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ABSTRACT The radio frequency spectrum is getting more congested day by day due to the growth of 
wireless devices, applications, and the arrival of fifth generation (5G) mobile communications. This happens 
because the radio spectrum is a natural resource that has a restricted existence. Access to all devices can be 
granted, but in a more efficient way. To resolve the issue, cognitive radio technology has come out as a way, 
because it is possible to sense the radio spectrum in the neighboring. Spectrum sensing has been recognized 
as an important technology, in cognitive radio networks, to allow secondary users (SUs) to detect spectrum 
holes and opportunistically access primary licensed spectrum band without harmful interference. This paper 
considers the Energy Detection (ED) and Matched Filter Detection (MFD) spectrum sensing techniques as 
the baseline for a study where the so-called Hybrid Matched Filter Detection (Hybrid MFD) was proposed. 
Apart from an analytical approach, Monte Carlo simulations have been performed in MATLAB. These 
simulations aimed at understanding how the variation of parameters like the probability of false alarm, the 
signal-to-noise ratio (SNR) and the number of samples, can affect the probability of miss-detection. 
Simulation results show that i) higher probability of miss-detection is achieved for the ED spectrum sensing 
technique when compared to the MFD and Hybrid MFD techniques; ii) More importantly, the proposed 
Hybrid MFD technique outperforms MFD in terms of the ability to detect the presence of a primary user in 
licensed spectrum, for a probability of false alarm slightly lower than 0.5, low number of samples and low 
signal-to-noise ratio. 

INDEX TERMS Radio frequency spectrum, 5G, cognitive radio, spectrum sensing, Hybrid Matched Filter 
Detection

I. INTRODUCTION 
A spectrum survey performed by the U.S. Federal 
Communication Commission (FCC) has stated that the 
licensed spectrum is not utilized correctly for numerous 
frequencies, time, and geographical places [1]. The available 
radio spectrum is a natural resource that has a restricted 
existence and is getting congested daily due to the increase in 
wireless devices and applications [2]. The year 2021 will 
connect over 35.85 billion wireless devices, all of which are 
likely going to demand access to the internet [3]. Allocating 
frequency channels to specific users with licenses for 
particular wireless technologies, is the policy that has been 
established regarding the allocation of radio spectrum. 
Licensed users have rights to send or receive data from those 

portions of the spectrum, while other are restricted even 
though those portions are unoccupied [4]. The static 
management of the radio spectrum is no longer effective 
enough to grant access to all these devices [5]. Recent studies 
reported that the spectrum use in the US under the fixed 
spectrum allocations (FSA) policy ranges anywhere from 15 
percent to 85 percent [6]. Measurements made by the FCC 
also indicate that a wide range of radio spectrum is rarely used 
most of the time, while other frequency bands are heavily 
utilized, as shown in Figure 1. The portions of spectrum 
assigned to primary users (PUs) but not currently being 
utilized are termed white spaces or spectrum holes. In Figure 
2, a spectrum hole is a frequency band allocated to a primary 
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user that is not always used at a predefined area or time. The 
radio spectrum is then used wastefully [6], [7]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Restricted spectrum usage, spectrum depletion and 
inefficient use are the main drawbacks for the underutilized 
wireless spectrum [8]. Consequently, urgent action is 
required to improve access to the radio spectrum and achieve 
high network capacity.  A safer way to solve the spectrum 
shortage problem is to dynamically handle it without 
interfering with the PU signals by sharing unoccupied 
channels with unlicensed users, called secondary users 
(SUs). In order to resolve the problems of spectrum 
allocation, opportunistic spectrum access (OSA), also 
referred to as dynamic spectrum access (DSA), has been 
implemented. Unlike FSA, the DSA allows spectrum sharing 
between licensed and non-licensed users, in an opportunistic 
way, where the spectrum is split into several frequency bands 
assigned to one or more users, as stated in [9], [10]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
In recent years, plenty of research has been done on the 
effective use of those spectrum bands which are either empty 
or are not used at full capacities. Several solutions have been 
suggested to advance the use of the OSA, including cognitive 
radio [12] [13]. CR is an adaptive and intelligent software-
based technology that detects unused frequency bands and 
adapts the radio working parameters to communicate in these 
bands [14]. In the neighboring area, a cognitive radio device 
can fell the radio spectrum and opt to use the free channels 
from the licensed primary spectrum. Finding a spectrum hole 

through intelligent means is the primary goal of cognitive 
radio [15]. It enables the SUs to use the licensed radio 
spectrum of PU if is not being used by the PU [1] [4]. The 
spectrum sensing has been recognized as an important 
technology, in cognitive radio networks, to facilitate the 
detection of spectrum holes by secondary users (SUs) and 
opportunistically access primary licensed spectrum band 
without harmful interference. The wireless network will be 
vastly interconnected providing high coverage quality and 
high data rates. 
Authors from [16] presented the performance analysis of 
energy detection scheme of spectrum sensing. This work also 
illustrates the impact of communication parameters such as 
signal-to-noise ratio (SNR), number of samples and noise 
uncertainty on the energy detector’s probability of detection 
and false alarm. The underlying simulations were performed 
in MATLAB. 
Authors from [17] considered the detection of the presence/ 
absence of signal in environments with uncertain and low 
SNR. A simple mathematical model was suggested for the 
uncertainty in the noise and fading processes that 
distinguishes which aspects contribute to the detection of 
SNR walls for different levels of signal information to be 
detected. 
Authors from [18] comprehensively compared the 
performance of energy and matched filter detection spectrum 
sensing techniques. Simulation results plotting the operating 
characteristics of the receiver corroborate the theoretical 
results and enabled to visually compare the performance. 
In [19], the matched filter method is implemented depending 
on various parameters. The authors discovered that the 
probability of detection increased when the SNR increases. 
Also, when the number of samples increases the probability 
of detection increases and SNR gets improved. 
Authors from [20] propose an approach to increase the 
efficiency of the sensing detection by considering an 
estimated and dynamic sensing threshold. It simulates the 
matched filter method with a dynamic threshold and 
contrasts its performance with other existing techniques. 
After analyzing the different techniques available in the 
literature, it is possible to know the limitations of each 
technique. The Energy Detection has a poor performance for 
low SNR while the Matched Filter Detection requires prior 
information of the primary user. In this paper, we propose a 
technique that, contrarily to Energy Detection, has good 
performance for low SNR, and that has better or equal 
performance compared to the Matched Filter Detection. 
This paper describes the development, analysis, and 
evaluation through a set of simulations of spectrum sensing 
applied to CR by using MATLAB. It aims at understanding 
how the variation of some parameters, like the probability of 
false alarm, the signal-to-noise ratio, and the number of 
samples, can affect the probability of miss-detection. Well-
known spectrum sensing techniques, like Energy Detection 
and Matched Filter Detection, are first considered. Then, a 

Figure 2. Dynamic Spectrum Holes, adapted from [11], 
with permission 

Figure 1. Radio Spectrum Occupancy, adapted from [4] 
with permission 
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new Hybrid Matched Filter Detection spectrum sensing 
technique is explored through MATLAB simulation, and its 
efficiency is compared with Energy Detection and Matched 
Filter Detection. The proposed technique is based on the 
Matched Filter Detection and is hybrid because it has two 
different behaviors: one when the probability of false alarm is 
lower than 0.5 and another when it is larger or equal to 0.5.  
The remaining of the paper is organized as follows. Section 
II discusses the background of the spectrum sensing 
techniques addressed in cognitive radio and the state-of-the art 
mathematical models for existing spectrum sensing 
techniques. Section III explores the mathematical model for 
the proposed Hybrid Matched Filter Detection. Section IV 
presents the simulations and results for the probability of miss-
detection for the three considered techniques. Section V 
compares results for the probability of miss-detection between 
the proposed spectrum sensing technique and the previous 
existing ones. Conclusions are drawn in Section VI, where 
topics for further research are discussed as well. 
 
II. Background 
A. Cognitive Radio 
The entire functioning of cognitive radio can be clarified 
through the cognitive radio cycle, as shown in Figure 3. In the 
cognitive radio cycle, a cognitive radio monitors spectrum 
bands collect their information and then detects spectrum 
spaces. The three main tasks of the cognitive radio cycle are 
the following ones [21]:  
• Radio Scene Analysis or Spectrum Sensing, which takes 

care of the calculation of the interference temperature and 
also detects spectrum holes. 

• Channel Identification or Spectrum Analysis, that is 
responsible for the estimation channel state information. 

• Spectrum Decision has the objective of transmitting the 
control of power and managing the dynamic spectrum.  

 
 
 
 
 
 
 
 
 
 

B.  Energy and Matched Filter Detection 
One of the main issues in cognitive radio is the capacity of 
unlicensed users (SUs) to sense the licensed users (PUs) 
presence in the licensed spectrum, to prevent interference and 
to leave the frequency band as soon as possible when the 
corresponding primary radio appears [23], the so-called 
spectrum sensing.  
There are three main spectrum sensing techniques: non-
cooperative sensing, cooperative sensing, and interference-

based sensing. When the SU pursues its goals and does not 
take into detail the actions of other SUs, the non-cooperative 
technique is applied [24]. A cooperative technique is entirely 
opposite to non-cooperative because the SUs work together 
and collaborate with each other to take account of the goals of 
each user to make the final common decision [24]. 
Interference-based sensing enables a SU to use a licensed 
spectrum used by a PU, if the SU interference does not 
degrade the primary service quality below a tolerable limit 
[25]. In this paper, the focus is on non-cooperative sensing 
techniques, like Energy Detection [26] and Matched Filter 
Detection. The proposed spectrum sensing technique will also 
be a non-cooperative one. 
Energy Detection also known as radiometry or periodogram, 
is one of the most common and easiest techniques of spectrum 
sensing because of its low computational and simplicity [27]. 
It does not require any prior information of the PU’s signal. 
The energy of the sensed signal is compared with the threshold 
to confirm whether the spectrum can be used by the secondary 
user [28]. The energy detector decision statistic can be 
determined from the squared magnitude of the Fast Fourier 
Transform (FFT) averaged over N samples of the SU received 
signal, as shown in Figure 4 [29]. 
 
 
 
 
 
 
 
 

 
Matched Filter Detection is based on a linear filter that 
specializes in reducing the noise component and maximizing 
the signal component [30]. However, this technique requires 
prior knowledge of the PU, which consumes more power and 
has high complexity [31]. The SU receives the signal and the 
pilot stream by assuming that the PU transmitters sends a pilot 
stream simultaneously with the data. As shown in Figure 5, the 
decision statistic of the matched filter detector can be 
determined from the multiplication of the PU signal and the 
SU received signal averaged over N samples of the received 
signal by the SU [32]. The decision statistic is then compared 
with the threshold to confirm if it is possible to allow the 
secondary user to use the spectrum. 
 
 
 
 
 
 
 
 
 

Figure 3. Cognitive Radio Cycle, adapted from [22] 

Figure 4. Energy Detection Model for Spectrum Sensing, adapted 
from [24]  

Figure 5. Matched Filter Detection for Spectrum Sensing, adapted 
from [24] 
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C. Mathematical model for existing Spectrum Sensing 
Techniques 
Spectrum sensing algorithm efficiency depends on various 
parameters such as the signal-to-noise ratio, number of 
samples and noise uncertainty. The aim of spectrum sensing is 
to make a decision between two hypotheses (choose H0 or H1) 
based on the received signal [16]: 

𝐻!: 𝑦(𝑛) = 𝑤(𝑛),                             (1) 

𝐻": 𝑦(𝑛) = 𝑥(𝑛) + 𝑤(𝑛),                      (2) 

where n=1,…, N is the samples index of the SU received 
signal, y(n) is the nth sample of the signal received by the 
secondary user that might contain the primary user signal, 
w(n) is the additive white Gaussian noise (AWGN) and x(n) is 
the transmitted signal. H0 denotes the primary user is absent in 
the band, while H1 denotes the primary user’s signal presence. 
Spectrum sensing determines the presence or absence of PU 
based on the hypothesis problem (by choosing H0 or H1). By 
comparing the detection statistic (T) with a predetermined 
threshold, the decision on the occupancy of the spectrum is 
calculated. To evaluate the performance of the detector, 
several metrics, inspired by [33], were used, including the 
probability of false alarm, Pfa, and the probability of detection, 
Pd.  
Pfa is the probability that H1 is determined by the test, while it 
is actually H0 given by 

			𝑃#$ = Pr(𝑇 > 𝜆|𝐻!).                         (3)                             

Pd is the probability of H1 being correctly determined by the 
test, given by 

𝑃% = Pr(𝑇 > 𝜆|𝐻").																											(4) 

The probability of false alarm is the probability that the 
sensing algorithm decides the presence of PUs when they are 
absent. For a greater chance for the SUs to use the sensed 
spectrum when it is available, low probability of false alarm 
should be aimed. Hence, for the secondary network, the 
feasible throughput is greater. 
The probability of detection is the time fraction in which the 
sensing algorithm decides correctly the presence of the PU 
(licensed). The performance of the system depends on the PU. 
If the sensing time is increased, and the limit is determined that 
SU cannot interfere during most of time, then the PU will 
make better use of its spectrum. The PUs will make best use 
of their priority, because the more spectrum sensing is used, 
the more PUs will be detected and lower the interference will 
be.  
A good sensing algorithm is one which achieves a high 
probability of detection and a low probability of false alarm 
[34]. 
Determining the threshold that will be used to compare with 
the probabilities is another difficult task. Therefore, theoretical 
analysis and numerical calculations must be carried out 
according to practical conditions.  

The dilemma of binary hypothesis testing is the core of 
spectrum sensing techniques. The theoretical formulation is as 
follows [17]: 

𝑦(𝑛) = 6𝑤
(𝑛)																					𝑢𝑛𝑑𝑒𝑟	𝐻!,

𝑥(𝑛) + 𝑤(𝑛)							𝑢𝑛𝑑𝑒𝑟	𝐻",
               (5) 

where y(n), w(n) and x(n) are the received signals at CR nodes, 
white noise samples and transmitted signals at primary nodes, 
respectively.  

1. Energy Detection 
The detection statistic of energy detector [33] can be defined 
as the average energy of N observed samples, y(n), given by  

𝑇 = "
&
∑ |𝑦(𝑛)|'&
()" .                          (6) 

The average signal-to-noise ratio is defined in [17] as  
𝑆𝑁𝑅 = *

	,!"
,                                  (7) 

where the received signal power, described in [17], is given by 

       𝑃 = lim
&→.

"
&
∑ |𝑥(𝑛)|'&
()" ,                       (8) 

and 𝜎(' is the noise variance. 
The probability of false alarm [17] is given by  

𝑃#$ = 𝑄D /0,!"

1',!" &2
E.                             (9) 

The probability of detection [17] is defined as 

𝑃% = 𝑄

⎝

⎜
⎛ /03*4,!"5

6'3*4	,!"5
"

&
7

⎠

⎟
⎞

.                         (10) 

The equations for the thresholds for the probability of false 
alarm are obtained by manipulating (9) and (10)  

𝜆 = 𝑄0"L𝑃#$M×N
2𝜎(8

𝑁P + 𝜎('.               (11) 

𝜆 = 𝑄0"(𝑃%)×N
2(𝑃 + 𝜎(')'

𝑁P + 𝑃 + 𝜎('.      (12) 

From equations (7), (11) and (12), one can obtain the 
relationship between N, SNR, Pfa and Pd  

𝑃% = 𝑄D
9#$3*%&5×1' &2 0:&;

1' &2 ×(:&;4")
E.                  (13) 

Besides, the probability of miss-detection, described in [35], 
is given by 

𝑃>% = 1 − 𝑃% .	                            (14) 

2. Matched Filter Detection 
Matched filter is the best filter for projecting the received 
signal in the direction of the pilot, xp [10]. The detection 
statistic [18] are given by 

𝑇 = "
&
∑ 𝑦(𝑛) ∗ 𝑥𝑝(𝑛)& .                         (15) 
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According to the Neyman-Pearson criteria [7], Pd and Pfa are, 
described in [20], expressed as 

𝑃% = 𝑄D /0?

1?,!"
E,                           (16) 

𝑃#$ = 𝑄D /

1?,!"
E,                          (17) 

where  
𝐸 = ∑ 𝑥(𝑛)'&

()" .                          (18) 
respectively [18]. 
By manipulating (16) and (17), one obtains the equations for 
the thresholds, as follows  

𝜆 = 𝑄0"(𝑃%)×V𝐸𝜎(' + 𝐸.                     (19) 

𝜆 = 𝑄0"L𝑃#$M×V𝐸𝜎('.                        (20) 
From (19), (20) one obtains the relationship between E, Pfa and 
Pd 

𝑃% = 𝑄 W𝑄0"L𝑃#$M − N
?
,!"
X.                 (21) 

The equation for the probability of miss-detection for this 
technique is also (14). 

III. SYSTEM MODEL FOR THE HYBRID MATCHED 
FILTER DETECTION TECHNIQUE 
The block diagram of the proposed technique, the so-called 
Hybrid Matched Filter Detection (Hybrid MFD or HMFD) 
technique, is shown in Figure 6. This technique is based on the 
existing Matched Filter Detection and is combined with the 
double MFD. As it  is hybrid it has two different behaviors, 
one when the probability of false alarm is lower than 0.5 and 
another when it is larger or equal to 0.5.  
Whenever the probability of false alarm is lower than 0.5, the 
second part of the detector (from Figure 6), which corresponds 
to a double matched filter detector, is used. This double 
matched filter detector is a new technique and basically 
corresponds on the multiplications of two normal matched 
filter detector, where the detection statistic consists of a 
multiplication of two detection statistic and the threshold is the 
multiplication of two threshold from a normal matched filter 
detector. When the probability of false alarm is larger than or 
equal to 0.5, the first detector, i.e., a normal matched filter 
detector, is used. 
The detection statistic of the detector corresponding to Pfa <0.5 
is given as follows: 

𝑇 = "
&
∑ 𝑦(𝑛) ∗ 𝑥𝑝(𝑛)& ×	 "

&
∑ 𝑦(𝑛) ∗ 𝑥𝑝(𝑛)& .          (22) 

The detection statistic of the detector corresponding to 
Pfa>=0.5 is given by (15). The threshold of the detector for 
corresponding to Pfa<0.5, is given by 

𝜆 = (𝑄0"L𝑃#$M×V𝐸𝜎(')'.                  (23) 

The threshold of the detector corresponding to Pfa>=0.5 is 
given by (20). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 presents curves from the results of the simulations for 
the matched filter detector (orange curve) and double matched 
filter detector (blue curve) for values of the probability of the 
false alarm varying from 0 to 1, using the same samples and 
SNR. 
In Figure 7, for values of the probability of false alarm lower 
than 0.5, the double matched filter detector achieves better 
performance compared to a matched filter detector. For 
values of the probability of false alarm larger than or equal 
to 0.5, the probability of miss-detection starts to increase for 
the double matched filter detector, up to a point where the 
matched filter detector has better performance compared to 
the double matched filter detector.  
The probability of miss-detection is computed by using the 
algorithm described in the flowchart of Figure 8, where Nt is 
the number of Monte-Carlo simulations, Nd is the number of 
iterations used for the calculation of the probability of miss-
detection, and Pfa is the probability of false alarm, in the 
range from zero to one.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Probability of Miss-Detection for the Simulated 
Matched Filter and Double Matched Filter Detection 

Figure 6. Proposed Model for the Hybrid Matched Filter 
Detection technique 



 

VOLUME XX, 2021  6 

 
 
 
 
The algorithm to compute the probability of miss-detection 
is very similar for the ED and MFD. First, we must set the 
number of samples (N), the signal-to-noise ratio (SNR) and 
the number of Monte-Carlo simulations, Nt. Then, there will 
be a for cycle that will go through the values of the 
probabilities of false alarm, from 0 to 1, with steps of 0.01. 
Inside this for cycle there will be another for cycle that will 
start in zero and go up to the number of Monte-Carlo 
simulations. A new variable, i, is going to be used to see 
know many simulations Monte-Carlo have been done and 
how many there are left. For each Monte-Carlo simulation, 
the additive white Gaussian noise, w, and transmitted signal, 
x, are randomly generated by using the randn function with 
mean equal to zero. By considering this approach, signals 
may have positive or negative values. The signal received by 
the secondary user is y, according to (5). 
The detection statistic is calculated as follows:  

• for the Energy Detection, equation (6) is used, and 
the result for the detection statistic will always be 
positive,  

• for the Matched Filter Detection, equation (15) is 
used, and the result can be a positive or a negative 
number.  

The probability of false threshold for the Energy Detection 
is calculated by considering (11) while equation (20) is used 
for the Matched Filter Detection. On the one hand, according 
to (11), this threshold is always positive for the Energy 
Detection because the value in the second portion of the 
equation is always larger than for the first one, and they are 
summed. On the other hand, the threshold for the Matched 
Filter Detection may be a positive or a negative number, or 
even also null. This occurrence is justified by the behavior of 
the Q-1function, which varies as follows: 

• it is positive for a Pfa < 0.5; 
• it is negative for a Pfa > 0.5; 
• it is zero for a Pfa = 0.5.  

One needs to verify if the detection statistic is larger than the 
threshold. If the detection statistic is lower than the 
threshold, one checks if the variable i is equal to Nt. This 
condition is met when all the Monte-Carlo simulations have 
already been concluded for each value of the probability of 
false alarm. If the variable i is equal to the Nt, the probability 
of miss-detection is given by 1 – Nd/Nt. Then the simulation 
is over for this probability of false alarm. If the variable i and 
Nt are not the same, the variable i will be incremented and on 

will perform another Monte-Carlo simulation by starting to 
randomly generate the signals. If the detection statistic is 
larger than the threshold, we will increment the variable Nd. 
Then, one has to verify if the variable i, is equal to Nt, like it 
was described before. Finally, one verifies if all Monte-Carlo 
simulations have been concluded for the current value of the 
probability of false alarm. If this is true, then one is able to 
calculate the probability of miss-detection for the current 
value of the probability of false alarm; otherwise, another 
simulation must be performed, until all the Monte-Carlo 
simulations are performed for all probabilities of false alarm, 
and a plot is generated. 
In the case of the Double MFD, the procedure to compute the 
probability of miss-detection is very similar to the MFD. The 
only differences are that the detection statistic and the 
threshold are the square of their values for the MFD.  
For the Double MFD, the detection statistic and threshold are 
calculated as follows: 

• equation (22) is used for the detection statistic, and 
the result is always positive,  

• equation (23) is used to compute the threshold, and 
the result is always a positive number, unless for 
Pfa=0.5 because it is zero.  

This occurs because the square of a Q-1 function is positive 
for all the probabilities of false alarm, but not for Pfa=0.5 
(when it is zero). As described before, the Q-1 function is 
positive for Pfa<0.5, it is negative for Pfa>0.5 and is zero for 
a Pfa=0.5.  The Q-1 function is given by Q-1(Pfa)=- Q-1(1- Pfa). 
The square of the Q-1 function is given by (Q-1(Pfa))2=(- Q-1 
(1- Pfa))2. Basically, it is like having a mirror in the view 
chart for Pfa=0.5. The rest of the simulation proceeds like for 
the previous two sensing techniques. Figure 7 presents just 
one example of the simulations that have been performed by 
changing the number of samples and the SNR value. The 
intersection point between the curves for the two techniques 
(MFD and Double MFD) would always change, because the 
signals are randomly generated.  
By applying the HMFD algorithm, results have been 
obtained for the probability of miss-detection as a function 
of the probability of false alarm, as shown in Figure 9. 

 
 Figure 9. Probability of Miss-Detection vs Probability of 

False Alarm for the Hybrid Matched Filter Detection 
technique 

Figure 8. Algorithm used to calculate the Probability of 
Miss-Detection  
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In the proposed model, while obtaining results for the 
HMFD, it was decided to consider the probability of false 
alarm of 0.5 to switch between different techniques (blue part 
of the curve for the Double MFD and orange part for the 
MFD), since, in the double matched filter detector, the 
probability of miss-detection is always zero when the 
probability of false alarm is 0.5, as shown in Figure 9. 

IV. SIMULATIONS AND RESULTS 
In this section, results for the probability of miss-detection 
arising from Monte-Carlo simulations results are obtained to 
verify the theoretical expressions derived above. To evaluate 
the influence of the number of samples, probability of false 
alarm and SNR in the probability of miss-detection, one uses 
MATLAB to simulate and analyze different techniques whilst 
varying the parameters.  
Because of the complexity of the expression of the HMFD 
technique, it is only possible to obtain results through a Monte-
Carlo simulation approach. 
The following three types of analysis are performed: 
• The first option corresponds to curves where the 

probability of miss-detection (Y-axis) is presented as a 
function of the probability of false alarm (X-axis), with 
the number of samples and SNR as parameters.  

• The second option corresponds to curves where the 
probability of miss-detection (Y-axis) is presented as a 
function of the number of samples (X-axis), with the 
probability of false alarm and SNR as parameters.  

• The third option corresponds to curves where the 
probability of miss-detection (Y-axis) is presented as a 
function of the SNR (X-axis), with the probability of 
false alarm and number of samples as parameters.  

1. First Option 
Figures 10, 11 and 12 present the results for the probability 
of miss-detection as a function of the probability of false 
alarm, Pfa, with the number of samples, N, and SNR as 
parameters, for the Energy Detection (ED), Matched Filter 
Detection (MFD) and Hybrid MFD techniques, respectively. 
Each figure presents theoretical (dashed lines) and 
simulation results (solid lines). 

 

 
 
 

 

 
 
One considers different combinations of the values for the 
number of samples and SNR. The Energy Detection technique 
has been simulated by considering equations (3), (4), (6) and 
(11) while theoretical results are achieved by using (13). On 
the other hand, For the MFD and HMFD techniques, 
simulation results are achieved by considering equations (3), 
(4), (15) and (20) (and additionally (22) and (23) for the 
HMFD only). Besides, theoretical results for the MFD 
spectrum sensing technique are achieved by using (21). One 
observes that the probability of false alarm always varies from 
1 down to 0. As expected, for the HMFD technique, there is a 
discontinuity for Pfa = 0.5. 
One may conclude that the probability of miss-detection 
decreases when: 
• the probability of false alarm increases;  
• the SNR increases for a given number of samples; 
• the number of samples increase for a given value of 

SNR. 

Figure 11. Probability of Miss-Detection vs Probability of False 
Alarm for the Matched Filter Detection technique with the 

Number of Samples and SNR as parameters 

 

Figure 12. Probability of Miss-Detection vs Probability of False 
Alarm for the Hybrid Matched Filter Detection technique with the 

Number of Samples and SNR as parameters 

 

Figure 10. Probability of Miss-Detection vs Probability of False 
Alarm for the Energy Detection technique with the Number of 

Samples and SNR as parameters 
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2. Second Option 
Figures 13, 14 and 15 present the results for the probability 
of miss-detection as a function of the number of samples, 
with the SNR and Pfa as parameters, for the ED, MFD and 
HMFD spectrum sensing techniques, respectively. Each 
figure presents theoretical (dashed lines) and simulation 
results (solid lines). While in Figure 14 the number of 
samples varies from 100 up to 1400, in Figures 13 and 15 it 
varies from 100 up to 2000. 
One may conclude that the probability of miss-detection 
decreases when: 

• the number of samples increases; 
• the SNR increases for a given probability of false 

alarm; 
• the probability of false alarm increases for a given 

value of SNR. 

 
 

 

 
 

 

 
 

 
 

3. Third Option 
Figures 16, 17 and 18 present results for the probability of 
miss-detection as a function of the SNR, with the probability 
of false alarm and the number of samples as parameters, for 
the ED, MFD and HMFD spectrum sensing techniques, 
respectively, where the SNR varies from -40 dB up to 10 dB. 
As above, each figure presents theoretical (dashed lines) and 
simulation results (solid lines). 
One may conclude that the probability of miss-detection 
decreases when: 

• the SNR increases; 
• the probability of false alarm increases for a given 

number of samples; 
• the number of samples increases for a given value 

of the probability of false alarm. 

 
 

Figure 13. Probability of Miss-Detection vs Number of Samples 
for the Energy Detection technique, with the Probability of False 

Alarm and SNR as parameters 

 

Figure 14. Probability of Miss-Detection vs Number of Samples 
for the Matched Filter Detection technique with the Probability of 

False Alarm and SNR as parameters 

 

Figure 16. Probability of Miss-Detection vs SNR for the Energy 
Detection technique with the Probability of False Alarm and 

Number of Samples as parameters 

 

Figure 15. Probability of Miss-Detection vs Number of Samples 
for the Hybrid Matched Filter Detection technique with the 

Probability of False Alarm and SNR as parameters 
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V. COMPARISON BETWEEN TECHNIQUES 
It is worthwhile to analyze the results for the probability of 
miss-detection between different spectrum sensing 
techniques. In Figures 19 and 20 the probability of miss-
detection is represented as a function of the probability of 
false alarm. In Figure 19, the number of samples is N=200 
while SNR takes values of -25, -20 and -15 dB (except for 
the ED sensing technique, where only SNR=-15 dB was 
accounted for). In Figure 20, one considers SNR=-20 dB, and 
the number of samples takes values of 200, 400 and 600 
(except for the ED sensing technique, where only N=600 was 
considered). N.B.: in Figures 19 and 20, although the 
behavior of the Hybrid MFD is similar to the one from the 
MFD when the probability of false alarm is equal or larger 
than 0.5, when the probability of false alarm increases 
towards 0.5, in the zoom out view charts, one can observe 
that the probability of miss-detection is lower for the HMFD.  
Table 1 summarizes the lessons learned from the analysis of 
the results for the probability of miss-detection as a function 
of the probability of false alarm of Figures 19 and 20.  

 
 
 

 
 

 
Figures 21 and 22 present results for the probability of miss-
detection as a function of the number of samples while 
comparing different spectrum sensing techniques. While in 
Figure 21 the probability of false alarm is a varying parameter 
(except for the ED sensing technique, where only Pfa=0.4 was 
considered) and SNR=-20 dB. 
 

Table 1. Comparison of the probability of miss-detection as a 
function of the probability of false alarm between different 

techniques and the underlying impact of the Probability of False 
Alarm, Number of Samples and SNR  

When What happens 
The SNR and the number of 
samples are lower  

There is a clear difference between 
the MFD and the HMFD 

The probability of false alarm is 
slightly lower than 0.5 

The performance of the HMFD 
technique is higher than with MFD, 
since it achieves the lowest 
probability of miss-detection for the 
same number of samples and SNR 

The SNR and number of 
samples are larger 

The ED has the worst performance 
since it has a larger probability of 
miss-detection for the same Pfa  

Figure 17. Probability of Miss-Detection vs SNR for the Matched 
Filter Detection technique with the Probability of False Alarm 

and Number of Samples as parameters 

 

Figure 18. Probability of Miss-Detection vs SNR for the Hybrid 
Matched Filter Detection technique with the Probability of False 

Alarm and Number of Samples as parameters 

 

Figure 19. Probability of Miss-Detection as a function of the 
Probability of False Alarm for N=200 

 

Figure 20. Probability of Miss-Detection as a function of the 
Probability of False Alarm for SNR=-20 dB 

 



 

VOLUME XX, 2021  10 

 
 

 

 
 
 
 
In Figure 22 SNR takes different values (except for the ED 
sensing technique, where only SNR=-15 dB was considered) 
and Pfa=0.3. Table 2 presents the lessons learned.  
N.B.: in Figure 21, the HMFD has lower probability of miss-
detection when comparing with MFD, for Pfa=0.2, Pfa=0.3 
and Pfa=0.4, up to a number of samples of 300, 620 and 800, 
respectively, as it is possible to observe in the zoom out view 
charts. Beyond those values of N, the behavior of the HMFD 
and MFD is similar. In Figure 22, the values of the 
probability of miss-detection for the HMFD technique is 
lower than for the MFD technique for SNR=-15 dB, SNR=-
20 dB and SNR=-25 dB, up to N= 280, 420, and 1700, 
respectively. For higher values of the number of samples, the 
behavior of the HMFD and MFD SS techniques is similar. 
Figures 23 and 24 present results for the probability of miss-
detection as a function of the SNR while comparing different 
spectrum sensing techniques. In Figure 23, one considers 
Pfa=0.3 while the number of samples takes different values 
(except for the ED sensing technique, where only N=200 was 
considered). 
 

Table 2. Comparison of the probability of miss-detection as a 
function of N between different techniques and the underlying 

impact of the N, SNR and Probability of False Alarm  

When What happens 
The probability of false alarm 
is slightly lower than 0.5 and 
SNR takes the lowest values 

There is a more evident difference 
between the MFD and the HMFD 

The number of samples is low The performance of the HMFD is 
higher than with the MFD, since it has 
lower probability of miss-detection for 
the same SNR and probability of false 
alarm 

The SNR and Pfa are larger The ED has the worst performance 
since it achieves a larger probability of 
miss-detection for the same number of 
samples  

 
In Figure 24, one considers N=100 while the probability of 
false alarm varies (except for the ED sensing technique, 
where only Pfa=0.4 was considered). N.B.: in Figure 23, the 
Hybrid MFD (or HMFD) has a lower probability of miss-
detection when comparing with the MFD, for N=50, N=100 
and N=200, until the SNR of -10 dB, -12 dB and -16 dB, 
respectively. After those values of SNR, the behavior of the 
Hybrid MFD and MFD is similar. 

 
 

 
 

Figure 21. Probability of Miss-Detection as a function of the 
Number of Samples for SNR=-20 dB 

 

Figure 22. Probability of Miss-Detection as a function of the 
Number of Samples for Pfa=0.3 

 

Figure 23. Comparison between techniques for the Probability of 
Miss-Detection vs SNR for Pfa=0.3 

 

Figure 24. Comparison between techniques for the Probability of 
Miss-Detection vs SNR for N=100 
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In Figure 24, for Pfa=0.2, Pfa=0.3 and Pfa=0.4, the probability 
of miss-detection is lower when comparing with the MFD, 
until the SNR of -14 dB, -12 dB, and -10 dB, respectively. 
For higher SNR, the HMFD and MFD behaviors are similar. 
Table 3 summarizes the lessons learned from the analysis of 
the results for the probability of miss-detection as a function 
of the SNR of Figures 23 and 24.  
 

Table 3. Comparison between techniques for the probability of 
miss-detection as a function of the SNR and the impact of the SNR, 

Probability of False Alarm and N in the comparison  

When What happens 
The probability of false alarm is 
slightly lower than 0.5 and 
number of samples is the lowest 

It is possible to have a more 
evident difference between the 
MFD and the HMFD 

The SNR has the lowest values The performance of HMFD is 
higher than with the simple MFD, 
since it has lower probability of 
miss-detection for the same 
number of samples and Pfa 

The number of samples and 
probability of false alarm are 
larger 

The ED has the worst performance 
since it achieves a larger 
probability of miss-detection for 
the same SNR  

 
As a measure of the computational complexity, Figure 25 
compares results for the algorithm simulation running time 
(in seconds), for a given N, between different spectrum 
sensing techniques. In Figure 25, one considers Pfa=0.3 and 
SNR=-25 dB. The computational complexity is O(N2) for all 
considered spectrum sensing techniques. In Figure 25, when 
N increases, the running time also increases. The higher N is, 
the larger the difference between the three spectrum sensing 
techniques is. While the ED sensing technique requires 401s 
to simulate 5000 samples, MFD and HMFD require 431s and 
515s, respectively, s to accomplish the same task. When 
compared to the other existing techniques, like ED and MFD, 
the proposed HMFD sensing technique will certainly allow 
the SUs to better detect the spectrum holes under various 
circumstances, while opportunistically accessing primary 
licensed bands without harmful interference. 

 
 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we have proposed the Hybrid Matched Filter 
Detection (HMFD), a new non-cooperative spectrum sensing 
technique, based on the existing Matched Filter Detection,  
that combines different behaviors when the probability of false 
alarm is lower than 0.5 or when it is larger or equal to 0.5.  
The HMFD technique has been compared to other state-of-
the-art techniques, like Energy Detection (ED) and Matched 
Filter Detection (MFD). First, these techniques have been 
analyzed separately to understand the impact in the 
probability of miss-detection of changing given parameters, 
like the signal-to-noise ratio, probability of false alarm and 
number of samples, N. Secondly, these techniques have been 
compared by considering the same parameters to try and 
understand which of them are more efficient. A high 
coincidence is achieved between the simulation and 
theoretical approaches.  
Results show that the MFD and HMFD techniques 
outperform the ED technique for the same set of parameters. 
Besides, by comparing the MFD and the HMFD in terms of 
the ability to detect the presence of primary user, one 
conclude that the proposed technique outperforms the MFD 
in licensed spectrum, as follows: 
• for low N and SNR (in the view chart of probability of 

miss-detection as a function of the probability of false 
alarm); 

• for a probability of false alarm slightly lower than 0.5 
and low SNR (in the view chart of the probability of 
miss-detection as a function of N);  

• for a probability of false increasing towards 0.5 and low 
N (in the view chart of the probability of miss-detection 
as a function of SNR). 

Finally, it is worthwhile to note that although the 
computational complexity is O(N2) for all considered 
spectrum sensing techniques, to simulate 5000 samples, the 
simulation running time slightly increases (from 401-431 s 
to 515 s) for the HMFD.  
One aspect to be explored in future work may be the proposal 
of theorical equations for the HMFD technique since, in this 
work, these results have only been extracted by Monte-Carlo 
simulations. Another aspect to be explored can be the 
proposal of a new high-performance non-cooperative 
spectrum sensing based on Cyclostationary Detection. The 
study the other performance metrics can also be explored. 
We may, in a possible practical cognitive radio scenario, also 
transmit a signal using, e.g., a Raspberry Pi 3 card, and detect 
it by using the proposed spectrum sensing technique 
implemented in MATLAB, connected to, e.g., an RealTek-
Software Defined Radio. The proposed application will be 
evaluated in terms of the detector ability to identify the 
presence of the signal in the shared spectrum. 
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Figure 25. Comparison between techniques for the Time vs 
Number of Samples with Pfa=0.3 and SNR=-25 dB 
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