. 241–257.

Int J Elec & Comp Eng ISSN: 2088-8708

 A deep locality-sensitive hashing approach for achieving optimal image retrieval … (Hanen Karamti)

2537

[9] W. Huang and Q. Wu, “Image retrieval algorithm based on convolutional neural network,” in Current Trends in Computer

Science and Mechanical Automation Vol.1, De Gruyter Open, 2017, pp. 304–314.
[10] P. Wu, S. C. H. Hoi, H. Xia, P. Zhao, D. Wang, and C. Miao, “Online multimodal deep similarity learning with application to

image retrieval,” in Proceedings of the 21st ACM international conference on Multimedia-MM ’13, 2013, pp. 153–162, doi:

10.1145/2502081.2502112.
[11] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, “Neural codes for image retrieval,” in Lecture Notes in Computer

Science, Springer International Publishing, 2014, pp. 584–599.

[12] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features off-the-shelf: an astounding baseline for recognition,” in
2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Jun. 2014, pp. 512–519, doi:

10.1109/CVPRW.2014.131.

[13] F. Radenovic, G. Tolias, and O. Chum, “Fine-tuning CNN image retrieval with no human annotation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 41, no. 7, pp. 1655–1668, Jul. 2019, doi: 10.1109/TPAMI.2018.2846566.

[14] F. Sabahi, M. O. Ahmad, and M. N. S. Swamy, “Content-based image retrieval using perceptual image hashing and hopfield

neural network,” in 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), Aug. 2018, pp. 352–
355, doi: 10.1109/MWSCAS.2018.8623902.

[15] M. Zareapoor, J. Yang, D. K. Jain, P. Shamsolmoali, N. Jain, and S. Kant, “Deep semantic preserving hashing for large scale

image retrieval,” Multimedia Tools and Applications, vol. 78, no. 17, pp. 23831–23846, Sep. 2019, doi: 10.1007/s11042-018-
5970-0.

[16] Z. Jin, C. Li, Y. Lin, and D. Cai, “Density sensitive hashing,” IEEE Transactions on Cybernetics, vol. 44, no. 8, pp. 1362–1371,

Aug. 2014, doi: 10.1109/TCYB.2013.2283497.
[17] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions,”

Communications of the ACM, vol. 51, no. 1, pp. 117–122, Jan. 2008, doi: 10.1145/1327452.1327494.

[18] K. Lin, H.-F. Yang, J.-H. Hsiao, and C.-S. Chen, “Deep learning of binary hash codes for fast image retrieval,” in 2015 IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2015, pp. 27–35, doi:

10.1109/CVPRW.2015.7301269.

[19] Y. Wu and Y. Wu, “Shape-based image retrieval using combining global and local shape features,” in 2009 2nd International
Congress on Image and Signal Processing, Oct. 2009, pp. 1–5, doi: 10.1109/CISP.2009.5304693.

[20] X. Yuan, J. Yu, Z. Qin, and T. Wan, “A SIFT-LBP image retrieval model based on bag-of-features,” International conference on

image processing, pp. 1061-1164, 2011.
[21] G. Ciocca, S. Corchs, and F. Gasparini, “Genetic programming approach to evaluate complexity of texture images,” Journal of

Electronic Imaging, vol. 25, no. 6, Jul. 2016, doi: 10.1117/1.JEI.25.6.061408.

[22] A.-B. M. Salem and A. M. Mahmoud, “A hybrid genetic algorithm-decision tree classifier,” in Intelligent Information Processing
and Web Mining, Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 221–232.

[23] A. B. Yandex and V. Lempitsky, “Aggregating local deep features for image retrieval,” in 2015 IEEE International Conference

on Computer Vision (ICCV), Dec. 2015, pp. 1269–1277, doi: 10.1109/ICCV.2015.150.
[24] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan, “Supervised hashing for image retrieval via image representation learning,”

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28, no. 1, 2014.

[25] W.-C. Kang, W.-J. Li, and Z.-H. Zhou, “Column sampling based discrete supervised hashing,” in AAAI’16: Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, 2016, pp. 1230–1236.

[26] C. Wu, J. Zhu, D. Cai, C. Chen, and J. Bu, “Semi-supervised nonlinear hashing using bootstrap sequential projection learning,”

IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 6, pp. 1380–1393, Jun. 2013, doi: 10.1109/TKDE.2012.76.
[27] Fang Zhao, Y. Huang, L. Wang, and Tieniu Tan, “Deep semantic ranking based hashing for multi-label image retrieval,” in 2015

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2015, pp. 1556–1564, doi:

10.1109/CVPR.2015.7298763.
[28] H. Lai, Y. Pan, Ye Liu, and S. Yan, “Simultaneous feature learning and hash coding with deep neural networks,” in 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2015, pp. 3270–3278, doi: 10.1109/CVPR.2015.7298947.

[29] J. Lin, Z. Li, and J. Tang, “Discriminative deep hashing for scalable face image retrieval,” in Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, Aug. 2017, pp. 2266–2272, doi: 10.24963/ijcai.2017/315.

[30] W. W. Y. Ng, J. Li, X. Tian, H. Wang, S. Kwong, and J. Wallace, “Multi-level supervised hashing with deep features for efficient
image retrieval,” Neurocomputing, vol. 399, pp. 171–182, Jul. 2020, doi: 10.1016/j.neucom.2020.02.046.

[31] H. Karamti, M. Tmar, M. Visani, T. Urruty, and F. Gargouri, “Vector space model adaptation and pseudo relevance feedback for

content-based image retrieval,” Multimedia Tools and Applications, vol. 77, no. 5, pp. 5475–5501, Mar. 2018, doi:
10.1007/s11042-017-4463-x.

[32] M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, and C. Schmid, “Evaluation of GIST descriptors for web-scale image search,”

2009, doi: 10.1145/1646396.1646421.

[33] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quantization: a procrustean approach to learning binary codes for

large-scale image retrieval,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 12, pp. 2916–2929,

Dec. 2013, doi: 10.1109/TPAMI.2012.193.
[34] X.-J. Wang, L. Zhang, F. Jing, and W.-Y. Ma, “AnnoSearch: image auto-annotation by search,” in 2006 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition - Volume 2 (CVPR’06), vol. 2, pp. 1483–1490, doi:

10.1109/CVPR.2006.58.
[35] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon, “Spherical hashing,” in 2012 IEEE Conference on Computer Vision and

Pattern Recognition, Jun. 2012, pp. 2957–2964, doi: 10.1109/CVPR.2012.6248024.

[36] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances in Neural Information Processing Systems, 2009, vol. 21.
[37] W. Liu, C. Mu, S. Kumar, and S.-F. Chang, “Discrete graph hashing,” in Advances in Neural Information Processing Systems,

2014, vol. 27.

[38] X. Zhu, L. Zhang, and Z. Huang, “A sparse embedding and least variance encoding approach to hashing,” IEEE Transactions on
Image Processing, vol. 23, no. 9, pp. 3737–3750, Sep. 2014, doi: 10.1109/TIP.2014.2332764.

[39] V. E. Liong, Jiwen Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing for compact binary codes learning,” in 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2015, pp. 2475–2483, doi: 10.1109/CVPR.2015.7298862.
[40] K. Lin, J. Lu, C.-S. Chen, and J. Zhou, “Learning compact binary descriptors with unsupervised deep neural networks,” in 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 1183–1192, doi:

10.1109/CVPR.2016.133.

[41] T.-T. Do, A.-D. Doan, and N.-M. Cheung, “Learning to hash with binary deep neural network,” in Computer Vision textendash

ECCV 2016, Springer International Publishing, 2016, pp. 219–234.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 2526-2538

2538

[42] E. Yang, C. Deng, T. Liu, W. Liu, and D. Tao, “Semantic structure-based unsupervised deep hashing,” in Proceedings of the

Twenty-Seventh International Joint Conference on Artificial Intelligence, Jul. 2018, pp. 1064–1070, doi: 10.24963/ijcai.2018/148.

[43] B. Dai, R. Guo, S. Kumar, Ni. He, and L. Song, “Stochastic generative hashing,” in ICML’17: Proceedings of the 34th
International Conference on Machine Learning, 2017, vol. 70, pp. 913–922.

BIOGRAPHIES OF AUTHORS

Hanen Karamti completed a Bachelor of Computer Science and Multimedia at

ISIMS (High Institute of Computer Science and Multimedia of Sfax) University, Tunisia. She

completed a Master of Computer Science and Multimedia at the same University. She obtained

her Ph.D. degree from the Computer Science from the National Engineering School of Sfax

(University of Sfax, Tunisia), in cooperation with the university of La Rochelle (France) and

the university of Hanoi (Vietnam). Karamti is now an assistant professor at Princess Norah

bint Abdulrahman University, Riyadh, Saudi Arabia. Her areas of interest are information

retrieval, multimedia systems, Image retrieval, health informatics, big data, and data analytics.

She can be contacted at email: HMkaramti@pnu.edu.sa.

Hadil Shaiba holds a Ph. D and M.S. in Computer Science from Southern

Methods University, USA, and a B.S. in Information Technology from King Saud University,

KSA. Hadil is an Assistant Professor in the College of Computer and Information Sciences at

Princess Nourah bint Abdulrahman University, KSA. Her research interests include data

mining and machine learning methods for applications in meteorology and medicine. She can

be contacted at email: HAShaiba@pnu.edu.sa.

Abeer M. Mahmoud received her Ph.D. (2010) in Computer science from

Niigata University, Japan, her M. Sc (2004) B.Sc. (2000) in computer science from Ain Shams

University, Egypt. Her work experience: Lecturer Assistant, Assistant professor, and Associate

Professor, faculty, of Computer and Information Sciences, Ain. Shams University. Cairo,

Egypt. Her research areas include Artificial Intelligence, Medical Data Mining, Machine

Learning, Big Data and Robotic Simulation Systems. She can be contacted at email:

abeer.mahmoud@cis.asu.edu.eg, abeer_f13@yahoo.com.

https://orcid.org/0000-0001-5162-2692
https://scholar.google.com/citations?hl=en&user=xqHdtt8AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56203602400
https://orcid.org/0000-0003-1652-6579
https://scholar.google.com/citations?hl=en&user=8Ihy494AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57203919884
https://orcid.org/0000-0002-0362-0059
https://www.scopus.com/authid/detail.uri?authorId=57218923881

