
 
 

University of Birmingham

Higher deformations of lie algebra representations II
Westaway, Matthew

DOI:
10.1017/nmj.2020.13

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Westaway, M 2021, 'Higher deformations of lie algebra representations II', Nagoya Mathematical Journal, vol.
244, pp. 232-255. https://doi.org/10.1017/nmj.2020.13

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is an accepted manuscript version of an article first published in Nagoya Mathematical Journal. The final version of record is available at
https://doi.org/10.1017/nmj.2020.13

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 28. Jun. 2022

https://doi.org/10.1017/nmj.2020.13
https://doi.org/10.1017/nmj.2020.13
https://birmingham.elsevierpure.com/en/publications/0117c1a5-cd66-4302-b47b-fb7b2b81c35d


HIGHER DEFORMATIONS OF LIE ALGEBRA REPRESENTATIONS II

MATTHEW WESTAWAY

Abstract. Steinberg’s tensor product theorem shows that for semisimple algebraic groups the
study of irreducible representations of higher Frobenius kernels reduces to the study of irreducible
representations of the first Frobenius kernel. In the preceding paper in this series, deforming the
distribution algebra of a higher Frobenius kernel yielded a family of deformations called higher
reduced enveloping algebras. In this paper we prove that Steinberg decomposition can be similarly
deformed, allowing us to reduce representation theoretic questions about these algebras to questions
about reduced enveloping algebras. We use this to derive structural results about modules over
these algebras. Separately, we also show that many of the results in the preceding paper hold
without an assumption of reductivity.

1. Introduction

Let G be a semisimple algebraic group over an algebraically closed field K of characteristic p > 0.
We denote by Gr the r-th Frobenius kernel of G. It was shown by Steinberg in 1963 [15] that in order
to understand the irreducible Gr-modules for r ≥ 1, it is sufficient to understand the irreducible
G1-modules. This result can be interpreted in the following way: considering irreducible modules
only up to isomorphism, there is a bijection

Ψ0 : Irr(Dist(Gr+1))→ Irr(Dist(Gr))× Irr(Dist(G1)),

recalling here that the category of Gr-modules is equivalent to the category of Dist(Gr)-modules,
where Dist(Gr) is the distribution algebra of Gr. In particular, this bijection sends the irreducible
Dist(Gr+1)-module Lr+1(λ+ µpr), where λ ∈ Xr and µ ∈ X1, to the pair (Lr(λ), L1(µ)). Here, Xr

is the set of dominant weights λ of some maximal torus T of G which satisfy that 0 ≤ 〈λ, αν〉 < pr

for all simple coroots αν of G with respect to T .
In the previous paper in this series [17] we constructed, for each r ∈ N, a higher universal

enveloping algebra U [r](G) and, for each χ ∈ Lie(G)∗ = g∗, a reduced higher universal enveloping

algebra U
[r]
χ (G), with the key property that U

[r]
0 (G) ∼= Dist(Gr+1). Every irreducible U [r](G)-

module is a U
[r]
χ (G)-module for some χ, and in [17] it was shown that, under certain restrictions,

there is a well-defined map

Ψχ : Irr(U [r]
χ (G))→ Irr(Dist(Gr))× Irr(Uχ(g))

which, when χ = 0, gives Steinberg decomposition.
In this paper we remove the restrictions and furthermore show that this map is always a bi-

jection (Theorem 4.2, Corollary 4.7). This then allows us to derive various structural results about

the irreducible U
[r]
χ (G)-modules. In particular, given an irreducible Dist(Gr)-module P one can

construct teenage Verma modules Zrχ(P, λ) which behave as the baby Verma modules Zχ(λ) do

(Proposition 4.11). This allows us to classify all irreducible U
[r]
χ (G)-modules when χ is regular in

Theorem 4.14.
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The main techniques which allow us to prove these results come from the work of Schneider and
Witherspoon on Clifford theory for Hopf algebras. In fact, the Hopf algebraic approach also allows
us to reprove many of the results from [17] for affine algebraic groups which are not necessarily

reductive. In particular, we show that U [r](G) is a crossed product of Dist(Gr) with U(g)(r) in

Proposition 3.3, and that U [r](G) has a Poincaré-Birkhoff-Witt basis in Corollary 3.4. This is the
content of Section 3.

It is in Section 4 where we study the representation theory of the higher universal enveloping
algebras. Specifically, in Subsection 4.1 we prove the main result - that the map Ψχ mentioned
above is well-defined and a bijection. Then, in Subsection 4.2 we construct the teenage Verma
modules Zrχ(P, λ) and prove some preliminary results about them. Finally, in Subsection 4.3, we
see some consequences of the results proved in the previous two subsections.

We conclude in Section 5 with a discussion of the Azumaya locus of the algebras U [r](G). In
particular, we start by discussing the Azumaya locus of a not-necessarily-prime algebra R with
affine centre Z, over which R is module-finite. The reader should note that the prime case has
previously been studied by Brown and Goodearl in [1]. We see that, under certain conditions, the
Azumaya locus coincides with the pseudo-Azumaya locus, which is defined in Subsection 5.1 and
uses the representation theory of R. In Subsection 5.2 we see how the pseudo-Azumaya locus of
the algebra U [r](G) connects to the Azumaya locus of the corresponding U(g).

I would like to thank my PhD supervisors Dmitriy Rumynin and Inna Capdeboscq for their
continued assistance with this project. I would also like to thank Lewis Topley for some useful
discussions regarding this subject. Finally, I want to thank Alexander Premet, Adam Thomas, and
the referee for their useful comments which have helped improve the paper.

2. Notation

Let A be an associative K-algebra, where K is an algebraically closed field of characteristic p > 0.
From now on, we shall write Irr(A) for the category of irreducible left A-modules. In all instances
in this paper, elements of the set Irr(A) shall be finite-dimensional. Given a vector space V we

shall write V (r) for the vector space with the same underlying abelian group as V but whose scalar
multiplication is given by the map K × V → K × V → V which is a composition of the map

(λ, v) 7→ (λp
−r
, v) with the scalar multiplication map on V . In particular, we denote by A(r) the

algebra with underlying ring A but underlying vector space A(r).
When G is a reductive algebraic group over an algebraically closed field K of characteristic p > 0,

we assign a maximal torus T and Borel subgroup B such that T ⊂ B ⊂ G. We also let Φ denote
the root system of G with respect to T , let Π be a choice of simple roots, and let Φ+ be the
corresponding set of positive roots. We further define g = Lie(G), b = Lie(B) and h = Lie(T ).
For α ∈ Φ we define gα to be the corresponding root space of g, and we set n+ =

⊕
α∈Φ+ gα and

n− =
⊕

α∈Φ+ g−α.
The character group of T will be denoted X(T ) = Hom(T,Gm) and the cocharacter group of

T will be denoted by Y (T ) = Hom(Gm, T ). We shall denote by < ·, · >: X(T ) × Y (T ) → Z the
standard bilinear form as in [6, II.1.3].

The Lie algebra g has basis consisting of eα for α ∈ Φ and ht for 1 ≤ t ≤ d, where d = dim(h),
as in [6, II.1.11].

3. Poincaré-Birkhoff-Witt for higher universal enveloping algebras

Let G be an algebraic group over the algebraically closed field K, with coordinate algebra K[G].
Let us recall the construction of the distribution algebra of G and of the higher universal enveloping
algebras of G.
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For n ∈ N, we define the vector space Distn(G) to consist of all linear maps δ : K[G]→ K which
vanish on In+1, where I is the augmentation ideal of K[G]. We further define Dist+

n (G) to be the
subspace of all δ ∈ Distn(G) with δ(1) = 0. The distribution algebra of G is then defined to be the
algebra

Dist(G) =
⋃
n∈N

Distn(G),

with multiplication defined as follows: if δ ∈ Distn(G), µ ∈ Distm(G), then δµ is the map

K[G]
∆−→ K[G]⊗K[G]

δ⊗µ−−→ K⊗K ∼−→ K,

where ∆ is the comultiplication map on K[G]. In particular, one can show that δµ ∈ Distn+m(G)
and [δ, µ] ∈ Distn+m−1(G). The algebra has the structure of a cocommutative Hopf algebra.

For r ∈ N, we can define (as in [17]) the r-th higher universal enveloping algebra U [r](G) as
follows:

U [r](G) :=
T (Dist+

pr+1−1
(G))

Qr
,

where Qr is the ideal generated by the two relations
(i) δ ⊗ µ = δµ if δ ∈ Dist+

i (G), µ ∈ Dist+
j (G) with i+ j < pr+1; and,

(ii) δ ⊗ µ− µ⊗ δ = [δ, µ] if δ ∈ Dist+
i (G), µ ∈ Dist+

j (G) with i+ j ≤ pr+1,

and T (Dist+
pr+1−1

(G)) is the tensor algebra of Dist+
pr+1−1

(G). This algebra also has the structure

of a cocommutative Hopf algebra.
In order to construct a Poincaré-Birkhoff-Witt basis of U [r](G), we need to use a couple of Hopf

algebraic notions. For a Hopf algebra H, we define the set of primitive elements P (H) := {x ∈
H |∆(x) = x ⊗ 1 + 1 ⊗ x}, and the set of group-like elements G(H) := {x ∈ H |∆(x) = x ⊗ x}.
Given an element x ∈ P (H), a sequence x(0), x(1), x(2), . . . , x(k) ∈ H is said to be a sequence of

divided powers of x if (i) x(0) = 1; (ii) x(1) = x; and, (iii) ∆(x(l)) =
∑l

i=0 x
(i) ⊗ x(l−i) for all l ≥ 0.

Suppose that x1, . . . , xn is a basis for the Lie algebra g = Lie(G). For each 1 ≤ i ≤ n, there exists

an infinite sequence of divided powers x
(0)
i , x

(1)
i , x

(2)
i , . . . of xi in the cocommutative Hopf algebra

Dist(G). It is well-known (see [16]) that the distribution algebra Dist(Gr) has basis

{x(a1)
1 x

(a2)
2 . . . x(an)

n | 0 ≤ ai < pr for all 1 ≤ i ≤ n},

while the vector space Distk(G) has basis

{x(a1)
1 x

(a2)
2 . . . x(an)

n |
n∑
i=1

ai ≤ k}.

One can also observe that x
(k)
i ∈ Distk(G) for all 1 ≤ i ≤ n and k ∈ N.

In particular, there is an inclusion of vector spaces Dist+
pr−1(G) ↪→ Dist(Gr) ⊂ Dist(G) which

clearly satisfies the necessary conditions to employ the universal property of U [r−1](G) and obtain
an algebra homomorphism

πr−1 : U [r−1](G)→ Dist(Gr).

From the basis description of Dist(Gr) above, this map is surjective.
It is straightforward to see that for δ ∈ Dist+

pr−1(G) the equality πr−1(δ)p = πr−1(δp) holds.

Hence, letting Rr−1 be the ideal of U [r−1](G) generated by δ⊗p − δp for δ ∈ Dist+
pr−1(G), there is a

surjective algebra homomorphism

πr−1 : U [r−1](G)/Rr−1 � Dist(Gr).
3



Lemma 3.1. The algebra U [r−1](G) is spanned by the set

{x(a1)
1 ⊗(x

(pr−1)
1 )⊗b1⊗x(a2)

2 ⊗(x
(pr−1)
2 )⊗b2⊗. . .⊗x(an)

n ⊗(x(pr−1)
n )⊗bn | 0 ≤ ai < pr−1, bi ≥ 0, 1 ≤ i ≤ n}.

Proof. That these elements generate U [r−1](G) is obvious from the given basis of Distpr−1(G).
Hence, using a filtration argument, all that remains is to make the following observations:

(i) For 1 ≤ i ≤ n, if 0 ≤ s, t ≤ pr−1, then x
(s)
i ⊗ x

(t)
i −

(
s+t
s

)
x

(s+t)
i lies in the K-span of the set

{x(a1)
1 ⊗ x(a2)

2 ⊗ . . .⊗ x(an)
n | 0 ≤ aj < pr−1, 1 ≤ j ≤ n, and

n∑
j=1

aj < s+ t}.

Note here that
(
s+t
s

)
= 0 if s+ t ≥ pr−1 and s, t < pr−1.

(ii) For 0 ≤ s, t ≤ pr−1 and 1 ≤ i ≤ j ≤ n, the commutator x
(t)
j ⊗ x

(s)
i − x

(s)
i ⊗ x

(t)
j lies in the

K-span of the set{
x

(a1)
1 ⊗ (x

(pr−1)
1 )⊗b1 ⊗ x(a2)

2 ⊗ (x
(pr−1)
2 )⊗b2 ⊗ . . .⊗ x(an)

n ⊗ (x
(pr−1)
n )⊗bn

with 0 ≤ ak < pr−1, bk ≥ 0, 1 ≤ k ≤ n, and
∑n

k=1(ak + bkp
r−1) < s+ t

}
.

These observations follow from the defining relations of U [r−1](G) and calculations with the
divided power basis of Dist(Gr) = K[Gr]

∗.
�

Corollary 3.2. The algebra U [r−1](G)/Rr−1 is spanned by the set

{x(a1)
1 ⊗(x

(pr−1)
1 )⊗b1⊗x(a2)

2 ⊗(x
(pr−1)
2 )⊗b2⊗. . .⊗x(an)

n ⊗(x(pr−1)
n )⊗bn | 0 ≤ ai < pr−1, 0 ≤ bi < p, 1 ≤ i ≤ n}.

Proof. This follows from the above lemma since, for δ ∈ Distpr−1(G), δp ∈ Distpr−1(G) by Lemma
3.2.1 in [17]. �

Hence, dim(U [r−1](G)/Rr−1) ≤ pr dim(g). However, we know that U [r−1](G)/Rr−1 surjects onto

Dist(Gr), which has dimension pr dim(g). Thus, U [r−1](G)/Rr−1
∼= Dist(Gr).

In particular, the universal property of the algebra U [r−1](G)/Rr−1 gives an algebra homomor-

phism Dist(Gr)→ U [r](G). Composing with πr then gives an algebra homomorphism Dist(Gr)→
Dist(Gr+1) which, by considering the effect on the basis, is clearly injective. Hence, there is an

inclusion Dist(Gr) ↪→ U [r](G) of algebras.

The above results show that Dist(Gr) is a Hopf subalgebra of U [r](G), since the coalgebra struc-

ture on U [r](G) is extended from the coalgebra structure on Distpr+1−1(G) ⊆ Dist(Gr) using the
universal property given in Proposition 3.1.1 in [17], and similarly for the antipode. In fact, the
given bases of Dist(Gr) and of Distk(G) show that, as in Lemma 7.1.1(1) in [17], Dist(Gr) is normal

in U [r](G).
More generally, the results of Section 4 in [17] all hold for an arbitrary affine algebraic group

G – with one notable difference. Namely, we may no longer assume that G has an Fp-form, and
so we must use the standard Frobenius morphism rather than the geometric Frobenius morphism
throughout. The reader can check that the only meaningful change this induces is to turn Υr,s into

a Hopf algebra homomorphism from U [r](G) to U [r−s](G)(s) instead of U [r−s](G). Other than this,
the only place in which the reductivity of G is used in that section is to show that Υr,s is surjective,
which now follows from Lemma 3.1. Hence, the whole of Lemma 7.1.1 in [17] holds for an arbitrary
affine algebraic group.

In particular, Dist(Gr) ⊂ U [r](G) is a U(g)(r)-Galois extension with Dist(Gr) = U [r](G)coU(g)(r) .

Proposition 3.3. The U(g)(r)-extension Dist(Gr) ⊂ U [r](G) is U(g)(r)-cleft.
4



Proof. We need to show that there is a convolution-invertible right U(g)(r)-comodule map γ :

U(g)(r) → U [r](G). Since U(g)(r) has basis {xa11 x
a2
2 . . . xann | ai ≥ 0, 1 ≤ i ≤ n}, we simply need to

define γ(xa11 x
a2
2 . . . xann ) for all a1, a2, . . . , an ≥ 0.

As such, we define

γ(xa11 x
a2
2 . . . xann ) = (x

(pr)
1 )⊗a1 ⊗ (x

(pr)
2 )⊗a2 ⊗ . . .⊗ (x(pr)

n )⊗an ∈ U [r](G)

for all a1, a2, . . . , an ≥ 0.
To show that γ is a U(g)(r)-comodule map we need to show that, for y ∈ U(g)(r),∑

γ(y)(1) ⊗ γ(y)(2) =
∑

γ(y(1))⊗ y(2)

where we use Sweedler’s Σ-notation and we write γ(y)(2) for Υr,r(γ(y)(2)).
It is enough to show this for basis elements. Note that, if y = xa11 x

a2
2 . . . xann with a1, a2, . . . , an ≥

0, then

∆(y) = (x1 ⊗ 1 + 1⊗ x1)a1(x2 ⊗ 1 + 1⊗ x2)a2 . . . (xn ⊗ 1 + 1⊗ xn)an

=
∑

bi+ci=ai

(
a1

b1

)(
a2

b2

)
. . .

(
an
bn

)
xb11 x

b2
2 . . . xbnn ⊗ x

c1
1 x

c2
2 . . . xcnn .

Furthermore, writing ∆U(g)(r) for the U(g)(r)-comodule map of the comodule U [r](G),

∆U(g)(r)((x
(pr)
1 )⊗a1 ⊗ (x

(pr)
2 )⊗a2 ⊗ . . .⊗ (x(pr)

n )⊗an)

= ∆U(g)(r)(x
(pr)
1 )⊗a1 ⊗∆U(g)(r)(x

(pr)
2 )⊗a2 ⊗ . . .⊗∆U(g)(r)(x

(pr)
n )⊗an ,

while, for any 1 ≤ i ≤ n,

∆U(g)(r)(x
(pr)
i ) =

pr∑
j=0

x
(j)
i ⊗ x

(pr−j)
i = x

(pr)
i ⊗ 1 + 1⊗ xi

since x
(s)
i = 0 for all 0 < s < pr.

Hence,
∑
γ(y)(1) ⊗ γ(y)(2) equals∑

bi+ci=ai

(
a1

b1

)(
a2

b2

)
. . .

(
an
bn

)
((x

(pr)
1 )⊗b1 ⊗ (x

(pr)
2 )⊗b2 ⊗ . . . ⊗ (x(pr)

n )⊗bn) ⊗ (xc11 x
c2
2 . . . xcnn )

and
∑
γ(y(1))⊗ y(2) equals∑

bi+ci=ai

(
a1

b1

)(
a2

b2

)
. . .

(
an
bn

)
((x

(pr)
1 )⊗b1 ⊗ (x

(pr)
2 )⊗b2 ⊗ . . . ⊗ (x(pr)

n )⊗bn) ⊗ (xc11 x
c2
2 . . . xcnn ).

Thus, γ is a U(g)(r)-comodule map. Furthermore, γ is convolution-invertible (with convolution

inverse Sγ), since U [r](G) is a Hopf algebra. �

By Theorem 8.2.4 in [10], Dist(Gr) ⊂ U [r](G) has the normal basis property. Hence, U [r](G) ∼=
Dist(Gr)⊗ U(g)(r) as left Dist(Gr)-modules and right U(g)(r)-comodules. In particular, Corollary
8.2.5 in [10] shows that

U [r](G) ∼= Dist(Gr)#σU(g)(r),

a crossed product of Dist(Gr) with U(g)(r).

Corollary 3.4. U [r](G) has basis

{x(a1)
1 x

(a2)
2 . . . x(an)

n (x
(pr)
1 )b1(x

(pr)
2 )b2 . . . (x(pr)

n )bn | 0 ≤ ai < pr, 0 ≤ bi, 1 ≤ i ≤ n}.
5



[Note that in this corollary we suppress the ⊗-symbol when we write the multiplication in U [r](G).
We shall do similarly throughout this paper when no confusion is likely].

Now that we know a basis for U [r](G), we can obtain the following corollary. The idea for this
proof is due to Lewis Topley.

Corollary 3.5. Let G be an affine algebraic group. For δ ∈ Dist+
pr(G), δ⊗p − δp is central in

U [r](G).

Proof. If G is an affine algebraic group, then there is an inclusion Dist(G) ⊆ Dist(GLm) for some
m ∈ N, which restricts to an inclusion Distk(G) ⊆ Distk(GLm) for all k ∈ N. In particular, the

inclusion Dist+
pr+1−1

(G) ↪→ Dist+
pr+1−1

(GLm) ↪→ U [r](GLm) induces, by the universal property, an

algebra homomorphism

ι : U [r](G)→ U [r](GLm).

Let x1, . . . , xn be a basis of g = Lie(G). This can be extended to a basis x1 . . . , xm2 of glm =
Lie(GLm).

The map ι sends

x
(a1)
1 x

(a2)
2 . . . x(an)

n (x
(pr)
1 )b1(x

(pr)
2 )b2 . . . (x(pr)

n )bn ∈ U [r](G)

to
x

(a1)
1 x

(a2)
2 . . . x(an)

n (x
(pr)
1 )b1(x

(pr)
2 )b2 . . . (x(pr)

n )bn ∈ U [r](GLm).

Hence, by Corollary 3.4, ι is injective.
In particular, there is an inclusion ι : U [r](G) ↪→ U [r](GLm). Now, for δ ∈ Dist+

pr(G), ι(δ)⊗p−ι(δ)p

is central in U [r](GLm) by [17], since GLm is reductive.

Hence, δ⊗p − δp is central in U [r](G). �

We can now proceed as in Section 3.4 in [17] to obtain a number of corollaries for an arbitrary

algebraic group G. Let Z
[r]
p be the central subalgebra of U [r](G) generated by all δ⊗p − δp for

δ ∈ Dist+
pr(G).

Corollary 3.6. The algebra Z
[r]
p is generated by the elements (x

(pr)
i )⊗p − (x

(pr)
i )p for i = 1, . . . , n.

Furthermore, these elements are algebraically independent.

Corollary 3.7. As a Z
[r]
p -module, U [r](G) is free with basis

{x(a1)
1 x

(a2)
2 . . . x(an)

n | 0 ≤ a1, . . . , an < pr+1 }.

Corollary 3.8. The centre Z [r](G) := Z(U [r](G)) of U [r](G) is a finitely generated algebra over K.

As a Z(U [r](G))-module, U [r](G) is finitely generated.

Corollary 3.9. Let M be an irreducible U [r](G)-module. Then M is finite-dimensional, of dimen-

sion less than or equal to p(r+1) dim(g).

Similarly, the requirement in Section 5.1 of [17] thatG be reductive can be removed. In particular,

for an arbitrary affine algebraic group G and χ ∈ (g∗)(r) we can define the algebra

U [r]
χ (G) :=

U [r](G)

〈δ⊗p − δp − χ(δ)p | δ ∈ Dist+
pr(G)〉

.

Recall here that χ extends to Dist+
pr(G) through the map Υr,r : U [r](G) → U(g)(r) defined in

Section 4 in [17] – the reader should note that this map is obtained from the Frobenius map

Dist(G)→ Dist(G(r)). We saw earlier that all the properties of this map given in [17] for reductive
groups also hold for affine algebraic groups. We then obtain the following corollaries.
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Corollary 3.10. Every irreducible U [r](G)-module is a U
[r]
χ (G)-module for some χ ∈ (g∗)(r).

Corollary 3.11. Given χ ∈ (g∗)(r) and g ∈ G, there is an isomorphism U
[r]
χ (G) ∼= U

[r]
g·χ(G), where

G is acting on (g∗)(r) through the coadjoint action pre-composed with the r-th Frobenius morphism.

Furthermore, it is a straightforward consequence of Corollary 3.4 that U
[r]
χ (G) has basis

{x(a1)
1 x

(a2)
2 . . . x(an)

n | 0 ≤ ai < pr+1 for all 1 ≤ i ≤ n}.

Hence, U
[r]
χ (G) is a finite-dimensional algebra of dimension p(r+1) dim(g).

4. Representation Theory of U [r](G)

4.1. Steinberg decomposition. For the rest of this paper we assume that G is a connected re-
ductive algebraic group over K. We shall furthermore assume that the quotient groupX(T )/prX(T )
has a system of representatives X ′r(T ) which lies inside Xr(T ). Recall that the definition of Xr(T )
is

Xr(T ) := {λ ∈ X(T )| 0 ≤ 〈λ, αν〉 < pr for all α ∈ Π}.
This assumption holds if, for example, G is semisimple and simply-connected. The reader should
consult [6, II.3.16] to see how Steinberg’s tensor product theorem works for reductive algebraic
groups satisfying this assumption. In particular, this assumption guarantees that every irreducible
Dist(Gr)-module extends to a Dist(Gr+1)-module (and hence to a U [r](G)-module).

Observe that in this section our algebraic group G has an Fp-form, and so we shall generally use
the geometric Frobenius morphism rather than the standard Frobenius morphism. In particular, the
homomorphisms Υr,s map from U [r](G) to U [r−s](G) without requiring a twist of the K-structure.

In [17], it is shown by two different methods that every irreducible U [r](G)-module M is isomor-

phic as U [r](G)-modules (and hence Dist(Gr)-modules) to P ⊗ HomGr(P,M) for some unique (up
to isomorphism) irreducible P ∈ Irr(Dist(Gr)). The first method uses the fact that each irreducible

Dist(Gr)-module P can be extended to a U [r](G)-module, together with the Hopf algebra structure

of U [r](G), to equip HomGr(P,M) with the structure of a U(g)-module and P ⊗HomGr(P,M) with

the structure of a left U [r](G)-module. The second method introduces the algebra

E := EndU [r](G)(U
[r](G)⊗Dist(Gr) P )op,

and shows that HomGr(P,M) has the structure of a left E-module. Theorem 7.1.3 in [17] then gives

a U [r](G)-module structure to P ⊗ HomGr(P,M), and Theorem 7.1.4 shows that it is compatible
with the module structure on M .

In understanding the structure of E, the following lemma was proved in [17] as Lemma 7.1.5. We
repeat the lemma here, since we are now in a position to explain the isomorphism in more detail.

Lemma 4.1. Let P ∈ Irr(Dist(Gr) and E = EndU [r](G)(U
[r](G)⊗Dist(Gr) P )op. Then E ∼= U(g).

Remark 1. We can describe this isomorphism a little more explicitly. The isomorphism U(g) ∼=
K#U(g) sends z ∈ U(g) to 1#z ∈ K#U(g). We now need to consider the isomorphism K#U(g) ∼=
E from Schneider [14].

Note that the stability of the Dist(Gr)-module P comes immediately from the fact that P can be

extended to a U [r](G)-module, by Remark 3.2.3 in [14]. Let q : U [r](G)⊗D P → P be the Dist(Gr)-

linear map defining this U [r](G)-module structure, denoting the algebra Dist(Gr) by D here and
throughout this paper. By Theorem 3.6 in [14], there is a right U(g)-collinear map J ′ : U(g) → E
given by

J ′(h)(1⊗ z) :=
∑

ri(h)⊗ q(li(h)⊗ z),
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where h ∈ U(g), z ∈ P , and ri(h), li(h) ∈ U [r](G) are such that
∑
ri(h) ⊗D li(h) is the inverse

image of 1⊗ h under the canonical isomorphism

can : U [r](G)⊗D U [r](G)→ U [r](G)⊗ U(g).

By Remark 1.1(4) in [14], the inverse of the map can sends x⊗ y →
∑
xS(y(1))⊗ y(2), where y

is the image of y ∈ U [r](G) under the projection Υr,r : U [r](G) � U(g).

Now fix a U(g)-comodule map γ : U(g)→ U [r](G) such that Υr,r ◦ γ = IdU(g) and S ◦ γ = γ ◦ S,

where Υr,r : U [r](G) � U(g) is as defined in Section 4 in [17]. The proof of Proposition 3.3
illustrates a way to do this. We hence describe the isomorphism J := J ′S : U(g)→ E as follows:

x 7→ (1⊗D z 7→
∑

γ(x)(1) ⊗D q(S(γ(x)(2))⊗ z)

for x ∈ U(g) and z ∈ P .

This remark in fact shows that the two methods from [17], discussed above, are deeply related.

In particular, if we compose the isomorphism U(g)
∼−→ E with the E-action on HomGr(P,M) from

the second method then we recover the U(g)-action on HomGr(P,M) used in the first method. In

this paper we prefer to work with the second method, since the actions of E = U(g) and U [r](G) are
easier to compute with in this case. This shall be most beneficial in Lemma 4.6 and in Section 5,
where the actions of central elements in U [r](G) and U(g) are explored.

We define ΓP to be the category of irreducible left U [r](G)-modules which decompose as Dist(Gr)-
modules into a direct sum of copies of (Dist(Gr)-modules isomorphic to) P . This is a full subca-

tegory of the category of irreducible left U [r](G)-modules. Furthermore, set mod(U(g)) to be the
category of finite-dimensional left U(g)-modules.

We shall examine the functor

ΨP : ΓP → mod(E) = mod(U(g))

which sends M ∈ ΓP to HomGr(P,M) .
The following theorem should also be compared with Theorem 3.1 in [18].

Theorem 4.2. There is an equivalence of categories between ΓP and Irr(E). In particular, this
equivalence is obtained from the maps

ΨP : ΓP → Irr(E), ΨP (M) = HomGr(P,M);

ΦP : Irr(E)→ ΓP , ΦP (N) = P ⊗K N.

Proof. We maintain the convention D = Dist(Gr) to make formulas clearer.
If M ∈ ΓP , then Lemma 7.1.3 and Theorem 7.1.4 in [17] show that

ΨP (M) = HomD(P,M) = HomU [r](G)(U
[r](G)⊗D P,M)

is a left E-module; that P ⊗K ΨP (M) is a left U [r](G)-module; that P ⊗K ΨP (M) is isomorphic to

(U [r](G)⊗D P )⊗E ΨP (M) as U [r](G)-modules; and that

ηM : (U [r](G)⊗D P )⊗E ΨP (M)→M, ηM (a⊗D z ⊗E φ) = φ(a⊗D z)

is an isomorphism of U [r](G)-modules.
Note that ΨP (M) is an irreducible E-module, since if ΨP (M) contains a proper non-trivial

submodule U then

P ⊗K U ∼= (U [r](G)⊗D P )⊗E U
is a proper non-trivial U [r](G)-submodule of the irreducible U [r](G)-module

M ∼= (U [r](G)⊗D P )⊗E ΨP (M) ∼= P ⊗K ΨP (M).
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Now, suppose N is an irreducible left E-module. It was proved in [17, Lemma 7.1.3] that

ΦP (N) := P ⊗K N ∼= (U [r](G)⊗D P )⊗E N
is a left U [r](G)-module, and furthermore that the structure is such that ΦP (N) is a direct sum of
copies of P as a Dist(Gr)-module.

We now wish to show that HomD(P,ΦP (N)) ∼= N as left E-modules. Define

σN : N → HomD(P,ΦP (N)) by σN (n)(z) = z ⊗ n ∈ P ⊗K N.

Since
HomD(P,ΦP (N)) ∼= HomU [r](G)(U

[r](G)⊗D P,ΦP (N))

as left E-modules and
P ⊗K N ∼= (U [r](G)⊗D P )⊗E N

as left U [r](G)-modules, we can also write this map as

σN : N → HomU [r](G)(U
[r](G)⊗D P, (U [r](G)⊗D P )⊗E N), σN (n)(a⊗D z) = (a⊗D z)⊗E n

for n ∈ N , z ∈ P and a ∈ U [r](G).

It is easy to see that σN (n) is a U [r](G)-module homomorphism from U [r](G)⊗DP to (U [r](G)⊗D
P ) ⊗E N , and also that σN is a linear map. We show that σN is E-linear. It is enough to show

that for f ∈ E, n ∈ N , z ∈ P and a ∈ U [r](G), we have that

(f · σN (n))(a⊗D z) = σN (f · n)(a⊗D z).
Note that

(f · σN (n))(a⊗D z) = σN (n)(f(a⊗D z)) = f(a⊗D z)⊗E n,
while

σN (f · n)(a⊗D z) = (a⊗D z)⊗E (f · n).

Since the right E-module structure on U [r](G) ⊗D P comes from the evaluation map, the result
holds from the definition of the tensor product.

Hence, σN is an E-module homomorphism. It is clear that σN is injective from the description
σN (n)(z) = z ⊗ n ∈ P ⊗K N for n ∈ N , z ∈ P . Furthermore, by above,

ΦP (N) ∼=
k⊕
i=1

P

as Dist(Gr)-modules. Now, k = dim(N) as dim(ΦP (N)) = dim(P ) dim(N) and dim(
⊕k

i=1 P ) =
k dim(P ). Hence,

HomD(P,ΦP (N)) ∼= HomD(P,
k⊕
i=1

P ) = Kk,

since HomD(P, P ) = K. Thus, dim(N) = k = dim(HomD(P,ΦP (N))). Together with the injecti-
vity, this proves that σN is an isomorphism of E-modules.

Furthermore, ΦP (N) is an irreducible U [r](G)-module since if it contains a proper non-trivial
submodule L then

HomD(P,L) ∼= HomU [r](G)(U
[r](G)⊗D P,L)

is a proper non-trivial E-submodule of

N ∼= HomU [r](G)(U
[r](G)⊗D P,ΦP (N)) ∼= HomD(P,ΦP (N)),

contradicting the irreducibility of N .
In conclusion, we have shown that the maps ΨP and ΦP are well-defined; that for any irreducible

U [r](G)-module M , ΦP (ΨP (M)) ∼= M as U [r](G)-modules; and that for any irreducible E-module
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N , ΨP (ΦP (N)) ∼= N as E-modules. It is then straightforward to see that this bijection is in fact
an equivalence of categories. �

Remark 2. This proof in fact shows that for any E-module N , not necessarily irreducible, it is
true that N ∼= HomGr(P, P ⊗K N) = HomGr(P, (U

[r](G)⊗D P )⊗E N) as E-modules.

For each K-algebra R we consider in this section, we denote by Irr(R) the set of isomorphism
classes of irreducible R-modules.

Corollary 4.3. There is a bijection

Ψ : Irr(U [r](G))→ Irr(Dist(Gr))× Irr(U(g))

which sends M to (P,HomGr(P,M)), where P is the unique (up to isomorphism) irreducible

Dist(Gr)-submodule of M . The reverse map sends (P,N) to the U [r](G)-module (U [r](G) ⊗D
P )⊗U(g) N = P ⊗K N .

We are now in a position to give the deferred proof of Proposition 7.1.7 from [17].

Proposition 4.4. Suppose that G is a reductive algebraic group over an algebraically closed field

K of positive characteristic p, and let χ ∈ g∗. Let M be an irreducible U
[r]
χ (G)-module and P an

irreducible Dist(Gr)-module such that M ∼= P ⊗ HomDist(Gr)(P,M) as Dist(Gr)-modules. Then
HomDist(Gr)(P,M) is an irreducible Uχ(g)-module.

Proof. All that remains is to show that for x ∈ g, xp − x[p] acts on HomD(P,M) as χ(x)p. Given

δ ∈ Dist+
pr(G), we know that δ⊗p − δp is central in U [r](G). Hence, the map

ρ(δ⊗p − δp) : U [r](G)⊗D P → U [r](G)⊗D P

given by left multiplication by δ⊗p − δp is a U [r](G)-module endomorphism of U [r](G) ⊗D P , and

so lies inside E. However, as we know that M is a U
[r]
χ (G)-module, ρ(δ⊗p − δp) ∈ E acts on

HomD(P,M) as multiplication by χ(δ)p.
Hence, to show that HomD(P,M) is a Uχ(g)-module, we just need that, for α ∈ Φ, epα maps to

ρ((e
(pr)
α )⊗p) and, for 1 ≤ t ≤ d, hpt −ht maps to ρ(

(
ht
pr

)⊗p− (htpr)) under the isomorphism U(g) ∼= E.

This isomorphism was described in Remark 1. In particular, we know that epα = (e
(pr)
α )⊗p and

hpt − ht =
(
ht
pr

)⊗p − (htpr) for α ∈ Φ and 1 ≤ t ≤ d.

Observe that

∆((e(pr)
α )⊗p) = ∆(e(pr)

α )⊗p =

pr∑
i=0

(e(i)
α )⊗p ⊗ (e(pr−i)

α )⊗p = (e(pr)
α )⊗p ⊗ 1 + 1⊗ (e(pr)

α )⊗p,

since (e
(i)
α )⊗p = 0 for all 0 < i < pr, while

∆(

(
ht
pr

)⊗p
−
(

ht
pr

)
) = ∆(

(
ht
pr

)
)⊗p −∆(

(
ht
pr

)
)

=

pr∑
i=0

(
ht
i

)⊗p
⊗
(

ht
pr − i

)⊗p
−

pr∑
i=0

(
ht
i

)
⊗
(

ht
pr − i

)

= (

(
ht
pr

)⊗p
−
(

ht
pr

)
)⊗ 1 + 1⊗ (

(
ht
pr

)⊗p
−
(

ht
pr

)
)

since
(
ht
i

)⊗p
=
(
ht
i

)
for all 0 < i < pr.
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Hence, J ′(epα)(1⊗ z) = 1⊗ q((e(pr)
α )⊗p ⊗ z)− (e

(pr)
α )⊗p ⊗ q(1⊗ z). However, the U [r](G)-module

structure on P comes through the map U [r](G) � Dist(Gr+1), so q((e
(pr)
α )⊗p ⊗ z) = 0. Thus,

J ′(epα)(1⊗ z) = −(e
(pr)
α )⊗p ⊗ z.

Similarly, J ′(hpt − ht)(1⊗ z) = −(
(
ht
pr

)⊗p − (htpr))⊗ z.
By Remark 3.8 in [14], the algebra homomorphism J : U(g)→ E is defined as J = J ′S. Hence,

we conclude that J(epα) = ρ((e
(pr)
α )⊗p) for α ∈ Φ, and J(hpt − ht) = ρ(

(
ht
pr

)⊗p − (htpr)) for 1 ≤ t ≤ d

(using for the latter that
(
ht
i

)⊗p
=
(
ht
i

)
for i < pr). The result follows. �

Corollary 4.5. Suppose that G is a connected reductive algebraic group over an algebraically closed
field K of positive characteristic p > 0. Suppose further that g and p are such that Premet’s

theorem holds (see [11]). Let M be an irreducible U
[r]
χ (G)-module and N an irreducible Dist(Gr)-

module such that M ∼= N ⊗ HomDist(Gr)(N,M) as Dist(Gr)-modules. Then pdim(G·χ)/2 divides
dim HomDist(Gr)(N,M).

Lemma 4.6. Let P ∈ Irr(Dist(Gr)) and N ∈ Irr(U(g)) with p-character χ ∈ g∗ (so N ∈
Irr(Uχ(g))). Then the following results hold.

(1)

(U [r](G)⊗D P )⊗U(g) N

is a left U
[r]
χ (G)-module;

(2) U
[r]
χ (G)⊗D P is a right Uχ(g)-module; and

(3) as U
[r]
χ (G)-modules,

(U [r](G)⊗D P )⊗U(g) N ∼= (U [r]
χ (G)⊗D P )⊗Uχ(g) N.

Proof. (1) To show that (U [r](G)⊗D P )⊗U(g)N is a left U
[r]
χ (G)-module, it is enough to show that

δ⊗p − δp − χ(δ)p acts on it by zero multiplication for all δ ∈ Dist+
pr(G). Set δ ∈ Dist+

pr(G), and let
x = Υr,r(δ) ∈ g.

Let u ∈ U [r](G), z ∈ P and n ∈ N . Then

(δ⊗p − δp − χ(δ)p) · (u⊗D z)⊗U(g) n = (u⊗D z) · (xp − x[p] − χ(x)p)⊗U(g) n

= (u⊗D z)⊗U(g) (xp − x[p] − χ(x)p) · n = 0.

(2) To show that U
[r]
χ (G)⊗D P is a right Uχ(g)-module, first note that Dist(Gr) is a subalgebra

of U
[r]
χ (G), so the tensor product makes sense. We will show that U

[r]
χ (G)⊗DP is a right E-module,

on which the left multiplication by δ⊗p − δp − χ(δ)p is zero for all δ ∈ Dist+
pr(G).

Let f ∈ EndU [r](G)(U
[r](G)⊗D P )op. We want a linear map T̃f : U

[r]
χ (G)⊗D P → U

[r]
χ (G)⊗D P .

By the universal property of the tensor product, it is enough to give a linear map Tf : U
[r]
χ (G)×P →

U [r](G)⊗D P which is Dist(Gr)-balanced.

Define Tf (u, z) = f(u⊗D z) for u ∈ U [r](G) and z ∈ P , where f(u⊗D z) is the image of f(u⊗Dz)
under the map U [r](G)⊗D P � U

[r]
χ (G)⊗D P . First, we must see that this is well-defined. Suppose

u = v ∈ U [r]
χ (G). Hence, u− v ∈ I �U [r](G), where I is the ideal generated by δ⊗p− δp−χ(δ)p for

δ ∈ Dist+
pr(G). So f((u−v)⊗D z) ∈ I⊗DP , so f((u− v)⊗D z) = 0. Furthermore, for d ∈ Dist(Gr),

Tf (u · d, z) = Tf (ud, z) = f(ud⊗D z) = f(u⊗D dz) = Tf (u, d · z).
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Hence, we obtain a linear map T̃f : U
[r]
χ (G) ⊗D P → U

[r]
χ (G) ⊗D P . It is straightforward to see

that T̃f T̃g = T̃fg, so U
[r]
χ (G)⊗D P is a right E-module. One may then check that the action of left

multiplication by δ⊗p − δp − χ(δ)p is zero for all δ ∈ Dist+
pr(G).

Hence U
[r]
χ (G)⊗D P is a right Uχ(g)-module.

(3) All that remains is to show the isomorphism (U [r](G)⊗DP )⊗U(g)N ∼= (U
[r]
χ (G)⊗DP )⊗Uχ(g)N .

Define the map F : (U [r](G) ⊗D P ) × N → (U
[r]
χ (G) ⊗D P ) ⊗Uχ(g) N by sending the elements

(u ⊗D z, n) to (u ⊗D z) ⊗Uχ(g) n, where u = u + I. It is easy to see that is map is a well-defined

U
[r]
χ (G)-module homomorphism. It is also U(g)-balanced:

F ((u⊗D z) · f, n) = f(u⊗D z)⊗Uχ(g) n = (u⊗D z)⊗Uχ(g) f · n = F (u⊗D z, f · n),

where u ∈ U [r](G), z ∈ P , n ∈ N , f ∈ E ∼= U(g) and f = f + J ∈ E/J , where J is the ideal in E
generated by left multiplications by the elements δ⊗p − δp − χ(δ)p for δ ∈ Dist+

pr(G). Hence, there

is a U
[r]
χ (G)-module homomorphism F̃ : (U [r](G)⊗D P )⊗U(g) N → (U

[r]
χ (G)⊗D P )⊗Uχ(g) N .

Furthermore, we define H : (U
[r]
χ (G) ⊗D P ) × N → (U [r](G) ⊗D P ) ⊗U(g) N by sending the

elements (u ⊗D z, n) to (u ⊗D z) ⊗U(g) n. This map is well-defined, since (U [r](G) ⊗D P ) ⊗U(g) N

is a U
[r]
χ (G)-module, and a homomorphism of U

[r]
χ (G)-modules. It is also Uχ(g)-balanced:

H((u⊗D z) · f, n) = f(u⊗D z)⊗Uχ(g) n = (u⊗D z)⊗Uχ(g) f · n = F ((u⊗D z), f · n),

where u ∈ U [r](G), z ∈ P , n ∈ N , f ∈ E ∼= U(g) and f = f+J ∈ E/J . This gives a U
[r]
χ (G)-module

homomorphism H̃ : (U
[r]
χ (G)⊗D P )⊗Uχ(g) N → (U [r](G)⊗D P )⊗U(g) N .

It is straightforward to see that F̃ and H̃ are inverse to each other. The result follows. �

Corollary 4.7. There is a bijection

Ψχ : Irr(U [r]
χ (G))→ Irr(Dist(Gr))× Irr(Uχ(g))

which sends M to (P,HomGr(P,M)), where P is the unique (up to isomorphism) irreducible

Dist(Gr)-submodule of M . The inverse map sends (P,N) to (U
[r]
χ (G)⊗Dist(Gr)P )⊗Uχ(g)N ∼= P⊗KN .

4.2. Teenage Verma modules. We can use the previous section to deduce some structural results

about irreducible U
[r]
χ (G)-modules. We start by defining the following vector subspace of U [r](G),

using the J·K notation from [17]:

Û [r](B) := K− span{
∏
α∈Φ+

eJiαK
α

d∏
t=1

(
ht

JktK

) ∏
α∈Φ+

e
JjαK
−α : 0 ≤ iα, kt, 0 ≤ jα < pr }.

This vector space is in fact a subalgebra of U [r](G) by the multiplication equations given in

[4]. Furthermore, the Hopf algebra structure on U [r](G) makes Û [r](B) into a Hopf subalgebra of

U [r](G).

Clearly Dist(Gr) is a subalgebra of Û [r](B), it is normal since it is normal in U [r](G), and Û [r](B)
is free as both a left and right Dist(Gr)-module.

From [17], we know that the map Υr,r : U [r](G) → U(g) is a surjective Hopf algebra homo-
morphism. It is easy to see from the bases that this map restricts to a surjective Hopf algebra

homomorphism Û [r](B) � U(b), with kernel Û [r](B)Dist+(Gr) = Dist+(Gr)Û [r](B). In particular,

Dist(Gr) ⊂ Û [r](B) is a U(b)-module extension, with Dist(Gr) = Û [r](B)
coU(b)

.

Lemma 4.8. Let P ∈ Irr(Dist(Gr). Then End
Û [r](B)

(Û [r](B)⊗D P ) ∼= U(b).
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Proof. This follows as in Lemma 7.1.5 from [17], since Û [r](B) is a subalgebra of U [r](G). �

It is straightforward to see that the proof of Theorem 7.1.4 in [17] and the proof of Theorem 4.2
above hold similarly in this context. In other words, we have the following proposition.

Proposition 4.9. There is a bijection

Ψ̂ : Irr(Û [r](B))→ Irr(Dist(Gr))× Irr(U(b))

which sends M to (P,HomGr(P,M)), where P is the unique (up to isomorphism) irreducible

Dist(Gr)-submodule of M . The inverse map sends (P,N) to the Û [r](B)-module (Û [r](B) ⊗D
P )⊗U(b) N = P ⊗K N .

Applying Lemma 4.4 and Lemma 4.6 in this context, we get the following corollary.

Corollary 4.10. The bijection in Proposition 4.9 restricts to a bijection

Ψ̂χ : Irr(Û
[r]
χ (B))→ Irr(Dist(Gr))× Irr(Uχ(b)).

Assume from now on that χ(n+) = 0. It is well known (see, for example, [7]) that, if N ∈
Irr(Uχ(b)), then N = Kλ for some λ ∈ Λχ, where Kλ denotes the 1-dimensional b-module on which
n+ acts trivially and h ∈ h acts through multiplication by λ(h). Recall here that

Λχ := {λ ∈ h∗ |λ(h)p − λ(h) = χ(h)p for all h ∈ h}.
Hence, there is a bijection,

Ψ̂ : Irr(Û
[r]
χ (B))→ Irr(Dist(Gr))× Λχ.

In other words, every irreducible Dist(Gr)-module P can be extended to an irreducible Û
[r]
χ (B)-

module, and there is one such way to do this for each λ ∈ Λχ. For each λ ∈ Λχ, we can hence

define the U
[r]
χ (G)-module

U [r]
χ (G)⊗

Û
[r]
χ (B)

(P ⊗K Kλ) = U [r]
χ (G)⊗

Û
[r]
χ (B)

(Û
[r]
χ (B)⊗D P )⊗Uχ(b) Kλ

?
= (U [r]

χ (G)⊗
Û

[r]
χ (B)

Û
[r]
χ (B)⊗D P )⊗Uχ(b) Kλ

= (U [r]
χ (G)⊗D P )⊗Uχ(b) Kλ

= (U [r]
χ (G)⊗D P )⊗Uχ(g) Uχ(g)⊗Uχ(b) Kλ

= (U [r]
χ (G)⊗D P )⊗Uχ(g) Zχ(λ)

= P ⊗K Zχ(λ).

Here, equality (?) follows from an easy check.

We call this U
[r]
χ (G)-module the teenage Verma module Zrχ(P, λ). Note that dim(Zrχ(P, λ)) =

pdim(n−) dim(P ). Frobenius reciprocity them gives the following proposition, proving both conjec-
tures from Subsection 6.5 in [17].

Proposition 4.11. Every irreducible U
[r]
χ (G)-module is a quotient of a teenage Verma module

Zrχ(P, λ) for some P ∈ Irr(Dist(Gr)) and λ ∈ Λχ.

Despite the fact that baby Verma modules and teenage Verma modules need not be irreducible,
the following lemma shows that the correspondence in Corollary 4.7 can be extended to these
modules.
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Lemma 4.12. For P ∈ Irr(Dist(Gr)) and λ ∈ Λχ, HomGr(P,Z
r
χ(P, λ)) ∼= Zχ(λ) as left Uχ(g)-

modules.

Proof. This follows directly from Remark 2. �

We also obtain the following structural result.

Proposition 4.13. Suppose M ∈ Irr(U
[r]
χ (G)), P ∈ Irr(Dist(Gr)) and N ∈ Irr(Uχ(g)) such that

Ψχ(M) = (P,N). Then M is an irreducible quotient of Zrχ(P, λ) if and only if N is an irreducible
quotient of Zχ(λ).

Proof. ( =⇒ ) By definition of Ψχ and Lemma 4.12, N = HomGr(P,M) and Zχ(λ) = HomGr(P,Z
r
χ(P, λ)).

Let π : Zrχ(P, λ)→M be the given surjection. We then define the map η : Zχ(λ)→ N by defining
the map η : HomGr(P,Z

r
χ(P, λ)) → HomGr(P,M) as η(f)(z) = πf(z) for f ∈ HomGr(P,Z

r
χ(P, λ))

and z ∈ P . It is straightforward to check that this is an E-module homomorphism, hence a U(g)-
module homomorphism, hence a Uχ(g)-module homomorphism. It is surjective as N is irreducible.

( ⇐= ) By the definitions of Ψχ and Zrχ(P, λ), M = (U
[r]
χ (G) ⊗D P ) ⊗Uχ(g) N and Zrχ(P, λ) =

(U
[r]
χ (G)⊗D P )⊗Uχ(g) Zχ(λ). The result then follows from the functoriality of the tensor product

and the irreducibility of M . �

4.3. Consequences. From now on, let us make the following assumptions (see Chapter 6 in [8]
for more details):

(H1) The derived group of G is simply-connected;
(H2) The prime p is good for G; and
(H3) There is a non-degenerate G-invariant bilinear form on g.
In particular, (H3) gives rise to an isomorphism of G-modules g→ g∗. This allows us to transfer

properties of elements of g to properties of elements of g∗. For example, we say that χ ∈ g∗ is
semisimple if the corresponding element x ∈ g is semisimple (in fact this is equivalent to the
requirement that g ·χ(n+⊕ n−) = 0 for some g ∈ G, under the coadjoint action). Similarly, we say
that χ ∈ g∗ is nilpotent if the corresponding element x ∈ g is nilpotent (this is equivalent to the
requirement that g · χ(b) = 0 for some g ∈ G, under the coadjoint action).

Furthermore, we say that x ∈ g is regular if dim(CG(x)) = dim(h), where CG(x) := {g ∈
G |g · x = x}. We hence say that χ ∈ g∗ is regular if the corresponding x ∈ g is regular - this is
equivalent to the requirement that dim(CG(χ)) = dim(h), where CG(χ) := {g ∈ G |g · χ = χ}.

With these definitions in mind, we get the following proposition.

Theorem 4.14. Let M be an irreducible U
[r]
χ (G)-module, for χ ∈ g∗, and let P be the unique (up

to isomorphism) irreducible Dist(Gr)-submodule of M . The following results hold.

(1) There exists λ ∈ Λχ such that M is an irreducible quotient of Zrχ(P, λ).
(2) If χ is regular, then there exists P ∈ Irr(Dist(Gr)) and λ ∈ Λχ such that M ∼= Zrχ(P, λ).

(3) If χ is regular semisimple then Zrχ(P, λ) ∼= Zrχ(P̃ , µ) if and only if P ∼= P̃ and λ = µ.

(4) If χ is regular nilpotent and χ(e−α) 6= 0 for all α ∈ Π, then Zrχ(P, λ) ∼= Zrχ(P̃ , µ) if and only

if P ∼= P̃ and λ ∈W•µ, where W is the Weyl group of Φ and • represents the dot-action.

Proof. (1) By above, there exists Q ∈ Irr(Dist(Gr)) and λ ∈ Λχ such that M is an irreducible
quotient of Zrχ(Q,λ). Frobenius reciprocity then shows that

Hom
U

[r]
χ (G)

(Zrχ(Q,λ),M) ∼= Hom
Û

[r]
χ (B)

(Q⊗K Kλ,M).

In particular, as M 6= 0, the Dist(Gr)-module Q ⊂ Zrχ(Q,λ) is not in the kernel of the surjection
π : Zrχ(Q,λ) � M . Hence, the surjection restricts to a Dist(Gr)-isomorphism Q → π(Q), so Q
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is an irreducible Dist(Gr)-submodule of M . As a result, Q ∼= P , and we can say that M is an
irreducible quotient of Zrχ(P, λ) for some λ ∈ Λχ.

(2) The bijection Ψχ sends M to the pair (P,N) for some N ∈ Irr(Uχ(g)), and dim(M) =

dim(P ) dim(N). Since χ is regular, dim(N) = pdim(n−).
However, by (1), M is an irreducible quotient of Zrχ(P, λ) for some λ ∈ Λχ. Furthermore,

dim(Zrχ(P, λ)) = pdim(n−) dim(P ). Hence, M ∼= Zrχ(P, λ).

(3) Suppose Zrχ(P, λ) ∼= Zrχ(P̃ , µ). The U
[r]
χ (G)-module Zrχ(P, λ) is an irreducible module con-

taining P , while Zrχ(P̃ , µ) is an irreducible U
[r]
χ (G)-module containing P̃ . Since each irreducible

U
[r]
χ (G)-module contains a unique irreducible Dist(Gr)-submodule, we obtain that P and P̃ are

isomorphic Dist(Gr)-modules.
Hence,

HomGr(P,Z
r
χ(P, λ)) ∼= HomGr(P̃ , Z

r
χ(P̃ , µ)),

and so

Zχ(λ) ∼= Zχ(µ).

By [7, B.10], λ = µ.

(4) As in (3), if Zrχ(P, λ) ∼= Zrχ(P̃ , µ) then Zχ(λ) ∼= Zχ(µ). Hence, by [8, Proposition 10.5],
λ ∈W•µ+ pX.

�

Since all irreducible U [r](G)-modules have finite dimension, we can determine the maximal di-

mension of an irreducible U [r](G)-module, sup{dim(M) |M ∈ Irr(U [r](G))}.

Corollary 4.15. The maximal dimension of an irreducible U [r](G)-module is p(r+1) dim(n−), and it
is attained.

Proof. Since every irreducible U [r](G)-module is an irreducible quotient of Zrχ(P, λ) for some χ ∈ g∗,
λ ∈ Λχ and irreducible Dist(Gr)-module P , and since the dimension of Zrχ(P, λ) depends only on

P , the maximal dimension of an irreducible U [r](G)-module is at most

max
P∈Irr(Dist(Gr))

{dim(Zrχ(P, λ))} = max
P∈Irr(Dist(Gr))

{(pdim(n−) dim(P ))}.

The maximal dimension of an irreducible Dist(Gr)-module is pr dim(n−), coming from the Steinberg
weight St. In particular, if we choose P = Lr(St) and χ regular, then Zrχ(P, λ) is an irreducible

U [r](G)-module of dimension p(r+1) dim(n−), and the result follows. �

Recall further that, given x ∈ g, there exist xs, xn ∈ g such that x = xs + xn, xs is semisimple
in g, xn is nilpotent in g and [xs, xn] = 0. We call x = xs + xn a Jordan decomposition of x. If,
under the G-module isomorphism g→ g∗, x maps to χ, xs maps to χs and xn maps to χn, we call
χ = χs + χn a Jordan decomposition of χ.

Given χ ∈ g∗, we define cg(χ) := {y ∈ g |χ([g, y]) = 0}. Under our assumptions, CG(χs) is a
Levi subgroup of G with Lie algebra cg(χs) (see [3, Lemma 3.2]). Hence, there exists a parabolic
subgroup Pχs of G which is a semi-direct product of CG(χs) with its unipotent radical UPχs . Letting
u = Lie(UPχs ) and p = Lie(Pχs), we get that p = cg(χs) ⊕ u. Work of Friedlander and Parshall in
[5] shows that there is a equivalence of categories

mod(Uχ(g))←→ mod(Uχ(cg(χs)))

which sends N ∈ mod(Uχ(g)) to the fixed point set Nu ∈ mod(Uχ(cg(χs))), and sends V ∈
mod(Uχ(cg(χs))) to Uχ(g)⊗Uχ(p) V ∈ mod(Uχ(g)), where u acts on V as 0.
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Furthermore, letting µ = χ|cg(χs), there is another equivalence of categories

mod(Uµ(cg(χs))←→ mod(Uµn(cg(χs)))

which sends V ∈ mod(Uµ(cg(χs))) to V ⊗W ∈ mod(Uµn(cg(χs))) and V ∈ mod(Uµn(cg(χs))) to V ⊗
W ∗ ∈ mod(Uµ(cg(χs))), where W is a irreducible Uµs(cg(χs)/[cg(χs), cg(χs)])-module (necessarily
1-dimensional) viewed as a g-module.

Both of these equivalences of categories send baby Verma modules to baby Verma modules.

Corollary 4.16. Keep the notation from the preceding paragraph. There is a bijection

Ψχ : Irr(U [r]
χ (G))→ Irr(Dist(Gr))× Irr(Uµn(cg(χs)))

which sends M to (P,HomGr(P,M)u⊗W ∗), where P is the unique (up to isomorphism) irreducible

Dist(Gr)-submodule of M . The inverse map sends (P, V ) to (U
[r]
χ (G)⊗Dist(Gr)P )⊗Uχ(p) (V ⊗W ) ∼=

P ⊗K (Uχ(g)⊗Uχ(p) (V ⊗W )).

In particular, this result means that to study the irreducible U
[r]
χ (G)-modules, one may always

assume that χ|cg(χs) is nilpotent, and hence that χ vanishes on b ∩ cg(χs).
Recall that we say that χ ∈ g∗ has standard Levi form if χ(b) = 0 and there exists a subset

I ⊆ Π with χ(e−α) = 0 if and only if α ∈ Φ+ \ I.

Definition. We say that χ ∈ g∗ has almost standard Levi form if (χ|cg(χs))n has standard Levi
form.

Proposition 4.17. Suppose that χ ∈ g∗ has almost standard Levi form. Let P ∈ Irr(Dist(Gr))

and λ ∈ Λχ. Then the U
[r]
χ (G)-module Zrχ(P, λ) has a unique irreducible quotient.

Proof. Since µn := (χ|cg(χs))n has standard Levi form, each Zµn(τ) for τ ∈ Λµn has a unique
irreducible quotient. Since there is an equivalence of categories between mod(Uµn(cg(χs))) and
mod(Uχ(g)) which sends baby Verma modules to baby Verma modules, it follows that each Zχ(λ)
has a unique irreducible quotient. The result then follows from Proposition 4.13. �

If χ ∈ g∗ has almost standard Levi form, we shall write Lrχ(P, λ) for the unique irreducible
quotient of Zrχ(P, λ). Proposition 10.8 in [8] gives the following isomorphism condition on these
modules, where WI is the subgroup of the Weyl group generated by simple reflections corresponding
to simple roots in I.

Corollary 4.18. Suppose that χ ∈ g∗ has almost standard Levi form corresponding to the subset I

of the simple roots of cg(χs). Let P,Q ∈ Irr(Dist(Gr)) and λ, λ̃ ∈ Λχ. Then Lrχ(P, λ) ∼= Lrχ(Q, λ̃) if

and only if P ∼= Q and λ̃ ∈WI•λ.

5. The Azumaya Locus of U [r](G)

5.1. Azumaya and pseudo-Azumaya loci. Let R be a K-algebra, where K is an algebraically
closed field (of arbitrary characteristic), which is module-finite over its centre Z = Z(R). Suppose
further that Z is an affine K-algebra (i.e. Z is finitely generated as a K-algebra). One can observe
that these conditions guarantee the existence of a bound on the dimensions of irreducibleR-modules.

These conditions further imply that R is a PI ring, i.e. that there exists a (multilinear) Z-
polynomial f such that f(r1, . . . , rk) = 0 for all r1, . . . , rk ∈ R. For n ∈ N, we define the polynomial
gn as in Chapter 1.4 of [12] (see Proposition 1.4.10 in particular). This is an n2-normal polynomial
(n2-normal meaning gn is linear and alternating in its first n2 variables). We then say that R
has PI-degree m if R satisfies all multilinear identities of Mm(Z) (that is to say, all multilinear
Z-polynomials which vanish on Mm(Z)) and gm(R) := {gm(r1, . . . , rk) | r1, . . . , rk ∈ R} is not the
zero set. If R has PI-degree m, then gm(r1, . . . , rk) ∈ Z for all r1, . . . , rk ∈ R.

16



We define, as in [12], the following sets:

Specm(R) := {P ∈ Spec(R) | gm(R) 6⊆ P}, Specm(Z) := {Q ∈ Spec(Z) | gm(R) 6⊆ Q},
where Spec(R) is defined to be the set of prime ideals in R. One can check that, if R has PI-degree
m and P is a prime ideal of R, PI-degree(R) ≥ PI-degree(R/P ) and this inequality is an equality
precisely when P ∈ Specm(R).

Given a central subalgebra C of R, we say, as in Definition 5.3.23 in [13], that R is Azumaya
over C if

(i) R is a faithful and finitely generated projective C-module; and
(ii) the canonical map R ⊗C Rop → EndC(R), which sends a ⊗ b to the map x 7→ axb, is a

K-algebra isomorphism.
If C = Z, we will simply call R an Azumaya algebra. We furthermore say that R is Azumaya

over C of constant rank t if RI is a free module of rank t over CI for all prime ideals I of C [13,
Definition 2.12.21]. By Remark 1.8.36 in [13], we observe that if R is Azumaya over C of constant
rank t then, for each prime ideal I of C, RI is also Azumaya over CI of constant rank t.

Given a prime ideal Q in Z, we define RQ to be the localization of R at the multiplicatively

closed central subset Z \Q. In other words, RQ := {rs−1 | r ∈ R, s ∈ Z \Q}, where r1s
−1
1 = r2s

−1
2

if and only if there exists s ∈ Z \ Q such that s(r1s2 − r2s1) = 0. We denote by ZQ the usual
localization of R \Q in Z. By [12], ZQ ⊆ Z(RQ) with equality if Z \Q is regular in R (i.e. for any
s ∈ Z \Q, r ∈ R, sr = 0 implies r = 0).

Note that Theorem 5.3.24 in [13] implies that if RQ is Azumaya over ZQ then ZQ = Z(RQ). The
following lemma follows from Section 5.3 in [13].

Lemma 5.1. RQ is Azumaya over ZQ if and only if ZQ = Z(RQ) and RQ is Azumaya over its
centre. Either of these conditions is satisfied if, for example, Z \ Q is regular in R and RQ is
Azumaya over its centre.

The Azumaya locus AR of R is hence defined to be the set of maximal ideals m in Z such that
Rm is an Azumaya algebra over Zm. If R is prime, this is precisely the definition of Azumaya locus
given in [1].

We shall further define the pseudo-Azumaya locus of R, PAR, as

PAR := {annZ(M) |M an irreducible leftR-module of maximal dimension}.
The next theorems shall show how the Azumaya and pseudo-Azumaya loci are connected.

Theorem 5.2. Let R be a K-algebra, where K is an algebraically closed field, which is module-finite
over its centre Z = Z(R), and assume that Z is affine. Let J(R) be the Jacobson radical of R.
Then the following results hold.

(1) The ring R/J(R) has PI-degree d, where d is the maximal dimension of an irreducible (left)
R-module.

(2) If R has PI-degree m, then m = d if and only if there exists a primitive ideal A in Specm(R).

Proof. (1) Observe that for an irreducible R-module M with annihilator A = annR(M), R/A is a
finite dimensional, simple algebra over Z/m, where m = A ∩ Z. This holds because M is a faithful
R/A-module, so R/A embeds in EndK(M). In particular, R/A ∼= MnA(K) by the algebraically
closed nature of the field K, for some nA ∈ N. Hence, every irreducible R/A-module has dimension
nA. In particular,

d = max
A�R primitive

{nA}.

Furthermore, Kaplansky’s Theorem tells us that, for a primitive ideal A of R, the PI-degree of
R/A is also nA. Hence, for any primitive ideal A,

PI-degree(R/A) = nA ≤ d.
17



In particular, this says that if f is a multilinear identity of Md(Z) then f(R) is a subset of all
primitive ideals of R. Thus R/J(R) satisfies all the multilinear identities of Md(Z).

Also, if M is an irreducible R-module of maximal dimension then PI-degree(R/annR(M)) = d.
Hence gd(R) 6⊆ annR(M), and thus gd(R) 6⊆ J(R). So gd(R/J(R)) 6= 0.

This precisely says that R/J(R) has PI-degree d.
(2) We know that PI-degree(R/annR(M)) = d when M is an irreducible left R-module of max-

imal dimension. Thus, when m = d, PI-degree(R) = PI-degree(R/annR(M)) and so annR(M) ∈
Specm(R).

On the other hand, if there exists a primitive ideal A ∈ Specm(R) then

m = PI-degree(R) = PI-degree(R/A) ≤ PI-degree(R/J(R)) ≤ PI-degree(R)

and the result follows. �

If R has PI-degree d, the maximal dimension of an irreducible (left) R-module, then the pseudo-
Azumaya locus PAR is an open subset of Maxspec(Z). Using similar techniques to those used in
the proof of Theorem 5.2, the proof of this fact when R is prime (found, for example, in Proposition
III.1.1 and Lemma III.1.5 in [2]) easily generalises to this case.

Note that the assumptions of Theorem 5.2 guarantee that R is a Jacobson ring, i.e. that every
prime ideal is an intersection of primitive ideals. In particular, J(R) is the intersection of all
prime ideals in R. Hence, if R is a prime ring then R has PI degree d and the Azumaya and
pseudo-Azumaya loci coincide by the following theorem (noting that, over a prime ring, if Rm is an
Azumaya algebra then it must be of constant rank as Z(Rm) = Zm is local for all maximal ideals m
of Z – see also Chapter 13.7 in [9]). Note that Brown and Goodearl have already shown the prime
case in [1], using similar techniques.

Theorem 5.3. Let R be a K-algebra, where K is an algebraically closed field, which is module-finite
over its centre Z = Z(R), and assume that Z is affine. Suppose that R has PI-degree d, where d
is the maximum dimension of an irreducible (left) R-module. Furthermore, let M be an irreducible
(left) R-module, A = annR(M) and m = annZ(M). Then dim(M) = d if and only if Rm is an
Azumaya algebra of constant rank d2.

Note that, since Z is affine, m is a maximal ideal of Z.

Proof. ( =⇒ ) Suppose that M is an irreducible (left) R-module of dimension d. Then R/A ∼=
Md(K) and so PI-degree(R/A) = d = PI-degree(R).

In particular, this means that A ∈ Specd(R) and so gd(R) 6⊆ A. Thus, gd(R) ∩ (Z \ m) 6= ∅,
and hence gd(R) contains an invertible element of Zm, so an invertible element of Rm. Thus
gd(Rm) 6= {0}. Furthermore, any homogeneous multilinear polynomial identity of R is a polynomial
identity of Rm, and so PI-degree(Rm) = PI-degree(R).

Also, 1 ∈ gd(Rm)Rm since gd(Rm) contains an element of Z \ m. So by a version of the Artin-
Procesi theorem (see [13]), Rm is Azumaya over its centre of constant rank d2.

( ⇐= ) Suppose that Rm is Azumaya of constant rank d2 over its centre. In particular, the
Artin-Procesi theorem from [13] tells us that Rm has PI-degree d and that 1 ∈ gd(Rm)Rm.

Note that it is always true that R/mR ∼= Rm/mRm. Furthermore Rm/mRm satisfies all multilinear
identities of Rm, and if gd(Rm) ⊆ mRm then 1 ∈ gd(Rm)Rm ⊆ mRm. But then mRm = Rm which is
a contradiction. So Rm/mRm has PI-degree d, and so R/mR has PI-degree d. This precisely says
that mR ∈ Specd(R), and so m ∈ Specd(Z).

Since m is a maximal ideal of Z, Theorem 1.9.21 of [12] says that mR is a maximal ideal of R,
and so A = mR. In particular, R/mR ∼= Md(K) as in the proof of Theorem 5.2. Since M is an
irreducible R/mR-module, the result follows.

�
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Observe that, by Schur’s lemma, if M is an irreducible R-module then each u ∈ Z acts on M
by scalar multiplication. In particular, there exists a central character ζM : Z → K where ζM (u) is
defined by u ·m = ζM (u)m for all m ∈M . Thus,

PAR = {ker(ζM ) |M an irreducibleR-module of maximal dimension}.

5.2. Pseudo-Azumaya loci for higher universal enveloping algebras. From now on, we
once again suppose K has characteristic p > 0.

We now shall explore the pseudo-Azumaya locus for the higher universal enveloping algebras.

Suppose that G is a connected reductive algebraic group over K. We then take Z
[r]
p to be the

(central) subalgebra of U [r](G) generated by the elements δ⊗p − δp for δ ∈ Dist+
pr(G). The work of

[17] shows that

Z [r]
p = K[(e(pr)

α )⊗p,

(
ht
pr

)⊗p
−
(

ht
pr

)
|α ∈ Φ, 1 ≤ t ≤ d].

Furthermore, from [17] it is known that U [r](G) is an affine K-algebra and that it is a free Z
[r]
p -

module of finite rank p(r+1) dim(g). Since Z
[r]
p is Noetherian and finitely-generated, the Artin-Tate

Lemma gives that the centre of U [r](G), which we shall denote by Z [r](G), is an affine Z
[r]
p -algebra

and an affine K-algebra. This implies that Z
[r]
p , Z [r](G) and U [r](G) are Noetherian PI rings and

that U [r](G) is a Jacobson ring.
For the remainder of this section we shall use the convention that for an irreducible U(g)-module

N the corresponding central character is ζN : Z(g) := Z(U(g))→ K while for an irreducible U [r](G)-

module M the corresponding central character is ζ
[r]
M : Z [r](G) → K. In order to understand how

these maps interact, we need to consider some homomorphisms between the centres.
Recall from [17] that there exists a surjective algebra homomorphism Υ : U [r](G)→ U(g). This

map clearly maps centres to centres, so gives an algebra homomorphism Υ := Υr,r : Z [r](G)→ Z(g).

In particular, [17] shows that, Υ((e
(pr)
α )⊗p) = epα for α ∈ Φ and Υ(

(
ht
pr

)⊗p − (htpr)) = hpt − ht for

1 ≤ t ≤ d. Hence, Υ further restricts to an algebra homomorphism

Υ : Z [r]
p → Zp

which is now clearly an isomorphism.
There is another map between centres which is worth considering. Let P be an irreducible

Dist(Gr)-module, and let us consider the induced module U [r](G) ⊗D P , where, as always, D

denotes Dist(Gr). The action of U [r](G) on U [r](G)⊗D P is by left multiplication, so in particular

u ∈ Z [r](G) acts on U [r](G)⊗D P by the U [r](G)-module endomorphism

ρ(u) : U [r](G)⊗D P → U [r](G)⊗D P,

which is left multiplication by u. Clearly ρ(u) is a central element of E := EndU [r](G)(U
[r](G) ⊗D

P )op. Recall from Proposition 4.1 that U(g) is isomorphic to E, and let τ : E → U(g) be the
isomorphism. Hence, there is a homomorphism of algebras

ΩP : Z [r](G)→ Z(g)

given by composition of τ and ρ.
We can furthermore observe that the proof of Proposition 4.4 shows that

ΩP ((e(pr)
α )⊗p) = epα

for α ∈ Φ and

ΩP (

(
ht
pr

)⊗p
−
(

ht
pr

)
) = hpt − ht
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for 1 ≤ t ≤ d. In particular, Υ|
Z

[r]
p

= ΩP |Z[r]
p

, and so ΩP restricts to an isomorphism Z
[r]
p → Zp.

The following conditions for the map ΩP to be surjective or injective are easy to prove,

Lemma 5.4. The homomorphism ΩP is surjective if and only if every central element of E is left
multiplication by some central element of U [r](G).

Lemma 5.5. The homomorphism ΩP is injective if and only if, for u ∈ Z [r](G), u ⊗D z = 0 ∈
U [r](G)⊗DP for all z ∈ P implies that u = 0. Equivalently, if and only if U [r](G)⊗DP is a faithful

Z [r](G)-module.

Let us see how the homomorphisms ΩP interact with the central characters of irreducible U [r](G)-
modules.

Proposition 5.6. Let M be an irreducible U [r](G)-module with Ψ(M) = (P,N) for P ∈ Irr(Dist(Gr))
and N ∈ Irr(U(g)). Then the following diagram commutes:

Z [r](G)
ζ
[r]
M //

ΩP
��

K

Z(g)

ζN

77oooooooooooooo

Proof. Recall here that M ∼= (U [r](G) ⊗D P ) ⊗U(g) N . Now, let u ∈ Z [r](G), v ∈ U [r](G), z ∈ P
and n ∈ N . Then

u · (v ⊗D z)⊗U(g) n = ρ(u)(v ⊗D z)⊗U(g) n = (v ⊗D z) · τ(ρ(u))⊗U(g) n

= (v ⊗D z)⊗U(g) ΩP (u) · n = ζN (ΩP (u))(v ⊗D z)⊗U(g) n

�

Corollary 5.7. Let M be an irreducible U [r](G)-module with Ψ(M) = (P,N) for P ∈ Irr(Dist(Gr))
and N ∈ Irr(U(g)). Then

ker ζ
[r]
M = Ω−1

P (ker ζN ).

Recall now from Corollary 4.15 that if M is an irreducible U [r](G)-module corresponding to the
pair (P,N) ∈ Irr(Dist(Gr)) × Irr(U(g)) then dim(M) = dim(P ) dim(N). Hence, an irreducible

U [r](G)-module M is of maximal dimension if and only if the corresponding modules P and N are
of maximal dimension.

From now on fix P as the r-th Steinberg module Str of G, hence an irreducible Dist(Gr)-module

of maximal dimension. As in Subsection 4.1, let ΓP be the category of irreducible U [r](G)-modules
which contain P as an irreducible Dist(Gr)-submodule. Let MaxΓP denote the full subcategory

of ΓP whose objects are the irreducible U [r](G)-modules of maximal dimension in ΓP , and let
MaxIrr(U(g)) similarly denote the full subcategory of Irr(U(g)) consisting of irreducible U(g)-
modules of maximal dimension. The inverse equivalences of categories ΨP : ΓP → Irr(U(g)) and
ΦP : Irr(U(g))→ ΓP then restrict to inverse equivalences of categories

ΨP : MaxΓP → MaxIrr(U(g)) and ΦP : MaxIrr(U(g))→ MaxΓP .

We have already seen that, for M ∈ MaxΓP , ker(ζ
[r]
M ) = Ω−1

P (ker(ζΨP (M)). We hence have that

PAU [r](G) = {ker(ζ
[r]
M ) |M ∈ MaxIrr(U [r](G))} = {ker(ζ

[r]
M ) |M ∈ MaxΓP }

= {Ω−1
P (ker(ζΨP (M))) |M ∈ MaxΓP } = {Ω−1

P (ker(ζN )) |N ∈ MaxIrr(U(g))}.
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Proposition 5.8. Let P be the r-th Steinberg module Str of G. There is a surjective morphism
Ω∗P : PAU(g) → PAU [r](G) which sends ker(ζN ) to Ω−1

P (ker(ζN )).

Proof. ΩP : Z [r](G)→ Z(g) is a homomorphism of commutative algebras, so it induces a morphism

Ω∗P : Spec(Z(g))→ Spec(Z [r](G)).

This morphism sends I ∈ Spec(Z(g)) to Ω−1
P (I) ∈ Spec(Z [r](G)), so by above restricts to a map

Ω∗P : PAU(g) → PAU [r](G). It is surjective by the above discussion. �

Corollary 5.9. Let P be the r-th Steinberg module Str of G. If ΩP is surjective, then Ω∗P is a
bijection.

If we instead take P to be an arbitrary irreducible Dist(Gr)-module then ΨP and ΦP still restrict
to inverse equivalences of categories between MaxΓP and MaxIrr(U(g)), and we still get the equality

{ker(ζ
[r]
M ) |M ∈ MaxΓP } = {Ω−1

P (ker(ζN )) |N ∈ MaxIrr(U(g))},
but the left hand side may no longer be equal to PAU [r](G). For example, if P is the trivial 1-

dimensional Dist(Gr)-module then ΦP lifts an irreducible U(g)-module N to the irreducible U [r](G)-

module N along the natural quotient U [r](G) 7→ U [r](G)/U [r](G)Dist+(Gr) = U(g). Hence, if N is
an irreducible U(g)-module of maximum dimension, then ker(ζN ) is in the pseudo-Azumaya locus

of U(g) (and hence the Azumaya locus, since U(g) is prime), but Ω∗P (ker(ζN )) = ker(ζ
[r]
N ). In

particular, Ω∗P (ker(ζN )) will contain Z ∩ U [r](G)Dist+(Gr), suggesting that it is not the central

annihilator of an irreducible U [r](G)-module of maximum dimension.
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