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 Mining frequent itemsets is an area of data mining that has beguiled several 

researchers in recent years. Varied data structures such as Nodesets, 

DiffNodesets, NegNodesets, N-lists, and Diffsets are among a few that were 

employed to extract frequent items. However, most of these approaches fell 

short either in respect of run time or memory. Hybrid frameworks were 

formulated to repress these issues that encompass the deployment of two or 

more data structures to facilitate effective mining of frequent itemsets. Such 

an approach aims to exploit the advantages of either of the data structures 

while mitigating the problems of relying on either of them alone. However, 

limited efforts have been made to reinforce the efficiency of such 

frameworks. To address these issues this paper proposes a novel 

multithreaded hybrid framework comprising of NegNodesets and N-list 

structure that uses the multicore feature of today’s processors. While 

NegNodesets offer a concise representation of itemsets, N-lists rely on List 

intersection thereby speeding up the mining process. To optimize the 

extraction of frequent items a hash-based algorithm has been designed here 

to extract the resultant set of frequent items which further enhances the 

novelty of the framework. 
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1. INTRODUCTION 

Mining frequent items deal with extricating itemsets that are commonly occurring in a dataset. 

Several approaches were designed in previous years to achieve this. A variety of data structures such as 

Nodesets, DiffNodesets, NegNodesets, N-lists, and Diffsets are among a few that have been employed to 

mine frequent items. These may broadly be classified into tree-based and list-based data structures. While 

tree traversal approaches have the obvious drawback of consuming more time for construction and traversal. 

List based algorithms on the other hand consume more memory because of their structure. Despite these 

conspicuous drawbacks, these approaches have also been found to have some perks. Tree-based algorithms 

have accelerated performance in generating candidate item sets, while list-based algorithms that rely on list 

intersections were found to be more effective in extricating the resultant set of frequent items. This meant 

that there was a dire need to devise a mechanism whereby the advantages of these data structures could be 

https://creativecommons.org/licenses/by-sa/4.0/
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exploited to the maximum while keeping the effects of their drawbacks minimal. This led to the advent of 

hybrid frameworks. These employ a combination of two or more data- structures to extract frequent items 

and were found to be far more efficient than employing a single data structure alone. However limited efforts 

have been made to enhance the performance of such frameworks. 

The main contributions of the paper and its novelty can be explained as follows. This paper has 

designed a novel hybrid framework comprising of the tree-based structure NegNodesets and the list-based 

structure N-lists to mine frequent itemsets. As per our investigation, such a framework has so far not been 

devised for extracting frequent items. To magnify the performance of the extraction process, a novel 

framework based on multithreading that exploits the multi-core feature of today’s processors has been 

presented here. Existing approaches were found to have problems with load balancing, synchronization, and 

communication. Since the proposed work partitions the data across several cores there is an effective balance 

in the load across the processor. Also, the multithreading feature of the proposed work takes care of 

synchronization and communication between different threads thus avoiding the need to rely on an added 

mobile agent to assimilate the results from different cores. 

The framework begins its execution by partitioning the dataset into as many partitions that are large 

enough to fit the memory. Each of these partitions is assigned to different cores and all of these cores are run 

in parallel. While one core may be using NegNodesets for extracting frequent itemsets the other may be 

employing N-lists for mining the itemsets. This was achieved through multi-threading. Multi-threading 

utilizes the multi-core feature of current processors by running on more than one core at the same time. In 

general, it was observed that the computational efficiency increased as the number of cores employed for 

processing increased. This design was found to balance the load effectively on different cores of the 

processor thereby enhancing the performance in terms of run time and memory. The output of each of these 

partitions was consolidated but this collection was found to contain both frequent as well as infrequent 

itemsets. This predicament has been addressed by finding the summation of the support of itemsets mined 

from different partitions. This value is then compared against the global support count and only those 

itemsets whose support surpasses the global support value are added to the resultant collection of “frequent 

itemsets”.  

To optimize the mining of frequent items this work has designed a novel hash-based approach for 

pruning out infrequent itemsets. Only those itemsets that satisfy the minimum support threshold are added to 

the hash table and the rest are obliterated. In case of collision, the next free slot is found through open 

addressing. Traditional approaches to pruning typically involve the erection and spanning of a set 

enumeration tree. This was found to be taxing in terms of run time and memory. The technique proposed in 

this paper on the other hand relies on employing a hash table to expedite the resultant set of frequent items 

thereby bringing down the runtime of the overall execution process. 

To analyze the performance of the proposed approach, it has been compared with the recent existing 

approaches such as Negfin, PrePost+, and multicore tree data structure (TDS) Apriori algorithms. Each of 

these algorithms has been tested on five datasets downloaded from the UCI repository. With the help of 

detailed experiments, we have shown that the proposed work outperforms existing approaches in terms of run 

time and memory while extracting the required collection of frequent itemsets. 

The background that led to this research is explained as follows. Frequent itemset mining aims to 

find the set of items that occur frequently in a dataset. A tree data structure improved single scan pattern tree 

(ISSP-tree) that employed splitting, shuffling, and merging operations was presented by Ahmed and Nath [1] 

to extract frequent itemsets. A similar tree-based approach that utilized the hierarchy concept of multi-scale 

theory was put forward by Xun et al. [2] for incremental mining of frequent itemsets. This method had the 

advantage of avoiding repeated scanning of the database. However, no efforts were made to parallelize the 

algorithm. The tree-based structure has also been used for extracting data from large uncertain databases. Sha 

and Halim [3] employed a connected tree technique in combination with 3D linked arrays and a tree-based 

average probability set up for mining frequent items. Experiments indicated a significant improvement in 

runtime but memory utilization was higher on a few datasets. An approach to mine Top-Rank-K frequent 

items was put forth by Abdelaal et al. [4]. This paper uses a combination of Nodesets, N-list, and pre-order 

and post-order code tree (PPC-tree) to extract the resultant set of itemsets. To enhance the efficiency of the 

proposed approach a dynamic minimum support strategy has been deployed. A similar data structure 

NegNodesets that uses bitmap representation of itemsets was presented by Nader et al. [5]. This involved 

construction and traversal of a bitmap code (BMC) tree which resulted in the generation of a concise set of 

frequent itemsets. A similar tree-based methodology was presented by Meng and Sha [6] for evaluating the 

factors influencing the life contentment and solitude of athletes that had retired. A prefix tree was constructed 

and traversed to generate the frequent items. 

Although the efficacy of tree-based approaches has improved in recent years as stated in the above 

techniques they continued to incur more time for extricating the final set of frequent itemsets. This is where 
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list based algorithms have an upper hand. These algorithms have the advantage of using list intersection for 

mining frequent itemsets which reduce the run time of the mining operation. A List based algorithm PrePost+ 

was presented by Deng and Lv [7] to mine frequent itemsets. This process involved the construction and 

traversal of an N-list structure. The use of list intersection operation resulted in an efficient generation of 

frequent itemsets. This structure has also been used by Nguyen et al. [8] in combination with pruning 

algorithms to mine frequent inter transaction patterns. Bui et al. [9] proposed an extension of this structure 

called weighted N-list structure (WN-list) to mine frequent weighted itemsets. The state-of-the-art algorithm 

(NFWI) was presented for this purpose. This structure was also employed by Vo et al. [10] along with tidset 

and diffsets to mine top rank-k frequent weighted itemsets. This paper also uses threshold raising and early 

pruning strategies to amplify the efficacy of extracting top rank-k frequent weighted items.  

From the literature, it is clear that N-lists effectively reduce the time required for extracting the 

itemsets, and consequently the same has been employed in this paper. But despite this advantage, they have 

the drawback of consuming more memory in most cases. Tree-based approaches on the other hand may be 

more productive for generating candidates but fall short concerning runtime while extracting the final set of 

frequent itemsets. This necessitates the development of an approach that harnesses the benefits of both these 

algorithms while mitigating their obvious drawbacks. This is the crux of hybrid approaches. 

Zhang et al. [11] put forth a hybrid approach that is an amalgamation of “Apriori” and “graph 

computing” to mine frequent items. By doing so the benefits of both the algorithms are harnessed while 

keeping their drawbacks to the minimum. Another hybrid framework that uses a combination of “tree-based” 

and “inverted list” algorithms was presented by Dawar et al. [12] to mine high utility itemsets. This 

framework however has not done enough investigation on exploring the criteria for switching between both 

the algorithms. A hybrid framework PARASOL comprising of the combination of resource-constrained 

mining and parameter constrained mining was presented by Yamamoto et al. [13]. The former sets a limit to 

memory consumption while the latter controls the error rate. This proved beneficial in generating a concise 

collection of closed itemsets. Ali et al. [14] proposed an approach that hybridizes the genetic algorithm along 

with the local search algorithm. The genetic algorithm produces the best individual from the population while 

the local search algorithm generates the best local solution by enhancing all neighbor solutions. Although 

hybrid approaches are generally faster limited efforts have been put forth to test for their scalability. Besides 

minimal initiatives were taken to boost the efficacy of the pruning techniques employed here. 

Trimming the search space can also significantly enhance the productiveness of mining frequent 

itemsets. Several pruning methods were developed to achieve this. A novel pruning algorithm LengthSort 

was conferred by Lessanibahri et al. [15] to extract frequent Items that satisfy a given length threshold. An 

alternative approach that comprises removing irrelevant features and rows from datasets of higher 

dimensions was put forward by Vanahalli and Patil [16]. This method switches between the enumeration of 

rows and features based on the characteristics of the data during the mining process.  

Presently, there has been a surge in the lookout for designing techniques for optimizing the 

algorithms developed for mining frequent items. Several hash-based algorithms were put forth to optimize 

their extraction process. Bustio et al. [17] put forth a method for mining frequent itemsets from data streams 

by using a hash-based approach coupled with the lexicographic ordering of itemsets. Besides a partition-

based approach as put forward by Srinivasan and Reddy [18]. This divides the dataset into equal partitions 

and hashes the candidates into a hash table. The primary advantage of the hash-based approach is that it 

required only linear time even in the worst case. A similar approach was also employed for mining closed 

itemsets using a hash tree [19]. This process uses a combination of hashing, candidate generation, superset 

checking, and subset checking. 

Alternatively parallel and concurrent approaches were found to amplify the efficacy of mining 

itemsets. However, while adopting such strategies, deciding on an effective partition-based approach plays a 

pivotal role. Xun et al. [20] proposed a technique that partitions the database based on a similarity metric and 

locality sensitive hashing technique. The frequent itemsets are then mined from each of the partitions 

concurrently. Kadappa and Nagesh [21] proposed an approach that involves dividing the dataset into as many 

partitions that are large enough to fit into the memory. For each partition, all those itemsets that satisfy the 

local support count are extracted. A second pass is made and compared with the global support count to 

generate the resultant set of frequent items. A selective partitioning strategy was postulated by Bai et al. [22] 

to extract maximal frequent-itemsets. This approach makes use of a compact data structure called itemset tree 

and does selective partitioning of the database which reduces the number of scans of the database. A similar 

approach was designed by Niu et al. [23] that constructed an array prefix tree for the parallel extraction of 

frequent itemsets. To facilitate parallelization, a Spark workflow model was designed. 

While designing parallel approaches, recent years have witnessed the deployment of distributed 

systems for extracting frequent itemsets. A spark-based algorithm was implemented by Rathee and Kashyap 

[24] for mining frequent patterns from large datasets. This algorithm designs the plan of execution at every 

iteration and computes its cost. The goal is to select the plan with the minimum cost and this magnifies the 
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efficiency of this algorithm. A Hadoop-based framework was put forth by Wang and Chang [25] to mine 

frequent patterns with multiple items supports. Apart from including a support counting phase and a mining 

phase this algorithm also incorporates the concept of classification of items that categorizes items that have 

higher homogeneity into the same class. A similar concept was put forward by Hanirex and Kumaravel [26] 

for mining association rules from a cloud environment. These rules are generated based on the frequent 

itemsets that are mined from the datasets. To optimize the performance of large-scale mining of frequent 

itemsets Prabhu et al. [27] proposed an approach that uses a Hadoop map reduce framework. This was found 

to reduce the runtime and disk utilization space thereby enhancing performance. Yimin et al. [28] proposed a 

parallel algorithm based on map-reduce to solve the issues related to time and space complexity during the 

processing and computing of itemsets. This involved using the DiffNodeset data structure in collaboration 

with the Hadoop framework to extract the itemsets. A similar approach was put forward by Sornalakshmi et 

al. [29] by a parallel and distributed map-reduce-based Apriori algorithm. The data is divided into clusters 

and extraction of data is carried out in a distributed manner. 

However, despite these advantages, it is observed that distributed systems are usually difficult to 

deploy, debug and maintain. They are also complex to design in terms of the hardware and software required 

for communication and security. Moreover, it also suffers from the drawback of increased processing 

overhead due to the additional computation and exchange of information between the different computers in 

the system. These drawbacks can be addressed by harnessing the multicore feature of today’s processors.  

Khawaja et al. [30] put forth a TDS for extracting frequent itemsets using the multicore feature of 

contemporary processors. A divide and conquer approach were adopted here in combination with the Apriori 

algorithm for extracting the itemsets. A parallel procedure using Dynamic Bit vectors was presented by 

Huynh et al. [31] to extract Frequent Itemsets. In this approach, the itemsets are sorted in ascending order of 

support count and divided into partitions. Each of these partitions is assigned as a separate task to a different 

processor. This ensures there is a proper balance of workload between different processors. A related 

approach using multicores was put forth by AbdulRazzaq et al. [32] for designing an efficient string 

matching algorithm. A maximum shift algorithm has been designed for this purpose. Experiments proved that 

the proposed approach improved the speedup and efficiency of the algorithm. Huynh and Vo [33] employed 

a similar technique to mine erasable itemsets. A search tree is constructed and each bough is considered to be 

a separate task. Each of these tasks is run in parallel on a separate core to enable parallel extraction of 

frequent items. Some of the findings of the literature are summarized in Table 1. 

The main emphasis of the proposed approach is to design a framework that would address the 

drawbacks shown in Table 1. This forms the problem statement for this research. From the literature, we can 

conclude that although diverse techniques were incurred in the past to mine frequent items they can broadly 

be divided into tree-based and list-based approaches. These rely on the erection and spanning of a set 

enumeration tree to prune out infrequent items. This was found to be costly due to the time and space 

involved in its construction and traversal. This necessitates the development of a mechanism that mitigates 

these drawbacks. The dependency on a single data structure to mine frequent items usually results in a loss of 

performance as the mining proceeds. It has been observed that most tree-based structures usually fall short in 

terms of run time while list-based approaches fall short in terms of memory. This entails the development of 

a hybrid framework that encompasses two or more data structures. However, limited initiatives were put 

forth to magnify their performance. Although most contemporary processors are multi-core minimal efforts 

were made to exploit this feature to its full potential to implement parallelization. While extracting itemsets 

in parallel deciding on an effective partitioning mechanism is of paramount importance. Most traditional 

approaches rely on an external mobile agent to assimilate the results of each partition. This can be costly and 

appropriate measures need to be taken to devise an alternate strategy for consolidation of the results while 

limiting the overall costs of the proposed approach. 

The work proposed in this paper aims to design a framework that would handle the above issues. A 

novel hybrid framework comprising of the tree-based data structure NegNodesets and the list-based data 

structure N-lists has been designed here. While NegNodesets offer a concise representation of itemsets,  

N-lists were found to be faster since it relies on list intersection operation to extract the frequent items. A 

novel pruning mechanism based on hashing has been put forth here. This curbs the disadvantages of the 

regular approach that relies on the erection and spanning of a set enumeration tree. To enhance the efficacy 

of mining, the framework has been designed to exploit the multicore feature of today’s processors which also 

adds to the novelty of the design. Effective load balancing has been facilitated by dividing the dataset into 

partitions and assigning each partition to a separate core. The itemsets are then mined in parallel from each 

core. The results of each partition are consolidated using the concepts of multithreading, thus mitigating the 

need for employing an external mobile agent thereby improving the overall cost of the proposed framework. 
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2. PROOF OF CORRECTNESS OF THE PROPOSED APPROACH 

 Let the given dataset be D, 

 Divide D into partitions D1, D2…DN where N is the no of cores in processors 

 On each Di assign a thread to extract frequent items Fi such that: 

a. F1=NNH (D1, δ), ---------------------------- (1)//Invoke NNH algorithm. 

b. F2=NLH (D2, δ), --------------------------- (2)//Invoke NLH algorithm. 

c. F3=NNH (D3, δ)…………………..FN=NLH (DN, δ). 

 

 

Table 1. Comparison of different frequent itemset mining algorithms 
Algorithm Methodology Drawbacks 

ISSP-tree [1]  Employs a tree data structure 

 Performs splitting, shuffling, and merging operations 

 Requires single scan, improved runtime 

Heavily dependent on main memory 

PFI [3] Employed a connected tree technique in combination with 

3D linked arrays and a tree-based average probability set 

up for mining frequent items 

Memory utilization was higher on a few 

datasets 

Negfin [5]  Uses NegNodeset that relies on a bitmap representation of 
itemsets 

 Constructs and traverses a BMC-tree 

Uses a “set enumeration tree” for generating 
the frequent itemsets which add to the 

execution time and memory used 

PrePost+ [7]  Employs N-list data structure to mine frequent itemsets 

 Utilizes Children–Parent Equivalence pruning strategy to 
reduce the search space 

The proposed pruning approach relies on the 

construction and traversal of a set enumeration 

tree that adds to the memory consumption 

NL-ITP [8]  Uses N-list data structure to extract itemsets 

 Reduces the search space significantly to generate FITPs 

Shows limited improvement in runtime on 
sparse datasets 

TFWIN+ [10]  Combining mining and ranking phases into one 

 Uses Tidset, Diffset, and WN-list structures to extract the 

required itemsets. 

 Proposes threshold raising strategy and early pruning to 

effectively extract top rank-k-Frequent Weighted items 

No initiatives were taken to parallelize the 
approach 

ANG [11] A hybrid method that uses a combination of apriori and 

graph computing for mining frequent itemsets has been 

designed 

Has not been scaled up to exploit the multi-core 

feature of current processors. 

PARASOL 

[13] 
 Uses a combination of parameter constrained and 

resource-constrained mining techniques 

 Designed to mine frequent items from a streaming 

environment 

Scalability has been tested only in terms of 

transaction length and not in terms of 

parallelization. 

PSS-FIM [18] Divides the dataset into equal partitions and hashes the 

candidates into a hash table 

Limited efforts made to utilize the multicore 

feature of current processors 

LSPA [21] Proposed a partition-based approach that compares the 
local support against the global support to generate the 

resultant set of frequent items 

May classify some frequent items as infrequent 
and vice-versa 

 

PEMA [22]  Uses a combination of horizontal and vertical partitioning 
techniques 

 Mobile ARM agents incrementally integrate the locally 
mined frequent itemsets to produce the global set of 

frequent items 

 Relies on mobile agents for assimilating the 
results adding to the overall cost of the 

algorithm 

 Novel approaches such as multi-threading 
have not been employed here 

Adaptive-
Miner [24] 

Makes execution plans before every iteration and selects 
the plan that minimizes time and space complexity 

Complex to design in terms of hardware and 
software required for communication 

PFIMD [28]  Uses DiffNodeset to increase the cardinality of N-list. 

 A 2-way comparison strategy is designed to reduce the 

time complexity of the algorithm 

Limited improvement in memory since 

DiffNodesets is not a very compact data 

structure. 

MA-TDS [30]  Employs a tree data structure for mining frequent itemsets 

 Uses the multi-core feature of current processors 

Relies on the apriori technique for pruning 
which is costly in terms of time 

pDBV-SPM 

[31] 
 Uses dynamic bit vector for finding support of itemsets 

 Uses the multi-core architecture of today’s processors for 
parallel mining of sequential itemsets 

Limited efforts made to increase the efficiency 

of the pruning of infrequent items 

 

 

 

(1)Scan the partition D1 and perform the following steps to extract frequent itemsets from D1. 

 Build the BMC_Tree B. An itemset in this tree may be defined as: 

B (itemset Ih): each itemset Ih is designated using a bitmap code B(Ih) = an−1 … a1a0 of size n in the 

following way: the pth item in I1 is ap. If an item i (i ∈ I1) constitutes Ih, then the bit representing it is 

set to 1; otherwise, it is 0. [5]. 

 Traverse B to generate candidates of frequent-1 itemsets C1 which may be defined as: 

C1={Nodeset(Ih), Ndata of X | X contains i1, and ∀ im, 1 ≤m ≤h, the bit set to ih in N. bitmap_Code is 

1} [5]. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 3249-3264 

3254 

 FIT=Ø; Htable=Ø; // The resultant collection of Frequent Itemsets FIT and the Hash table Htable are 

initialized to Ø. 

 Find FIT=FIT ᴜ C1 // Add C1 to FIT. 

 Find higher order candidates C2 = {NegNodeset (Ih = ihih−1 … i2i1)=Nodeset(Iʹh = ¬ ihih−1 … i2i1)} 

[5]. 

 Update FIT=FIT ᴜ C2 // Add C2 to FIT. 

 ∀ x ϵ FIT, if support(x) ≥ δ , Htable [x]=x mod t, where Htable [x] denotes the next free slot in the hash 

table and t denotes the total number of itemsets. 

 F1 <- Htable ================== (3) // F1 contains the set of frequent itemsets of Partition 1. 

(2)Scan the partition D2 and perform the following steps to extract frequent itemsets from D2. 

 Build the PPC_Tree P. Each itemset in P may be defined as: 

P (itemset Jk): each node N in PPC_Tree is represented as ((N_precode: N_postcode:): count). [7]. 

 FIT=Ø; Htable=Ø; // The resultant collection of Frequent Itemsets FIT and the Hash table Htable are 

initialized to Ø. 

 Find collection of Frequent-1 itemsets FIT1={FI | FI is a series of “PP-codes” of nodes corresponding to 

each item in the “PPC_Tree”} [7]. 

 Find FIT= FIT ᴜ FIT1 // Add FIT1 to FIT. 

 Find higher-order candidates FIT2={a1a2 | a1a2 is a series of “PP-codes” in increasing order and 

produced by the intersection of the N-lists of a1 and a2} [7] i.e., ∀ ia ib (∈ FIT2), N_list=ia..N_list ∩ 

ib.N_list. 
 ∀ (x) ϵ N_list if support(x) ≥ δ, Htable [x] =x mod t, where Htable [x] denotes the next free slot in the 

hash table and t denotes the total number of itemsets. 

 F2 <- Htable =========== (4) // F2 contains the set of frequent itemsets of Partition 2 

From (3) and (4) the collection of frequent itemsets F1 and F2 are mined from partitions D1 and D2 

using NegNodeHash (NNH) and N-list hash (NLH) algorithms respectively. A similar approach is followed 

on other partitions as well. 

 Assimilating the results of each partition we get F={F | F1 ᴜ F2 ᴜ F3…. ᴜ FN } 

 ∀ fi ϵ F, find Sum(f) |Sum(f) = ∑ (Si(f)
N

i=1
) // Finds the summation of the supports of each itemset in 

each partition 

 If Sum(f) ≥ ϴ then G={G ᴜ F, where G is a Global frequent Itemset and ϴ is the Global support count} 

 

 

3. RESEARCH METHOD  

In this section, a detailed outline of the proposed methodology is explained. A hybrid framework 

consisting of NegNodesets and N-lists was designed for mining frequent itemsets. The basic procedure is 

outlined in multithreaded hybrid framework (MHF) algorithm as shown in Algorithm 1. This in turn invokes 

NNH and NLH algorithms.  

The algorithm MHF begins its execution by taking the given dataset as input and preprocessing the 

dataset. This involves sorting the itemsets in descending order of their support to eliminate infrequent items. 

The quicksort algorithm is used for this purpose. All transactions that have the same set of items are merged 

[Lines 1 and 2 of Algorithm 1]. This will help in reducing the size of the dataset. A divide and conquer 

strategy is employed and the dataset is then divided into as many partitions that are large enough to fit into 

the memory. Both NNH and NLH algorithms are run in parallel on the partitions [Lines 3 to 5 of Algorithm 

1]. A multicore-based framework that employs multi-threading has been designed for this process. Since a 

multi-core architecture has two or more cores it allows several tasks to be run in parallel enhancing the 

performance of the mining activity.  

Each partition is run on a separate core to ensure the parallel extraction of frequent itemsets. Only 

those itemsets whose support is greater than the local support is added to the final collection of frequent 

itemsets. The output of each partition is combined into a resultant file. The final result at this stage will 

contain both frequent as well as infrequent itemsets. To address this issue, the support of the itemsets 

produced from each of the partitions is summed up and compared against the global support count. If the 

total support surpasses the global support, then the item is considered to be frequent and added to the final 

result [Lines 6 to 11 of Algorithm 1]. This way the final set will consist of only frequent itemsets. The 

general methodology describing the above process is illustrated in Figure 1. 

The NNH as shown in Algorithm 2 involves the building and traversal of a BMC_Tree data 

structure that has its basis in bitmap indexing. The root node of this data structure is set to a null value. Every 

other node possesses an item set. Each node consists of four fields- item name, support count, binary 
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representation, and child list. The first step in the construction of this tree involves the identification of 

frequent 1 itemsets and their Nodesets. This was then used to generate higher-order itemsets called 

NegNodesets. This process continues till all the frequent itemsets have been obtained [Lines 3 to 8 of 

Algorithm 2]. Once the candidates are obtained only those items that satisfy the minimum support count are 

mapped to the hash table. The rest are pruned for further consideration. In case of collision, it is handled 

through open addressing [Lines 9 to 22 of Algorithm 2]. 

 

 

 
 

Figure 1. General methodology 

 

 

NLH algorithm as shown in Algorithm 3 involves the construction and traversal of a “PPC tree” to 

produce an “N-list” of the itemsets. N-list intersection operation is carried out to generate higher-order item 

sets [Lines 3 and 4 of Algorithm 3]. The root node is set to null. Each node contains–item name for indicating 

the item, count- for representing the number of times an item is present, child list-that will contain all the 

offspring of that particular node, “preorder” and “post-order” for indicating the pre-order and post-order 

values respectively.  

After the construction of the tree, the set of “frequent 1-itemsets” are characterized and these 

represent the N-lists of frequent 1 itemsets. The same process is carried out for finding frequent 2 itemsets 

also. This process then repeats itself till all the itemsets are found [Lines 5 to 9 of Algorithm 3]. Once the 

candidates are obtained only those items that satisfy the minimum support count are mapped to the hash 

table. The rest are pruned for further consideration. In case of collision, it is handled through open addressing 

[Lines 10 to 23 of Algorithm 3]. Most conventional algorithms construct and traverse a set enumeration tree 

to produce the final set of frequent itemsets. This adds to the run time and memory requirements. Also, a 

novel pruning approach is needed in most cases to avoid unnecessary and redundant visiting of nodes. All 

these drawbacks have been overcome in this work by adopting a Hash-based strategy to generate the final 

collection of frequent itemsets. 

 

Algorithm 1. MHF (D, δ, ϴ) 
Input: Transaction database D, local support δ, global support ϴ 

Output: Set of frequent itemsets F 
1. Sort the itemsets in descending order of support count and prune out infrequent 

itemsets 

2. Perform transaction merging wherever possible 

3. Divide the database into partitions D ← D1, D2 … . . , Dk with k ≥2 such that each Di fits into 

memory 

4. for each Di do 

5. Allocate each partition to a separate thread such that F1 ← NNH(D1, δ), F2 ← NLH(D2, δ), F3 ←
NNH(D3, δ), … Fk ← NNH(Dk, δ) 

6. Merge the results into F such that F ← F1UF2U….U Fk 

7. For each local frequent itemset f ∈ F do 

8. 𝑆𝑢𝑚(𝑓) = ∑ (𝑆𝑖(𝑓)
𝑘

𝑖=1
); 

9. if 𝑆𝑢𝑚(𝑓) ≥ ϴ then G=G U f where G is a global frequent itemset 
10. else 

11. Discard f; 

12. end if 

13. end for 
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Algorithm 2. NNH (Di, δ) 
Input: Transaction database Di, minimum support threshold δ. 

Output: The set of all frequent itemsets, FIT. 
1. FIT=Ø; 

2. Htable = Ø; 
3. Traverse database D and build the BMC tree to find C1 

4. FIT = FIT U 𝐶1; 
5. for each node X in the BMC_Tree do 
6. Add N data of X into the Nodeset of item X. IName to generate C2  
7. FIT = FIT U 𝐶2; 
8. end for 

9. for each item x ∈ FIT do 
10. if support(x) ≥ δ then 

11. find=0; 

12. do 

13. hash=hash(x, find); 

14. if (Htable[hash] == null) then 
15. Htable[hash] = x;  
16. return; 

17. end if 

18. find++ 

19. while (find < SIZE); 

20. end if 

21. end for 

22. FIT ← Htable;  
23. return FIT; 

 

Algorithm 3. NLH (Di, δ) 
Input: Transaction database Di, Minimum Support threshold δ. 
Output: The set of all frequent itemsets, FIT. 
1. FIT=Ø; 

2. Htable = Ø; 
3. Traverse database D and construct the PPC_Tree; 
4. Traverse the PPC_Tree to obtain the N_lists of frequent 1-itemsets FIT1; 
5. Generate the set of frequent 2- itemsets FIT2, 

6. for each iaib ∈ FIT2 do 

7. Create N_list by performing NL_intersection (𝑖𝑎 . N_list, ib. N_list); 
8. end for 

9. FIT ← FIT1; 

10. for each itemset x ∈ N_list do 
11. if support(x) ≥ δ then 

12. find=0; 

13. do 

14. hash=hash(x, find); 

15. if (Htable[hash] == null) then 
16. Htable[hash] = x; 
17. return; 

18. end if 

19. find++ 

20. while (find < SIZE); 

21. end if 

22. end for 

23. FIT ← Htable; 
24. return FIT 

 

3.1.  Illustration with example 

The proposed methodology can be explained with the help of an example. For the dataset shown in 

Table 2, both NNH and NLH algorithms are run in parallel on each partition. Assume the dataset is divided 

into N partitions and assigned to separate threads. Each thread runs on a separate core. Partition 1 will then 

be running the NNH algorithm while the second partition will be running the NLH algorithm, partition 3 will 

be running the NNH algorithm, and so forth. The NNH algorithm begins by scanning the dataset and 

constructing the BMC_Tree as shown in Figure 2(a). These are then used to find Nodesets as shown in 

Figure 2(b). These in turn serve as a blueprint for generating higher-order itemsets called NegNodesets. This 

is illustrated in Figure 2(c). The NegNodesets whose support is greater than the local support are inserted into 

the hash table and the rest are pruned from consideration. 

Partition 2 on the other hand will be running the NLH algorithm. The dataset is scanned and a PPC 

tree is constructed as shown in Figure 3. This tree is traversed to generate the N-list of Frequent-1 itemsets. 

An intersection operation is performed on the N-list of Frequent-1 itemsets to generate higher-order itemsets. 
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The generation of frequent itemsets using N-lists is shown in Figure 4. All those itemsets produced here that 

satisfy the local support are hashed into the hash table. Finally, the results of each partition are consolidated 

and compared against the global support count to generate the final collection of frequent itemsets.  

 

 

Table 2. Dataset description 
TID Items Ordered FI 

1. 5, 2, 7, 4 2, 4, 5 

2. 3, 5, 2, 1 1, 2, 3, 5 
3. 3, 2, 1, 9 1, 2, 3 

4. 1, 4, 8 1, 4 

5. 1, 4, 3, 2, 6 1, 2, 3, 4 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 2. NLH algorithm: (a) BMC tree, (b) nodesets, and (c) Nodeset and NegNodesets of itemset 124 

 

 

 
 

Figure 3. PPC tree 
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Figure 4. N-Lists generated by NLH algorithm 

 

 

3.2.  Advantages of the proposed approach 

The proposed hybrid framework takes advantage of the perks of both NegNodesets as well as  

N-lists. While NegNodesets ensure a concise representation of itemsets, N-lists were found to be faster to 

extract the resultant set of frequent items. The algorithms proposed in this paper rely on a novel Hash-based 

pruning to prune out infrequent itemsets. Only those itemsets that satisfy the minimum support threshold are 

added to the hash table and the rest are pruned from consideration. In case of collision, it was handled 

through open addressing. This reduced the computational complexity to O (log g) thereby enhancing the 

efficiency of the mining process. 

 

 

4. RESULTS AND DISCUSSION 

All experiments were performed on an Intel Pentium i5 core, having a 2.5 GHz processor with  

4.0 GB RAM and 64-bit Windows OS. The algorithms presented in this paper were coded in Java and 

compiled using Eclipse IDE. The proposed approach has been tested on five sets of datasets namely, Skin 

[34], PowerC [35], PAMAP [36], kddcup99 [37], and OnlineRetail [38] datasets, the details of which are 

shown in Table 3. All of these datasets have been downloaded from the UCI repository. 

The proposed approach has been compared with the recent existing tree-based algorithm Negfin [5] 

and the list-based algorithm PrePost+ [7]. Besides, it has also been compared with the existing multicore 

TDS Apriori algorithm [30] which is also a recent algorithm that uses a tree data structure for mining 

frequent items on a multi-core processor. Each of these algorithms was tested on five datasets that were 

downloaded from the UCI repository.  

 

 

Table 3. Dataset description 
Dataset Name Transaction Count Item Count Average Item Count Per Transaction 

OnlineRetail 541,909 2,603 4.37 

Kddcup99 1,000,000 135 16 

PAMAP 1,000,000 141 23.93 
Skin 245,057 11 4.0 

PowerC 1,040,000 140 7 

 

 

Experiments conducted indicate that the proposed approach outperforms each of these existing 

algorithms in terms of runtime and memory. The improvement in runtime on Skin, PowerC, OnlineRetail, 

PAMAP and kddcup99 datasets are illustrated in Figures 5(a) to 5(e) respectively. Likewise the improvement 

in memory on Skin, PowerC, OnlineRetail, kddcup99 and PAMAP datasets are illustrated in Figures 6(a) to 

6(e) respectively. The percentage improvement of the proposed MHF algorithm with regards to the existing 

algorithms is shown in Tables 4 and 5 respectively. It can be concluded that the proposed MHF algorithm has 

an aggregate improvement in run time by 48.26%, 39.48%, and 21.57% in comparison to Negfin, PrePost +, 

and multicore TDS Apriori (MA-TDS) algorithms respectively. With regards to memory, it has been 

observed that the proposed MHF algorithm has an aggregate improvement of 49.7%, 36.25%, and 20.7% in 

comparison to Negfin, PrePost+, and MA-TDS algorithms respectively. 
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(a) (b) (c) 

   

 
 

 

(d) (e)  

 

Figure 5. Comparison in the execution time of MHF with Negfin, PrePost+ and MA-TDS algorithm on  

(a) skin, (b) PowerC, (c) OnlineRetail, (d) PAMAP, and (e) kddcup99 for generating frequent itemsets 

 

 

   
(a) (b) (c) 

   

  

 

(d) (e)  

 

Figure 6. Comparison in the memory consumption of MHF with Negfin, PrePost+ and MA-TDS algorithm 

on (a) skin, (b) PowerC, (c) OnlineRetail, (d) kddcup99, and (e) PAMAP datasets for generating frequent 

itemsets 
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Table 4. Comparison of runtime on 5 datasets 
Percentage Improvement in Runtime 

Dataset MHF vs. Negfin MHF vs. PrePost+ MHF vs. MA-TDS 

Kddcup99 38.97280967 34.7826087 27.79984114 
Online Retail 54.02667169 39.73685836 12.50224215 

PAMAP 54.41375042 44.68150474 22.89208222 

PowerC 41.40074282 35.44050104 14.39486214 
Skin 52.50707643 42.80496713 30.2760463 

 

 

Table 5. Comparison of memory usage on 5 datasets 
Percentage Improvement in Memory Consumption 

Dataset MHF vs. Negfin MHF vs. PrePost+  MHF vs. MA-TDS 
Kddcup99 46.06879607 36.74351585 22.98245614 

Online Retail 56.15835777 37.96680498 20.8994709 

PAMAP 48.52752881 32.55033557 17.62295082 
PowerC 37.42071882 27.00369914 16.14730878 

Skin 60.34115139 47.00854701 25.89641434 

 

 

4.1.  Performance on multicore systems 

To analyze the efficacy of multicore systems the proposed approach has been executed with the 

various number of cores on PAMAP, PowerC, Skin, Kddcup99, and OnlineRetail datasets as shown in 

Figures 7(a) to 7(e) respectively. It was observed that the speedup increased by about 2 times with 2 cores 

and nearly 4 times with 4 cores. The average speedup rate is 1.89, 1.98, 1.91, 1.93, and 2.02 on 2 cores and 

3.83, 3.97, 3.92, 4.02, and 3.98 on 4 cores with Kddcup99, OnlineRetail, PAMAP, PowerC, and Skin 

datasets respectively 

 

 

   
(a) (b) (c) 

   

  

 

(d) (e)  

 

Figure 7. Comparison in the speedup of MHF with different numbers of cores on (a) PAMAP, (b) PowerC, 

(c) skin, (d) Kddcup99, and (e) OnlineRetail datasets 

 

 

4.2.  Time complexity 

4.2.1. Negfin algorithm  

The Negfin algorithm comprises of construction of the BMC_Tree, generation of Nodesets, and 

construction of frequent itemsets. The construction of BMC_Tree has a time complexity of O(gt × git ×
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log git) in the worst-case. The next segment involves the generation of the Nodesets consisting of frequent 

1-itemsets and this has a computational complexity of O (2git). The last segment involves the building of the 

frequent itemset tree and has a time complexity of O (2git g) where 2git the maximum number of nodes in the 

tree and g is the cardinality of NegNodesets. Therefore, the time complexity of the Negfin algorithm is max 

(O(gt × git × log git), O (2git), O (2git g),) which is O (2git  g). Here gt = |DB| and git = |I|. 
 

4.2.2. PrePost+ algorithm 

The PrePost+ algorithm consists of intersection ( ) and Building_Pattern_Tree ( ). The aggregate 

computational complexity of Intersection ( ) is O (h + g) where h is the cardinality of the first list and g is the 

cardinality of the second list. The second part is Building_Pattern_Tree ( ). This has a time complexity of O 

(2git). Therefore, the cumulative time complexity of the PrePost+ algorithm is max (O (h+g), O (2git)) which 

is O (2git). Here git= |I|. 

 

4.2.3. MA-TDS algorithm  

The main components in the MA-TDS algorithm are the construction of the Tree Data Structure, 

pruning by Apriori technique, and parallelizing by multicore. The construction of the tree has a worst-case 

time complexity of O (2git). Here git = |I|. Applying Apriori property requires comparing (k-1) subsets with 

(k-1) itemsets and hence requires (k-1) x (k-1) which is O (k2) where k is the length of the itemset. Since this 

comparison has to cover the entire tree we get O (2git k2). Since the process is carried out in parallel across 

N cores we have O (2git k2)/N. If 2𝑘  =l we get O (l x k2)/N. 

 

4.2.4. MHF algorithm 

The MHF algorithm invokes NNH and NLH algorithms. The primal component of the NNH 

algorithm involves constructing the BMC_Tree. The time complexity of this part in the worst case is  O(gt ×
git × log git). The second part involves generating Nodesets of all “frequent 1-itemsets”. The time 

complexity for this component in the worst case is O (2git). The proposed NNH algorithm incorporates a 

hash-based pruning mechanism. And this step has a worst-case time complexity of O (log g) where g is the 

cardinality of the itemset. Therefore, the time complexity of the NNH algorithm should be max (O(gt × git ×
log git), O (2git), O (log g)) which is O (2git). Here gt = |DB| and git=|I|. 

The two main operations in NLH are NL_intersection ( ) and Hashing. The resultant time 

complexity of NL_intersection ( ) is O (h + g). In the NLH algorithm, the pruning is carried out by using 

hashing which has a worst-case time complexity of O (log g). Therefore, the time complexity of the NLH 

algorithm should be max (O(h + g), log g) which is O (h+g) where h and g are the cardinalities of NL1 and 

NL2 respectively. Since both the algorithms are running simultaneously the total time complexity is (O (2git) 

x O (h+g). Suppose l= (2git). Therefore, the total time complexity of the MHF algorithm is O(l × (h + g)). If 

N cores are used then the total time complexity is O(l × (h + g))/N. 

 

4.3.  Space complexity  

4.3.1. Negfin algorithm 
The first part of the Negfin algorithm is constructing and traversing the BMC_Tree, and the space 

complexity for this component is O (g2). The second part that generates Nodesets has a space complexity of 

O (g). The third part that involves the construction and traversal of the “set enumeration tree” is O (2git). 

Therefore, the space complexity of the Negfin algorithm is max (O (g2), O (g), O (2git)) which is O (2git). 

Here git = |I|. 
 

4.3.2. PrePost+ algorithm 
The primal component of the PrePost+ algorithm is NL_intersection ( ) and this part has a space 

complexity of is O (h + g) where h and g are the cardinalities of NL1 and NL2 respectively. The PPC tree is 

not considered for space complexity calculation since it is deleted once the N-lists are obtained. The next step 

involves the construction of the frequent itemset tree and has a space complexity of O (2git) where git = |I|. 
Therefore, the space complexity of the PrePost+ algorithm should be max (O(h + g),2git) which is O (2git).  

 

4.3.3. MA-TDS algorithm 

The main component of the MA-TDS algorithm is constructing the tree data structure and this part 

has a space complexity of O (2git). The pruning does not take any additional space and so is not considered. 

Hence the total space complexity is O (2git). If N cores are used then the total space complexity is O (2git)/N.  
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4.3.4. MHF algorithm 

The MHF algorithm consists of NNH and NLH algorithms. Considering the NNH algorithm, the 

space complexity for constructing and traversal of the tree for mining frequent itemsets is (Number of nodes 

in the tree x Maximum number of items in each node)=O (g×g)=O(g2). The second part is the generation of 

Nodesets. The space complexity here is O (g). The space complexity of hashing is O (g) where g is the space 

occupied by the g itemsets. Therefore, the space complexity of the NNH algorithm is max (O (g2), O (g), O 

(g),) which is O (g2). In the NLH algorithm, the space complexity of NL_intersection is O (h + g) where h 

and g are the cardinalities of NL1 and NL2 respectively. Here pruning is carried out by using hashing which 

has a worst-case space complexity of O (g). Therefore, the space complexity of the NLH algorithm should be 

max (O(h + g), O (g)) which is O(h + g). Since both the algorithms are running simultaneously, therefore, 

the total space complexity of the MHF algorithm is (O(g2 × O(h + g)) = O(g2(h + g)). If N cores are used 

then the total space complexity is O(g2(h + g))/N. 

 

4.4.  Difference between the proposed approach and the competing methods 

From the analysis conducted we can conclude that the proposed MHF algorithm outperforms the 

existing Negfin, PrePost+, and MA-TDS algorithms in terms of runtime, memory, speedup, time, and space 

complexity. This enhancement in efficacy can be explained as follows. The work presented in this paper is a 

hybrid approach that takes advantage of the perks of both NegNodesets as well as N-lists. While 

NegNodesets ensure a concise representation of itemsets, N-lists were found to be faster to extract the 

resultant set of frequent items. The existing Negfin and PrePost+ algorithms were dependent on the erection 

and spanning of a set enumeration tree for extracting the resultant set of frequent items which was found to 

be costly due to the time required for its construction and traversal. The existing MA-TDS algorithm 

although recent still relied on the apriori principle for pruning out infrequent itemsets which were found to be 

computationally taxing. The algorithms proposed in this paper on the other hand rely on a novel Hash-based 

pruning to prune out infrequent itemsets. Only those itemsets that satisfy the minimum support threshold are 

added to the hash table and the rest are pruned from consideration. In case of collision, it was handled 

through open addressing. Since the implementation is carried out in Java 8, if the number of items in the hash 

table grows beyond a threshold Java’s HashMap will switch to a balanced tree thereby reducing the 

computational complexity to O (log g). This was found to be a significant improvement in comparison to the 

traditional set enumeration tree which had a computational complexity of O (2git). This further intensified 

the efficiency of the mining process.  

The deployment of a multi-core-based partition approach whereby the dataset is divided into 

partitions and distributed between different cores of the processor was found to effectively facilitate load 

balancing thereby boosting the efficiency of the parallel mining process. We have run the proposed 

algorithms on two cores as well as four cores. It was observed that the performance nearly doubled as the 

number of cores increased. Since the implementation is fundamentally based on multi-threading the 

dependency on employing a Mobile Agent to assimilate the results across different partitions is avoided 

which further amplifies the performance of the overall approach. 

 

 

5. CONCLUSION  

A novel multithreaded hybrid framework MHF has been designed in this paper for the parallel 

extraction of frequent items using the multicore feature of today's processors. The proposed framework uses 

a combination of NegNodesets and N-list data structures for mining frequent itemsets. By doing so, the 

advantages of both have been harnessed here while keeping their drawbacks to a minimum. Existing 

algorithms that use these structures usually rely on a set enumeration tree to extract the resultant set of 

frequent items which can be taxing in terms of run time as well as memory. To overcome this drawback a 

Hash-based pruning approach has been proposed in this paper. As per our discernment, such a framework has 

not been designed so far. The proposed algorithm has been tested on five datasets downloaded from the UCI 

repository. Results show that the proposed approach outperforms existing algorithms in terms of run-time 

memory, speedup, and time and space complexity. As a part of future work, we plan on exploring the 

efficacy of the proposed framework on streaming data and big datasets. 
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