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ABSTRACT

It is the purpose of this paper to present a review of research evidence that

indicates the existence of qualitatively different thinking in elementary number

development. In doing so the paper summarises empirical evidence obtained

over a period of ten years. This evidence first signalled qualitative differences

in numerical processing (Gray, 1991), and was seminal in the development of

the notion of procept (Gray & Tall, 1994). More recently it examines the role of

imagery in elementary number processing (Pitta and Gray, 1997). Its

conclusions indicate that in the abstraction of numerical concepts from

numerical processes qualitatively different outcomes may arise because

children concentrate on different objects or different aspects of the objects

which are components of numerical processing.
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INTRODUCTION

The notion that numerical concepts are formed from actions with physical

objects underpins the conceived cognitive development of simple arithmetic

(see, for example, Piaget, 1965; Steffe, Glaserfeld, Richards,  & Cobb, 1983;

Kamii, 1985; Gray & Tall, 1994). These conceptions share common ground.

The properties by which the physical objects are described and classified need

to be ignored; and attention is focused on the actions on the objects which have

the potential to create an ‘object of the mind’. This can possess new properties

associated with new classifications and new relationships. For some, however,

meaning remains at an enactive level; elementary arithmetic remains a matter of

performing or representing an action. For others the cognitive shift from

concrete to abstract involves a qualitative change through which the concept of

number can be conceived as a construct that can be manipulated in the mind.

The focus of our work has been to consider the thinking that reflects the

qualitative differences that emerge from these two paradigms. Using rich

empirical evidence we develop a cognitive theory which may account for what

is it that children are doing differently and why? Our research model has

focused on extremes of mathematical achievement. It has examined children’s

interpretations of arithmetical symbolism and imagery associated with these

interpretations. Our conclusions suggest that the  nature the object which is an

integral component of children’s numerical processing resonates with different

cognitive styles. We hypothesise that these styles influence the quality of the

cognitive shift from concrete to abstract thought which contributes to the

perceived qualitative difference in children’s numerical development.

THE PROCESS/OBJECT TRANSFORMATION

Piaget (1973, p. 80) believed that the growth of numerical knowledge in the

child stemmed, “not from the physical properties of particular objects but from

the actual actions carried out by the child on the objects”. He wrote of how the
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co-ordination of actions became mental operations—“actions which could be

internalised” (Piaget, 1971, p. 21)—and suggested that “actions or operations

become thematised objects of thought or assimilation” (Piaget, 1985, p. 49).

The formation and meaning of knowledge within the context of learning as well

as in mathematics, was rooted within operating on the environment and through

active thinking transforming dynamic actions into conceptual entities.

Substantial interest in the cognitive development of mathematics has focused on

the relationship between actions and entities. For some, grammatical metaphors

sharpened the subtle changes that form the basis for numerical constructs.

Dienes (1960) described how a predicate (or action) becomes the subject of a

further predicate which may in turn become the subject of another and so on.

The qualitative benefit from making predicates the servant rather than the

master of thought were clear:

People who are good at taming predicates and reducing them to a state of

subjection are good mathematicians (Dienes, 1960, p. 21)

Using a similar analogy Davis (1984) signalled the qualitative changes

associated with actions becoming objects of thought.

The procedure, formerly only a thing to be done—a verb—has now become an

object of scrutiny and analysis; it is now, in this sense, a noun.

(Davis, 1984, p. 30)

These distinctions, together with theories accounting for the transformation of

processes into concepts have helped to shift attention from doing mathematics

to knowing mathematics. The way in which dynamic actions become conceptual

entities has been variously described as “interiorisation” (Beth & Piaget, 1966),

“encapsulation” (Dubinsky, 1991), or “reification” (Sfard, 1991). Dubinsky and

his colleagues (Cottrill, Dubinsky, Nichols, Schwingendorf, Thomas, &

Vidakovic, 1996) formulate the encapsulation as part of the APOS theory

(action-process-object-schema), in which actions become repeatable as
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processes which are then encapsulated into objects to later become part of a

mental schema. Sfard indicates a three phase process: interiorisation of the

process, then condensation as a squeezing of the sequence of operations into a

whole, then reification—a qualitative change manifested by the ontological shift

from operational thinking (focusing on mathematical processes) to structural

thinking (focusing on properties of, and relationships between, mathematical

objects).

Gray & Tall (1994) focused on the role of mathematical symbolism within this

process. Symbolism represents either a process to do or a concept to know. To

emphasise this dual meaning the term procept was introduced in elementary

arithmetic. Procepts start as simple structures and grow in interiority with the

cognitive growth of the child. The word “concept” rather than “object” was

used because terms such as “number concept” or “fraction concept” are more

common in ordinary language than “number object” or “fraction object”.

Furthermore, the term is used in a manner related to the “concept image”

consisting of “all of the mental pictures and associated properties and

processes” related to the concept in the mind of the individual (Tall & Vinner,

1981, p. 152). In this sense there is no claim that there is a “thing” called “a

mental object” in the mind. Instead a symbol is used which can be spoken,

heard, written and seen. It has the capability to evoke appropriate processes to

carry out necessary manipulations in the mind of the individual and it can be

communicated to share with others.

Theories which refer to the cognitive shift from process to object are process

driven, but they form an important backdrop for the theory of procepts. Indeed

Anna Sfard’s notion of duality (Sfard, 1991) and discussions with her in 1989

were important in its early development. Procepts are dynamic and

generic—“things” that are the source of great flexibility and power. The

problem in the cognitive context is to identify why some children implicitly
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seem to recognise this fact but others do not.

‘Encapsulation’ theories—and here the one word is used as a matter of

convenience—have intrinsic differences but also share common ground in

attempting to account for process/object links. Notions such as ‘interiorisation’

or ‘repeatable actions’ may lead to quantifiable differences in procedure but not

qualitative differences in thinking. This distinction is implicit in the finely-

grained analysis of counting units of Steffe et al. (1983). Decreasing

dependence on perceptual material permits children to eventually count figural

representations of perceptual material; the counting process continues in the

absence of the actual items. Motor acts, such as pointing, nodding and grasping,

that accompany the counting process, can be taken as further substitute units for

perceptual items. Dependence on these three forms of unit is further reduced by

the realisation that the utterance of a number word, the verbal unit, can be taken

as a substitute for countable items that could have been co-ordinated with the

uttered number sequence. However, these changes, though quantifiably

different, are qualitatively similar—each procedure is an analogue for the

process of counting. The concept of unit becomes wholly abstract when the

child no longer needs any material to create countable items nor is it necessary

to use any counting process.

THE EMPIRICAL EVIDENCE

Theories of encapsulation focus on the manner in which processes are

encapsulated as objects. However, the individual’s perception of the original

objects plays a vital role. Counting starts with objects perceived in the external

world which have properties of their own; they may be round or square, red or

green or both round and red. However, these properties need to be ignored if the

counting process is to be encapsulated into a new entity—a number which is

named and given a symbol. It is our contention that different perceptions of

these objects, whether mental or physical, are at the heart of different cognitive
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styles that lead to success and failure in elementary arithmetic.

Three themes dominate the empirical studies used in building the resulting

theory:

• differing cognitive styles reflected by children’s approaches to

elementary number combinations when they could not recall

solutions,

• process/concept links as represented by the tactics used to carry out

elementary computations,

• the nature of any imagery associated with these tactics.

Process Concept Links and the Proceptual Divide.

Qualitative differences in thinking and the consequences of a divergence

between the two were revealed by Gray (1991). These results indicated that

some children wish to remain at a procedural level which, in terms of

information processing, make things very difficult for them, whilst others

operated at a conceptual level which was more flexible. The notion of different

cognitive styles leading to diverging outcomes came from the observation that

the less able, who relied extensively on counting procedures, were “making

things more difficult for themselves and as a consequence become less able”

(Gray, 1991, p. 570) whilst in contrast, the ability to “compress the long

sequences [of procedures] appeared to be almost intuitive to the above-average

child” (ibid.) .

Drawing upon the children’s interpretations of symbolism, the differing

cognitive styles evident in this first study were later placed within the context of

a ‘proceptual divide’. This was hypothesised to exist between those children

who processed information in a flexible way and those who invoked the use of

procedures (Gray & Tall, 1994). Those doing the former have a cognitive

advantage. They link procedures to perform arithmetic operations with number

concepts through cognitive links relating process and concept.
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The common pedagogical approach to numerical processes builds on the belief

that number development should commence with enactive approaches and that,

given sufficient time, all children will encapsulate arithmetical processes into

numerical concepts.

When a procedure is first being learned, one experiences it almost one step at a

time; the overall pattern and continuity and flow of the entire activity are not

perceived. But as the procedure is practised, the procedure itself becomes an

entity–it becomes a thing. It, itself is an input or object of scrutiny. All of the full

range of perception, analysis, pattern recognition and other information

processing capabilities that can be used on any input data can be brought to bear

on this particular procedure. (Davis, 1984, p 29–30)

The existence of a proceptual divide would seem to indicate that some do not

perceive the ‘wholeness’ of an activity. Even when teaching programmes have

been designed to shift the lower achievers’ focus from processes to thinking

strategies (see, for example, Thornton, 1990) lower achievers appear to resist a

change from the security offered by their well-known counting procedures.

Further, we conjecture that positive efforts to make the relationships implicit in

proceptual thinking explicit to those that do not have the associated flexibility

run the danger of being seen by some as a new set of procedural rules.

So what causes the proceptual divide? We may conjecture that pedagogy may

account for it in some degree. There does exist a certain ‘conspiracy’ between

pedagogue and learner which is manifest in the belief that being shown how to

do something solves current difficulties (see, for example, Skemp, 1976). We

conjecture that one cause of the proceptual divide is the qualitatively different

focus of attention which, on the one hand places the emphasis upon concrete

objects and actions upon these objects, and on the other on abstraction and the

flexibility intrinsic within the encapsulated object. The fundamental question is

why do some children seem to  recognise this power implicitly but others do



JMB: in press (1999) 9

not?

IMAGERY AND ELEMENTARY ARITHMETIC

To gain a partial answer to this question our attention turned to imagery. Our

fundamental thesis was that different qualities of mathematical abstraction were

influenced by the child’s cognitive style and that the relationship between

achievement and qualitative difference may be determined by considering:

• the nature of the object that was dominant in a children’s imagery,

• the way that imagery is used within elementary arithmetic.

Psychological research has identified the importance of imagery in cognitive

development—children use it more in their thinking than adults (Kosslyn,

1980). Its role in the child’s thought processes cause it to have far-reaching

consequences on children’s concepts and reasoning (Bruner, Oliver &

Greenfield, 1966; Piaget & Inhelder, 1971) and therefore images place major

constraints on cognitive processes.

The relationship between different forms of representation may be seen through

the presentation and solution of arithmetic facts (Deahenne & Cohen, 1994) and

in the context of arithmetic mental representations of the objects will effect

mental operations (Gonzalez & Kolers, 1982). Children’s internal representation

of numbers are often highly imaginative and unconventional and built up over

time (Thomas, Mulligan & Goldin, 1995) but the possession of an image of a

mathematical idea implies that the individual does not need actions or the

specific instances of image making (Pirie & Kieran, 1994). Thus, though they

may be eidetic in the sense that they are fully formed from something presented

(Mason, 1992), mental interaction with the eidetic detail in the mind can

continue in the absence of the stimulus (Ahsen, 1996) though classification of

this phenomena is a problem (Gregg, 1990).

To associate the notions of achievement and ‘qualitative difference’ with the
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role of imagery we made the assumptions that an image is mediated by a

description (Kosslyn, 1980) and that the representation conforming to an image

is more like a description than a picture (Pylyshyn, 1973). The classical notion

is usually of a visual image—though images can be formed from other

modalities—which appears to have all of the attributes of actual objects or

icons. In the context of numerical development, Seron, Pesenti, Noël, Deloche

& Cornet (1992) suggest that images of quantities directly represented by

“patterns of dots or other things such as the alignment of apples or a bar of

chocolate” (p. 168) may be deemed as analogical.

Research Methodology

Paivio (1991) suggested that the generation of an image promotes the

development of a trace in the brain that integrates the separate components of

the item in question. Accessing a part of the information encoded in memory

prompts the retrieval of all other pieces of information contained in the image

(Woloshyn, Wood & Pressley, 1990, cited in Drake, 1996). To gain a sense of

the nature of children’s imagery associated with both concrete and abstract

objects and the relationship this may have with mentally processing elementary

number combinations, 24 children, selected to represent the extremes of ability,

‘low achievers’ and ‘high achievers’, across four age groups, 8+ to 12+, were

first asked to respond to

• auditory items such as ‘ball’, ‘car’, ‘triangle’, ‘five’, ‘fraction’ and

‘number’and

• visual items which included icons representing ‘two quarters’, a ‘dancing

man’, and geometric shapes forming a ‘house’, and symbols such as ‘5’, and

‘3÷4’.

The children were later asked to provide mental solutions to a series of

elementary arithmetic combination in addition and subtraction.
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The research methodology used semi-structured clinical interviews (see also

Gray & Pitta, 1996; Pitta & Gray, 1996). Items which prompted discussion were

presented in a way that gave the interviewees the freedom to follow their own

inclinations. Data from each individual was collected in a variety of ways

including records of achievement and teacher assessment. The initial selection

of children was made from class records of achievement. Each individual

interview was audio and video taped and subsequent transcriptions formed the

basis for response classification. When responding to each item within the

auditory and visual sections, children were asked to provide a first notion of

‘what came to mind’ when they first heard or saw the item. They were then

given 30 seconds to talk aloud about the item in question. Children were also

asked to provide an explanation of the auditory items so that an extra-terrestrial

(ET) may understand what it was.

Qualitative differences in interpretation

Though there are a wide variety of conclusions that may be drawn from each

item, the analysis of the results indicates that similarities in the children’s

descriptions of imagery are remarkable both for their consistency across the

range of items, and for the differences they displayed between the ‘high

achievers’ and the ‘low achievers’.

When responding to the auditory items, the ‘low achievers’ tended to highlight

the descriptive qualities of items in strongly personalised terms, qualities also

evident when the children responded to the visual items. However, there was a

tendency to associate the latter with a story. In a sense they were seen as

pictures that required colour, detail and a realistic content. In contrast, ‘high

achievers’ concentrated on the more abstract qualities within both series of

items. Though they initially focused on core concepts, they could traverse, at

will, a hierarchical network of knowledge from which they abstracted these

notions or representational features. Each item triggered ‘low achievers’ to
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provide descriptions which were qualitatively similar whereas ‘high achievers’

used each comment to trigger a qualitatively different comment.

Responses reflected the degree within which the children were involved with

the abstract qualities of the objects. The higher the involvement, the more the

child was able to talk about the items at an impersonal level. ‘High achievers’

often referred to the symbol using phrases such as “it is” to illustrate semantic

aspects of the object. For example, the word ‘five’ drew responses such as “it is

two plus three, one hundred take away ninety five”, or “it is prime because it is

only divisible by one and five”. This does not mean to say that they did not

attach qualities arising from episodic memory, such as “I had five candles on

my cake for my fifth birthday”; high achievers were able to do both. On the

other hand ‘low achievers’ almost always displayed examples of episodic

memory, concretised the item, “I have five fingers”, or associated its use with

some arithmetical action such as counting.

The similarities within groups and differences between groups may be summed

up by concluding that images of the low achievers are episodic and active,

whilst those of the high achievers are semantic, and generic. We use the terms

‘episodic’ and ‘semantic’ to draw a distinction between images arising from

memory associated with the recollection of personal happenings and events and

images associated with organised knowledge having meaning and relationships.

The former is based upon access to previous experience, the latter no longer

depend on learning episodes that provided the basis for knowledge (see Tulving,

1985; Davis, 1996)).

The qualitatively different responses to the words, icons and symbols indicate

that the ‘low achievers’ were reluctant to reject information and, if there was

little to describe, they created it by establishing stories around the items using

images from their known physical world, often as participants in the image,

elaborating the detail whenever it seemed that such embellishment was
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required. In some instances they drew upon one image which acted as a symbol,

for example, “my football”, “my mother’s car”. The objects referred to were

invariably real, quantifiably different, but qualitatively the same. In contrast,

‘high achievers’ filtered out the superficial to concentrate on the more abstract

qualities of the items. Though they focused on real world concepts, they were

also able to relate to a hierarchy of ideas which allowed them to refer to objects

in the abstract by using qualitatively different notions or representational

features.

Images in Elementary Arithmetic

Such differences became marked when images associated with children’s

responses to the range of elementary number problems were considered (see

also Pitta & Gray, 1997). Again ‘low achievers’ tended to concretise and focus

on all of the information. Symbols were translated into numerical processes

supported by the use of imaginistic objects that possess shape and in many

instances colour.

Frequently ‘low achievers’ reported imagery strongly associated with the notion

of number track although the common object which formed the basis of each

‘unit’ of the track was derived from fingers. In some instances children reported

seeing full picture images of fingers, in others it was ‘finger like’. The essential

thing is that the object of thought was ‘finger’ and the mental use of  finger

invoked a double counting procedure.

The objects of thought of the ‘low achievers’ were analogues of perceptual

items that seemed to force them to carry out procedures in the mind, as if they

were carrying out the procedures with perceptual items on the desk in front of

them. Their images were essential to the action; they maintained the focus of

attention. When the image failed they used the real items. For these children

mathematics involved action and to carry out the action they used ‘real’ things.
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Symbolism enables us to utilise short term memory to better effect but the

differences between the ‘low achievers’ imagery associated with symbolism and

that described by the ‘high achievers’ was stark. It is here that we may see

clearly the ‘low achiever’s’ inability to filter out information thus providing the

contrast between their uneconomical use of memory and the ‘high achievers’

economic use. Here, we should explain that we use the word ‘economic’ not

simply to illustrate differences in the detail but also in arrangement as well as

quality.

Symbolic images played considerably less part in processing for ‘low achievers’

than they did for ‘high achievers’. They were also reported far less than

analogical images. The notion of “spinning” seemed to be a common feature of

the ‘low achievers’ descriptions, implying that images remained for some time

and possessed movement. Even when adding 2+1 a nine year old reported

seeing all of the operation symbols “spinning around on one side and a big

black 3 on the other”. In some instances images were associated with

approximation. When adding 6+3 another nine-year-old reported seeing “a

jumble of numbers with 8 and 9 standing out because they are near the answer.”

This was a similar response to that given by a twelve-year-old who, when doing

the same combination reported an image that consisted of 3, 6, 9, 12, 15, and

18. “All the numbers were in the three times table”. Whilst the “three and the

six stayed there because they were part of the nine, the twelve, fifteen and the

eighteen just fall away.”

Where it was used the use of symbolic imagery amongst ‘high achievers’ was

far more economical. The word “flashing” dominated their descriptions. Images

came and went very quickly. “I saw ‘3+4’ flash through my mind and I told you

the answer”, “I saw a flash of answer and told you.” It was not unusual for the

children to note that they saw both question and answer “in a flash”, sometimes

the numerical symbol denoting the answer “rising out of” the symbols
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representing the question. In instances where children reported the use of

derived facts it was frequently the numerical transformation that ‘flashed’. For

instance when given 9 + 7 one eleven year old produced the answer 16

accompanied by the statement. “10 and 6 flashed through my mind.”

Discussion

The quality of imagery generated by the two groups differed considerably. On

the one hand we see the dominant objects being either physical, such as fingers

and counters, or figural representations of physical items. On the other we see it

as an object of thought. ‘Low achievers’ appeared to concentrate upon

analogues of physical actions. Where they use symbolism they continue to carry

out actions associated with such analogues. Their images are not so much

associated with “knowing” mathematics but with “doing” mathematics. In

contrast the symbolic images of ‘high achievers’, appear to act as thought

generators. They appear to flash as memory reminders, momentarily coming to

the fore so that new actions or transformations may take place.

Distinct trends indicated that ‘low achievers’ had a tendency to concretise and

focus on virtually all of the information. In the numerical context their imagery

was strongly associated with procedural aspects of numerical processes. ‘High

achievers’ appeared to focus on those abstractions that enable them to make

choices—they display the ability to reject information. We suggest that such

differences have overriding consequences for children’s mathematical

achievement. The one conclusion that may be drawn for the use of analogical

images is that it would seem to place a tremendous strain on working memory.

Geary (1994) has suggested that a component of developmental difficulties in

mathematics is a working-memory deficit. We would suggest that on the

contrary these low achievers show an extraordinary use of working memory.

Their problem is one associated with its use and not its capacity. Not only is the

child focusing on the representation but also on discrete numbers in that
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representation.

The ability to filter out information and see the strength of such a simple device

as a mathematical symbol works to the advantage of the ‘high achievers’. In

contrast the evidence suggests that children who are ‘low achievers’ in

mathematics appear unable to detach themselves from the search for substance

and meaning— almost no information is rejected, no surface feature filtered out.

The notion of procedural compression and the interiorisation of mathematical

processes is strongly embedded in the literature. Interpretations of Piagetian

notions that enactive approaches will form a foundation for procedural

encapsulation may be associated with Bruner’s (1968) view that past experience

may be conserved through such enactive approaches. Of course, whilst the latter

must also be seen within the context of iconic and symbolic conservation, it

would seem that far from ‘encapsulating’ enactive interpretations of

arithmetical processes, the ‘low achievers’ are mentally imitating them and

dependent upon them.

We suggest that the quality of image formed from enactive approaches is

dependent upon what it is that the child chooses to create an image of. In turn

we suggest that this will influence the use to which the image is put. We

conjecture that this will not only have consequences for the quality of the action

that is taken into consideration but it will also affect the quality of the object

which dominates the child’s imagery. It would seem reasonable that if some

children concentrate on actions with physical objects and work hard to develop

competence with these actions the more they are likely to use them.

Such considerations add a new quality to the notion of proceptual divide, one

that is so strongly associated with image formation that it is possible that

children’s interpretations of mathematical actions may be strongly influenced

by their interpretations of their real world. In early mathematics children are

faced with not one but two interpretations of their interaction with externally
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perceived objects. On the one hand it is the identification of the qualities of

objects that arise from manipulation and perception which lead eventually to the

development of geometrical concepts. On the other, though perception and

manipulation are the dominant actions, it is the cognitive shift associated with

the result of these actions that brings about the development of numerical

concepts. The objects that are the catalysts for both strands of development are

the same but the conceptual development is different. We believe that this has

serious implications for pedagogy.

Early years within school are dominated by enactive methods in the belief that

given the appropriate experience all children will “encapsulate” arithmetical

processes to form arithmetical concepts. Observation within any classroom

shows that this is not the case. Children may be focusing on different aspects of

their experience. For some the dominant focus is on objects and the actions on

those objects, others are able to focus more flexibly on the results of those

actions expressed as number concepts. The former may seek the security of

counting procedures on objects rather than the longer-term development of

flexible arithmetic. We need to determine which, so that we may provide the

necessary support both to those who develop flexibly and also to those who, at

the very start of their mathematical development, appear to traverse a

cognitively different route.
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