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 Knowledge Construction and Diverging Thinking
in Elementary & Advanced Mathematics
Eddie Gray, Marcia Pinto, Demetra Pitta, David Tall

ABSTRACT: This paper begins by considering the cognitive
mechanisms available to individuals which enable them to operate
successfully in different parts of the mathematics curriculum. We base
our theoretical development on fundamental cognitive activities,
namely, perception of the world, action upon it and reflection on both
perception and action. We see an emphasis on one or more of these
activities leading not only to different kinds of mathematics, but also
to a spectrum of success and failure depending on the nature of the
focus in the individual activity. For instance, geometry builds from
the fundamental perception of figures and their shape, supported by
action and reflection to move from practical measurement to
theoretical deduction and euclidean proof. Arithmetic, on the other
hand, initially focuses on the action of counting and later changes
focus to the use of symbols for both the process of counting and the
concept of number. The evidence that we draw together from a
number of studies on children’s arithmetic shows a divergence in
performance. The less successful seem to focus more on perceptions
of their physical activities than on the flexible use of symbol as
process and concept appropriate for a conceptual development in
arithmetic and algebra.

Advanced mathematical thinking introduces a new feature in
which concept definitions are formulated and formal concepts are
constructed by deduction. We show how students cope with the
transition to advanced mathematical thinking in different ways
leading once more to a diverging spectrum of success.

1. CONSTRUCTING MATHEMATICAL KNOWLEDGE

Mathematical development occurs in a biological brain. To enable a structure
with complex simultaneous activity to pursue sequential thought in a coherent
way requires a special mechanism. Crick suggests:

The basic idea is that early processing is largely parallel: a lot of
different activities proceed simultaneously. Then there appear to be
one or more stages where there is a bottleneck in information
processing. Only one (or a few) “object(s)” can be dealt with at a
time. This is done by temporarily filtering out the information
coming from the unattended objects. The attention system then
moves fairly rapidly to the next object, and so on, so that attention is
largely serial (i.e. attending to one object after another) not highly
parallel (as it would be if the system attended to many things at
once). (Crick, 1994, p. 61)

The powerful thinking that develops in mathematics takes advantage of this
biological phenomenon. The filtering out of most activity to focus on a few
elements requires that these elements be distilled to their essence so that they
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are “small enough” to be considered at one time. It also requires that each of
these elements be appropriately linked to other relevant structures in the huge
memory store to allow it speedily to become a new focus of attention as
required.

One method to cope with the complexity of a sequence of activities is
repetition and practice until it becomes routine and can be performed with little
conscious thought. This frees the conscious memory to focus on other items
(Skemp, 1979). For instance, in using tools, the techniques become part of
unconscious activity whilst the individual can focus on more utilitarian or
aesthetic issues. Although such repetition and interiorisation of procedures has
been seen as an essential part of mathematics learning, for decades it has been
known that it has made no improvement in the understanding of relationships
(see for example, Thorndike, 1922; Brownell, 1935). More importantly, if used
exclusively, it may lead to a form of procedural thinking that lacks the flexi-
bility necessary to solve novel problems (see for example, Schoenfeld, 1992).

A more powerful method of dealing with complexity is through the human
use of language. Here a single word can stand not only for a highly complex
structure of concepts and/or processes but also for various levels in a conceptual
hierarchy. Perception of figures is at the foundation of geometry, but it takes the
power of language to make hierarchical classifications. Figures are initially
perceived as gestalts but then may be described and classified through
verbalising their properties, to give the notions of points, lines, planes, triangles,
squares, rectangles, circles, spheres, etc. Initially these words may operate at a
single generic level, so that a square (with four equal sides and every angle a
right angle) is not considered as a rectangle (with only opposite sides equal).
Again, through verbal discussion, instruction and construction, the child may
begin to see hierarchies with one idea classified within another, so that “a
square is a rectangle is a quadrilateral”, or “a square is a rhombus is a
parallelogram is a quadrilateral”. The physical and mental pictures supported by
linguistic descriptions may become conceived in a more pure, imaginative way.
Points have “position but no size”, straight lines are truly straight, with “no
thickness and arbitrary length”, a circle is the locus of a point a fixed distance
from the centre and so on. Such a development leads to platonic mental
constructions of objects and the development of Euclidean geometry and
Euclidean proof. Thus, a focus on perceived objects leads naturally through the
use of language to platonic mental images and a form of mathematical proof (as
in Van Hiele, 1959, 1986).

On the other hand, the idea of counting begins with the repetition of number
words, with the child’s remembered list of numbers steadily growing in length
and correctness of sequence. The act of counting involves pointing at successive
objects in a collection in turn and saying the number words, “there are one, two,
three things here.” This may be compressed, for instance, by carrying out the
count silently, saying just the last word, “there are [one, two,] three”, heard as



Knowledge Construction and Diverging Thinking in Mathematics

– 3 –

“there are …three.” It is thus natural to use the word “three” not just as a
counting word, but also as a number concept. By this simple device, the
counting process “there are one, two, three,” is compressed into the concept
“there are three.” (Gray and Tall, 1994).

This compression is powerful in quite a different way from the compression
in geometric thinking. In geometry, a word represents a generic concept (say
“square”) in a hierarchy of concepts. In arithmetic the number word is also part
of a hierarchy (a counting number is a fraction is a rational number is a real
number). However, the major biological advantage of numbers arises not from
this hierarchy but from the way in which the number words can be used to
switch between processes (such as counting or measuring) and concepts (such
as numbers). Not only are number symbols “small enough” to be held in the
focus of attention as concepts, they also give immediate access to action
schemas (such as counting) to carry out appropriate computations. In the
biological design of the brain, they act not only as economical units to hold in
the focus of attention, they also provide direct links to action schemas.

When numbers have become conceived as mental entities, they may
themselves be operated upon. For instance, two numbers may be added to give
their sum through a development that again involves a process of compression.
The addition of two numbers begins as “count-all”, involving three counting
stages: “count one set, count another, put them together and count them all”.
This is compressed through various stages including “count-on”, where the first
number is taken as the starting value and the second is used to count-on to give
the result. Some of these results are committed to memory to give “known
facts”. They may then be used in a conceptual way to “derive facts”, for
instance, knowing that 5+5 is 10, to deduce that 5+4 is one less, namely, 9.

This power of mathematical symbols to evoke either process or concept
caused Gray & Tall (1994) to give the notion a formal name. The amalgam of a
process, a concept output by that process, and a symbol that can evoke either
process or concept is called a procept. In elementary arithmetic, procepts start as
simple structures and grow in interiority with the cognitive growth of the child.
Although other theorists (including Dubinsky, 1991 and Sfard, 1991) use the
term “object”, we prefer the word “concept” because terms such as “number
concept” or “fraction concept” are more common in ordinary language than
“number object” or “fraction object”. Further, the term is used in a manner
related to the “concept image” which consists of “all of the mental pictures and
associated properties and processes” related to the concept in the mind of the
individual (Tall & Vinner, 1981, p. 152). Procepts are generic and increase in
richness with the growing sophistication of the learner. There is no claim that
there is a “thing” called “a mental object” in the mind. Instead, a symbol is used
which can be spoken, heard, written and seen. It has the distilled essence that
can be held in the mind as a single entity, it can act as a link to internal action
schemas to carry out computations, and it can be communicated to others.
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1.1 Piaget’s three forms of abstraction

Piaget spoke of three forms of abstraction. When acting on objects in the
external world, he speaks first of empirical abstraction, where the focus is on
the objects themselves and “derives its knowledge from the properties of
objects” (Beth & Piaget, 1966, pp. 188-189). On the other hand, a focus on the
actions leads to pseudo-empirical abstraction which “teases out properties that
the action of the subjects have introduced into objects” (Piaget, 1985, pp.
18-19). Further constructions can then be accomplished by reflective
abstraction, using existing structures to construct new ones by observing one’s
thoughts and abstracting from them. In this way:

… the whole of mathematics may therefore be thought of in terms of
the construction of structures,... mathematical entities move from one
level to another; an operation on such ‘entities’ becomes in its turn an
object of the theory, and this process is repeated until we reach
structures that are alternately structuring or being structured by
‘stronger’ structures. (Piaget, 1972, p. 703)

Note here that reflective abstraction seems to be formulated as a mental version
of “pseudo-empirical abstraction”, in which an “operation” on a mental entity
becomes in its turn an “object” at the next level. Some authors (for example,
Dubinsky, 1991) have taken this to mean that reflective abstraction only occurs
by processes becoming conceived as conceptual entities through a process of
“encapsulation” or “reification”. Given Piaget’s two notions of abstraction from
the physical world, the question naturally arises as to whether there are
corresponding forms of reflective abstraction focusing on mental objects and on
mental actions. Our analysis would support this position. In the cognitive
development of geometry, there is a clear shift from the mental conception of a
physical triangle to the mental construction of a perfect platonic triangle. The
former is imagined drawn on paper, with lines having thickness joining points
having size, the latter has perfectly straight edges with no thickness and vertices
with position but no size. We therefore suggest that there are (at least) two
forms of reflective abstraction, one focusing on objects, occurring, for instance,
in Euclidean geometry, the other focusing on actions on objects (usually
represented by symbols), for instance, in arithmetic, algebra and the calculus.

Our focus on perception, action and reflection is therefore consistent with
Piaget’s three notions of abstraction, with the additional observation that
reflective abstraction has a form which focuses on objects and their properties,
as well as one which focuses on actions and their encapsulation as objects.

1.2 Theories of process-object transformation

The notion of (dynamic) processes becoming conceived as (static) objects has
played a central role in various theories of concept development (see, for
example, Dienes, 1960; Piaget, 1972; Greeno, 1983; Davis, 1984; Dubinsky,
1991; Sfard, 1991; Harel & Kaput, 1991; Gray & Tall, 1994).
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Dubinsky and his colleagues (e.g. Cottrill et al. 1996) formulate a theory
which they give the acronym APOS, in which actions are physical or mental
transformations on objects. When these actions become intentional, they are
characterised as processes that may be later encapsulated to form a new object.
A coherent collection of these actions, processes and objects, is identified as a
schema. In more sophisticated contexts, empirical evidence also intimates that a
schema may be reflected upon and acted on, resulting in the schema becoming a
new object through the encapsulation of cognitive processes (Cottrill et al,
1996, p.l72).

Sfard (1991, p. 10) suggests that “in order to speak about mathematical
objects, we must be able to deal with the products of some processes without
bothering about the processes themselves”. Thus we begin with “a process
performed on familiar objects” (Sfard and Linchevski, 1994, p 64). This is then
“condensed” by being seen purely in terms of “input/output without necessarily
considering its component steps” and then “reified” by converting “the already
condensed process into an object-like entity.” Sfard postulates her notion of
“reification” within a wider theory of operational and structural conceptions, the
first focusing on processes, the second on objects (Sfard, 1989, 1991, 1994). In
several papers she emphasises that the operational approach—constructing new
objects through carrying out processes on known objects usually precedes a
structural approach to the new objects themselves.

Such theories, which see the construction of new mental objects through
actions on familiar objects, have a potential flaw. If objects can only be
constructed from cognitive actions on already established objects, where do the
initial objects come from?

Piaget’s theory solves this problem by having the child’s preliminary
activities involving perception and action of the physical world. Once the child
has taken initial steps in empirical or pseudo-empirical abstraction to construct
mental entities, then these become available to act upon to give a theoretical
hierarchy of mental constructions.

Sfard’s theory concentrates on later developments in older individuals who
will already have constructed a variety of cognitive objects. Dubinsky also
concentrates on undergraduate mathematicians. However, the APOS theory is
formulated to apply to all forms of object formation. Dubinsky, Elterman &
Gong (1988, p. 45), suggest that a “permanent object” is constructed through
“encapsulating the process of performing transformations in space which do not
destroy the physical object”. This theory therefore follows Piaget by starting
from initial physical objects that are not part of the child’s cognitive structure
and theorises about the construction of a cognitive object in the mind of the
child. It formulates empirical abstraction as another form of process-object
encapsulation.

At the undergraduate level, Dubinsky (1991) extends APOS theory to include
the construction of axiomatic theories from formal definitions. APOS theory is
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therefore designed to formulate a theory of encapsulation covering all possible
cases of mental construction of cognitive objects.

Our analysis has different emphases. We see the differences between various
types of mathematical concept formation being as least as striking as the
similarities. For instance, the construction of number concepts (beginning with
pseudo-empirical abstraction) follows a very different cognitive development
from that of geometric concepts (beginning with empirical abstraction) (Tall,
1995). In elementary mathematics, we see two different kinds of cognitive
development. One is the van Hiele development of geometric objects and their
properties from physical perceptions to platonic geometric objects. The other is
the development of symbols as process and concept in arithmetic, algebra and
symbolic calculus. It begins with actions on objects in the physical world, and
requires the focus of attention to shift from the action of counting to the
manipulation of number symbols. From here the number symbols take on a life
of their own as cognitive concepts, moving on to the extension and
generalisations into more sophisticated symbol manipulation in algebra and
calculus. Each shift to a new conceptual domain involves its own subtle changes
and cognitive reconstructions, however, what characterises these areas of
elementary mathematics is the use of symbols as concepts and processes to
calculate and to manipulate.

1.3 A new focus in advanced mathematical thinking

When formal proof is introduced in advanced mathematical thinking, a new
focus of attention and cognitive activity occurs. Instead of a focus on symbols
and computation to give answers, the emphasis changes to selecting certain
properties as definitions and axioms and building up the other properties of the
defined concepts by logical deduction. The student is often presented with a
context where a formal concept (such as a mathematical group) is encountered
both by examples and by a definition. Each of the examples satisfies the
definition, but each has additional qualities, which may, or may not, be shared
between individual examples. The properties of the formal concept are deduced
as theorems, thus constructing meaning for an overall umbrella concept from
the concept definition. This didactic reversa1—constructing a mental object
from “known” properties, instead of constructing properties from “known”
objects causes new kinds of cognitive difficulty.

The new formal context—in which objects are created from properties
(axioms) instead of properties deduced from (manipulating) objects—not only
distinguishes advanced mathematical thinking from elementary mathematical
thinking, it also suggests that different kinds of “structure” occur in the
structural-operational formulation of Sfard. In elementary mathematics, for
example, a “graph” is described as a structural object (Sfard, 1991). In advanced
mathematics, the Peano postulates are said to be structural (Sfard, 1989). Thus,
a structural perspective may refer to visual objects in elementary mathematics
and Bourbaki-style formal structure in advanced mathematics.
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1.4 A theoretical perspective

The preceding discussion leads to a theory of cognitive development in
mathematics with two fundamental focuses of attention—object and
action—together with the internal process of reflection. In line with Piaget we
note the different forms of abstraction which arise from these three: empirical
abstraction, pseudo-empirical abstraction and reflective abstraction. However,
we note that reflective abstraction itself has aspects that focus on object or on
action.

We see abstraction from physical objects as being different from abstraction
from actions on objects. In the latter case, action-process-concept development
is aided by the use of symbol as a pivot linking the symbol either to process or
to concept. Procepts occur throughout arithmetic, algebra and calculus, and
continue to appear in advanced mathematical thinking. However, the
introduction of axioms and proofs leads to a new kind of cognitive
concept—one which is defined by a concept definition and its properties
deduced from the definition. We regard the development of formal concepts as
being better formulated in terms of the definition-concept construction. This
focuses not only on the complexity of the definition, often with multiple
quantifiers, but also on the internal conflict between a concept image, which
“has” properties, and a formal concept, whose properties must be “proved” from
the definitions.

We therefore see elementary mathematics having two distinct methods of
development, one focusing on the properties of objects leading to geometry, the
other on the properties of processes represented symbolically as procepts.
Advanced mathematics takes the notion of property as fundamental, using
properties in concept definitions from which a systematic formal theory is
constructed.

2. DIVERGING COGNITIVE DEVELOPMENT
IN ELEMENTARY MATHEMATICS

2.1 Divergence in performance

The observation that some individuals are more successful than others in
mathematics has been evident for generations. Piaget provided a novel method
of interpreting empirical evidence by hypothesising that all individuals pass
through the same cognitive stages but at different paces. Such a foundation
underlies the English National Curriculum with its sequence of levels through
which all children pass at an appropriate pace, some progressing further than
others during the period of compulsory education.

Krutetskii (1976, p. 178) offers a different conception with a spectrum of
performance between various individuals depending on how they process
information. He studied 192 children selected by their teachers as ‘very capable’
(or ‘mathematically gifted’), ‘capable’, ‘average’ and ‘incapable’. He found that
gifted children remembered general strategies rather than detail, curtailed their
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solutions to focus on essentials, and were able to provide alternative solutions.
Average children remembered specific detail, shortened their solutions only
after practice involving several of the same type, and generally offered only a
single solution to a problem. Incapable children remembered only incidental,
often irrelevant detail, had lengthy solutions, often with errors, repetitions and
redundancies, and were unable to begin to think of alternatives.

Our research also shows a divergence in performance. We do not use the
evidence collected to imply that some children are doomed forever to erroneous
procedural methods whilst others are guaranteed to blossom into a rich
mathematical conceptualisation. We consider it vital not to place an artificial
ceiling on the ultimate performance of any individual, or to predict that some
who have greater success today will continue to have greater success tomorrow.
However, the evidence we have suggests that the different ways in which
individuals process information at a given time can be either beneficial or
severely compromising for their current and future development. A child with a
fragmented knowledge structure who lacks powerful compressed referents to
link to efficient action schemas will be more likely to have greater difficulty in
relating ideas. The expert may see distilled concepts which can each be grasped
and connected within the focus of attention. The learner may have diffuse
knowledge of these conceptual structures which is not sufficiently compressed
into a form that can be brought into the focus of attention at a single time for
consideration.

Far from not working hard enough, the unsuccessful learner may be working
very hard indeed but focusing on less powerful strategies that try to cope with
too much uncompressed information. The only strategy that may help them is to
rote-learn procedures to perform as sequential action schemas. Such knowledge
can be used to solve routine problems requiring that particular technique, but it
occurs in time and may not be in a form suitable for thinking about as a whole
entity.

2.2 Focus on objects and/or actions in elementary mathematics

The observation that a divergence in performance exists in the success and
failure of various students does not of itself explain how that divergence occurs.
To gain an initial insight into aspects of this divergence, we return to our initial
notions of perception, action and abstraction. We earlier discussed global
differences between geometry (based on perception of figures, supported by
action and extended through reflection), and arithmetic (based on actions of
counting objects that are initially perceived and reflected upon). Now, within
arithmetic we consider the effect of different emphases on action, perception
and reflection.

Whenever there is an activity involving actions on objects, the complexity of
the activity may cause the individual to focus only on part of the activity. For
instance, it is possible to focus on the objects, on the actions or a combination of
the two. Cobb, Yackel and Wood (1992) see this attention to objects or actions
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as one of the great problems in learning mathematics, particularly if learning
and teaching are approached from a representational context. Pitta and Gray
(1997) showed that certain observed differences in children’s arithmetic
performance could be linked to the learner’s focus either on objects, on actions,
or on a combination of both.

To investigate the way in which children may focus on different aspects of a
situation, Pitta (1998) placed five red unifix cubes before some seven-year-old
children at the extremes of mathematical ability. She asked the children to
indicate what they thought about when they saw the cubes and what they
thought would be worth remembering about them. The four more able children
all had something to say about the cubes using the notion of ‘five’. They all
thought that ‘five cubes’ was worth remembering. In contrast, the four lower
ability children talked about the pattern, the colour, or the possible
rearrangements of the cubes and considered these to be worth remembering.

Different contexts require a focus of attention upon different things. Within
an art lesson it may be important to filter out those things that may not
immediately be seen to be part of an aesthetic context. Number may be one of
these. In the mathematical context it is important to filter out those things that
may not be seen to be mathematical. Yet, in the activity just considered, low
achievers seemed less able to do this, continuing to focus on their concrete
experience. High achievers, on the other hand, were able to separate the
inherent mathematical qualities from the actual physical context. They could
also, if required, expand their discussions to include other aspects of the
activity, revealing cognitive links to a wider array of experience. Such
differences may become manifest in the way in the activity is remembered. It is
hypothesised that low achievers focus upon the physical aspects of the activity,
which are assimilated in an episodic way. High achievers appear to focus upon
the semantic mathematical aspects, which are accommodated in a generic way
(Pitta & Gray, 1997).

2.3 The Proceptual Divide

The divergence in success between extremes of success and failure can be
usefully be related to the development of the notion of procept.  Gray and Tall
(1994) suggest that interpretations of mathematical symbolism as process or
procepts leads to a proceptual divide between the less successful and the more
successful. On the one hand, we see a cognitive style strongly associated with
invoking the use of procedures, on the other a style more in tune with the
flexible notion of procept. Those using the latter have a cognitive advantage;
they derive considerable mathematical flexibility from the cognitive links
relating process and concept. In practice, there is a broad spectrum of
performance between different individuals in different contexts (figure 1).

In a given routine context, a specific procedure may be used for a specific
purpose. This allows the individual to do mathematics in a limited way,
provided that it involves using the learned procedure. Some individuals may
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develop greater sophistication by being able to use alternative procedures for
the same process and to select a more efficient procedure to carry out the given
task speedily and accurately. For instance, the procedure of “count-on from
largest” is a quicker way of solving 2+7 (counting on 2 after 7 rather than
counting-on 7 after 2). Baroody & Ginsburg (1986) suggest that growing
sophistication arises from the recognition that a single mathematical process
may be associated with several procedures.  Woods, Resnick & Groen (1975)
note that this element of “choice” can be indicative of increased sophistication.
However, it is only when the symbols used to represent the process are seen to
represent manipulable concepts that the individual has the proceptual flexibility
both to do mathematics and also to mentally manipulate the concepts at a more
sophisticated level (Gray & Tall, 1994).

In a particular case, all three levels (procedure, process, procept) might be
used to solve a given routine problem. It might therefore be possible for
individuals at different levels of sophistication to answer certain questions in a
test at a certain level. However, this may be no indication of success at a later
level because the procept in its distilled manipulable form is more ready for
building into more sophisticated theories than step-by-step procedures. On the
other hand, all too frequently, children are seen using procedures even when
they are inappropriate, inefficient and unsuccessful (see for example Gray,

Procedure

Procept
Process(es)

Procedure(s)

Process
Procedure(s)

Progress

Sophistication
of development

To DO
routine 

mathematics 
accurately

To perform 
mathematics 
flexibily & 
efficiently

To THINK
about 

mathematics 
symbolically

Spectrum of Outcomes

Figure 1:  A spectrum of performance in using mathematical procedures, processes, procepts
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1993). Those who operate successfully at the procedural level are faced with
much greater complexity than their proceptual colleagues when the next level of
difficulty is encountered.

2.4 Mental representations and elementary mathematics

The notion of a proceptual divide illustrates the extreme outcomes of different
cognitive styles. We now turn to asking why such a difference occurs. To gain a
partial answer to this question we now consider mental representations,
particularly those in imaginistic form.

Pitta & Gray (1997) describe the way in which two groups of children, ‘low
achievers’ and ‘high achievers’, report their mental representations when
solving elementary number combinations. Differences that emerged showed the
tendency of low achievers to concretise numbers and focus on detail. Their
mental representations were strongly associated with the procedural aspects of
numerical processing—action was the dominant level of operating (see also
Steffe, Von Glasersfeld, Richards and Cobb, 1983). In contrast, high achievers
appeared to focus on those abstractions that enable them to make choices.

The general impression was that children of different levels of arithmetical
achievement were using qualitatively different objects to support their
mathematical thinking. Low achievers translated symbols into numerical
processes supported by the use of imaginistic objects that possessed shape and
in many instances colour. Frequently they reported mental representations
strongly associated with the notion of number track although the common
object that formed the basis of each ‘unit’ of the track was derived from fingers.
In some instances children reported seeing full picture images of fingers, in
others it was ‘finger like’. The essential thing is that the object of thought was
‘finger’ and the mental use of finger invoked a double counting procedure. The
objects of thought of the low achievers were analogues of perceptual items that
seemed to force them to carry out procedures in the mind, almost as if they were
carrying out the procedures with perceptual items on the desk in front of them.
Pitta and Gray suggest that their mental representations were essential to the
action; and they maintained the focus of attention. When items became more
difficult, the children reverted to the use of real items.

In contrast, when high achievers indicated that they had “seen something”,
that “something” was usually a numerical symbol. More frequently these
children either responded automatically or reported that they talked things over
in their heads. However, when they did describe mental representations the
word “flashing” often dominated their description. Representations came and
went very quickly. “I saw ‘3+4’ flash through my mind and I told you the
answer”, “I saw a flash of answer and told you.” It was not unusual for the
children to note that they saw both question and answer “in a flash”, sometimes
the numerical symbol denoting the answer “rising out of” the symbols
representing the question. In instances where children reported the use of
derived facts it was frequently the numerical transformation that “flashed”. For
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instance when given 9+7 one eleven year old produced the answer 16
accompanied by the statement. “10 and 6 flashed through my mind”. Here we
have vivid evidence of powerful mental connections moving from one focus of
attention to another. Such a child evidently has flexible mental links between
distilled concepts that allow quick and efficient solutions to arithmetic
problems.

This ability to encapsulate arithmetical processes as numerical concepts
provides the source of flexibility that becomes available through the proceptual
nature of numerical symbolism. Recognising that a considerable amount of
information is compressed into a simple representation, the symbol, is a source
of mathematical power. This strength derives from two abilities; first an ability
to filter out information and operate with the symbol as an object and secondly
the ability to connect with an action schema to perform any required
computation. We suggest that qualitative differences in the way in which
children handle elementary arithmetic may be associated with their relative
success. Different cognitive styles seem to indicate that differing perceptions of
tasks encountered lead to different consequences, one associated with
performing mathematical computations, the other associated with knowing
mathematical concepts.

Mental representations associated with the former appear to be products of
reflection upon the actions and the objects of the physical environment. One
consequence of mathematical activity focusing upon procedural activity is that
it would seem to place a tremendous strain on working memory. It does not
offer support to the limited space available within short-term memory.

3. THE TRANSITION TO
ADVANCED MATHEMATICAL THINKING

The move from elementary to advanced mathematical thinking
involves a significant transition: that from describing to defining,
from convincing to proving in a logical manner based on those
definitions. … It is the transition from the coherence of elementary
mathematics to the consequence of advanced mathematics, based on
abstract entities which the individual must construct through
deductions from formal definitions. Tall, 1991, p. 20

The cognitive study of “advanced mathematical thinking” developed in the
mathematics education community in the mid-eighties (see, for example, Tall,
1991). Euclidean proof and the beginnings of calculus are usually considered
“advanced” at school level. However, the term “advanced mathematical
thinking” has come to focus more on the thinking of creative professional
mathematicians imagining, conjecturing and proving theorems. It is also applied
to the thinking of students presented with the axioms and definitions created by
others. The cognitive activities involved can differ greatly from one individual
to another, including those who build from images and intuitions in the manner
of a Poincaré and those more logically oriented to symbolic deduction such as
Hermite.
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Piaget’s notion of “formal operations” indicates the ability to reason in a
logical manner:

Formal thought reaches its fruition during adolescence … from the
age of 11–12 years … when the subject becomes capable of
reasoning in a hypothetico-deductive manner, i.e., on the basis of
simple assumptions which have no necessary relation to reality or to
the subject’s beliefs, and … when he relies on the necessary validity
of an inference, as opposed to agreement of the conclusions with
experience. Piaget, 1950, p. 148.

In a similar manner, the SOLO taxonomy identifies the formal mode of thinking
where:

“The elements are abstract concepts and propositions, and the
operational aspect is concerned with determining the actual and
deduced relationships between them; neither the elements nor the
operations need a real-world referent” Collis & Romberg, 1991, p. 90.

However, often these ideas are applied by Piaget to imagined real-world events
and in the SOLO taxonomy to logical arguments in traditional algebra, involv-
ing relationships between symbols that no longer need have a perceptual referent.

The notion of advanced mathematical thinking is more subtle than this. It
involves the creation of new mental worlds in the mind of the thinker which
may be entirely hypothetical. Mathematicians do this by reflecting on their
visual and symbolic intuitions to suggest useful situations to study, then to
specify criteria that are necessary for the required situation to hold. This is done
by formulating definitions for mathematical concepts as a list of axioms for a
given structure, then developing other properties of this structure by deduction
from the definitions. A considerable part of research effort is expended in
getting these criteria precise so that they give rise to the required deduced
properties. What is then produced is more than a verbal/symbolic list of
definitions and theorems. Each individual theoretician develops a personal
world of concept images and relationships related to the theory. These may
include ideas that suggest what ought to be true in the given theory before
necessarily being able to formulate a proof of what must follow from the
definitions.

Definitions of structures—such as “group”, “vector space”, “topological
space”, “infinite cardinal”—face in two ways. They face back to previous
experiences which suggest what ideas are worth studying and forward to the
construction of theorems which are true for any structure that satisfies the given
criteria. They can cause great cognitive problems for a learner who must
distinguish between those things in the mind which suggest theorems and other
things that have already been proved from the criteria. The learner must
maintain a distinction between the broad concept images formed from previous
experience and new constructions—the formal concept image—which consists
only of those concepts and properties that have been constructed formally from
the definitions.
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In practice, this often proves extremely difficult. Whereas mathematics
researchers may have had experience at making new structures by constructing
their own definitions, students are more likely to only be initially involved in
using definitions which have been provided by others. Through their earlier life
experiences they will have developed an image in which objects are “described”
in words in terms of collecting together enough information to identify the
object in question for another individual. The idea of giving a verbal definition
as a list of criteria and constructing the concept from the definition is a reversal
of most of the development in elementary mathematics where mathematical
objects are thought to have properties which can be discovered by studying the
objects and related processes. The move from the object→ definition

construction to definition→object construction is considered an essential part of

the transition from elementary to advanced mathematical thinking.This definition→object construction involves selecting and using criteria for

the definitions of objects. This may reverse previous experiences of
relationships. For instance, the child may learn of subtraction as an operation
before meeting negative numbers and inverse operations. In formal mathematics
the axioms for an additive operation in a group may specify the inverse –a of an
element a and define subtraction b–a as the sum of b and –a. In this way the
presentation of axiom systems as criteria for theoretical mathematical systems
can strike foreign chords in the cognitive structure of the learner. Instead of
proving results of which they are unsure by starting from something they know,
they find they are trying to prove something they know starting from axioms
which make them feel insecure.

Our experience of this learning process in mathematical analysis (Pinto &
Gray, 1995; Pinto & Tall, 1996; Pinto, 1998) shows a spectrum of student
performances signalling success and failure through following two comple-
mentary approaches.

One approach, which we term “natural” (following Duffin & Simpson, 1993)
involves the student attempting to build solely from his or her own perspective,
attempting to give meaning to the mathematics from current cognitive structure.
Successful natural learners can build powerful formal structures supported by a
variety of visual, kinaesthetic and other imagery, as in the case of student Chris
(Pinto, 1998). He made sense of the definition of convergence by drawing a
picture and interpreting it as a sequence of actions:
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“I think of it graphically ... you got a graph there and the function
there, and I think that it’s got the limit there ... and then _, once like
that, and you can draw along and then all the ... points after N are
inside of those bounds. ... When I first thought of this, it was hard to
understand, so I thought of it like that’s the n going across there and
that’s an. ... Err, this shouldn’t really be a graph, it should be points.”

(Chris, first interview)

As he drew the picture, he gestured with his hands to show that first he
imagined how close he required the values to be (either side of the limit), then
how far he would need to go along to get all successive values of the sequence
inside the required range. He also explained:

 “I don’t memorise that [the definition of limit]. I think of this
[picture] every time I work it out, and then you just get used to it. I
can nearly write that straight down.” (Chris, first interview)

However, his building of the concept involved him in a constant state of
reconstruction as he refined his notion of convergence, allowing it to be
increasing, decreasing, up and down by varying amounts, or constant in whole
or part, always linking to the definition which gave a single unifying image to
the notion. During his reconstructions, he toyed with the idea of an increase in
N causing a resultant reduction in the size of ε, before settling on the preference

for specifying ε, then finding an appropriate N.
As an alternative to the “natural” approach, there is a second approach which

Pinto (1998) termed “formal”. Here the student concentrates on the definition,
using it and repeating it as necessary until it can be written down without effort.
Ross, for example explained he learned the definition:

 “Just memorising it, well it’s mostly that we have written it down
quite a few times in lectures and then whenever I do a question I try
to write down the definition and just by writing it down over and
over again it gets imprinted and then I remember it.”

(Ross, first interview)
He wrote:

(Ross, first interview)

The focus in this case is on the definition and the deductions. Visual and other
images play a less prominent role. Used successfully, this approach can produce
a formal concept image capable of using the definitions and proving theorems
as required by the course. At its very best the student will also be in a position
later on to reconstruct knowledge, comparing old with new and making new
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links. However, it is also possible to develop the knowledge in a new
compartment, not linked to old knowledge.

Both formal and natural learners can be successful in advanced mathematical
thinking. However, they face different sequences of cognitive reconstruction.
The natural learner may be in continuous conflict as (s)he reconstructs informal
imagery to give rich meaning to the formal theory. The formal learner may have
fewer intuitions to guide the way, but follows a course involving more new
construction rather than reconstruction. At the end of the formalisation process,
if the new knowledge is linked to the old imagery, then reconstruction is likely
to be required at this stage.

Less successful students also have difficulties in different ways. Some (such
as those in Gray & Pinto, 1995) saw the new ideas only in terms of their old
meanings and could not make the transition to the use of definition as criteria
for determining the concept. These could be described as natural learners who
fail to reconstruct their imagery to build the formalism. Their informal concept
image intimates to them that the theorems are “true” and they see no need to
support informal imagery with what they regard as alien to both their need and
their understanding.

Less successful students attempting the formal route may be unable to grasp
the definition as a whole and cope with only parts of it. They may be confused
by the complexity of multiple quantifiers, perhaps failing to give them their true
formal meaning, perhaps confusing their purpose, perhaps concentrating only
on a part of the definition.

It seems that the only way out for unsuccessful students, be they natural or
formal learners, is to attempt to rote-learn the definitions.

Maths education at university level, as it stands, is based like many
subjects on the system of lectures. The huge quantities of work
covered by each course, in such a short space of time, make it
extremely difficult to take it in and understand. The pressure of time
seems to take away the essence of mathematics and does not create
any true understanding of the subject. From personal experience I
know that most courses do not have any lasting impression and are
usually forgotten directly after the examination. This is surely not an
ideal situation, where a maths student can learn and pass and do well,
but not have an understanding of his or her subject.

Third Year Mathematics Student, (Tall, 1993a)

4. CONCLUSION

In this paper, we have considered the interplay of perception, action and
reflection on cognitive development in mathematics. Geometry involves a major
focus on perception of objects, which develops through reflective activity to the
mental construction of perfect platonic objects. Arithmetic begins by focusing
on actions on objects (counting) and develops using procepts (symbols acting as
a pivot between processes and concepts) to build elementary arithmetic and
algebra.
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In elementary arithmetic we find that the less successful tend to remain
longer focused on the nature of the objects, their layout and the procedures of
counting. Our evidence suggests that less successful children focus on the
specific and associate it to real and imagined experiences that often do not have
generalisable, manipulable aspects. We theorise that this places greater strains
on their overloaded short-term memory. A focus on the counting procedure
itself can give limited success through procedural methods to solve simple
problems. High achievers focus increasingly on flexible proceptual aspects of
the symbolism allowing them to concentrate on mentally manipulable concepts
that give greater conceptual power. The flexible link between mental concepts
to think about and action schemas to do calculations utilise the facilities of the
human brain to great advantage.

We see the transition to advanced mathematical thinking involving a
transposition of knowledge structure.  Elementary mathematical concepts have
properties that can be determined by acting upon them. Advanced mathematical
concepts are given properties as axiomatic definitions and the nature of the
concept itself is built by deducing the properties by logical deduction. Students
handle the use of concept definitions in various ways. Some natural learners
reconstruct their understanding to lead to the formal theory whilst other, formal,
learners build a separate understanding of the formalities by deduction from the
concept definitions. However, many more can make little sense of the ideas,
either as natural learners whose intuitions make the formalism seem entirely
alien, or as formal learners who cannot cope with the complexity of the
quantified definitions.

The theory we present here has serious implications in the teaching of
elementary and advanced mathematics, in ways which have yet to be widely
tested. The obvious question to ask is “how can we help students acquire more
beneficial ways of processing information?”, in essence, “how can we help
those using less successful methods of processing to become more successful?”
Our instincts suggest that we should attempt to teach them more successful
ways of thinking about mathematics. However, this strategy needs to be very
carefully considered, for it may have the result that we teach procedural
children flexible thinking in a procedural way. This scenario would have the
effect of burdening the less successful child with even more procedures to cope
with. It might tend to make their cognitive structure more complex rather than
more flexible and more efficient.

One approach at encouraging more flexible thinking (Gray & Pitta, 1997a,b)
used a graphic calculator with a multi-line display retaining several successive
calculations for a child to use in a learning experiment. The experience was
found to have a beneficial effect in changing the mental imagery of a child who
previously experienced severe conceptual difficulty. Before using the calculator,
the child’s arithmetic focused on counting using perceptual objects or their
mental analogues. After a period of approximately six months use with the
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graphic calculator, it was becoming clear in our interactions with her that she
was associating a different range of meanings with numbers and numerical
symbolism. She was beginning to build new images, symbolic ones that could
stand on their own to provide options that gave her greater flexibility. The
evidence suggests that if practical activities focus on the process of evaluation
and the meaning of the symbolism they may offer a way into arithmetic that
helps those children who are experiencing difficulty.

In the teaching of algebra, Tall & Thomas (1991) found that the act of
programming could allow students to give more coherent meaning to
symbolism as both process and concept. A computer language will evaluate
expressions, so that, for instance, the learner may explore the idea that 2+3*x
usually gives a different answer from (2+3)*x for numerical values of x. This
can provide a context for discussing the ways in which expressions are
evaluated by the computer. The fact that 2*(x+3), 2*x+2*3, 2*x+6, always give
the same output, can be explored to see how different procedures of evaluation
may lead to the same underlying process, giving the notion of equivalent
expressions and laying down an experiential basis for manipulating expressions.
This leads through a procedure – process – procept sequence in which
expressions are first procedures of evaluation, then processes which can have
different expressions producing the same effect, then concepts which can
themselves be manipulated by replacing one equivalent expression by another.

In advanced mathematical thinking more research is required to test whether
different methods of approach may support different personal ways to construct
(and reconstruct) formal theory. Just as Skemp (1976) referred to the difficulty
faced by a relational learner taught by instrumental methods (or vice versa), we
hypothesises that there are analogous difficulties with natural learners being
taught by formal methods (or vice versa). This suggests that more than one
approach is required to teaching mathematical analysis. Some students may
benefit from a study quite different from the traditional formal theory. For
example, Tall (1993b) observed that a class of student teachers similar to those
who failed to make any sense of the formalism (see Pinto & Gray, 1995) could
construct natural insights into highly sophisticated ideas using computer
visualisations even though this may not improve their ability to cope with the
formal theory.

Success can be achieved for some students in various ways. These include
giving meaning to the definitions by reconstructing previous experience, or by
extracting meaning from the definition through using it, perhaps memorising it,
and then building meaning within the deductive activity itself (Pinto 1998).
However, not all succeed. Those who fail are often reduced, at best, to learning
theorems by rote to pass examinations. How different this is from the advanced
mathematical thinking of the creative mathematician, with its combination of
intuition, visualisation and formalism combined in different proportions in
different individuals to create powerful new worlds of mathematical theory.
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