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What is the object of the encapsulation of a process?

David Tall#, Michael Thomas+, Gary Davis* , Eddie Gray#, Adrian Simpson#

#University of Warwick, UK, +University of Auckland, New Zealand,
*University of Southampton, UK

Dedicated to the memory of Robert B. Davis†

Several theories have been proposed to describe the transition
from process to object in mathematical thinking. Yet, what is the
nature of this “object” produced by the “encapsulation” of a
process? Here we outline the development of some of the
theories (including Piaget, Dienes, Davis, Greeno, Dubinsky,
Sfard, Gray & Tall) and consider the nature of the mental
objects (apparently) produced through encapsulation, and their
role in the wider development of mathematical thinking. Does the
same developmental route occur in geometry as in arithmetic
and algebra? Is the same development used in axiomatic
mathematics? What is the role played by imagery?

Theories of encapsulation/reification

In this article we address the question: what are mathematical objects and
how are they constructed by the individual? This does not have a universal
answer. Rather we must ask: what is a mathematical object for a given
person in a given mathematical context? We contend that as mathematical
maturity develops so does the number of available mathematical objects,
each intimately linked with (and related to) other mathematical objects. It
is the purpose of this article to consider how these objects are constructed.

In recent years there has been great interest in the encapsulation (or
reification) of a process into a mental object as a fundamental method of
constructing mathematical objects. Piaget (1985, p. 49) focused on the
idea of how “actions and operations become thematized objects of thought
or assimilation”. Dienes (1960), following Piaget, used a grammatical
metaphor to formulate how a predicate (or action) becomes the subject of
a further predicate, which may in turn become the subject of another.
Davis (1984) formulated the same basic idea a quarter of a century later:

When a procedure is first being learned, one experiences it almost one step at
time; the overall patterns and continuity and flow of the entire activity are not
perceived. But as the procedure is practiced, the procedure itself becomes an
entity – it becomes a thing. It, itself, is an input or object of scrutiny. All of the
full range of perception, analysis, pattern recognition and other information

                                                  
† The reader will notice that the work of Bob Davis features prominently in this article,
as it must in any discussion of the encapsulation of a process. On completion of this
paper we learned of Bob’s death. His passing is a great loss to us all. He was one of the
most intellectually vigorous mathematics educators anywhere. His constant striving
for new theoretical positions was a positive stimulus to the community, and a
necessary call to develop greater depth and maturity in our thought. Vale, Bob!
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processing capabilities that can be used on any input data can be brought to
bear on this particular procedure. Its similarities to some other procedure can
be noted, and also its key points of difference. The procedure, formerly only a
thing to be done – a verb – has now become an object of scrutiny and analysis;
it is now, in this sense, a noun.

(pp. 29–30.)

He formulated the notion of visually moderated sequence where each step
is written down and prompts the next until the problem is solved. This
becomes an integrated sequence when it is conceived as a whole and may
be organized into sub-procedures. He also used the term “procedure” as a
specific algorithm for implementing a “process” in an information-
processing sense (Davis, 1983, p. 257).

At this time information processing was focusing on the way in which a
procedure that can be used as an input to another procedure could be
conceived as a “conceptual entity” (Greeno, 1983).

The notion of the transformation of a process into an object took new
impetus in the work of Dubinsky (1986, 1991) and Sfard (1988, 1989,
1991). Sfard hypothesized two approaches to concept development, one
operational focusing on processes, the other structural, focusing on
objects.

A constant three-step pattern can be identified in the successive transitions
from operational to structural conceptions: first there must be a process
performed on the already familiar objects, then the idea of turning this process
into a more compact, self-contained whole should emerge, and finally an
ability to view this new entity as a permanent object in its own right must be
acquired. These three components of concept development will be called
interiorization, condensation, and reification, respectively.

Condensation means a rather technical change of approach, which expresses
itself in an ability to deal with a given process in terms of input/output without
necessarily considering its component steps.

Reification is the next step: in the mind of the learner, it converts the
already condensed process into an object-like entity. … The fact that a process
has been interiorized and condensed into a compact, self-sustained entity, does
not mean, by itself, that a person has acquired the ability to think about it in a
structural way. Without reification, her or his approach will remain purely
operational.

(Sfard, 1992, pp. 64–65)

Dubinsky (1986, 1991) and his colleagues (Cottrill et al, 1996) formulate
the encapsulation of process into object as three stages of a four-part
theory with the acronym APOS. A (step-by-step) action becomes
conceptualized as a total process, is encapsulated as a mental object, to
later become part of a mental schema.

The notions of action and process are characterized in a manner
reminiscent of the notions of visually moderated sequence and integrated
sequence of Davis:

An action is any physical or mental transformation of objects to obtain other
objects. It occurs as a reaction to stimuli which the individual perceives as
external. It may be a single step response, such as a physical reflex, or an act
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of recalling some fact from memory. It may also be a multi-step response, by
then it has the characteristic that at each step, the next step is triggered by what
has come before, rather than by the individual’s conscious control of the
transformation. … When the individual reflects upon an action, he or she may
begin to establish conscious control over it. We would then say that the action
is interiorized, and it becomes a process.(Cottrill, et al, 1996, p. 171 (our italics))

The action becomes a process when the individual can “describe or reflect
upon all of the steps in the transformation without necessarily performing
them.” A process becomes an object when “the individual becomes aware
of the totality of the process, realizes that transformations can act on it,
and is able to construct such transformations.”

The final part of the APOS structure occurs when “actions, processes
and objects ... are organized into structures, which we refer to as
schemas.” When this has been achieved, it is also proposed that:

“… an individual can reflect on a schema and act upon it. This results in the
schema becoming a new object. Thus we now see that there are at least two
ways of constructing objects — from processes and from schemas.”

(Cottrill, et al, 1996, p. 172 (our italics))

By considering the developments of concepts in simple arithmetic of
whole numbers, Gray & Tall (1994) reviewed how a lengthy procedure
such as “count-all” (count one set, count another, put the sets together and
count all) becomes compressed into a shorter procedure “count-on”—with
variants such as “count-both”, “count-on-from-larger”). Other techniques
are also developed, such as remembering “known facts” and “deriving
facts” from a combination of number facts and counting. Following Davis
(1983) they used the term “procedure” as a specific algorithm for
implementing a process and highlighted how a number of different
procedures were being used to carry out essentially the same process in
increasingly sophisticated ways. They noted that a symbol such as 4+2
occupies a pivotal role, as the process of addition (by a variety of
procedures) and also as the concept of sum. Soon the cognitive structure
grows to encompass the fact that 4+2, 2+4, 3+3, 2 times 3, are all
essentially the same mental object. They therefore proposed the following
definitions:

An elementary procept is the amalgam of three components: a process which
produces a mathematical object, and a symbol which is used to represent either
process or object.
A procept consists of a collection of elementary procepts which have the same
object. (Gray & Tall, 1994)

The name “procept” arose because of the symbol’s dual role as process
and concept. The notion of procept is present throughout a large portion of
mathematics. Tall & Thomas (1991) had already noted that, for many
children, an expression such as 2 + 3x may be conceived as a process
which cannot be carried out until the value of x is known – a
reinterpretation of the notion of “lack of closure” discussed by earlier
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authors. This “lack of closure” is none other than the focus on the
procedure of evaluation rather than on an algebraic expression as a
manipulable procept. Gray and Tall (1994) also noted the peculiar case of
the limit concept where the (potentially infinite) process of computing a
limit may not have a finite algorithm at all. Thus a procept may exist
which has both a process (tending to a limit) and a concept (of limit), yet
there is no procedure to compute the desired result.

Table 1 shows a summary of the discussion so far. It does not intend
any direct correspondence between the stages of the theories, simply that
each passes through a development of growing sophistication from some
kind of procedure/process usually performed step-by-step and ending with
an object/concept that can be manipulated as an entity in its own right.
The intermediate stages specified in each line are not intended to
correspond directly. For instance, Greeno’s “input to another procedure”
is essentially the same as conceiving a programming procedure as an
entity, whereas Dubinsky characterizes the individual’s ability to take
control of a repeatable action, and Sfard’s focus is on the ability to think
of the process in terms of input/output without needing to consider the
intermediate steps.

The wider literature of the various authors suggests further similarities
and differences between their ideas. For instance, there seems to be broad
agreement that a function as a process is determined as a whole by input-
output, regardless of the internal procedure of computation. Thus the
functions f(x) = 2x+6 and g(x) = 2(x+3) are one and the same as

Process … Object
Piaget
(50s)

action(s), operation(s)
…

… thematized object
of thought.

Dienes
(60s)

predicate … … subject.

Davis
(80s)

visually moderated
sequence …
each step prompts the next

integrated sequence …
seen as a whole, and can be
broken into sub-sequences

a thing, an entity,
a noun.

Greeno
(80s)

procedure … input to another
procedure …

conceptual
entity.

Dubinsky
(80s)

action …
each step triggers the next

interiorized process …
with conscious control

encapsulated
object.

Sfard
(80s)

interiorized process …
process performed

condensed process …
self-contained

reified object.

Gray &
Tall
(90s)

procedure …
specific algorithm

process …
conceived as a whole,
irrespective of algorithm

procept.
symbol evoking
process or concept

Table 1: The transition between process and object



 – 5 –

processes—even though the arithmetic procedures to compute them have
a different sequence of operations. The intermediate stage(s) intimate how
(one or more) specific procedures become seen as a single process without
needing to carry out the intermediate steps.

What seems more problematic is to explain precisely what is meant by
the “object” hypothesized as being constructed by encapsulation.

What is the “object” of encapsulation?

Dörfler questioned the nature of the object formed by encapsulation:
… my subjective introspection never permitted me to find or trace something
like a mental object for, say, the number 5. What invariably comes to my mind
are certain patterns of dots or other units, a pentagon, the symbol 5 or V,
relations like 5+5=10, 5*5=25, sentences like five is prime, five is odd, 5/30,
etc., etc. But nowhere in my thinking I ever could find something object-like
that behaved like the number 5 as a mathematical object does. But
nevertheless I deem myself able to talk about the number “five” without
having distinctly available for my thinking a mental object which I could
designate as the mental object “5”. (Dörfler, 1993, pp. 146–147.)

Support for this view comes from interviews on a video produced by Gray
& Tall (1993) in which individuals were asked the following two
questions:

What does the word “triangle” mean to you?
What does the word “five” mean to you?

The first was invariably met with a description or definition of a three-
sided figure as if the individual had a clear mental picture of what was
being described, sometimes adding other properties, such as “the angles
add up to 180”. The second invariably caused the difficulties described by
Dörfler, with some individuals describing “five objects”, or a property
such as “it’s one bigger than four”, yet not being able to describe what the
term “five” meant of itself. However, all were secure when asked to
operate with the number “five”, for instance, that “five plus five” evoked
the response “ten”.

We hypothesize that the distinction between the notion “triangle”
(which most would consider as an “object”) and “five”, which Dörfler
suggests is not, is the difference between what we would term a
“perceived object” and a “conceived object”. The first occurs based on
perceptual information—seeing a triangle, physically cutting out a
triangle, touching it, feeling the corners, counting the edges. The focus is
therefore on specific physical manifestations of the notion of a triangle.
The second occurs when there is reflection on perceptions and actions,
with the focus shifted from the specific physical manifestations to the
actions/processes performed upon them.

Piaget, as usual, made pertinent comments in this direction, long
before any of the rest of us. He distinguished between empirical
abstraction deriving knowledge from the properties inherent in real-world
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objects and pseudo-empirical abstraction deriving knowledge from the
processes which the individual performs on the objects. Empirical
abstraction constructs a perceived object, or percept.

Pseudo-empirical abstraction constructs a conceived object which in
many settings takes the form of a procept. For instance, a focus on the
process of counting may progress to the idea that different ways of
counting the same set give the same result, leading to the concept of
number. Even though there may be no ‘mental object’ corresponding
precisely to the number “5” as there is with a perceived object, there is a
huge cognitive structure built up allowing the individual to use the symbol
5 as if it refers to an object. The number “5” has a concept image, in the
sense of Tall & Vinner (1981), consisting of “all the mental pictures and
associated properties and processes” related to the concept in the mind of
the individual. The symbol “5” or the word “five” can be written, spoken,
heard, seen and read. It can be manipulated mentally as if it were an
object. This is a common mode of mental activity not just in mathematics,
but throughout our whole experience.  Lakoff and Johnson (1980) express
this succinctly as follows:

Our experiences with physical objects (especially our own bodies) provide the
basis for an extraordinarily wide variety of ontological metaphors, that is,
ways of viewing events, activities, emotions, ideas, etc., as entities and
substances. (p.25)

It is essential in empirical abstraction to be aware of the genuine
distinction between objects existing in the physical world and objects
constructed in our minds. A stone in the real world can be thrown and a
person can be hit with it. We cannot hit someone with a stone in our mind.
Of course, the word “stone” is a result of a categorization and so, in some
sense, a mature observer can take the “object” to be an instance of the
constructed category of stones in our head. However, the reference, for
the knower, is to a concrete object in the world: one that is heavy and
hurts if one is hit with it. In considering the cognitive development of the
individual it is not how we see things as mature reflective adults, but how
a child senses them during the construction process.

For a child, pseudo-empirical abstraction involves an intimate
connection between the objects operated upon and the concepts abstracted
through operating upon them:

With regard to icons, Piaget’s distinction between the “figurative” and the
“operative” would seem to be of some importance. Number is not a perceptual
but a conceptual construct; thus it is operative and not figurative. Yet,
perceptual arrangements can be used to “represent” a number figuratively.
Three scratches on a prehistoric figurine, for instance, can be interpreted as a
record of three events. In that sense they may be said to be “iconic” but their
iconicity is indirect. (Von Glasersfeld, 1987, p. 233).
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Empirical evidence collected by Gray and Pitta (1997) suggests that those
who move to focus on the conceptual relationships rather than the
perceptual arrangements are more likely to develop a flexible and
powerful view of symbols and hence to have longer-term success. We
therefore suggest that the total cognitive structure of the concept image of
number, with its power to manipulate the symbols and to think of their
properties, gives number its most powerful status as an object. What
matters more is not what it is, but what we can do with it.

Mental conceptions of objects

The apparent “non-existence” of an “object” corresponding to a number is
not as strange as at first seems. Consider, for example, the notion of
“animal”, which includes cats, dogs and gorillas. When we mentally
picture an “animal”, what do we “see”? The name “animal” is a signifier
that can be used to signify any of a wide number of particular instances
but we appear to fail to have a single mental object which is “an animal.”
Nevertheless, to paraphrase Dörfler, although we may fail to have a
unique mental object for “an animal” we deem ourselves able to talk
about it.

This is a well-observed phenomenon in the verbal categorization of
objects. Rosch (1978) notes that certain “basic” categories are more easily
recognized and are often the first level comprehended by children. A basic
category such as “dog” usually has a generic mental image that
individuals can imagine in a representative way. Higher-order
categorizations such as “animal” become so general as to fail to have a
single mental image, although the basic categorizations within the
category such as “dog”, “kangaroo”, “chimpanzee” are each capable of
having a prototypical mental image. Such higher order categories may be
supported not only by a variety of images, none of which is broadly
characteristic of the whole category, but also by properties such as “being
alive”, “having four legs”, “having fur” which may be typical of many
members of the category, but not necessarily of all of them.

The same phenomenon occurs for many hierarchies encountered in
mathematics. We may have a generic image of the graph of a straight line
(often with positive gradient and positive intercept!), but the mental
image of a general polynomial is likely to involve a  curve with several
maxima and minima rather than, say, a cubic with only a single point of
inflection. Young children may have a single mental prototype for a
square, often misleadingly with horizontal and vertical sides, which
prevents the recognition of a square when it is turned through an angle
(say as a “diamond”). It is part of the development of mathematical
knowledge to be able to broaden our categories of visual imagery to allow
hierarchies of concepts, such as squares being rectangles which are in turn
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parallelograms, within the category of quadrilaterals, within polygons.
This development is supported by a variety of experiences. For instance, a
square may be categorized as a rectangle using the definition of having all
angles right angles and each pair of opposite sides equal, or it may simply
be added to the category of rectangles because it has been deemed to be
so.

In this way we see that mental objects occurring in mathematics have
aspects which are found in other areas of experience.

Language markers for objects

The discourse used to describe everyday objects, or mental images of such
objects, is description. Whereas narrative discourse is used to describe a
procedure or a succession of events, descriptive discourse usually features
the simultaneity of various aspects of a to-be-described object. The
possibility is, therefore, that we might ascertain whether an individual has
constructed a mental object in relation to a concept by the way that
individual talks or writes about the concept. In other words, seeing the
concept as an object is likely to lead to descriptive rather than narrative
discourse. As Denis (1996) says:

“ ... descriptions are not disorganized lists of elements. Descriptions are
constrained by the structural organization of described objects.” (p. 169)

If someone conceived of “5” as a mental object what sort of language
might they use to describe it? How might this language itself give us
pointers to their seeing “5” as an object? Typically objects are described
by their properties, their relationships with other objects, and the ways in
which they can be used. For example, someone might describe a kitchen
pot as generally round, made of metal, with a handle, and used for
holding water in which to boil food. Similarly, if we say that 5 is a prime
number, the third prime, and the second odd prime; it is the first number n
for which there is a non-solvable polynomial of degree n, then we are
describing properties of 5, and its relation to other things. Whether these
other things—polynomials or other numbers—are themselves conceived
as objects at the time is not the point at issue. It is the use of language in a
way that intimates properties, relationships, usage of a concept which
indicates that the individual is, in fact, conceiving “5” as an object.

The role of awareness in the construction of objects

We have seen that when a student first carries out a mathematical
procedure (as a visually moderated sequence in the sense of Davis or
action in the sense of Dubinsky), then they are generally unaware of the
nature of the whole procedure. What they are aware of is the current step
being carried out and then the final result. Steffe (in a personal
communication) has remarked on the development of a symbol for a
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procedure. This development utilizes imagery of fingers or other
collections of objects in an important way as figurative material acted
upon mentally and then re-interpreted (or re-presented) to see it also in
terms of the results of the operations. This is essentially a change of focus
of attention in the same way that Sfard speaks of focusing on structural or
operational facets and Gray and Tall speak of the ambiguous use of
symbolism to dually represent process or concept. The dual use of
figurative imagery as operations or results is embodied in the following
comment by Steffe about number units. The discussion can also be
interpreted for many, if not all, mathematical procedures:

“I was thinking of, for example, the way in which a child might use the records
of past experience that are recorded in the unit items of a sequence to
regenerate something of that past experience in a current context. The
figurative material that is regenerated may act as symbols of the operations of
uniting or of the results of the operations in that the operations may not need to
be carried out to assemble an experiential unit item. The figurative material
stands in for the operations or their results. In this I assume that the records are
interiorized records – that is, records of operating with re-presented figurative
material.

My hypothesis is that these operations will continue to be outside the
awareness of the operating child until a stand-in is established in which the
operations are embedded. ... awareness to me is a function of the operations of
which one is capable. But those operations must become objects of awareness
just as the results of operating. To become aware of the operations involves the
operations becoming embedded in figurative material on which the operations
operate. To the extent that this figurative material can be re-generated the
operations become embedded in it.

The figurative material is also operated on again. In this way the operations
are enlarged and modified.” (Steffe, private communication)

This point of view—that operations are outside conscious awareness until
a mental “stand-in”, or symbol, is developed upon which the operations
can act mentally—is of critical importance in our perception of the
development of mathematical objects. For it is these symbols (in the sense
of Steffe) that lead to objects: not only is the scope of the operations
extended, as Steffe says, but what it is that the operations operate on
becomes conceived as a mental object. One might argue that symbols, in
Steffe’s sense, do not lead to objects: if they did, so the argument might
go, our job of teaching would be very much easier for we could just give
students appropriate symbols when we wanted them to form an object.
However, this argument does not take into account that—by the very
nature of symbols—we cannot simply “give” a student symbols. Their
symbols have to be constructed through a subtle process of reflective
abstraction.

Consider, for example the procedure of finding the square root of a
number, such as 2, by repeated approximation. Here a student might be
told that √2 lies between 1 and 2 because 12

 is smaller than 2 and 22 is
greater than 2. Forming the average of 1 and 2 gives 3/2 which is greater
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than √2 because (3/2) 2 is greater than 2. The average of 1 and 3/2 is 5/4
which, again is smaller than √2. This procedure, repeated often enough
gives a decent, but slow, approximation to √2. What is uppermost in a
student’s mind after carrying out such a procedure? We hypothesize it
relates to the answer to the question “What is the value of √2?” which may
be calculated to some degree of accuracy using the procedure. The
number √2 has the property that its square is (exactly) 2 and the procedure
gives successively better approximations. What the student may not
generally be aware of in the early stages—in the sense of being able to
articulate it—is the nature of the overall procedure by which this
approximation was found, despite the fact that the student can work step-
by-step through the procedure to get an answer.

A student’s reflection on their actions—in the absence of actual
calculations—may bring back to mind the episode of operating to
calculate a good approximation to the square root of two. What might
prompt such reflection? One thing could be a student’s wondering whether
they could calculate an approximation to √3 in a similar way, or being
asked to formulate such an approximation. Without actually going
through the procedure, this recalling of the operations in a similar context
allows the possibility—but not the necessity—of the student operating on
mental imagery in the form of figurative material associated with the
original calculations. The scope of the operations has become enlarged
because, although students could, in principle, carry out the actual
calculations to approximate √3, they may not, preferring instead to reflect
on the figurative material in their mind. The original operations now
become objects of awareness, and the sign “√n” has the possibility,
through repeated re-presentation, to become a symbol: the symbol of the
operations embedded in the figurative material. This, we hypothesize, is
what transforms √n into a mathematical object. Prior to the re-presented
figurative material and the act of operating on this material, √n may be a
procedure for which the only articulable awareness the student had was
the result of concrete operations.

The scope of the process-object construction

Once the possibility is conceded that the process-product construction can
be conceived as an “object”, the floodgates open. By “acting upon” such
an object, the action-process-object construction can be used again and
again.

.. the whole of mathematics may therefore be thought of in terms of the
construction of structures, ... mathematical entities move from one level to
another; an operation on such ‘entities’ becomes in its turn an object of the
theory, and this process is repeated until we reach structures that are
alternately structuring or being structured by ‘stronger’ structures.(Piaget, 1972, p. 70)
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The various proponents of process-object construction do not all claim the
same scope for the application of their theories. For Dubinsky—utilizing
Piaget’s notion of “permanent object”—a process is any cognitive process.
The notion of “permanent object” arises through “encapsulating the
process of performing transformations in space which do not destroy the
physical object” (Dubinsky et al, 1988, p. 45). A “perceived object” in
our sense is, for Dubinsky, formed by process-object encapsulation. He
also sees the theory of encapsulation applying equally well to the logical
construction of formal concepts in advanced mathematics. He also
acknowledged that there may be many cognitive processes involved in the
construction of a mental object, used in an increasingly coherent manner,
leading naturally to his later assertion that objects can also be formed by
encapsulating schemas. Dubinsky therefore offers a single, unified theory
of encapsulating cognitive processes as cognitive objects after the manner
of Piaget.

The scope of procept theory is narrower. This does not mean that it is
weaker, since it is designed to give greater insight into the profoundly
powerful use of symbols in mathematics to switch effortlessly between
concepts to think about and mathematical processes to solve problems.
The definition is formulated so that it can refer not only to the
construction of procepts, but also to the use of procepts which enables a
biological brain with a limited focus of attention to switch between
thinking of the problem symbolically and then to perform a mathematical
solution process.

The notion of procept was never intended to have the same broad scope
as the theories of Sfard or Dubinsky. Neither the child’s notion of
permanent object nor the students’ notion of axiomatic system are
procepts because neither has a symbol capable of evoking either process
or concept. Nor is the notion of procept defined to be explicitly tied to the
situation in which the mental object represented by the symbol is
necessarily construction by “encapsulation” from the corresponding
mathematical process, even though this is the way in which many procepts
are constructed.

As has often been emphasized by Dubinsky, there may be many
processes involved in encapsulating a mental object not all of which are
usually classified as being mathematical. For instance, the Solution
Sketcher software (Tall, 1991) allows the user to enter a first order
differential equation; internally the program works out the slope of the
solution curve through any selected point and draws an appropriate short
line segment with this slope. The student can move the pointer around the
screen and, without performing any mathematical calculation, observe the
direction of a segment of a solution curve change direction. Encouraging
the student to build up a solution curve by sticking such segments together
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end-to-end can give a visual and kinesthetic meaning to a solution of a
differential equation, including the insight that there is a unique solution
through each point where the equation defines a slope. This suggests that
it could be inappropriate to always insist that a mathematical process must
be presented first so that it may then be encapsulated as a mathematical
concept. Other cognitive processes can be used to build up useful parts of
the concept image as foundations for later formal or symbolic
development.

Sfard’s (1991) theory formulates two ways of constructing
mathematical conceptions through the complementary notions of
operational and structural activities as “two sides of the same coin”. It is
the first of these which involves process-object construction. She makes
the important observation that in any given mathematical context it is
usually possible to see both operational and structural elements. For
instance, in the transition from arithmetic to algebra, Sfard (1995, p.21)
considers that, given “the boys outnumber the girls by four”, the number
of boys can be formulated in an operational manner as “add four to the
number of girls” or structurally as “x=y+4”.

Kieran (1992) also makes a distinction between the (numerical)
evaluation of an expression such as 2x+3 for a numerical value of x as
“operational” and the manipulation of such expressions as “structural”.
However, this does not attend to the full subtlety of Sfard’s distinction
between structural and operational. For Sfard, the algebraic expression
itself has a structure but, once the student conceives the algebraic
expressions as manipulable objects, then their manipulation is categorized
as “operational”. The latter interpretation is consonant with the original
ideas of Piaget where “operations” at one level (in this case algebraic
formulae as generalized arithmetic operations) become “objects of
thought” at a higher level (algebraic expressions) which can themselves be
manipulated.

Structural aspects of mathematics

The term “structural” has more than one meaning in the literature. The
French texts published under the corporate name of Bourbaki are often
referred to as having a structural approach in the sense that they describe
the formal “structures” of mathematical axiomatic systems. The set-
theoretic “new math” of the sixties was often referred to as a “structural
approach”. Sfard uses this interpretation when she describes two distinct
aspects of proof by induction:

• Operational: for a property P(n), prove P(1) and that
P(k)⇒ P(k+1) for all k, to establish the truth of P(n) for all
natural numbers n,
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• Structural: given a set S ⊆ N, prove 1 ∈ S, and k ∈ S ⇒  k+1 ∈ S
to establish  S = N.  Sfard (1989, p. 151)

Her description of a function as a “set of ordered pairs” as structural
(Sfard, 1991, p. 5), also agrees with the formal Bourbaki approach.
However, in referring to structural conceptions as being “supported by
visual imagery” while an operational conception is “supported by verbal
representations” (ibid., p. 33), she is using a meaning different from that
of Bourbaki. In this meaning she refers to the visual structure of a mental
object by analogy with the structure of a building. For instance, she
considers the visual imagery of a graph of a function to be structural
(ibid., pp. 5, 6). She also provides perceptive empirical evidence in which
mathematicians use visual and spatial metaphors to provide them with
“intimate familiarity” with structure that gives “direct insight into the
properties of mathematical objects,” (Sfard, 1994). Such insight may be
fallible and is certainly not structural in the Bourbaki sense.

Skemp (1979) formulated a theory that sheds light on these differences
in meaning. First he proposed a varifocal theory in which a concept, seen
in close detail, could be considered as a schema of related ideas, and a
schema, seen as a totality could be considered a concept. This idea (first
enunciated in a 1972 Warwick Education Seminar by an American
graduate student Robert Zimmer) reveals a remarkable duality between
the notions of concepts and schemas a decade before Dubinsky proposed
that schemas could be encapsulated as concepts. However, the varifocal
theory does not specify how concepts are constructed from schemas, or
vice versa. For the construction (of concepts) Skemp proposed a broader
theory taking into account the context in which the mental structures are
performed. This consists of three modes of building and testing concepts,
one in terms of interaction with concrete objects, a second through
interaction with other individuals, and a third through internal consistency
of the mathematics within the mind of the individual. Each of these can be
seen as a method of constructing and refining particular mental concepts,
and each can have both operational and structural aspects in the sense of
Sfard. However, the third mode has a clear link with the working of
professional mathematicians mentioned above (Sfard, 1994). In a
conversation one of us had with Skemp in 1985, he hypothesized that
Archimedes “Method” conceiving “surfaces made up of lines” was a
strategy for building formulae for area whereas the formal method of
“proof by exhaustion” was for testing the formulae and for release in
formal publications. In the same way many mathematicians use intuitive
conceptions as private constructs before releasing formally presented
theories for public scrutiny.
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This suggests a clear distinction between the building of conceptions
from visual and kinesthetic senses described verbally on the one hand and
the more sophisticated construction of a formal theory of the properties of
a concept which is specified by set-theoretic axioms. This in turn suggests
that Sfard’s notion of “structural” can usefully be subdivided into two. On
the one hand there is the focus on properties of observed or conceived
objects (which usually involve visual and enactive elements). On the
other, some of these properties are specified as set-theoretic axioms and
definitions to give a formal theory that is “structural” in the sense of
Bourbaki. In our perception, we would prefer to use the term “structural”
to relate to the Bourbaki sense of the term, because we believe that this
involves a more sophisticated form of mental construction than the visual
and enactive construction of meaning from mental images.

Categorizing mathematical objects and their construction

Faced with several different versions of “object construction” in
mathematics, we now come to the question of categorizing objects and
their constructions in a manner that sharpens the relationships and
differences between the theories. Dubinsky offers a broad vision which
encompasses all the various methods of construction as process-object
encapsulation. Sfard divides her theory into two (operational and
structural) where the first is concerned with operations which may be
reified into objects and the second focuses more on the properties of the
objects themselves. Gray and Tall offer a theory more focused on the
relationship between mathematical processes, objects and symbols that
dually evoke both.

Different classifications can operate at different levels and have
different uses. Our quest here is to seek a classification that is useful for
distinguishing cases that involve differing cognitive constructions and
necessitate different strategies in learning. Sfard makes a step in this
direction by hypothesizing that operational constructions are more
primitive than structural so that that an operational approach should
usually precede a structural. Other levels of categorizations are also
possible, for instance, subdividing the notion of structural into distinct
categories as proposed earlier.

To seek a cognitively based categorization at an appropriate level of
generality, we return to Piaget’s distinction between empirical and
pseudo-empirical abstraction which we see operating in different cognitive
ways. Empirical abstraction arises through a focus on the objects being
acted upon, while pseudo-empirical abstraction focuses on actions and
their subsequent symbolization and conception as encapsulated objects.
Tall (1995) hypothesized that these begin distinct sequences of
construction, one in geometry which follows a broad development
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described by Van Hiele (1986) and another in arithmetic and algebra
based on symbols dually representing process and concept. After the
initial use of empirical and pseudo-empirical abstraction, constructions
proceed also by reflective abstraction that occurs through reflections on
the manipulation of mental objects already constructed. However, we see
differing kinds of reflective abstraction depending on the focus of
attention of the construction process.

In geometry, although there are many processes involved, including
the formal processes of geometric construction, we hypothesize that the
main focus is initially on objects. This leads to a sequence of development
from teasing out the properties of the objects, making verbal descriptions,
thinking about relationships, verbalizing inferences, formulating verbal
proofs, leading to a broad development after the fashion described by Van
Hiele (1986). As the development becomes more sophisticated, the form
of object construction becomes more subtle. In the initial stages the child
is building a conceptual meaning for real-world objects and their
properties by perceiving and acting upon them to construct percepts
(through empirical abstraction). The next Van Hiele stage involves
classifying these percepts into separate classes that are not yet
hierarchical, for instance, squares (four sided figures with right angles and
all four sides equal) are not special cases of rectangles (which only have
opposite sides equal). The next stage builds up hierarchies by using verbal
descriptions. The focus switches from the objects described to the nature
of the descriptions themselves that are then used to define objects. At this
stage mental objects are constructed as imaginary manifestations of the
perfection of the definition, for instance, lines with no thickness that can
be extended arbitrarily in either direction. Thus the construction of
perceived geometric objects leads later to conceived geometric objects
which, though imagined in the mind’s eye, and discussed verbally
between individuals, are perfect entities that have no real-world
equivalent. Tall (1995) referred to these conceived objects as platonic
objects, and quoted the observations of G. H. Hardy explaining his
conceptions as a professional mathematician:

… I draw figures on the blackboard to stimulate the imagination of my
audience, rough drawings of straight lines or circles or ellipses. It is plain,
first, that the truth of the theorems which I prove is in no way affected by the
quality of my drawings. Their function is merely to bring home my meaning to
my hearers, and, if I can do that, there would be no gain in having them
redrawn by the most skilful draughtsman. They are pedagogical illustrations,
not part of the real subject-matter of the lecture. (Hardy, 1940, p. 125.)

The mental objects of higher geometrical thinking are therefore no longer
the physical drawings of the individuals, but shared platonic mental
conceptions with perfect properties that underlie them.

In arithmetic, the initial focus is on processes, such as counting,
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addition, subtraction, and on the symbols used to represent them. The
encapsulation of processes into arithmetic procepts (using symbols as a
pivot between the two) also change in their cognitive sophistication as the
conceptions are built in later developments. In arithmetic all the symbols
have built-in computational processes to “give an answer”. In algebra the
symbols are now algebraic expressions which only have a potential
process of inner computation— the evaluation of the expression when the
variables are given numerical values. Despite this, the symbols
themselves can be manipulated algebraically and a finite number of such
manipulations can be used to solve linear and quadratic equations. In the
calculus the situation changes again, with limit processes that are now
potentially infinite and so we may have a limit concept which has an
infinite process attached with no finite procedure of computation. Thus,
although the symbols all have a process-concept framework, which
enables them all to be classified as procepts, the changes in the nature of
the procept cause major cognitive difficulties in the transition from
arithmetic to algebra and algebra to calculus. This also explains why
students are so much more able to compute with the finite procedural rules
for differentiation in the calculus than conceptualize the infinite process of
limit.

Focusing on both operational processes and the properties of
objects—either in turn or at the same time—gives a versatile approach
(Tall & Thomas, 1991). This proves particular valuable when computer
software is available to carry out the processes internally, allowing the
individual to focus either on the study of the processes, which they may
carry out (or program) for themselves, or on the concepts produced by the
computer (Tall & Thomas, 1989). Versatile approaches have proved
successful in research studies. Thomas (1988) used visual properties, such
as studying the evaluation of expressions (carried out by the student)
separately from the properties of (equivalent) expressions, evaluated by
the computer, producing significant improvements in symbols as process
and concept. Tall (1985) used the “local straightness” of graphs
represented by computer software to complement the process of symbolic
differentiation and produced significant improvements in visual
interpretations of concepts of the slope of a graph. Hong & Thomas (1997)
used a versatile approach to the integral calculus to produce corresponding
improvements in conceptualization. A versatile approach has also been
shown to give flexible insight into the relationship between figures in
trigonometry and their corresponding symbolic trigonometric functions
(Blackett & Tall, 1991). This involves the proceptual structure of the
symbolism relating the process of computing the trigonometric ratio (as
“opposite over hypotenuse”) to the concept of trigonometric function (in
this case “sine”).
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In elementary mathematics a versatile approach links proceptual
symbolism of arithmetic and algebra to visual representations using a
number line and coordinate plane. As visual and symbolic aspects grow in
sophistication, they may be linked together in different ways, with a
curriculum designed to build from those aspects more easily grasped by
the individual to building up more sophisticated aspects. This occurs in
the “locally straight” approach to the calculus where the visual and
enactive notion of local straightness (with its dynamic computer pictures)
can be explored before, or in tandem with, the numerical or algebraic
facets which have a more sophisticated notion of “locally linear” (with its
ensuing symbolism). Likewise the inverse process of solving differential
equations can be performed visually and enactively supported by
computer software to give a perceived solution before the numeric or
symbolic processes are studied in detail.

A further case of “process-object” construction is the notion of a
defined object. For Dubinsky this is again a case of encapsulation of
process into object. In the sense of Sfard, it has structural overtones
because the definition specifies certain structural criteria. However, just
as Sfard’s notion of “structural” has two different senses, there are two
corresponding meanings to an object specified by a definition. Our earlier
discussion of Euclidean geometry noted that the individual has in mind
certain mental objects that are then defined linguistically, such as a line, a
point, a triangle, and a circle. This notion of “definition” is consonant
with the notion of definition in a dictionary. It specifies an object by
referring to other familiar ideas encountered earlier by the individual.
There may be well-known examples of such a defined object that all seem
to have a common property, and yet this property may not follow from the
specified criteria. For instance, the notion of triangle carries with it the
properties inherent in two-dimensional space. Its angles add up to 180°.
Yet if a triangle is defined formally in some other type of geometry, for
instance the geometry on the surface of a sphere (on which we happen to
live—“geometry” means “earth measurement”)—then the sum of its
angles may be different. Just try cutting the skin of an orange and see.
Two cuts through the “north pole” at right angles to one another meeting a
cut round the equator will give a spherical triangle with three right angles,
adding up to 270°.

Euclidean constructions may carry with them certain implications that
may not follow from the definitions. (One famous case in Euclid concerns
the meeting of the diagonals of a rhombus “inside” the figure, when the
idea of “inside” had not been defined. Although the notion of “inside”
appears to be a primitive intuition, when a triangle is drawn on a sphere,
the “inside” is but the smaller of the two regions into which the triangle
divides the circle. Hence, as a small triangle increases smoothly in size
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until it is greater than half the surface area of the sphere, what may be
termed the “inside” becomes the “outside” and vice-versa.)

The shift from Euclidean geometry, with its platonic objects based on
the refined perceptions of the senses, to axiomatic geometries where
everything is defined purely in terms of explicit axioms and logical
deductions was noted as a further stage in cognitive development by Van
Hiele. This confirms the need to distinguish between two different
constructions of defined objects—platonic objects found, for example, in
Euclidean geometry, and axiomatic objects constructed within a theory
founded on axioms.

In the first case a platonic object begins with a mental image refined
from experience of physical forms and then given a verbal definition to
focus on the perfection of the ideas within it. In the second case, an
axiomatic object may arise from experiences of explicit situations that
have certain properties in common. Historically, the definitions used in
axiomatic theories have only arisen after long periods of study of the
phenomena to be axiomatized. But once these properties have been
enshrined in axioms and set-theoretic definitions the only properties
possessed by the axiomatic object are those that can be deduced by formal
proof. The formal part of an axiomatic theory (e.g. group theory, vector
space theory, topology) begins with an explicit set of axioms (for group,
vector space, topological space) and further objects may be defined by
formal definitions in each theory (e.g. sub-group, normal sub-group,
coset, quotient group; spanning set, linearly independent set, basis,
subspace; continuous function, uniformly continuous function, compact
set, etc.).

The essential difference between platonic and axiomatic objects is that
in the first the object is the initial focus of attention and the definition is
constructed from the object. In the axiomatic theory of the second, the
definition is the initial focus of attention and the object is constructed from
the definition, determining its properties by proving theorems. Gray et al.
(in press) distinguish these by referring to “object→definition”
construction of platonic objects and “definition→object” construction of
axiomatic objects.

This raises the question of the nature of the objects constructed through
“definition→object” construction. For instance, if we write down the
axioms for a mathematical group, in what sense is there an object that we
call “a group”? We arrive at the same conundrum as before. We speak of
“an animal” without necessarily having in our mind’s eye a visual mental
image for a “general animal”, we know how to manipulate “5” without
having a specific mental image for it as an object. Likewise we can build
up the properties of an “axiomatic object” by deduction from the given
axiom or definition. For instance, we might deduce that “there is only
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one, unique, identity element in a group”. Theorems deduced in this way
give properties shared by all structures that satisfy the criteria. We use the
same linguistic conventions in speaking of “a group” as we do in speaking
of “an animal”. For instance, we can say treat it as a “thing” and say “a
group has a unique identity element.”

Summary

In this paper we have discussed the ways in which mental objects can be
constructed in mathematics and have distinguished three types of object
construction, each of which operates in an increasingly sophisticated
manner:

• perceived objects, arising through empirical abstraction from
objects in the environment (and later may be given successively
subtler meaning through focusing also on verbal descriptions and
definitions to construct platonic objects),

• procepts, which first involve processes on real-world objects,
using symbols which can then be manipulated as objects, upon
which operations may be performed and symbolized in the same
way,

and

• axiomatic objects, conceived by specifying criteria (axioms or
definitions) from which properties are deduced by formal proof.

These are related to Piaget’s notions of abstraction as follows. Perceived
objects arise through empirical abstraction, and more sophisticated
platonic objects may be later constructed through reflective abstraction.
Procepts arise first through pseudo-empirical abstraction from actions on
real-world objects and then by higher level reflective abstraction on the
resulting conceived objects that represented by symbols enabling us to
pivot between process and concept. Defined objects occur by reflective
abstraction from the properties of perceived or conceived objects
(including both platonic and proceptual). Selected properties are
formulated as axioms and definitions and other properties are constructed
as theorems through logical processes of deduction. Platonic objects,
procepts and defined objects are all categories of conceived objects.

The “object” of the encapsulation of a process is a way of thinking
which uses a rich concept image to allow it to be a manipulable entity, in
part by using mental processes and relationships to do mathematics and in
part to use a name or symbol to mentally manipulate, and to think about
mathematics.
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